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Summary. The two stochastic flows studied are (i) the canonical stochastic 
flow on the orthonormal frame bundle of hyperbolic space (which gives 
stochastic parallel translation along Brownian paths in hyperbolic space) 
and (ii) a stochastic flow on the sphere S"-1 arising from its embedding as 
the unit sphere in 1R ". Both flows are controlled by the same stochastic 
differential equation in a finite-dimensional Lie group. In each case the 
Lyapunov exponents are computed and a complete description is given of 
the local and global stability of the flow. 

1. Introduction 

This paper studies two examples of stochastic flows on manifolds. The first 
example is the canonical stochastic flow on the orthonormal frame bundle over 
a simply-connected manifold of constant negative curvature. It represents sto- 
chastic parallel translation along Brownian paths in the manifold. The second 
example is of a stochastic flow on a sphere which arises naturally from the 
embedding of the sphere as the unit sphere in Euclidean space. The two 
examples appear together in this paper as they are derived from the same 
matrix-valued diffusion process {A~: t_>0} given by a linear stochastic differen- 
tial equation (s.d.e.). The nature of the coefficients in this s.d.e, ensure that for 
all t>O, A t lies in the Lie group SO+(n, 1), the identity component of the group 
of all (n + 1) x (n + 1) matrices preserving the quadratic form Q(x, u) = Ixl 2 -  u 2 
for (x, u)~lR" xlR. When we think of SO+(n, 1) as a subset of the orthonormal 
frame bundle of a simply-connected manifold of constant negative curvature 
we obtain the first example. When we think of SO+(n, 1) as the group of all 
orientation preserving conformal diffeomorphisms of the sphere S"- 1 we obtain 
the second example. 

Existence and uniqueness results for the stochastic flow of diffeomorphisms 
{it: t>__0} of a manifold M corresponding to a s.d.e, on M are now well 
established. See for example [-4, 6, 8]. Methods providing a description of the 
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geometrical nature of the flow and of its sensitivity to perturbations of the 
initial conditions are less well established. Of interest in this context is the limit 

as t--,oe of -lloglDit(x)(v)[ for v~TxM. It describes the limiting rate of 
t 

exponential growth or decay of the derivative of it at x in the direction v. The 
multiplicative ergodic theorem of Oseledec [15] guarantees the existence of 
such limits, called Lyapunov characteristic numbers or Lyapunov exponents, 
when D i t ( x  ) is replaced by a family of random matrices with independent 
increments on the left (under appropriate growth conditions on the incre- 
ments). Ruelle [18] has extended Oseledec's theorem to apply to (deterministic) 
dynamical systems on compact manifolds and recently Carverhill [5] has 
extended these results to stochastic flows on compact manifolds. In both of our 
main examples, and also for the process {A~-I: t>0} acting directly on ~"+1, 
we shall compute the set of all possible Lyapunov exponents (i.e. the Lyapunov 
spectrum) and also the filtration of TxM which determines which Lyapunov 
exponent corresponds to a given veT~M. We shall also give results on the 
behaviour of the distance apart of it(x) and it(Y) as t ~  oo for x, yEM. That is, 
we obtain "global" as well as "local" stability results. Notice that the (local) 
stable manifold theorems of Ruelle and Carverhill provide a partial connection 
between local and global stability of the flow. 

Section 2 contains the basic information about {At: t>0}.  The main idea is 
to use a polar decomposition A t = D t R t where R t is a rotation fixing (0, ..., 0, 1) 
and D t is a self-adjoint matrix in SO+(n, 1) parametrised by yt~D "= { x ~ " :  Ixl 
=1}. It turns out that it is the behaviour of the process {yt:t>=O} which is 
significant for our purposes. This is described in Theorem 2.3. In particular Yt 
converges to a limit O~ES"-I={x~IR": [x[=l}  with probability 1 (wpl). The 
process {Rt: t____0} plays a minor role; the only time we need any information 
about it is in Sect. 6. We complete Sect. 2 with the first of our stability results. 

In Sect. 3 we establish SO+(n, 1) as a subset of the orthonormal frame 
bundle O(D") over the disc D" provided with a Riemannian metric p of 
constant curvature - 2 2  (240).  If we take 2 = 1  we have the Poincar6 disc 
model of n-dimensional hyperbolic space. The canonical stochastic flow on 
O(D") is the flow of the Stratonovich s.d.e, on O(D") determined by the n 
canonical horizontal vector fields on O(D"). (See Elworthy [6] or Ikeda and 
Watanabe [-8] for details of stochastic parallel translation and the canonical 
s.d.e, on the orthonormal frame bundle of a Riemannian manifold.) In our case 
these vector fields correspond to the (matrix-valued) coefficients in the equa- 
tion for {At: t>0},  so we may use the results of Sect. 2 to describe the flow on 
O(D"). We see that {Yt: t>0}  is a Brownian motion process on D" with its 
metric p and so some of the results in Sect. 2 turn out to be known results 
about the limiting behaviour of Brownian motion on a negatively curved 
manifold. 

Section 4 is devoted to a complete description of the local and global 
stability of the canonical stochastic flow on O(D"). The Lyapunov exponents 
are non-random and the filtrations of the tangent spaces depend only on 0oo 
= lira yteS "- a. The filtrations and the stable manifolds are identical with those 

t ~ o O  

arising in the case of the deterministic geodesic flow on O(D") in the direction 

0oo. 
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For any manifold M embedded in Euclidean space IR k there is a natural 
stochastic flow on M which may be considered as the projection onto M of the 
rigid flow x~--~ Wt+x in IRk (where W t is a k-dimensional Brownian motion). 
The vector fields which determine the flow on M are the gradients of the 
restrictions to M of the coordinate functions in I (  k. In Sect. 5 we study the flow 
{~t: t>0}  on S "-1 arising from its embedding as the unit sphere in IR". The 
vector fields are infinitesimal conformal transformations of S n-l ,  so the flow 
takes place in SO+(n, 1). For  this example we use {A~-I: t>0}  so as to obtain a 
process with independent left increments. The random limit 0~ again plays a 
major role in the asymptotics of the flow. It turns out that 0~ is the unique 
point in S"-1 with the property that for any neighbourhood U of 0o~ in S "-  1, 
vol(~t(U))-+vol(S "-1) as t ~ o o .  That is, 0~o acts like a (random) source point 
for the stochastic flow. 

For  the flow on S"-1 considered in Sect. 5, for each t the random diffeo- 
morphisms ~t and ~-~ are identically distributed. So any difference between the 
processes {~t: t > 0} and {~7 l : t  >0} arises from the difference between left and 
right composition in Diff(S"-l).  We study this difference in Sect. 6. The one- 
point motion { i t  1 (x): t  > 0} is not Brownian motion on S"-a and is not even a 
diffusion. Instead it converges to 0~ (though for n=2 ,  3 it converges only in an 
average sense; see Theorems 6.4 and 6.5 for details.) The results on local 
stability show that in general "backwards" Lyapunov exponents do not exist. 
Finally, study of vol(~- l (U))  for U~S "-1 leads us to a study of the Markov 
process on the space M(S'-2) of Borel probability measures on S"-1 induced 
by the flow {~t: t>0}.  This Markov process is asymptotically stationary and 
the limiting stationary process is the image in M(S"-1) of Brownian motion in 
S . -  1 under the map taking xES"- ~ to the unit mass 6(x) at x. 

Let us establish some conventions. For any Riemannian manifold M, 
BM(M) will be a Brownian motion process in M, i.e. a diffusion process in M 
whose infinitesimal generator is • where A denotes the Laplace-Beltrami 2 

operator on M. For  xeM, BMx(M ) will denote BM(M) started at xeM. (Some 
authors omit the factor �89 in this definition. This accounts for some seemingly 
contradictory results on the rate of escape to infinity of BM(M). Compare (3.4) 
with results in [16, 17].) We shall use dW t (respectively odWt) to denote It6 
(respectively Stratonovich) stochastic differentials. All non-Euclidean metrics, 
whether on S "-1, D" or SO+(n, 1) will be denoted by d; we rely on the context 
to avoid confusion. 

The author wishes to thank A.P. Carverhill, K.D. Elworthy and T.E. Harris 
for many helpful comments on the material in this paper. 

2. The Stochastic Differential Equation on SO+(n, 1) 

Consider the space M,+ I(IR) of all (n+ 1)x (n+ 1) real matrices (n >2) with the 
block decomposition 
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where BeM,(IR), f, gelR" and u~l(.  We identify f~R" with the column vector 
representing it with respect to the standard basis {el, e2, . . . ,  en} of ~_n. f ,  

denotes the transpose off ,  so that f ' g =  (f ,  g } s N  and gf*eM,(lR).  B* denotes 
the transpose of B. Define 

[0 ~ Ei= 1 <_iNn 
e* 

and 

E~J= [ e~e*-eje*O 00] l <_i, j <_n. 

