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Summary. A large deviation theorem for the invariant measures of translation 
invariant attractive interacting particle systems on {0, 1} zd is proven. In this 
way a pseudo-free energy and pressure is defined. For ergodic systems the 
large deviations property holds with the usual scaling. The case of non ergod- 
ic systems is also discussed. A similar result holds for occupation times. 
The perturbation by an external field is treated. 

1. Introduction 

Gibbs measures are known to describe the properties of macroscopic physical 
systems in equilibrium. For a system in a box A c R a with microscopic interac- 
tion UA, in equilibrium at temperature /3 -1, the appropriate statistical state 
is according to Gibbs and Einstein #A,B ~ exp(--/3 UA) [Rul] ,  [-Ru2], [Sin]. The 
structure of the infinite volume limit A ~ R a, necessary for making sharp state- 
ments about macroscopic phenomena, such as phase transitions, has been much 
studied and a lot is known about them. This is particularly so when the physical 
object to be represented can be modeled (and this happens surprisingly often) 
as a "spin"  system on a lattice with "sufficiently rapidly" decaying interactions 
U. UA is just U restricted to A plus boundary terms. In this case the #~ = lim #a,p 

A ~ Z  d 

are quasi-Markovian measures on the compact configuration space Ea= W zd, 
d =  1, 2, ..., W - ( w l  . . . .  , wr), Wx < ... < % ,  i.e. their conditional probabilities in 
a finite region A c Z a, specified by the D L R  (Dobrushin-Lanford-Ruelle) equa- 
tions [Rul] ,  [Ru2], [-Sin], depend only weakly (or not at all) on what the 
configuration is far away from A. They are in fact just the finite volume states 
#A,p with suitable boundary conditions. This "locality" captures the essence 
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of the equilibrium state of macroscopic physical systems - if we divide the 
system into two or more parts and isolate them from each other then the separate 
regions of the system continue to be in the same equilibrium state as before. 

The situation is very different when we consider the behavior of systems 
maintained in a nonequilibrium state by contacts with outside sources. For  
such systems the appropriate representations, i.e. measures which can be used 
to obtain the properties of stationary non-equilibrium states, cannot be expected 
to behave in a quasi-Markovian way - isolating a part will generally change 
its behavior drastically. This makes the study of such measures more difficult 
and only very little is known at the present time about them or even how 
to characterize them in a generally useful way [G.K.I.], [-G.L.P.], [K.L.S.], 
[Leb2]. In fact there may not be any general formalism comparable to the 
Gibbsian equilibrium one which will encompass the great variety of nonequili- 
brium behavior observed in nature, even when restricted to steady state situa- 
tions. Nevertheless the subject is clearly of great interest and in this paper we 
study some aspects of simple models of such measures. 

Before going on to describe our new work let us review very briefly some 
of the features of Gibbs measures which may, or may not, be generalizable 
to non-equilibrium systems. We refer the reader to articles by Gray [Gra],  
Kilnsch [Kiln] and references there for discussions and some results on this 
question. It follows from the quasi-Markovian nature of the D L R  equations 
that all Gibbs measures are obtained as infinite volume limits of finite volume 
measures # a . ~ e x p ( - f l  UA) with suitable boundary conditions. (These b.c. may 
have to be statistical - but in all known cases can be taken pure, i.e. there 
is a specified configuration on sites outside A). The states form a Choquet simplex 
whose extremal points generally have rapidly decaying correlations, exponential 
if the interactions are finite range, except at places where there are good reasons 
why they shouldn't, i.e. at "critical" points or lines. 

The translational invariant states are characterized by a variational principle 
- their extremal points are the pure phases and correspond to tangent planes 
of a convex functional, the pressure p on an appropriate Banach space of poten- 
tials flU [Rul ] ,  [Ru2], [Sin]. First order phase transitions occur at values 
of fl U for which the tangent plane is not unique so that there is more than 
one extremal translation invariant state corresponding to a coexistence of pure 
phases. For  a given physical systems the potential U determining the Gibbs 
measure usually contains one or more parameters which can be varied experi- 
mentally or at least can be imagined so. The phase diagram of the system 
is a picture of how the number of pure phases changes when these parameters 
are changed. 

