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Summary. We show that the Huber-Strassen theorem can be applied to 
many common robust neighborhood models without restrictive compact- 
ness assumptions. Our method is to replace the original Polish topology 
with a compact topology, which is possible according to the Kuratowski 
isomorphism theorem. 

1. Introduction 

In the robustness literature, it is common practice to replace exact probability 
models by "approximate models", formalized by some sort of convex neigh- 
borhoods or sets Q of probability measures. Most frequently, we encounter 
"contamination neighborhoods" given by 

Q -- {(1 - e)- P + e. H I H = arbitrary probability measure} 

= {Q probability measure I Q(A) <(1 - e ) .  P(A)+e V A measurable}, 

which have been used in the theory both of robust estimation [5] and robust 
testing [6]. Subsequently, Huber [7], and after him Rieder [10], have gone on 
to a more flexible family of sets which comprise contamination as well as 
neighborhoods in variation norm: 

Q = {Q probability measure I Q (A) < (1 - e). P(A) + ~ + ~ V A measurable}. 

The upper probability 

w(A)=supQ(A)=( (1 -e ) .P (A)+e+5)A1  if A # ~ ,  w ( ~ ) = 0 ,  
QzQ 

completely describes the neighborhood Q and is analytically more tractable as 
a set function. In the derivation of their robust Neyman-Pearson lemma, 
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Huber and Strassen [8], therefore, worked with set functions which have all 
the properties of upper probabilities over suitably chosen convex sets of proba- 
bility measures, namely so called 2-alternating Choquet capacities. These are 
set functions defined on the Borel algebra of a Polish (=  complete, metrizable, 
separable) space, satisfying the following properties: 

(a) w(~) - -0 ,  w(Y)--1 
(b) w(A)<w(B) V A c B  
(c) w(A,)~w(A) VA, TA 
(d) w(F,)$ w(F) V closed F,$ F 
(e) w(Ac~B)+w(AwB)<=w(A)+w(B) 

where all sets A, B, A, are assumed Borel-measurable, and the whole set is 
denoted by Y. Huber and Strassen ([8], Sect. 2) show that there is a cor- 
respondence between 2-alternating capacities and certain weakly compact con- 
vex sets of probability measures - the condition (d) on w above being the 
equivalent of weak compactness of Q. 

The problem we wish to address is the assumption of compactness, which is 
necessary for the derivation of Huber-Strassen's robust Neyman-Pearson lem- 
ma. We would like to show in this note that compactness is indeed irrelevant 
for a large class of upper probabilities. The Huber-Strassen theorem in its 
present form does not even cover such simple cases as e-contamination and the 
total variation norm since the resulting upper probabilities are capacities only 
on compact spaces Y [8, Ex. 3, 4], and the same holds for a class of upper 
probabilities which were introduced simultaneously and independently by Bed- 
narski Eli and the present author [2]. As a consequence of our arguments in 
the following two sections, the restrictions to compact spaces in Huber- 
Strassen ([8], Ex. 3, 4) are not necessary, and we can get rid of all regularity 
conditions used by Bednarski (Ell, Theorem 4.1) in his treatment of special 
capacities. 

2. The Main Argument 

It is easy to see that the upper probabilities derived from contamination and 
the total variation norm neighborhoods satisfy conditions (a), (b), (c), and (e), 
but not (d). However, we still have the following modified version (d') of (d): 

(d') w(A,)$ w(A) V A,$ A * I~ 

where we only assume the sets A, to be Borel-measurable as opposed to closed 
in (d). The reason (d') holds is that the contamination or deviation in the total 
variation norm can sit in arbitrarily small non-empty sets, such that only the 
empty set escapes the possibility of hosting contamination or other deviating 
mass. For  lack of a better name, we call a set function a pseudo-capacity if it 
satisfies conditions (a), (b), (c), (d'), and (e). For  these pseudo-capacities, we can 
show the following: 

Proposition. On any Polish space Y, there exists a (possibly different) topology 
- which generates the same Borel algebra as the original Polish topology, and 
- on which every pseudo-capacity is a proper capacity. 
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Proof Below, we show that according to the Kuratowski isomorphism theo- 
rem, there exists a compact metrizable topology which generates the same 
Borel algebra as the original Polish topology on Y On a compact space we 
have for any decreasing sequence of closed (hence compact) sets F,: F,.. ~ iff F, 
= ~  for some n. Hence, with w ( ~ ) = 0  in mind, condition (d') results in (d) if 
specialized to closed sets. 