In this section we shall consider the following Stratonovich s.d.e, in 
m ,  + 1 (~x.), 

dAt=2 ~ AtEi~ ~ AtE~j~ (2.1) 
i = l  l<i<j<n 

Ao=l 

where Wt 1 . . . . .  Wt n, Wt 12, ..., Wt "-1'" are independent BMo(P,.) processes and 
2,/zelR with ~.+0. This is a linear constant coefficient equation for 
At~Mn+I(IR.) so there exists a unique strong solution {At: t>0}  to (2.1) with 
continuous sample paths. 

The matrices E~ and E~j lie in the Lie subalgebra o(n, 1) of M,+ I(R), where 

o(n, 1)={[f, f]:-B* =B~M~(IR),f~IR"}. 
Therefore the vector fields A~--~AE~ and A~--,AE~j on M,+I (N)  are tangent to 
the Lie group 

O(n, 1)= {AEM,+ 1(~): A* KA =K} 

rr[0 0/q It follows that the solution A t of (2.1)lies in the identity where K =  - 1 ' 

component SO+(n, 1) of O(n, 1), where 

In fact {At: t>=O} is the most general time homogeneous diffusion process in 
SO+(n, 1) with Ao=I, independent increments on the right and whose law is 

invariant under conjugation by members of SO(n) {where we identify ReSO(n) 
/ 

w i t h [  R ~]~SO+(n, 1)).Equivalently, if vtdenotesthedistributionof At then 
\ 

{vt:t>O } is the most general convolution semigroup of Borel probability 
measures on SO+(n, 1) satisfying 

1 
(i) t vt(SO+(n, 1)\U)~O as t---,O for all neighbourhoods U of 1 in 

SO +(n, 1). 
(ii) v~ is invariant under conjugation by members of SO(n) for all t>0 .  
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When 2=1  and # = 0  the process {At: t>0} is the horizontal diffusion on 
the Lie group SO+(n, 1). See Malliavin [14] for very general results on limit 
laws for horizontal diffusions on semi-simple Lie groups. 

Given A= f .  eSO+(n, 1) we have B * B - f f *  =I, B*g=uf and IglZ-u 2 

= - 1. If R = B - ( 1  +u) -1 gf* then R*R=I and g * R = f * .  Therefore 

[R+(l+u)-lgg*R [I+(1 +u)- i  gg * A=t g*R :]=t g* :][~ 01] 
with ReSO(n). Let y=(1 + u ) - t  g. Then since Ig lZ-u2= - 1  we have 

u - 1  l + l y l  z and g =  2y 
lYl2--u+I , U=l_lyt2 1--]yl 2" 

In particular y~D" = {xeR": Ixl < 1}. 

Definition. For ysD" let 

D r [ 1 1-1 2yy* 2y 
= 1-1Yl 2 1--~12- 

2y* 1 + [yl2/" 

l - ly l  2 ~ - ~ _ l  

Proposition 2.1. (i) Dr6SO + (n), D~ = Dr, (Dr)- 1 = D r. 
(ii) If AeSO+(n, 1) there exist unique yeD n and ReSO(n) such that A 

=DyR. 
(iii) ~b: D"--+ M,+ I(IR ) given by ~(y)=Dy is C ~ and 

[uy*-yu* ~] (2.2) (Dr) -a D,~(y)(u)-- 1 ._~y[2 [ u* 

for y~D n, uslR n. 
(iv) For y ~= O, 

where 0 =~y[~S "-1 and r = log (1 + lyl ~ = 2tanh_ a (lyl). 
Proof. (i) may be checked directly. 

(ii) The existence is proved above; the uniqueness comes from 

1 2y [~ [~176 [~ [1+ 1 
(iii) and (iv) may be checked directly. For (iii) it is convenient to write Dy 

2 
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We may now write At=DtR  t where Rt~SO(n ) and Dt=Dy t for yt~D". We 
obtain from (2.1) a pair of equations for the processes {Yt: t>0} in D" and 
{Rt: t>0}  in SO(n)c M.(R) .  

Theorem 2.2. Equation (2.1) has a solution of the form At=Dy R t where 
n 

d Yt =5)" i__~1 (1-lytl2)Rt e~ o dWt ~ (2.4) 

Yo=0 

dR t = 2 ~ (yt(Rt ei)* - R t e i y*) Rto d Wti + 12 Z Rt Eij~ d Wt ij 
i=1 i < j  

R o =I .  

In (2.4) we have Note. 
same identification as used when writing SO(n)c SO+ (n, 1). 

(2.5) 

Ei.i= ei e * -  ej e* to(n) ~ M.(N).  This is essentially the 

Proof. yt=(1 +ut)- 1 gt where 

Now 

AtEi[O1]=At[; ] = DYt[l-Rtei]o ]= [ Rte +(l+ut)-l(gt'Rtei)g']<gt,Rte ) j 
and 

[0], 
Therefore, evaluating (2.1) on the vector 1 we obtain 

dg t =)o ~, (R, e i + (1 + ut) -1 (gt, Rt el) g,) ~ d Wt i 
i 

dut=2 ~ (gt, Rtel}odWt i. 
i 

But yt=(1 +u, ) -  1 gt so 

cly t = (1 + ut)- 1 o dg t -  (1 + ut)- 2 gt o du t 

=2(1 +ut) -1 ~(Rte ,+(1  +ut) - l (g t ,  R, ei} g,)o dWt / 
i 

- 2 ( 1  +u t )  - 2  E ( g t ,  R t e i >  g t  ~ dWt t  i 
i 

=2(1 +u,) -1 ~ R t e i o d W t  i 
i 

=�89 ~ (1 -lyt[ 2) R t e i o d Wt i. 
i 

We have R t = D t l A t  where dA t is given by (2.1) and d(Dt) is given by (2.4) 
together with Proposition (2.1)(iii). So in principle we may compute d R  r 
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Carrying out this plan we obtain 

dR t = - D;- ~ (o d(Dt) ) D t 1 A t  @ D t  i o dA t 

= - D t  ~ (D �9 (Yt)(o dyt)) Rt + D t  ~ ~ d At 

[ R t e i Y t - y * ( R t e i )  * Rtei] RtodWt,  
- 2 "  7'~" [ (Rte~)* 0 J 

+ )~ 2 RtEi~ i +# 2 RtEij~ ij 
i i<j 

="~ ~i [ yt(Rtei)*ORteiy* 00] Rt~176 

as required (recalling the identification of R a n d  [R 01]). [] 

Equations (2.4) and (2.5) are Stratonovich s.d.e.'s. We may convert them 
into It6 s.d.e.'s. 

Theorem 2.2'. Equation (2.1) has a solution of the form A t = D ytR t where 

d Yt= �89 2, ~, (1-]yt[2) Rt eid Wti + �88 2,2(1- [ytl2)(n- 2) yt dt (2.6) i=1 

Yo =0  

d R t = 2  ~ ( y t (R te i )* - -R te iY*)R tdWj  + #  ~ R tE i jdWt  ij 
i=1 i<j 

- �89 + (n - 2) Yt Y*) Rt dt  - �89 ( n -  1) R t dt  (2.7) 

R o = I .  

Proof  In order to avoid confusion with the inner product in IR" we shall use 
[ ,  ] to denote the martingale quadratic variation function. We have 

d 
d t  [(1 - l Y t ]  2) R t ei, VV't i] = -- 2 (Yt, �89 -ly, l 2) R t el) R t e i 

+ (1 -]ytl  2) 2(yt(Rt ei)* - R t e, y*) R t e~ 

= 2 (1 - ]Yt ]2)(Yt - 2 (Yt, Rt el) Rt el). 

Therefore the It6 correction term for Eq. (2.4) is 

1 d Wti] = 1  )~2(l_,yt[2) i ~ ~i ~ [~ (1-[yt'2)Rtei, ~,,(yt-2(yt, Rtei) Rtei) 

1 22(1 -[y~12)(n- 2) y,. 
4 

The proof for the other equation is similar. [] 

Our main interest is in the process {y,: t>0}. As a first step let us replace 
Eq. (2.6) by an equivalent one not involving the process {R~:t>0}. Since 

Wt 1 . . . . .  Wt ~ are independent BM0(IR ) then Wt= ~ e i Wt i is a BMo(IR"). Define a 
i=1 
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process { Ut: t > O} in F," by U o = 0 and 

d Ur = Rt d W , 

= ~ R, eldW, i. (2.8) 
i = l  

Since RteSO(n ) for all t>O it follows that U t is a BMo(IR" ) (see for example 
[-8], p. 75). Substituting for W,1, ..., W," in (2.6) we obtain the following equa- 
tion for {Yt: t > O} 

d y~ =�89 -]yt] z) d U t + �88 -[ytl2)(n - 2 )  y, dr. (2.9) 

Notice that the law of the process {y,: t >0} in D" is independent of #. We 
shall see in Sect. 3 that {Yt: t > 0} is Brownian motion on D" when D" is given a 
Riemannian structure of constant curvature -22 .  