The most important  of these parameters is the magnetic field h in spin lan- 
guage (chemical potential in particle language) which controls the magnetization 
(or density). Considered as a function of h, p(h) is convex and its derivative 
(which exists for almost all h) gives the average magnetization. Its second deriva- 
tive is intimately related to the variance of the fluctuations in the magnetization. 
It also contains information about large deviations from the average (those 
proportional  to the volume). In this way it describes (for some ferromagnetic 
systems it gives complete information) the coexistence of pure phases [Rul ] ,  
[Ru2],  [Sin]. 
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The present paper may be thought of as an attempt, with some measure 
of success, to generalize this aspect of Gibbs states to some nonequilibrium 
states. The states we have particularly in mind are stationary measures for 
stochastic time evolutions of infinite particle systems on a lattice. These type 
of evolutions have been investigated in recent years from various points of 
view [Lig]. Only little is known however about the global structure of the 
stationary states even in the simplest examples which are not explicitely con- 
structed to be Gibbs. There are however many cases where these states are 
known to satisfy the F K G  (Fortuin, Kasteleyn, Ginibre) inequalities [-F.K.G.], 
i.e. for any increasing and continuous f, g: E ~ R .  E~(f(tl) g(t/)) 
>E,( f( t l ) )E,(g(t l )  ) where E, is the expectation when 17 is random with law 
v. In the terminology of [Lig] this measures are said to have positive correlations. 
In this note we show that these states share at least some features of Gibbs 
states. In particular it is possible to define a pressure like function II(h) which 
is related to the large fluctuations in the invariant state v in a manner similar 
to that of p(h) in equilibrium systems. It reduces to it (up to location of the 
origin of h) for Gibbs measures. 

Statement of Results 

Before stating the precise results we must introduce some notation. For  t/EEe 
let t/(i) represent the state at site i e Z  d. Given a set S, IsI will be its cardinality. 
For  A c Z  d and r/sEa define 

X A  (~ )  ~-  I A [-1 2 Y] (i). 
i eA  

For  simplicity we will write v{t/(0)= 1} instead of v{r/: ~/(0)= 1} and F{XA~__X } 
instead of v {t/: Xa (t/) > x}, etc. 

In Sect. 2 we will prove 

Theorem 1. Consider a probability measure v on Ed which is translation invariant, 
F K G  and such that pi = v {t/(0)= wi} > O, i= 1, r. Let (An)=(A) be a sequence of 
cubes in Z ~ such that An -~ Z d. Then, 

a) for any x e [ w l ,  wr], I l l  -1 logV{X A> X} [resp. I l l  -1 IogV{X A < X}] con- 
verges as A ~ Z d to a non positive real valued function 2+ (x) [resp. 2_ (x)] which 
is concave and decreasing [resp. increasing], 2 + (w 1) = 0 and )b + (%) > log Pr > - oo 
[resp. 2 _ (wl) > log Pl > - oo and )~_ (wr) = 0]. 

b) Define ) , (x)=min(2_ (x), 2+ (x)), then 2: [Wl, %] ~ ( -  o% 0] is concave and 
for any wl < a < b < w~ such that 

(1.1) 

(1.2) 

min(2(a), ),(b)) < 0  

lim I l l  -1  l o g v { X A ~ J } =  sup )~(x) 
A ~ Z  a a<_x<b 

for J = [a, b], [a, b), (a, hi, (a, b). 

(1.3) c) lim IA1-1 logEv exp (h lAIXA)=H(h)  
A ~ Z d 
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where H: R ~ R is defined by 

(1.4) H(h)=  sup (2(x)+hx) .  
WI~X~Wr 

In particular 17 is convex. 

Remark. If the condition pi>O, i=  1, r is not true, one can modify the definition 
of W in order to make it hold. 

Note that the restriction (1.1) is empty unless the set Y =  {x~[wl ,  w,]: 2(x) 
= 0} has a positive width. 

In Sect. 3 we investigate the invariant measures of some interacting particle 
systems. We consider in particular the class of translation invariant attractive 
spin systems [-Lig], hereafter denoted by TIA. These are Markov and Feller 
processes with state space {0, 1} zd whose evolution are given by the flip rates 
c(i, t/) (the rate at which t/(i) flips to 1- t / ( i )  when the system is in the configura- 
tion t/). Translation invariant means that c(i, t l )=c(i+j,  zjt/) , where (zjt/)(k) 
=t/(k+j) .  Attractiveness means informally that zeros attract zeros and ones 
attract ones ("ferromagnetic" types). More precisely, if the configuration t/ is 
dominated by the configuration ~, i.e. t/(j)= 1 =~ ( ( j )=  1 , j e Z  a, then 

c(i, t/)<c(i, ~) if t / ( i )=( ( i )=0  

c(i, t/)>__c(i, ~) if t / ( i )=(( i )= 1. 

In order that the infinitesimal rates c (i, t/) define a unique process one must 
assume that they do not depend very strongly on the configurations at sites 
far away from i; a sufficient condition can be found in Chap. III of [Lig]. 

As in [Lig], we will denote by S(t) the corresponding semigroup and write 
# S(t) for its action on a measure. 

Some of the fundamental facts about  the TIA are summarized next (for 
proofs see [Ligl). 

(1.5) 5o S(t) [resp. 51 S(t)] converges weakly to a measure v_ [resp. v+] which 
is invariant for S(t) (6 k is the point mass on the configuration t/(i)=k for all 
i). 