There remains the proof of the existence of an equivalent metrizable com- 
pact topology. From the Kuratowski isomorphism theorem ([9], Theorem 
2.12) it follows that two Polish spaces are measurably isomorphic iff they have 
the same cardinality, where an isomorphism is a bimeasurable bijection be- 
tween the spaces. In any equivalence class of equicardinal Polish spaces, we 
can find an instance of a compact metric space: 

- this is clear for finite sets; 
- f o r  countable sets, we can pick {1, 1/2, 1/3 . . . .  }w{0} with the absolute 
difference as a metric; 
- and since uncountable Polish spaces have the cardinality of the continuum 
([9], Theorem 2.8), the closed unit interval will do. 

If we transfer such a compact metrizable topology to the space Y via a 
bimeasurable bijection, we obtain the required topology. [~ 

3. The Application to Special Capacities 

As mentioned in Sect. 1, Bednarski [1] and this author [2] independently 
defined a new type of set functions as follows: given 

- a concave continuous function f :  [0, 1]-~ [0, 1] satisfying f (1 )=  1, and 
- a probability measure P on the Borel algebra of Y, 

put w(A)=f(P(A))  for A#=~,  and w(~ )=0 .  (One has to ask for continuity o f f  
only at zero, everywhere else it follows from concavity, f(1)--1, and the range 
prescription [0, 1]. These conditions also force f to be non-decreasing.) Both 
Bednarski ([1], Lemma 3.1) and the author [-2, 12.2] noticed: 

Proposition. The set function w is a pseudo-capacity; i.e., it satisfies conditions 
(a), (b), (c), (d'), and (e). 

Condition (a) is clear, (b) follows from monotonicity and (c) and (d') follow 
from continuity. Only condition (e) needs a calculation (which Bednarski [1], 
Sect. 3 omitted): for the numbers u=P(AmB) ,  v = P ( A u B ) ,  x=P(A) ,  and y 
=P(B), we have u + v = x + y ,  u < x < v  and u<_y<v. Hence we can write x = ~ u  
+ ( 1 - ~ ) v  and y - - ( 1 - ~ ) u + ~ v  for suitable 0 < ~ < 1 .  With concavity o f f  this 
results in f ( u ) + f ( v ) < f ( x ) + f ( y ) ,  and condition (e) follows. [] 

As mentioned in [-1], Sect. 6, and [2], Sect. 12, we obtain contamination 
and total variation norm neighborhoods by specializing f ( x ) = ( ( 1 - e ) . x + e  
+6)/x 1, which is clearly concave, continuous, has range [-0, 1], and satisfies 

f ( 1 ) = l .  
According to the propositions of this and the previous section, these con- 

cave functions of probability measures are 2-alternating capacities, possibly in 
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a non-standard topology. Such a topology, however, is enough to allow us to 
apply the Huber-Strassen theorem directly. We thus achieve considerable sim- 
plifications over Bednarski's results in that we can dispense with his regularity 
conditions ([1], 4.1), technical lemmas ([1], 3.3, 3.4), and his proof of the 
Huber-Strassen theorem ([,-1], 4.1) for these pseudo-capacities. 

Another conclusion is that the author's results on robust finite decision 
problems and discrimination in [-4], Sect. 5, 6 now hold on arbitrary Polish 
spaces. It was actually an oversight that the problem with the compactness 
requirement is not mentioned there, since the theory of that paper relies on the 
author's generalizations of the Huber-Strassen theorem to experiments with 
arbitrary finite parameter sets [-3, Sect. 2, 8]. 

Finally, we would like to mention a curious aspect of any approach to 
pseudo-capacities based on the Huber-Strassen theorem: pseudo-capacities lead 
a life independent of topologies, as no topological concept enters their defini- 
tion. It should therefore be possible to prove results of the Huber-Strassen type 
without resorting to topological arguments, very much in the spirit of Huber's 
earlier treatment of contamination and total variation norm neighborhoods 
[-6, 7]. The fact that we may change the topology, if we like, is a strong hint 
that something of this sort can be done. On the other hand, a referee remarked 
that this is by no means clear: many measure theoretical properties (e.g., the 
existence of regular conditional probabilities) require topological assumptions, 
and the example of Huber's explicit solutions of some special problems make 
him rather sceptical in this regard. If he is right, then the results of this paper 
are the best we can hope for. 
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