Theorem Z3. The process {yt: t>0}  is a diffusion process on D", and Yt4:0 for 
t > 0  with probability 1. Let 

(1 +lYt]] 
r t= log  \17~yt[ ] and ot= Yt t>O. 

Then 
(i) r t is a diffusion on [0, oo) satisfying the s.d.e. 

drt= 2d Vt + �89 2 2 (n - 1)(coth rt) d t 

where V t is a BMo(IR ). 

1 rt__.�89 ) as t ~ o o  wpl.  (ii) t 

(iii) O~=X~(t) where {Xt: t>0}  is a BM(S "-1) independent of {rt: t>0}  and 
the clock ~ is given by z ' ( t )=))(s inh rt) -2. 

(iv) lira 0 t= O~ exists and 
l ~ c O  

sup ) logd(Ot, 0 j =  -�89 - 1) wp l  lira 
t--+ oO 

(where d denotes geodesic distance, i.e. angular separation, in S"-1). 

Proof In (r, 0) coordinates on D" the diffusion {Yt: t>0}  has generator 

1 ,~2 ~2 1 ~ 1 
~75-rZ + ~  22(n-- 1)(coth r) ~rr+5 22(sinhr)-2Ao 

where A o denotes the Laplace-Beltrami operator on S "-1 acting on the 0 
variable. Parts (i) and (iii) now follow from the skew product decomposition 
(see It6 and McKean [9], p. 269). Part (ii) follows immediately from (i) (see 
Prat [-17] and Pinsky [16] for similar but more general results). Since 

t rt--* 22 (n -  1) as t--+ oo it follows that z(oo)= 22(sinh rs) -2 d s < oo and so 0 t 
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=X,)+X,(~o)=Ooo, say, as t ~ m .  Further since BM(S ~-1) is reversible and 
invariant under rotations the processes {d (X~m, X~(~)): t > 0} and 
{d(X o, X~(oo)_m)): t >0} are identically distributed. Notice that 

l log(z(oo)-z(t))  1 ( i  ) t = t l o g  ,~2(sinhrs)72ds + - 2 2 ( n - 1 )  as t ~ o o .  

The last result is now obtained by replacing t by z(oo)-z( t )  in the following 
lemma. []  

Lemma 2.4. Let X t be a BM(Sm), r e > l ,  and let d denote geodesic distance in 
Sm. Then 

logd(X t,Xo) 1 
lim sup 

t-~0 l o g t  2 wpl.  

Pro@ It follows from the law of the iterated logarithm that 

log p(t) 1 
lim sup - wp 1 

t-.o logt  2 

where p(t) is a BES(k) process, i.e. p(t) is the modulus of a BMo(IRk), for any 
k >  1. If m= 1 then d(Xt, Xo) is a BES(1) until it first leaves [0, ~), so the result 
holds. For m>2,  r(t)=d(Xt, Xo) satisfies r ( t )>0 for t > 0  and 

m - 1  
drt=dl/Vt + - ~  (cot rt) dt 

until it first leaves [0, re), where W~ is a BMo(R ). There exists 8 > 0  such that if 
0 < r < 3  then 

m - 2  m - 1  m - 1  
2r < ~ ( c ~  2 ~  

By the comparison theorem there exist pl(t) in BES(rn-1) and p2(t) in BES(m) 
such that 

pl (t) <=r(t) <=p2(t) 

until p2(t) first leaves [0, c5). The result now follows. [] 

Note. The comparison technique above may be sharpened so that the conclu- 
sion of the lemma is valid for any non-degenerate diffusion on a Riemannian 
manifold M. 

Corollary 2.5. With probability 1, Yt--' 0oo ~S n- i as t ~ oo and 

(i) lim 1 log(1-1Y, I )=- �89  
t~m t 

(ii) lim -1 l o g l 0 ~ - y ~ l = - � 8 9  
t~oD t 

Proof. (i) is immediate from Theorem 2.300. To prove (ii), notice 

10o~ -y~ia=(1 -ly~l)2+4ly~l sina(}d(0, 0~)). [] 
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For the majority of our purposes all we need to know about {Rt:t >0} is 
that it is in SO(n). However, notice that we may extend the idea behind Eqs. 
(2.8) and (2.9) to obtain 

dR t = 2 ~ (Yt e* - e i y*) R t d Ut i + # ~ Eij R t d Ut iJ 
i=1 i<j 

- �89 22(]yt[2 + (n -  2) yt y*) R td t - � 89  R, dt (2.10) 

where Ut 1, ..., Uf, U, i2, ..., Uf-1,n are independent BMo(~I. ). 
Therefore {Rt: t>0} is a process in SO(n) with left increments depending in 

law only on {Yt: t>0}.  For any y@0, the matrices ye*-e iy*  , 1 <i<n, generate 
o(n) as a Lie algebra, so that even when # = 0  the process {Rt: t>0} is an 
indecomposable process in SO(n). We refer the reader to Ichihara and Kunita 
[7] for results on the ergodicity of the limiting form of Eq. (2.10) when the 
variable Yt is replaced by the limit OooeS"-~. 

We complete this section by giving our first stability result. So as to obtain 
independent increments on the left we consider the process {A~-l: t > 0} rather 
than {A~: t>0} as a linear stochastic flow on N,+I  

Theorem 2.6. With probability 1, 00o = lim y, exists and for z=(x, u)EIR ~ x ~ ,  
z,(0,  o), ~-+~o 

I-~022(n-1) if x=uO~ 
lim-llog]A;-l(z)[= if x:t=uO~ and u=(x ,O~)  

t ~ t  [ �89 if u* (x ,O~) .  

Proof. 

SO 

(At  ~)* A~ i =D~ 1 RtR~- i D~ 1 
= D ~  2 

(-2,Io~ ~ 
0 

 exp( ~ 
=A, say, as t ~ o e ,  (2.11) 

[0 0o] by Theorem 2.3. Now 0* has eigenspaces 

{(x, u): x=uO~} 
{(x, 0): (x, 0~) =0} 
{(x, u): x =  - u O ~ }  

corresponding to eigenvalues 1, 0, - 1 respectively, so A has the same eigenspa- 
ces with eigenvalues exp ( - � 8 9  1)), 1, exp (�89 1)) respectively. Suppose 
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z=z_+Zo+Z + is the decomposition of z as a sum of vectors in the three 
eigenspaces above. Then using the convergence (2.11) and the positivity of 
(A;- 1). A t  1 and A we obtain 

lim [A2 I (Z) I  1/t : lim <z, (At- 1), A21 (z)> 1/2t 
t--+ oo t ~ o O  

= lim (z, A 2 t z )  1/2t 
t ---> co 

= lim {exp ( -  t22(n - 1))Iz_ [ 2 + ]Zot z 
t ---~ o0 

+ exp (t2z (n - 1))Iz+ 12}1/2t 

' e x p ( - � 8 9  if z_#:0, z o = z + = 0  

= 1 if zo=l=0, z + = 0  
exp (122 (n -1) )  if z+=~0. [] 

The proof is similar in style to the version of the multiplicative ergodic 
theorem given in Ruelle [18]. Notice that the multiplicative ergodic theorem 
asserts the existence of the limit of [(A~-I)*A~-a] ~/2t for a general class of 
processes whereas in this case we obtained the limit by direct calculation. 

We have obtained a Lyapunov spectrum consisting of -�89 0 (with 
multiplicity n - 1 )  and �89 It is fixed (i.e. non-random). The filtration of 
IR "+1 is random but depends only on the limiting value 0~. This phenomenon 
will be repeated later. Since {A;-I: t>0}  consists of linear maps of ~ ,+1  there 
is no distinction between local and global behaviour of the flow. 

3. The Canonical Stochastic Differential Equation 
on a Space of Constant Negative Curvature 

The most general inner product in o(n, 1) which is invariant under the adjoint 
action of SO(n) is 

/ [ f B  f ] , [ g C  g0]) = ~ 2 t r ( B , C ) + / 3 2 ( f , g  ) (3.1) 

for e,/~>0. We shall identify elements of o(n, 1) with left invariant vector fields 
on SO+(n, 1); then (3.1) gives a left invariant Riemannian structure on 
SO+(n, 1) with a corresponding left invariant metric d. Denote the norm on 
TSO+(n, 1) by [I I[. Since ( , )  is invariant under Ad(SO(n)) then d is invariant 
under right translations by elements of SO(n). Thus 

d(A, B)=d(CA, CB), any C~SO+(n, 1) 

=d(AR, BR), any RESO(n). 