(1.6) The process is ergodic iffv_ =v+.  

(1.7) v_ and v§ are translation invariant and ergodic with respect to transla- 
tions. They are also FKG.  

(1.8) If # is translation invariant and F K G  and # S ( t ) ~ v  weakly, then v is 
invariant for S(t) and is also translation invariant and FKG.  Theorem 1 therefore 
applies to these measures and the next theorem gives information about the 
corresponding 2(x). 

Define p+ =v+ {t/(0) = 1}. 

Theorem 2. Suppose that v is an invariant measure for a TIA. Then there are 
constants C, y > O, which depend on x, such that 

(1.9) if x < p _ ,  V { X A < x } < C e  -~lal 

(1.10) if x>p+,  V{XA>X } > C e  -~lal 



Pseudo-Free Energies and Large Deviations for Non Gibbsian FKG Measures 53 

It follows that 

Corollary 1. Suppose that v above is also translation invariant and F K G  and 
is neither 6o nor 61. Let 2(x) be defined as in Theorem 1, then 2(x)<0 for x <p_ 
or x>p+.  

Remark. The hypothesis that vr 61} is equivalent to the condition v{r/(0) 
=0} 40,  v{t/(0)= 1} 40,  necessary to apply Theorem 1. 

In particular if the system is ergodic the unique invariant measure is transla- 
tion invariant and F K G  by (1.5), (1.6) and (i.7). Therefore 

Corollary 2. Let v be the unique invariant measure of an ergodic TIA and suppose 
v(:-{6o 61}. Then there exists a concave function 2: [0, 1]--+(-oo, 0] such that 
x~[0, 1]" L(x)=0} = {p} = {v {t/(0)= 1}} and (1.2) holds for any O < a < b <  1. 

In Sect. 3 we also present some extensions of these results for more general 
increasing functions of the configuration and for occupation times. We consider 
some examples of TIA" the contact and voter models and finally discuss the 
relation between the large deviations and central limit theorems. 

In Sect. 4 we consider the perturbation of a measure v on Ed by an external 
field h in the following sense. Let VA be the measure induced by v on W a 
and define another measure Va,h on W A by (here we use r/to represent configura- 
tions on W A) 

(1.11) 

where 

(1.12) 

Va,h(rl) =(Z(A, h))- 1 VA(tl) exp(h IAIXA) 

Z(A, h)= ~ Va(q) exp(h IAlXa)=E~(exp(h IAIXA)). 
r l ~ W A  

Theorem 3. I f  v satisfies (1.2)for some concave 2(x) and any wl < a < b < w r ,  
then 

(1.13) 

where 

(1.14) 

lim IAI -a  logVa,h{XAS[a, b]}= sup 2h(X ) 
A ~ Z  'a a < x < b  

2h (X) = 2 (X) + X h --//(h) = inf (//(h + h') - / / ( h )  - h' x). 
h ' c R  

It follows that if 2(x)=0 at a single point x, the family of measures va, a 
does not show a "phase transition" (in the sense of a discontinuity of X_,h = inL~h 
or x + ,a = sup ~h, where ~h = (X ~ [W 1, Wr]: 2(X)= 0}) for small h. 

In Sect. 5 we compare briefly our approach to the large deviations problem 
with other approaches. 

2. Consequences of the FKG Relations 

Proof of Theorem 1. It follows from F K G  that if F :  F~ w F2 then 

(2.1) v {(Xr > x} > v {Xrl > x} v {Xr2 > x}. 
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Define 
A (n I . . . .  , ha) = log V {X r >-- x} 

where F is a rectangle  of  sides nl . . . .  , na. Then  f rom (2.1) and  t rans la t ion  invar-  
iance 

(2.2) A(nl ,  . . . ,  nk + n~, .. . ,  nd)> A(nl  . . . .  , nk, . . . ,  rid) 

+ A(n 1 . . . .  , n~ . . . . .  na). 

It  now follows by a s t andard  a rgumen t  tha t  IA1-1 log v { X a > x }  converges.  
(See for  instance the p r o o f  of  step 1 of  T h e o r e m  2.6 of  Chap.  V of [Lig]  for 
the case d = 1, the general  case is analogous.)  

The  facts tha t  2+ is decreasing and  2 + ( 0 ) = 0  are obvious.  Us ing  t rans la t ion  
invar iance  and  F K G  again 

v { X  a>wr} = v { r l ( i ) = w ,  i~A} 

=> ~I  v {q (i) = wr} = (p~)l a [ 
i eA  

which implies tha t  2 + (wr) > log p~. 
Final ly  we will p rove  tha t  2+ is concave,  i.e. for any  x, y e [ w l ,  w J  and 

any ~e[-0, 1], 

(2.3) 2~ + (~ x + (1 - ~) y) => ~,~ + (x) + ( i  - ~ )  ,~ + (y) 

First  we consider  the case ~ =  1/2. T a k e  2 d cubes of  side n, F 1, F2 . . . . .  F2,, in 
Z d such tha t  their  un ion  is a cube F of  side 2 n. By F K G  

(2.4) v { X r > x / 2 + y / 2 }  

>=v{Xr~>=x for i = 1 ,  . . . ,  2 d-1 and  X r ~ > - - y f o r j = 2 d - l + l ,  . . . ,  2 a} 

2 a - a 2 a 

> I~ v{Xr,  >->-x} l~ v { X , > y }  
i = 1  j = 2 a - l + l  

= (V {St1 >= x}) 2a- ~(V {Xrl >= y}) 2a- '  

where  we used t rans la t ion  invar iance  in the last  equality.  (2.3) with 7 = 1/2 follows 
easily f rom (2.4). As is well known,  by induct ion (2.1) follows then for any  
diadic ra t ional  ~, i.e. ~ = p  2 -q where  p and  q are integers. Final ly  we use the 
fact tha t  2+ is decreasing to conclude.  Suppose  tha t  x < y ,  take a sequence 
c~, of  diadic ra t ionals  which increases and  converges  to cc Then  for any n 

2 + (c~ x + (1 - c O y ) > 2 + ( ~ , x + ( 1  --~.)y)  

_>_~, ,~ + (x) + (1 -c~ , )  ,~ + (y). 
M a k e  n ~  oe to conclude.  

b) 2(-) is concave  since it is the m i n i m u m  of two concave  functions. In  
par t icular  it follows tha t  it is con t inuous  on (wa, wr). The  p roo f  of  (1.2) is divided 
in m a n y  cases;  we leave to the reader  the cases a = w l  or  b=w~ and consider  
only Wl < a < b < w,. In  this case the s ta tements  are equivalent  for the four  types 
of  intervals  tha t  J m a y  represent ;  to see this fact jus t  use relat ions like 
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V{XAe[a, b-e]}  <V{XAe[a, b)} <v {Xae[a, b]} <V{XAe[a, b+e]}  

for e>0 .  Suppose now that 2(a)=0,  2(b)<0.  Then 2 (b )=2+(b )<0  and 2+(a)=0,  
so v {X A > b}/v {XA >--_ a} ---, 0 as A ~ Z d. Therefore 

111-1 IogV{XA~[a, b)} =[A[ - I  logv{XA>=a } 

+111-1 log(1-v{Xa>b}/v{XA>-_a})~2+(a)=O= sup 2(x). 
a<_x<_b 

The case 2(a)<0,  2(b)=0 is analogous. Suppose 2 (a )<0  and 2(b)<0;  there 
are then in principle four possibilities: 2(a)= 2~(a)< 0, 2(b)= 2~(b)< 0, ~, 7 = + .  
The case ~=  + ,  7= - is ruled out by the fact that for any xe[wl,  w,], 

(2.5) max (2_ (x), 2 + (x)) = 0, 

since otherwise v {Xa =< x} + v {X a > x} ~ 0, which is absurd. 
The cases ~ = ~ are analogous, let us consider e = 7 = + : since 2+ is concave 

and 2+ ( w0=0 ,  it follows that 2+(a)>2+(b) and therefore v{Xa>b}/v{X A 
> a} ~ 0. So by the same argument used before 

[A1-1 logv{XAe[a, b)} --+2+(a)= sup 2+(x). 
a ~ x N b  

Since 2+(x )<0  for x~a,  it follows using (2.5) that 2(x)=2+(x)  on [a, w~] and 
hence 

sup 2+(x)= sup 2(x). 
a ~ x ~ b  a ~ x ~ b  

In case e = - ,  7= + then by the continuity of 2_ and 2+ on (a, b) and (2.5) 
it follows that there exist ce  [-a, b] such that 2(c)= 0. Then using previous results 

I l l  -1 logv{XAe[a, b]}>lA1-1  IogV{XAeUC, b]} 

0 = sup 2(x). 
a<_x<_b 

c) Define x = in f{x~[wl ,  wr]" 2(x)=0},  x+ =sup{xE[wl ,  wr]" 2(x)=0}. We 
consider the case w l < x _ < x + < w  r and leave the others to the reader. 
Consider partitions of [wl, wr] into intervals A l = [ % , a l ) = [ w l ,  al), 
A 2 = [ a  1, a2), . . . ,  A M -  1 =JAM-2,  a M _ l ) ,  A M = J a M _ l ,  a M ]  = J a M _ i ,  Wr] , such 
that for some i ai<x_ <ai+ 1 and for some j aj<x+ <aj+~. We suppose now 
that h > 0, then 

max (v {XAeAk} exp(hlAlak_ 1)) 
I <.kNM 

< E ,  exp(h [A [ XA) 