Define n: SO+(n, 1)~D n by n(DrR)=y. This induces an action of SO+(n, 1) 
on D" as follows. If A~SO+(n, 1) and y~D" define 7ty=n(ADy) (or more 
generally fty=~(AB) for any Ben-l(y); it is easy to check this is well defined). 
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From the formula for Dy we obtain Ay=x/(1 +u) where 

1 2y 
[ : ] -  l - , y ,  ~ A [1 +,y,21" 

Notice that if R~SO(n)cSO+(n, 1) then /~=R. An equivalent definition would 
be to say A is the conjugation of the natural action of A on H'= {(x, u)eff(" 
x l R : l x [ 2 - l u l 2 = - l }  by the diffeomorphism dp:H"--+D" given by gp(x,u) 
- -x / ( l+u) .  For future reference we notice that the action can be extended 

to the closed ball/)n. For y~Sn-l=SD, we have A y =  x/u where Ix]  continuously 
[_ J u 

['1 = A  1 "  

Define a Riemannian structure p on D" by 

4fl z 
p,(f, g ) - (  _ _ ~  (f ,  g), f, g~TyD"~-N" (3.2) 

where' ( f ,  g)  denotes the standard Euclidean inner product  on I(". We shall 
use (D', p) at times to emphasize the metric p (as opposed to the Euclidean 
metric). We use the same symbol d to denote the metric on (D', p) as well as 
on SO+(n, 1). 

L e m m a  3.1. (i) For all AeSO+(n, 1) 

Drc(A): TASO +(n , 1)~  T~(A)D" 

is a partial isometry. 
(ii) SO +(n, 1) acts on (D', p) by isometries. 

(iii) (D', p) has constant negative curvature - 1/fl 2. 

[ C  e 1 
,i,  uppose, Then 

( e x p t B ) [ O 1 ] = [ ~ ] + t [ e  C ; ]  [01]+O( tZ)=[ t ; ]+O( t2 )  

so ~z(exp tB)=�89 2) as t ~ 0 .  Therefore DT~(I)(B)=�89 Also for x, y~D", 

j0,(x) = (1 -lyl2) x + (1 + Ixl 2 + 2 ( x ,  y))y 
l+2(x ,y)+lx le ly l2  ' 

so for ueToD" we have 

D (/)y)(0)(u)=(1 -[yl  2 ) u~ TyD n. 

Together, if B is as above and A=DyReSO+(n, 1) then 



Stochastic Flows of Diffeomorphisms 63 

d 
D 7r (A)(AB) = ~ (rc(A (exp tB)))lt = o 

= d (/}y R ~z(exp tB))lt= o 
dt 

= D (D,) (0)(�89 Re) 
=�89 _ ]y[2)Re. 

The result follows. 
(ii) is now immediate as left translation in SO+(n, 1) is an isometry of 

SO + (n, 1). 
(iii) In geodesic polar coordinates (r, 0) centred at 0~D ~ the Riemannian 

metric p may be written 

ds 2 = dr 2 + f12 (sinh (r/fl)) 2 d 02 

where r=fl log (1 + [Yl ] =2fl  t anh-  l([yl). The result follows. [] 

We now identify SO+(n, 1) as a subset of the orthonormal frame bundle 
O(D") of (D", p). 

Repeating the work leading up to Proposition 2.1(ii) we see that any 
A~O+(n, 1) may be written uniquely as A=DyR where ysD" and R~O(n) (but 
now d e t ( R ) = - i  is a possibility). We extend the definition of zc to 
~: O+(n, 1)~D".  Corresponding to A=DyRsO+(n, 1) we have y=zc(A)~D" and 

1 
the orthonormal frame at y given by ~ (1- ly[2)R:  IR"~ TyD"~-IR". The right 

action of O(n) on O+(n, 1) completes the identification of ~z: O+(n, 1)~D"  as 
the orthonormal frame bundle ~z: O(D")~D". Notice that the metric on O(D") 
induced by (3.1) on o(n, 1) is the most general metric on O(D") which is 
invariant under the action of all isometries of D'. O(D") splits into two 
components according to the orientation of the frame, and SO+(n, 1) corre- 
sponds to the component SO(D"), say, consisting of frames with positive orien- 
tation relative to the natural orientation of DnclR ". (For an alternative treat- 
ment see Kobayashi and Nomizu [11], pp. 204-209, in which it is also shown 
that O+(n, 1) is the group of all isometries of (D", p).) 

At IeO+(n, 1) the horizontal subspace of T~O+(n, 1)=o(n, 1) corresponding 
to the Riemannian connection on D" is the subspace 

1 
Recalling that Drc(I)(Ei)=lei and that f f i  e~ is the ith vector in the frame I we 

1 
see that ~ E~ is the value at I of the ith canonical horizontal vector field on 
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1 ith O(D")=O+(n, 1). By left translation we obtain A~--~ AE~ as the canonical 

horizontal vector field on O(D"). Therefore the canonical s.d.e, on O(D") is 

n 

dAt= ~ i~aA, EiodWtl. (3.3) 

If we restrict A t to denote the solution of (3.3) with Ao=l then the flow 
{Ft: t>0}  on O(D") of the canonical s.d.e, is given by Ft(A)=AA t. The flow 
decomposes naturally into flows on the two components of O(D") and left 
multiplication by an element of O+(n, 1)\SO+(n, 1) sends the flow on one 
component into the flow on the other component. Henceforth we shall restrict 
our attention to the flow on SO+(n, 1)=SO(D") the bundle of positively orient- 
ed frames, although we shall abuse terminology by continuing to refer to it as 
the canonical stochastic flow on O(D"). 

Notice that (3.3) with Ao=I is (2.1) with 2 =  1//~ and # = 0 ,  so we can apply 
the results of Sect. 2. In particular yt=n(At) is Brownian motion on (D", p) so 
we may interpret Theorem 2.3 as a result about the asymptotic behaviour of 
this Brownian motion process. Since rt= 2d(0, Yt) we obtain 

1 
td(O, yt)-,�89 as t ~ o e  wpl  (3.4) 

for Brownian motion in an n-dimensional space of constant curvature - 2  2. 

4. Asymptotic Behaviour of the Canonical Stochastic Flow on O(D") 

We restrict attention to the flow Ft(A)=AA t on SO+(n, 1)=SO(D"), the bundle 
of positively oriented frames. Results for the flow on the full orthonormal 
frame bundle follow automatically. Recall that with its Riemannian structure 
p, D" becomes a space of constant curvature - 2  z. Throughout  this section we 
shall omit the qualifying phrase "with probability 1". All results will be valid 
on the set of probability 1 on which the estimates of Theorem 2.3(ii) and (iv) 
hold true. In particular the set of probability 1 will not depend on any initial 
condition Fo(A)=A~SO+(n, 1) or any tangent AB~TASO+(n, 1) for B~o(n, 1). 

Definition. For O~S"-a let 

v, S[0e*-e0* . =0}=o(n,  1) e* ;] (e, 0) 

V, ~  : ]  CO+e=@,O) O}=o(n, 1). 

Theorem 4.1. Let 0 = 0 ~ =  lim ytES "-1. Then for A6SO + (n, 1) and Bso(n, 1), 
t ~ cJO 

[--�89 i fB~Vo-- '{  0 } 
lim _1 log IIDFt(A)(AB)I[ = if Be Vo~ Vo - 
t -~  t [ � 8 9  if B6Vo ~ 
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Proof Ft(A ) = AAt, so DFt(A)(AB ) = ABAte 7AAtSO + (n, 1) and 

I[DFt(A)(AB)[ I = [IABAt[ [ 
= [[ (AAt)- 1 ABAt[[ 
= IIAt.~BA,II 
= ]IAd(AV 1)B]I 

where Ad denotes the adjoint action of SO+(n, 1) on o(n, 1). Since the result is 
independent of the choice of inner product on o(n, 1) we choose c~=fi/l~ in 
(3.1), which ensures that ad(Ei) is self-adjoint for l<i<_n. Therefore 

ad[; ] is self-adjoint, and so is 

Ad(Dt. a)= Ad (exp ( - r t [o;  

0 =exp(-rt(ad[0, ~ 
Also, since the inner product on o(n, 1) is Ad(SO(n)) invariant, we have 
(Ad (R t- 1)), = ad  (R,). So 

(Ad (At 1)), (ad (A t. 1)) = (Ad (Rt. 1) ad  (D t- 1)), Ad (Rt. 1) Ad (Dt. 1) 
= (ad (Dt. 1))2 

= exp (-2r~ (ad [00, ~ ] ) ) '  

Therefore 

[(ad(At.1))*(Ad(At.1))]l/2t=exp(-~rt(ad[; ~ ] ) )  

~exp  (-�89 -1)  ad [ ;  ~]) 

= A, say, as t ~ oe. 

Now ad [00, ~] acting on o(n, 1) has eigenspaces 

Uo={[  Oe*-eO* =0} 
e* 

~[0e*-e0*  0 )=0}  
- e *  

corresponding to eigenvalues 1, 0, - 1  (respectively). Notice that V o- = U o and 
V0 ~ = U 0- + U ~ The result now follows using the same argument as in the proof 
of Theorem 2.6. [] 



66 P.H. Baxendale 

Note. If we put T t = Ad (A;- 1), then it follows from (3.3) that 

A 
dTt= - 2  ~ ad(E 3 T~o dW/ 

and the multiplicative ergodic theorem applies to the process {Tt: t > 0}. 