< M.  max (v {X A ~Ak} exp (h [A [ ak)). 
l < k N M  

Hence 

(2.6) lim inf IN [- 1 logE~ exp(h [A [ XA) 
A ~ Z  a 

> max (h ak- 1 + lim inf([ A [- 1 log v { X  A ~Ak})) 
1 <--k<--M A ~ Z  a 
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and 

(2.7) lim sup I AI- ~ log E~ exp(h [AI X A )  

A ~ Z  a 

_-< max (h a k + lim inf(I A l- 1 log v { X  A eAk})). 
1 <_k<_M A ~ Z  a 

The point now is that in spite of part (b) not giving us information for the 
terms k = i + 2 ,  i+3 ,  . . . , j ,  this is not important  since the maxima in (2.6) and 
(2.7) must be achieved at some ke{ j+ 1, ..., M}. In fact the terms k =  1, . . . , j  
are not larger than the term k = j  + 1 : 

i) For  i =< k =<j 

h ak- t + lim inf I A [ - a log v {XA ~ Ak} 
A ~ Z  a 

<-_ h ak + lim sup I A I- 1 log v {X A ~ Ag} <= h a~. 
A--*Z a 

ii) haj+ lim IA1-1 logv{XAeAi+I} =haj. 
A--*Z d 

Applying part b for k = j  + 1, ..., M it follows that 

lim inf I A I- t log Ev exp {h I A ] XA} 
A ~ Z  a 

__> max (hak_l+2(ak_O). 
j +  l <_k<~M 

lim sup ]A [- 1 log Ev exp {h I AI XA} 
A--+Za 

< max (hak+)O(ak_l)). 
j +  l <_k<_M 

Take a sequence of partitions such that max (ak--ak-1)--+O to conclude the 
proof. 1 <_k<_M 

If h < 0 the proof  is analogous and if h = 0 it is trivial. 

Remark I. The convergence of I AI-  1 log E, exp(h I AI XA), to a convex function 
re(h) may be proven in an easier way from the F K G  relations. But this approach 
does not give the relation between lr(h) and 2(x) unless re(h) is differentiable. 
[si],  [pl.], [P.S.], [Ell.]. 

Remark 2. That the condition (1.1) may be essential can be seen with the follow- 
ing example: W={0, 1} and v=(1/2)5o+(1/2)61; in this case 2 (x )=0  for any 
xe[0 ,  1], but i f 0 < a < b <  1, IA] -1 logv(XAe[a, b ] ) = - - o o .  

3. Invariant Measures of Attractive Spin Systems 

Proof of Theorem 2. Since the proofs of (1.9) and (1.10) are analogous we only 
present the first one. Divide Z a into cubes of side N; to be precise suppose 



Pseudo-Free Energies and Large Deviations for Non Gibbsian FKG Measures 57 

that one of these cubes is F =  {1 . . . . .  N} a. For i, j e Z  a write i ~ j  i f / a n d j  belong 
to the same cube in this partition. Now define a new attractive spin system 
with the rates 

(3.1) cN(i, q)=c(i ,  rl' ) 

where t/i is the configuration defined by 

t/i(j)=ft/(j) if i ~ j  (3.2) 
h otherwise 

i.e., we consider the time evolution in F with + boundary conditions. Denoting 
by SN(t) the corresponding semigroup, 61 SN(t) converges weakly to a measure 
#U which has the following two nice properties: 

(3.3) ~lN is stochastically larger than v§ 

(3.4) w.r.t. /~N the spins in different cubes (of side N) are independent and 
moreover the distribution is the same inside each cube (#N is periodic). 

Property (3.4) is clearly true and (3.3) follows from Corollary 1.7 of Chap. III 
of [Lig] by the attractiveness of c (i, t/). 

If A is a cube of side kN ,  k =  1, 2, ..., there is a translation of it which 
is the union of U of the cubes of side N. Therefore, using (3.3), (3.4) and the 
large deviation theorem for independent identically distributed random variables 
it follows that 

V { X A > X } < v §  ,lal, 

provided that 
x > PN = E,~ (Xr), 

where C and ~ depend on N and x. 
To complete the proof we must show that 

(3.5) lira PN = P +" 
N---~ oo 

For each N, let i N be a site i n / ~ =  F\[-] /N, N - l / N ]  a such that E,,c(iN)>Eu~r 
for any je /~  Then using (3.3) 

P+ <=PN~EuN(iN)-t-SN, 

where eU ~ 0 as N ~ ~ .  For each N translate iN to the origin and apply the 
same translation to F obtaining F N. Then FN-~Z d and by Theorem 2.7 of 
Chap. III of [Lig] lira E ~  (iN) = p +. 

N - + o 9  

This completes the proof (the extension to A whose sides are not a multiple 
of N is straightforward). 
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Generalizations 

We point out now two extensions of the previous results. Instead of the mean 
value of the spin - XA -- one can consider the mean value of an increasing 
local (cylindrical) function f 

YA (q) = ]A [- 1 ~ f (z i q) 
i c A  

where (z/q)(/)--r/U+/). The proof of Theorem 3 must be slightly modified by 
the inclusion of corridors between the cubes of side N. The width of these 
corridors can be taken as twice the range of f and w.r.t, the dynamics Su(t) 
the spins inside the corridors are frozen in the value + 1. 

Another extension of our methods is for occupation times. Let ({y, t>0)  
be a TIA starting from an invariant measure v, which is F K G  and non degener- 
ate, and consider for instance the mean occupation time of the origin 

Define 

Z t = t -  i i ~ (0) d s. 
0 

i 

g;(0) as. 
i - 1  

(~(i), i=  1, 2, ...) is F K G  by Corollary 2.21 of Chap. II of [Lig], and for t integer 

t 

Z , = t  -1 ~ ~(i). 
i = 1  

Theorem 1 applies with minor modification since ((i) assumes values in the 
continuum [0, 1]. Theorem 2 also holds - to construct #N reset the configuration 
to be identically 1 at the instants t = N ,  2N, 3 N  . . . . .  The conclusion is the 
existence of a concave function 2: [-0, 1] --+ ( -  0% 0] such that 

a) 2(x)<0 i f x < p _  or x > p +  
b) lim t -1 logP(Zte[a ,  b])= sup 2(x) if min(2(a), 2(b))<0. 

t--+m a < . x < b  

Examples 

We consider now some examples of TIA. 

1. Basic Contact Process [Lig]. 

c(i, r/) = l ;  ~ r/(j) 
L j :  H j - - i l l  = 1 

if r/(i)= 1 

if i / ( i )  = 0 
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where /3>0 is a constant, One of the basic results for the process is that for 
any d, there exists a critical value /~dE(0, oO) such that if/3</3~ the system is 
ergodic and the unique invariant measure is 6 o. I f /3>/3 a, v_ =60 but v+ 4=~o 
and 0 < p +  <1.  From Corollary 1 it follows that the "free energy" 2(x) corre- 
sponding to v+ is negative for x > p + ,  but this corollary gives no information 
for x < p §  We prove now that for d =  1, 2(x) is negative for x close to 0: 

(3.6) v {X A < x} =< ~ v {t/(il) = 1/(i2) . . . . .  q (ik) = 0} 

w h e r e k i s t h e i n t e g e r p a r t o f ( 1 - x ) [ A ]  and the sum is over the (1~ 1) possible 

choices of k sites out of t A l- But it is known [D.G.], [Lig] that each term 
on the r.h.s, of (3.6) is bounded by C e  -~k, where C and y are positive. So 

k -- / 
Hence 

lim sup I11 1 1 O N  Y { X A ~ x  } ~ - - (1  - -X)  log(1 - x ) - x  logx-- (1  --x)7, 
A-oZ 

which converges to - 7 as x ~ 0. 
We do not know whether 2(x) is negative for every x <p+.  

2. Basic Voter Mode l  [Lig]. 

(2 d)- 1 Y, 
J:  I l l - i l l  = 1 

c(i, q )= [ (2d )_  1 • q(J) 

Jzlli-jll = 1 

if r/(i)= 1 

if q (i) = 0. 

In d =  1, 2 there are only two extremal invariant measures: 6 o and 61. In d > 3  
there is a one parameter family of extremal invariant measures {vp: 0 < p < l }  
where p can be chosen as the density of v o. These measures are translation 
invariant and F K G  but their correlations decay very slowly. We will verify 
that for any vp with 0 < p < 1 the corresponding "free energy" 2(x) is identically 
0. The main tool is the dual of the voter model: a system of coalescing random 
walks [Lig]. At each site of A start a simple symmetric continuous time random 
walk with mean holding time 1. The walkers behave independently before meet- 
ing, but when they meet they coalesce. Let Nt be the number of distinct walkers 
at time t; then Nt--* N~ a.s. and by duality 

IAI 
(3.7) vo {~(x) = a, x~A} = Z pk e(N~ = k). 

k = l  

We will use now (3.7) to show that 

(3.8) lim ]A I- 1 log v o {X A = 1} = 0. 
A ~ Z  d 
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From (3.7), for any 

Vp { X A = 1 } > p lA I~/~ p (N~ <= I A I ~/") 
Therefore 

IA1-1 l o g v { X a =  l} >[A](~-e)/d logp+[A1-1  log(1-- P(N~>lAl~/d)). 