In the language of Lyapunov exponents we have a (non-random) Lyapunov 
spectrum consisting of - � 8 9  1),0,�89 with multiplicities n -  1, 
�89 - 1) (n - 2) + 1, n - 1 respectively and associated filtration of T A SO+ (n, 1)" 

{O} c A Vo- = {AB: Be Vo- } 

~ A V~ = {AB: Be Vo ~ 

TASO+(n, 1). 

The filtration is random but depends only on 0 = 0o~ = lim Yt. 
t--~ o~ 

For any OeS "-1 both V~- and V0 ~ are Lie subalgebras of o(n, 1), so the 
distributions {AVo-: AESO+(n, 1)} and {AV~ AeSO+(n, 1)} are both integra- 
ble. Thus we obtain foliations ~ -  and ~ 0  of SO+(n, 1) determined by these 
distributions. We shall identify the leaves of these foliations and then show the 
role they play in the global stability of the flow. 

Definition. For OeS"-1 let 

H o = {AeSO+(n, 1): 4 0 = 0  and D(ftls.-1)(O)=ILros.-,} 

H~ 1): .4 0 = 0}. 

Lemma 4.2. I f  ftO=O and . 4 ( - 0 ) = - 0  then A~DyR where y=sO for some 
s e ( - 1 ,  1) and RO=O. In particular if A e H  o and A ( - 0 ) =  - 0  then A=I .  

B g 
Proof If A=-[ . ]=D,R  then R = B - ( l + u ) - l g f  *, y = ( l + u ) - l g  and for 

. ' 1  t f  uJ B~9+g 
0eS  - we have A0 ~ ~ u u "  The assumptions on A imply BO=uO and g 

C J, ~u) 
= ( f ,  0) 0. The first result now follows (recalling Igl2=u2-1).  For A=DyR as 
above, a direct computation shows that 

/1 -1y] ]  R]ros, 1. D(ftls~-1)(0) = \1 + lY[ ] 

Therefore if A~H o we have s =0, R = I  as required. [] 

Lemma 4.3. (i) H o is a closed connected Abelian subgroup of SO + (n, 1) with Lie 
algebra Vo-. In particular H o = {exp B: Be V o- }. 

(ii) H ~ is a closed connected subgroup of SO + (n, 1) with Lie algebra Vo ~ Any 
A e H  ~ is of the form A= CD~R where Cello,  y=sO with s e ( - 1 ,  1) and RO=O. 

Proof (i) Since V 0- is an Abelian subalgebra of o(n, 1) then {expB: BeVo- } is a 
connected Abelian subgroup of SO+(n, 1). Since H o is clearly closed it suffices 
to prove H o = {exp B: Be V o }. 
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[0e* - e 0 *  
If B = L  e* ; ]  ~V~ then 

2 C = e x p B =  I+Oe*-eO*-1-[e200* e+�89 
e*-�89 2 0* 1 +�89 2 ] '  

and we may check explicitly that CEH o. Notice 

-(1-1el2)  O+2e 
(~( -0 )=  l+]e12 

(4.1) 

SO 

O+tCO+te 
(exp tB)- (0) = t- O(t 2) 

t(e, 0 ) + 1  

=O+t(CO+e-@,  O) O)+O(t 2) 

as t ~ 0 .  Hence B is in the Lie algebra of H ~ if and only if C O + e- ( e ,  0) 0 
=0. [] 

Corollary 4.4. The leaf through A of the foliation o~ o- (respectively Jo ~ is the 
coset AH o (respectively AH~ 

Theorem 4.5. Let A + B~SO + (n, 1). Let 0=0o~= lim Yt~S "-1. Then 
t ~  oO 

1 
(i) t l~ F~(B))~-�89 as t~oo if B6AH o (i.e. if A and B 

are in the same leaf of ~o-) and the convergence is uniform for B-1A in 
compact subsets of H o \{I}. 

(ii) lim inf d(F,(A), Ft(B)) > 0 and 

1 
td(Ft(A),Vt(B))--+O as t~oo  

if B~AH~ (i.e. if A and B are in the same leaf of ~o ~ and different leaves 
of ~o-) and the convergence is uniform for B-1A in compact subsets of H ~  . 

1 
(iii) t d(Ft(A),Ft(B))-*2(n-1) as t-*oo if B(~AH~ (i.e. if A and B are in 

different leaves of o-~o ~ and the convergence is uniform for B-1A in compact 
subsets of SO +(n, 1)\H0 ~ 

The result in (i) is the obvious analogue of the first case in Theorem 4.1. It 

So if A~H o and ~ ] ( - 0 ) = r  (where necessarily /p#0) there exists e~0=clR" 
such that A ( - 0 ) = C ( - 0 )  for C as above. Then C-1AeHo and (C-1A)- ( -O)  
= - 0, so by Lemma 4.2 C-  1A = I, i.e. A = C = exp B as required. 

(ii) Clearly H ~ is a closed subgroup of SO+(n, 1). The same method as 
above shows that if AeH ~ then there exists C~H o such that A =  CDyR, where 
y=sO with s~ ( -1 ,  1) and RO=O. It follows that H ~ is connected. Finally for 

any B = co(n, 1), 
e* 0 

[I +tC t;] + O(t2) 
e x p t B = k  te* 
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reflected in the behaviour of d(Ft(A), Ft(B)). However in cases (ii) and (iii) the 
global nature of SO+(n, 1) and its metric d become significant and the strict 
analogy with Theorem 4.1 breaks down. Indeed in both cases (ii) and (iii) we have 

the weaker result -~log d(Ft(A), Ft(B))~0 as t ~ o o .  Before we prove the theorem 
t 

we obtain some results on the metrics on SO+(n, 1) and D" (both denoted by d). 

L e m m a  4.6. Let y, z~D", R, SeSO(n), OES "-1 and se( -1 ,  1). 

(i) d(y, z)<d(DyR, D~S)<d(y, z)+ K where K = s u p  {d(I, Q): QeSO(n)}. 

Dz) ~ ~ ~ 4- j~ 2 d(y, z). (ii) d(Dy, 
I 

cosh (1  d(Jo,o(R y), y)) 1 + s  2 4([y] 2 - ( y ,  ey) )  (iv) 
= l - ~ J  ~ ( i - l y l ~ )  ~ 

T 
/ 

8sZ(ly[ 2 - ( y ,  O)(R y, 0)) q- 
(1 -- s2) (1 -- [y12) 2 

4s(1 + [y12) (0, y - - g y )  

(1 - s ~ ) 0  - tyI~) 2 
+ 

2 [uy*-yu* u] 
Proof Recall D; *(D~(y)(u))=l_ly ~ [ u* 0 so 

4 
lIO~(y)(u)[I 2 -  {2~2(LuL 2 lyl 2 -  (u, y)2)+/~21<2}.  (1 -Lyl2) 2 

(i) Since n(D~R)=y and n is a partial isometry, then d(y, z)<d(DyR, D~S). 
Now p(s)=Dsy, 0 < s _ < l  is a path in SO+(n, 1) from I to Dy and p'(s) 
= Dcb(sy)(y). So 1 

d(I, Dy) <= ~ I[D~(s y)(y)]l ds 
0 

- i  2fl[y] ds 
0 i - - S  2 ly [  2 

C1+IyI  

= d O ,  y). 

But d(0, y)<d(1, Dy) by the above, so d(0, y)=d(1, Dy). Therefore, letting D~ID~ 
= D x T with T~ SO (n) (so that  x = JO~- 1 (z)), 

d(DyR, D ~S)=d(I, D~ ~ D~SR- ~) 
= d(I, O x TSR- ~) 
<=d(I, D,,) + d(D x, Dx TSR - ~) 
=d(0,  x)+d(I, TSR- ~) 
< d(joy(O), J0y(x)) + K 

=d(y, z)+ K as required. 
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(ii) This follows directly from the estimate 

4 
IlDcp(y)(u)l] 2 < (2cd + f12)lul 2 =(l-ly12) 2 

2 ~2 + f12 

- f12 p , (u ,  u). 

(iii) Suppose A=DyS, so RA=RDyS=DRyRS. Then 

d (R, I) = d(D RyRS, D RyS) 
< d(DRyRS, DyS) + d(DyS, DRyS) 

= d(RA, A) + d(D r, DRy) 
1 

<=H(RA, A)+-~ ~ d(y, R y) 
p 

1 
<d(RA, A)+-fi ~ d(A, RA) 

using (i) and (ii) in the last two inequalities. 
(iv) Suppose 

r 2gm- 'Y '2r*  1 [:] 
D_yD,o L(1 + ly12)(1 - l y l " ) -  1-1 = 

and z= (1  +u)  -1 x. Then  z=b_y;bso(Ry ), so 

d(Dso(R y), y) = d(D_ y Dso(R y), O) 
=d(z, O) 

{ l+ lz l '~  
= fl log \l~-~]zL ! 

= fi cosh -  1 (u). 

The result follows by comput ing  u in the matr ix product  above. [ ]  

Proof of Theorem 4.5. Since 

d(Ft(A), Ft(B)) = d(AAt, BAt) = d(B- 1AAt, A,) 

we may assume in each case that  B = I .  The uniformity of the limits in each 
case will be a natural  consequence of the me thod  of proof. 

(i) If A e H o \ { I }  then A = e x p B  for some B e V 0 - \ { 0  }. Let  p(s)=(expsB)A,, 
0___s_< 1. Then  1 

d(Ft(A), Ft(I)) < ~ ]lp'(s)ll ds 
0 

1 

= ~ It(exp sS) BAtt ] ds 
0 

1 

=~ IIAtl BAt][ ds 
0 

= HAY 1 BA.II. 
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So by Theorem 4.1 

lim sup ~ log d(Ft(A), Ft(I)) <-_ -�89 (n - 1). 
t - -~  oO 

(4.2) 

Conversely for any AeSO+(n, 1) and Beo(n, 1) [[DFdA)(AB)I[= [IAd(D/-1)(B)[I. 

Assuming without loss of generality that c~ = fi/]/c2 we have that 

0 0 Ad(O, 1, exp (ad[0,, 00'])) and ad[0 , 

is self-adjoint with eigenvalues 1, 0, - 1 .  Then Ad(D21) is positive self-adjoint 
with smallest eigenvalue exp (-r t) .  Therefore 

[I DFt(A)(AB)L[ => exp ( -  6)[I AB [[, 

so that d(F,(A), Ft(I)) > exp ( - rt) d(A, I). Therefore 

1 
lim inf _1 log d(Ft(A ), Ft(I))> - lim t rt = -�89 - 1). (4.3) 

t - -+  (x3 t ~ t -'~ cO 

Together (4.2) and (4.3) give the required result. 
(ii) By Lemma 4.3(ii) we may put A = CD~oR where C e H  o, s t ( -  1, 1), RO 

= 0 and at least one of s + 0, R + I occurs. Since 

Id(AAt, At)-d(D,oRAt,  At)] = ]d(AAt, At ) -d(AAt ,  CAt)] <d(At, CAt), 

it suffices to consider d(DsoRAt, At). If s = 0  then R + I  so d(DsoRAt, A t) 
=d(RAt, At) which is bounded away from 0 by Lemma 4.6(iii). Otherwise, 
using Lemma 4.6(i) and (iv), and observing ( O , y - R y ) = ( O - R - l O ,  y)=O, 
we obtain 

d(DsoRAt, At) > d(Dso(R yt), Y,) 
~ l + s  2 4([yt[2-(yt, Ryt)) 

= fi c~  t ~ l ~ j +  (~Z_ lytl2)2 

8S2([yt[ 2 -- (Yt, 0)2)'~ (4.4) 

> f i c o s h - l (  l + s2] 
= 

This proves the first assertion. For the second assertion, by Lemma 4.6(i) it 
suffices to consider d(Dso(Ryt), Yt). Now 

4(lytl 2 - ( y .  O> 2) 
= (sinh rt) 2 (sin d(O,, 0)) 2 

=<(sinh rt)2 (d(Ot, 0)) z 
(1--[yt[2)2 (4.5) 
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where d(O, O) is geodesic distance on S"-1 between 0 t and 0. Similarly 

4(lytl 2 - (Yt, Ry,))  
= (sinh r32 (1 - cos d(O. R 03) 

(1 -]ytl2)  2 
= 2(sinh rt) 2 (sin �89 (0t, R 0t)) 2 

< 2(sinh rt) 2 (d(Ot, 0)) 2 
since 

d(Ot, ROt)<d(Ot, O)+d(ROt, O) 

= 2d(Ot, 0). 

The  result now follows from (4.4), (4.5), (4.6) and the estimate 

(4.6) 

1 
lim sup t log ((sinh rt) 2 (d(O, 0)) 2) 

t ~ o o  

1 1 
=21imt_~o~ t rt+21imsupt-oo t logd(q ,  0) 

= )~2(n-  1 ) -  )~2(n- 1) 

= 0  using Theorem 2.4. 

(iii) Choose  SsSO(n) such that  SO=riO. Then  S - 1 A e H  ~ so A = S B  for 
some B6H ~ By a similar argument  to that  commencing  the proof  of (ii), we 
may assume A = S  with $04=0. Fur ther  using L e m m a  4.6(i) it suffices to 
consider d(Sy,  Yt). By L e m m a  4.6(iv) we obtain 

d(Syt, Yt) = fl cosh -  i {(sinh rt)2(1 - cos d(O t, SOt))}. 

Now 0t--*0 and SOt~S04=O, so 

1 - cos d(O. S 0t) -~ 1 - cos d(O, S O) + O. 
Therefore  

lim -1 d(SAt, At)= lim _1 d(Syt, Yt) 
t ~ c o  t t ~ o o  t 

1 
= fl lim t (2 rt) 

t ~ o O  

=fl,~2(n- 1) 
=2(n- -1) .  [ ]  

Finally in this section we shall describe the leaves A H  o and AH ~ geometri-  
cally. This will emphasize the strong connect ion between our  stochastic flow 
on O(D") and the deterministic geodesic flow. See Klingenberg [10] or Arnold  
and Avez [1] for more  informat ion on the geodesic flow on negatively curved 
manifolds. Fo r  any y~D" and wTyD"~-IR" there is a unique geodesic p(t), t~R,  
in D" with p ( 0 ) = y  and p'(y)=v. As t ~ o o ,  p(t) converges in the Eucl idean 
metric to some limiting direct ion 0, say, in S"-1 

L e m m a  4.7. The geodesic started at y with velocity v has limiting direction 
by(v/Ivl). 
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( [0 
Proof. Let O---v/IvieS ~-1. Then q(t)=Tz expt •, is the geodesic started 

at 0 with velocity �89 It has limiting direction O. Then p(t)=F)y(q(t)) is the 
geodesic started at y with velocity D(/}y(0)(�89189 2)0---7v for some 
7>0.  It has limiting direction/Sy(O). []  

Definition. A horosphere at 0 is a hypersurface in D" orthogonal to the family 
of geodesics in D" with limiting direction 0. Denote by H(y, O) the horosphere 
at 0 passing through ysD". 

Notice that Lemma 4.7 can be restated to show that a geodesic started at y 
with limiting direction 0 must have initial velocity 7(/}y)-l(0)=y(/5 y)(0) for 
some 7>0.  Thus a horosphere is a leaf of the foliation of D ~ given by the 
distribution orthogonal to {/5_y(0): yeD"}. 

Lemma 4.8. (i) For A s S O  +(n, 1), A maps the set of horospheres at 0 onto the set 
of horospheres at 40.  

(ii) A horosphere at 0 is the set of points in D ~ lying on a Euclidean sphere 
tangent to S"- ~ at O. 

Proof. (i) is immediate from the definition as ,4 is an isometry of D ~. (ii) follows 
from the restatement of Lemma 4.7 together with the diagram showing the 
geometrical interpretation of the map/5_y:  S ~-1--, S ~- t for yeD ~ (see (5.5)). [] 

g_y( O) 

It follows from the diagram that the horosphere (r, 0) at 0 through y has 
(Euclidean) radius 

IO-yl IO-yl ~ 

r -10 +/)_y(0)[ - 1 - l y [  2 + [0 -- 212 

and centre z = (1 - r) 0. 
The following theorem is given in terms of the interpretation of 

7r: SO+(n, 1)--*D" as the bundle of positively oriented orthonorinal frames on 
O n" 

Theorem 4.9. (i) For A~SO+(n, 1), 7z(AHo) is the horosphere H(y,.40) at ftO 
passing through y=zr(A). Every horosphere is a fiat submanifold of (D ~, p). 
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BeAH o if and only if B may be obtained from A by parallel translation within 
the horosphere H(y, 710). 

(ii) For A =DrR and B=DzS, BeAH ~ if and only if the geodesics started at 
y with velocity RO and z with velocity SO have the same limiting direction. 

Proof. (i) It suffices to take A=I .  Consider T=r toexpoi  where i: O• - is 
given by 

1 [Oe*-eO* 
i(e)=fll_ e* ; ]  and 0• 0)=0}. 

2fie+[el20 
Then using (4.1) we obtain T(e ) -  4f12+[e12 and the first part follows from 

Lemma 4.8(ii). Suppose now B=DrR= exp (i(e)) for some ee0". Then 

O 7t(e)(f) = D rc(B)(B(i(f))) 

_l-lyl  R f  for i 
2fl 

by the calculation in Lemma 3.10). Hence T is an isometry of 0 • onto 
H(O, O)cD', so that H(0, 0) is flat. Further we see that DT(e) is the restriction 
to 01 of the frame B. It follows that B is obtained by parallel translation in 
H(0, 0) from the frame I=exp(i(0)) and we are done. 