From the techniques used in [-B.C.G.1] it follows that E(No~)=O(IAl(e-2)/d); 
using then Chebyshev inequality 

P(No~ > i A ]~/a) <=IAI-=/a E(N~) = O(1A I (a- ~- z)/d). 

The choice ~ = d - 1  completes the argument for (3.8). It follows that 2+(x )=0  
for any xe [0 ,  1]. By an analogous argument 2_(x) is identically 0, and hence 
the same is true for 2(x). 

We conjecture that 
IA[ (-a+ z)/a IOg Vo{X A~X  } 

converge to a non trivial limit but were not able to prove it. 

3. Ergodic Systems. As already observed our results are more informative for 
ergodic TIAs. Various sufficient conditions for a system to be ergodic are known. 
For  instance if the system is additive and extralineal, in the terminology of 
[Gri] (this means that it can be constructed with a random graph and that 
there are spontaneous births of particles) then it is ergodic by Theorem 2.2 
of Chap. II of that book. An example in this class is a Voter model with sponta- 
neous flips, defined by the rates: 

(2d) -1 ~, ( 1 -  t/Q/)) + 6 if q(i)= 1 

c(i, t/)= J:lli-Jll =1 
(2d) - I  ~ ~/(j) + fl if ~( i )=0 

j: U i - j  [I = 1 

where fl and (5 are positive. 
It is also known that if we add large constants to the rates of any TIA 

the resulting process, which is clearly a TIA, is ergodic (Theorem 4.1 of Chap. I 
of [Lig]). 

Small Fluctuations and Large Deviations 

We turn now to the relation between the large deviations and the central limit 
theorem. In various cases it is known for invariant measures of TIA that 

0"2= Z C ~  (/1(O), /'/ (i)) < Go. 
ieZ a 

See for instance Theorem 4.22 of Chap. I of [Lig] or Theorem 2.6 of Chap. II 
of [GriJ (this one includes the voter model with spontaneous flips). 

Assuming that v is translation invariant and FKG,  one can apply a theorem 
by Newman [-New] to prove 
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[A I- 1/2 ~ 07 (i) - p) ~ Normal  (0, ~r 2) 
l e A  

in law as A --* Z d, where p = E, (~ (0)). If v is also non degenerate, Vary (q (0)) > 0 
and therefore a 2 >0.  The following well known heuristic argument leads to 
a relation between 2(x) and o-2: 

v { X A= p + x [ A [-1/2} ~exp([ A ] 2 ( p + x  [ A [-1/2)) 

~ exp(] A [ (2(p) + 2'(p) x [A [- 1/2 + 2"(p) x 2 IA[- 1/2+ ...)). 

Assuming that 2 ' (p)=0 (2(x) has a maximum at p) and remembering that 2(p) 
= 0, it follows 

Hence 

(3.9) 

v {Xa = p + x I AI-  1/2} ~ exp (2"(p) x2/2). 

~ 2  = _ ( 2 '  ( p ) ) -  1. 

This relation is indeed true when v is Bernoulli (independent case) and for 
Ising models at high temperature or with non zero external field (here v is 
the unique Gibbs state) [-Ell.; Lebl] ,  but in general it is not even true that 
2"(p) exists. For  instance consider the nearest neighbor ferromagnetic Ising mod- 
el in two or more dimensions at low temperature and without external field; 
the corresponding reversible Glauber dynamics is a TIA (on { -  1, 1} zd instead 
of {0, 1} zd) and the Gibbs measures are invariant for this dynamics). In this 
case v_ and v+ are different but have the same function }o(x), which is null 
on [p_, p+] and negative outside this interval. With respect to the measure 
v+ the correlations decay exponentially, so that a2~(O, oo). But it is clear that 
the second derivative of 2(x) at x = p +  coming from the left is 0. It turns out 
that coming from the right this second derivative is a2 [-Lebl] (~z is the suscepti- 
bility). 

An even more interesting example is the case of a spin 1 Ising model [B.K.L.; 
S1.] on Z d, d > 2, with energy 

U(~/) = 1  ~ (q( i )-q(J))2+g~(q(i))  2, 
[ [ i - J N  = 1  i 

t / ( i )=--1,  0, 1, g~R is a parameter. If the temperature is low enough there 
is a value of g such that there are three extremal Gibbs states: /t+, #_ and 
#o with respective densities, p + = - p _  > 0, and Po = 0. These measures are trans- 
lation invariant, F K G  and have exponentially decaying correlations. Since they 
are Gibbs measures corresponding to the same interaction they have the same 
function 2(x), which is null for p_ <x<=p+ and negative outside this interval. 
So 2(x) has derivatives of all orders equal to zero at x = Po = 0. But if the temper- 
ature is positive Po is not degenerate and therefore 0 < ~ 2 =  ~ COV,o(t/(0), 

i e Z  2 

q(i)) < ~ .  Similar situations occur for higher states Potts models. 
We leave as an open problem the question whether (3.9) holds for the unique 

invariant measure of ergodic TIA. One should note that at the critical tempera- 
ture of an Ising system t~2= Go, but then 2"(p)=0, so that (3.9) holds. 
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4. Per turbat ion  by an E x t e r n a l  F ie ld  