(ii) By Lemma 4.7 the geodesics have limiting direction F)y(RO)=ft(O) and 
D~(SO)=B(O) and we know from the definition of H0 ~ that 

= t (o) Li (o)  = o 

"r162 B - 1 A  e H ~ [] 

We see that the description of the stochastic flow is given in terms of the 
geometry of the deterministic geodesic flow. All we need to know is 0=0~ 
=limyt,  the limiting direction of the Brown• motion process {Yt: t~O} on 

(D",p). In fact if we replace the random Ei odW / in Eq. (3.3) by the 

0 dt for O~S "-1 we recover the equation for (deterministic) �89 1) 0 

geodesic flow in the frame bundle O(D"). The stability results in Theorems 4.1 and 

4.5 remain valid. We replace At = ex p (5 [00, ~ ] ) R ,  byexp (�89 [ : ,  ~]) 

and the proofs go through. In the deterministic case all terms involving d(O, O) 
vanish and we obtain the sharper estimate that d(Ft(A), F~(B)) is bounded away 
from 0 and oo in Theorem 4.5 (ii). 

5. The Canonical Stochastic Flow on the Unit Sphere in IRn 

Let M be a smooth compact submanifold of IR k. For x~M let P(x): IRk_+ Tx M 
be the orthogonal projection and h(x): T=,M x TxM--+ T~ M be the second fun- 
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damental form for the embedding. If {Wt:t>O } is a 
{P(x) Wt: t>O} is a BMo(T:,M ). Let j: M ~  T ~ M  be given by 

j(x) = �89 E(h(x)(P(x) Wl, P(x) W1) ) 

=�89 (h(x)). 

We consider the (It6) s.d.e, on M given by 

BMo(IR k) then 

dit(x) = P(r d W t + j(~t(x)) dt (5.1) 
~0(x)=x. 

Formally we should extend the definition of P and j to some neigh- 
bourhood of M in IR k so as to consider (5.1) as an It6 s.d.e, in ]R k, and then 
check that if x ~ M  then r for all t>0 .  See [2], Sect. 4.6, for details. For 
x fixed, {it(x): x>0}  is a BMx(M ) (where M is given the Riemannian structure 
inherited from IRk). It may be thought of as the projection onto the sub- 
manifold M of the original {W,: t>0}  in BMo(IRk). More exactly, the incre- 
ments of {~t(x): x>0}  are the orthogonal projections of the increments of 
{W~: t>0}.  In a similar manner we may consider the stochastic flow on M 
given by (5.1) as the projection onto M of the rigid flow on IRk given by 
yw-~ y + Wt, y~iRk. 

An alternative construction of a stochastic flow on M is as follows. For  
1 < i < k let f~: M ~ IR denote the restriction to M of the ith coordinate function, 
and let V~ = grad fi. Consider the (Stratonovich) s.d.e. 

k 

d~(x)= y V,(~,(x))odW~' 
i= 1 (5.2) 

~0(x)=x 

where Wt 1, .... Wt k are independent BMo(IR ). 

W) Theorem 5.1. I f  Wt= ( t, ..., Wt k) the stochastic flows given by (5.1) and (5.2) are 
the same. 

Proof We show that (5.1) is the It6 version of (5.2). Let D and V denote 
covariant derivatives in IR k and M respectively. Notice first that Vi(x)= P(x)(e~) 
where e~ denotes the i th standard basis vector in IRk. Therefore (5.2) becomes 

k k 

d~,(x)= Y, V,(~,(x))d ~ 1 W t +~ ~ DVi({t(x))(Vi({,(x)) )dt  
i=i i=i 

k k 

p(~t(x))(ei) i 1 = dWt q-2 E DVi(~t(x))(Vi({t(x))) dt 
i = i  i = i  

k 

=P(~(x)(dW3 +�89 ~ DV~(~(x))(V,(~(x))) dr. 
i = i  

Now DVi(x)(Vdx))=VV~(x)(VI(x))+h(x)(Vi(x),Vi(x)) , so it suffices to prove 
k 

Y' VVi(x)(Vi(x))=O. For any vector field X on M we have 
i = l  

< Vii(x), X ( x ) ) =  <el, X(x)) ,  x eM.  
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Taking the derivative in direction V~(x) (and noting that D 
functions), 

(v  V~(x)(V~(x)), X(x)) + (V~(x), VX(x)(V~(x))) 
= (% DX(x)(Vi(x))) 

= (e i, VX(x)(Vi(x)) + h(x)(X(x), Vi(x))). 
Therefore 

and V agree on 

k k 

( v  v~(,O(V~(x)), x(,,)5 = ~ (e,, h(x)(X(x), V~(x))) 
i = 1  i = l  

k 

= ~' (e i -  P(x)(ei), h(x)(X(x), P(x) e/)) 
i=1  

= tr ((I - P (x)) Q (X (x)) P (x)) 

=0  

where Q(X(x))=h(x)(X(x), .): T~M--+ T~M. [] 

We may refer to the flow given by (5.1) (or equivalently (5.2)) as the 
stochastic flow on M determined by the embedding M c l R  k. In this section we 
shall be concerned with the stochastic flow on S"-1 determined by its embed- 
ding as the unit sphere in ~".  We consider Eq. (5.2) where 

Vi(x)=ei-(x,  ei)x, i = 1 , 2  . . . . .  n. 

Theorem 5.2. The equation 

d~t(x ) ~ ~ (e i -- ( ~ t ( X ) ,  el) ~,(x))o dW, ~ 
i=1  

~o(X) =~ 

on S"- a has solution of the form 

r f_yt 

where Yt and R t a r e  as in Theorem 2.2 with 2 = -1 ,  # = O. 

Proof. Suppose n 

dAt= - ~ AtEi~ i. 
i=1  

Then 
d(At 1)= _ A  t t(o dAt) A? i 

= ~ A~-I(AtEI)At 1 odWj 
i=1  

= ~ EiAt-l~ i. 
i=1  

(5.3) 

(5.4) 

Suppose A t  l [~] = [ Zt] a n d  Xt= ~tt l (x)= zt/blt . Then 
Ut 

= z, odWi=  ~. I_(z,, e~)l d[Ze] ,~=1Ei u, ~ 
I-UtJ "= i= 1 
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and so 
dx, = (ut)- 1 o d z , -  (ut)- 2 z~ o du, 

= i (e i -(xt ,  e~) xt)odW~( 
i = 1  

Therefore (5.3) has a solution with ~r(x)=d~-l(x) where A t satisfies (5.4). The 
result now follows from Theorem 2.2. []  

Note. If we put 2 =  -1/r,/~=0, and ~t(x)=rR21 D y~(x/r) then {~t: t>0}  is the 
natural stochastic flow on the sphere of radius r in IR". 

The appearance of A/-~ rather than A r ensures that ~r has independent 
increments on the left. Hidden in the calculation above is the fact that for the 
inclusion of SO+(n, 1) in Diff(S " - t )  given by A ~ . 4 ,  the vector field V i corre- 
sponds to E~eo(n, 1). In fact each V~ is an infinitesimal conformal transfor- 
mation of S "-1 and together V1, ..., V~ generate the group SO+(n, 1) of orien- 
tation preserving conformal diffeomorphisms of S "-  1. It follows that ir is a 
conformal diffeomorphism of S ~ - 1 for all t > 0. 

For  y~D" and x~S "-1, 

,(x) = (1 -[ylZ)x+2((x,  y) - 1 ) y  /5 
- - 2 ( x ,  y )  + 1 + lyl 2 

/ (1-ly[2)(y-x)] 
= _ ! (5.5) 

so geometrical ly/)_y is as shown. Thus if y is very close to the boundary of D" 
then /}_r sends most of S "-1 to a small neighbourhood of -Y/lY]. Therefore 
for large t, it consists of/13_yt, which compresses most of S "-1 into a small 
neighbourhood of - 0 r ,  followed by a rotation Rt -1. The equation for R r 
ensures that the rotation R; -1 is exactly what is required so that ~r(X) is 
BM~(S "-1) for each xeS "-1. In the limit as t ~ o o  there is one (random) 
unstable point 0 = lira 0 r-- lim Yr" Away from 0 the flow is stable, in the follow- 

r-.oo r---~ co 

ing local and global senses, d denotes geodesic distance in S ' -1  

Y 

- y  
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Theorem 5.3. Let {it: t>0} be the flow of Theorem 5.2. With probability 1, 0 
=0o~ = lira Yt exists and 

t--cO0 

(i) for veT~S"-l \{0} 

_1 ~ - � 8 9  if x=t=O 
lim l~ �89  if x=O t--+ oO t 

(ii) for Xl:::l:zX 2 and xiq=O, i=1,  2, 

1 
lira - logd(~t(xl) , ~t(x2)) = -�89 - 1) 
t ~ 3  t 

and the convergence is uniform for d(Xl,X2) , d(xl, O) and d(x 2, O) all bounded 
away from zero. 