Proof of  Theorem 3. Define 

Then 

/TA.h(h,)___=lA [ 1 logE,a.h(exp( h, [AIXA) ) 

/Ta (h') =/Ta.o (h') = ]A [ -~ log Z (A, h') 

lIa,h(h' ) = [A[- 1 lo8 ~ (Z(A, h))-I Va (q) exp((h + h') ]A I XA) 
qEW A 

= / T a  (h + h') - H A (h). 

By the argument given in part c of Theorem 1, HA(h ) ~ /7(h)  as [A[ ~ oo. So 

lim HA,h (h') = / 7  (h + h') - / 7  (h). 
A ~ Z  a 

Hence 

inf(/7 h (h') - h' x)  = x h - H (h) 
h' 

+ inf(//(h + h') - x (h + h')) = 2 (x) + x h - / 7  (h) = 2 h (x) 
h' 

and by a standard argument using a Chebyshev inequality (see JEll], Theo- 
rem II.6.1 (b)), 

lim sup I A I - 1 log Va,h {Xa e [a, b] } _-< sup 2h (X). 
A ~ Z d  a N x N b  

For the lower bound consider first h>0 .  Fix a point xe(a, b), then for e > 0  
small enough 

lim inf l / I -  1 log VA,h {Xa ~ [a, b]} 
A ~ Z  a 

>l im inf [AI -a log Va,h{XAe[x--e, x+e]}  
A ~ Z  a 

> lim inf I AI-  1 log [(Z(A, h))- 1 exp([ A I h ( x -  e)) v {X  a E I x -  e, x + 5]}] 
A---~Z d 

= - / 7 ( h ) + h ( x - e ) +  sup 2(y). 
x - ~ < y < x + ~  

Making e ~ 0 the r.h.s, above converges to 2h(X). Since x is arbitrary 

l iminflA1-1 logVa,h{XA~[a, b]}> sup 2h(X)= sup 2h(X ). 
A--*Za a < x < b  a<-x<-b 

The case h < 0 is analogous. 
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5. Discussion 

Various approaches are known for proving large deviations theorems for depen- 
dent random variables. It is natural to ask (as we did) why we could not simply 
verify the hypothesis of some of these general theorems for the cases considered 
here. 

Lanford [Lan] proved that (1.2) holds for any w 1 < a < b < wr for Gibbs mea- 
sures. So if we were able to prove that v is Gibbs w.r.t, some nice enough 
potential we would be finished. Unfortunately the only condition that we know 
to prove that a measure is Gibbs - the continuity of some conditional expecta- 
tions (see [Sul]) seems hard to verify in our cases. 

Many approaches do not work for our problem because we consider random 
variables r/(i) indexed by Z a while they consider random variables indexed by 
Z or R. That  is the case of approaches by Accardi and Olla [A.O.], Olla [O1.] 
and Orey [Or.]. Even in the case d =  1 their conditions seem to be difficult 
to verify in our case and to be related to Sullivan's condition [Sul.] mentioned 
before. 

Finally the approach due to Sievers, Plachky, Steinbach and Ellis [Si; P1.; 
P.S.; Ell.] and used in other applications to infinite particle systems [C.G.1; 
C.G.2; B.C.G.2] requires that one first proves the convergence of 
[AI-1 logE~(exp(hlA[XA)) t o  a convex function H(h) which is differentiable. 
The problem is that we do not know how to prove this last condition. We 
should remark that unfortunately the method that we used is not suitable for 
proving large deviations theorems with " fa t"  tails like in [C.G. 1 ; C.G.2; B.C.G.2] 
and as we expect for the voter model. 
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Note added in proof. 1. After this paper was finished, we learned from "Grimmet, G.: Large deviations 
in subadditive processes and first-passage percolation. In: Durret R. (ed.) Particle Systems, Random 
Media, and Large Deviations, pp. 175 194, Providence: American Mathematical Society 1984" that 
Hammersley and Kingsman worked already on large deviation properties under a condition similar 
(but not equivalent) to FKG (they considered so-called superconductive processes). Grimmett also 
remarks in the paper that the techniques used in these works can be adapted to the case of FKG 
sequences of random variables to prove part of our Theorem 1. 

2. After this paper was finished, R. Durrett and one of us (R.H.S.) proved for the upper invariant 
measure of the contact process the function ,t(x) is negative for x<p+.  This result is contained 
in the paper "Large deviations for the contact process and two dimensional percolation", which 
is to appear in this journal. 