Proof By Theorem 2.3 and Corollary 2.5, 0 exists and 

1 
lim -- log (1 - ly t l )=  -�89 - 1) 
t + ~  t 

lim _1 log (10- y,I)= - � 8 9  1) 
~--+ oO t 

(5.6) 

(5.7) 

with probability 1. From (5.5) 

D(b_r)(x)(v) _- (1 - ly l  2) v 
I x -y l  z 

SO 

and 

2 ( v ,  y)(1-1yl2)(x-y)  
Ix_yl4 

iD(b_r)(x)(v)[ = (1 - l y l  2) Ivl 
I x - y l  2 (5.8) 

[D ~t(x)(v)t = IR71 D(b_x)(x)(v)l 

(1 - l y ,  I 2) Ivl 
[x-y , I  2 

(exhibiting the fact that it is conformal). If x+-O then [x-yt l  2 is bounded away 
from zero and infinity and the first result follows using (5.6). If x = 0  we use 
both (5.6) and (5.7). For (ii) notice that d(Xl,X2) and Ixa-x21 are equivalent 
metrics on S"-1  We have 

I r  ~,(x2)l = I/5_ rdx 0 - /5_ , t (x2 ) l  

�9 X l - - Y t  x2--Yt 
=(1-]Yt [2) xl_yt l2  [ x 2 - ~ l  2 

and the result follows as above. [] 

Let (O, ~,, lP) be the underlying probability space for the flow, and let m 
denote normalised Lebesgue measure on S "-1. 0 = 0 ~  is a IP-almost surely 
defined random variable on S"- 1 with distribution m. Therefore on the product 
space f2 x S"-1 the event {0 exists, x +  0} has IP x m measure 1. It follows that 
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the Lyapunov spectrum for the flow {it: t>0} consists of the single value 
- � 8 9  and that the corresponding filtration is trivial. The stable manifold 
of x s S  "-~ is the random submanifold S"-1\{0}  defined on the set {O:#x}. 

It is interesting to observe what happens to volumes of images of subsets of 
S "-1 under the flow {~t: t>0}. Let U be a subset of S "-1. If 0eint(U) then 
0tEint(U ) for all sufficiently large t and so/5  y,(U) expands to fill up most of 
S "-~. Conversely if OCU then 0~r for all sufficiently large t and so /5_y,(U) 
shrinks to a small neighbourhood of - 0  r Thus 

IP {m(~t(U))--* 1} = IP {m(/)_,~(U))--* 1} 

> lP { Osint (U)} 

=m(int(U)) 
and 

=~{m(fi_,~(v))-~0} 
__>n~{0r ~?} 
= 1-m(U). 

Together we obtain the following result. 

Theorem 5.4. (i) Let U be a Borel subset of S "-1 with m(0U)=0. Then with 
probability 1 m(~t(U))~O or 1 as t--*oo and 

lE(lim m(~t(U)) ) = re(U). (5.9) 
t--* aO 

(ii) Let {Un: n=> 1} be any countable collection of Borel subsets of S"- 1 with 
m(~Un)=0 for all n and which separate points in S ~-1 (i.e. if x + y  then there 
exists n such that x~U,,  y~U,). Then with probability 1, 

N u. = {0} 

where I = {n > 1 : m(~t(U,) ) ~ 1 as t ~ oo}. 

Proof. (i) If m(• U)= 0 then m(int (U))= re(U) and the result follows from above. 
(ii) On the set {0 exists, 0r U OU,} we have O e ~ A , .  If 4~ is any other 

n >= 1 n ~ I  

point in S "-~ then there exists n such that O~A, (so that n~I) and Oq~A,. 
Therefore ~br ~ A , .  [] 

nE1 

It may be shown that for any Borel subset U of S "-~, m(~t(U)) is a 
martingale and hence convergent, thus strengthening (5.9). This fact remains 
true when we consider the stochastic flow determined by an arbitrary compact 
submanifold M of IR k. It may not however always be the case that there are 
only two possible values for the limit. 

6. T h e  Inverse  F l o w  on S n-1 

Since the s.d.e. (5.3) has zero Stratonovich drift it follows that for each fixed 
t__>0 the distributions of the random diffeomorphisms it and ( /1  are the same. 
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R t ( x ) ~  (x) 

l 
79 

(This may be seen from the approximation to it obtained by replacing 
{W~:0<s<t} by a polygonal approximation. See, for example, Wong and 
Zakai [19] for the approximation scheme. The same sequence of approxi- 
mations converges in distribution to ~t-1.) Therefore the difference in behaviour 
of the processes {~t:t>0} and {~t-1: t>0} is caused solely by the difference 
between left and right multiplication in the diffeomorphism group. 

Alternatively, we may consider the process { ~ s , : - o o < s < u < o o }  in 
Diff(S"-1) given by 

d~s,(X ) = ~ (e i -  (~su(X), el)  ~su(X)) o d % i  
i=1 (6.1) 

~.(x)=x 

where each {Wj: uelR} is a process in R with independent increments distrib- 
uted like the increments of B M ( I [ ) .  For fixed s, the process {~,~+~: t>0} is 
distributed like the solution {~: t>0} of (5.3). This is the usual "forward ~' 
process. But we may also consider the "backward" process {~,_~,,: t>0} for 
fixed u. This starts at the identity and has increments on the right. In fact we 
may check that the backward process {r  is distributed like 
{r t>0}.  See Kunita [12] for more details on backward stochastic flows of 
diffeomorphisms. 

For t>0 ,  ~ 7 1 = D y R t  so r consists of a rotation R~ followed by/)yt which 
for large t compresses most of S"-1 into a small neighbourhood of 0,. So for 
large t, ~- 1 sends most of S " -  1 very close to 0 t and hence very close to 0oo. 

Consider ~t-l(x)=Dy~(Rtx) for some fixed x e S " - 1 .  For large t, s sends all 
but a small neighbourhood of - 0  t into a small neighbourhood of 0 t. So we 
need to consider whether the random rotation R t sends x into that small 
neighbourhood of - 0  t which does not get mapped into a given small neigh- 
bourhood of 0 t. More precisely, for any ~e(0, 7r), d(r Ot)<~ if and only if 
d ( R t x ,  -0 t )>6=c5 ~ where 6~e(0, r0 is given by 

~ 2 l y t l - ( l  +[ytl2)cose 
cos o t - - -  ~ . . . . .  . (6.2) 

1 + lYt] - 2lye] cos 
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This follows from (5.5) since Rtx=D_y~(~?Z(x)). For each e>0, 3~ is a random 
function of t and 6 ~ 0  as t-~oo since lyt[--*l as t--*oo. We have 
d(~?l(x),O~)~O as t ~ o o  if and only if for all e>0,  d ( - x ,  R t lOt )=  
d(R t x, -Of)> 3~ for all sufficiently large t. So the question of convergence depends 
on whether the process R t  lO t can get inside the shrinking ball of radius ~ 
centred at - x  infinitely often as t ~ o o .  In what follows we abbreviate "for all 
sufficiently large t" to "eventually" and "infinitely often as t ~  ~ "  to "i.o.". 

Proposition 6.1. RtlOt=Y~(t) where {Y/s>0}  is a BM(S  "-1) independent of 

{]Y,[: t>0} and the clock a(t) is given by &(t)= ~ 2 ~ t l  ] . 

Proof Let z t=Ri - ly t ,  so {ztl=lYt[. We have 

d z t = - R 7 1 (o dRy) R~- 1Yt + R~- 1 o dy e 

= ~ (z~<zt, ei> -�89 + {z,[ 2) ei)o dW/ 
i=1 

from Eqs. (2.4), (2.5) with ).= - 1 ,  #=0 .  Write ~)t-=Rt -10t=zt/[ztl. Then 

and 

< zt, o d z,> dlz~l- 

= - �89 ~ (1 -]zt]Z)<~bt, ei>odWt i 
i = 1  

d O  t = [z t ] -  1 o d z  t -  ]zt[ 2 o d [zt[ 

= -  ~ 1-t-{ztlZ 
i=1 21zt] (ei-<(~t'ei>~t)~ 

The result now follows (c.f. Theorem 2.3(iii)). [] 

Observe that - R t  1 0 t is the centre of the clump formed by it, i.e. it is the 
point of maximum density of the induced measure m~t  1. The proposition 
shows that this point moves at faster rate than does ~(x) for any fixed xeS"-1  
(although the limiting rate as t ~ ~ is the same). 

Proposition 6.2. Fix xeS"-a .  

(i) I f  n=2,  lP {d(x, R~ -1 0t)=0 Lo.}=l.  
(ii) I f  n=3,  lP{d(x, R? 1 0 t ) < e x p ( - T t  ) i.o.} = 1 for all 7>0. 

(iii) I f  n > 4, lP {d(x, Ri -10,)>t  - ~ eventually} = 1 for all 7> 1/(n-  3). 

Proof By the previous proposition, R~ -1 Or= Y~(t) where &(t )~  1 as t --* oo and 
in particular a(t)--, oo as t--, oo with probability 1. (i) now follows directly from 
the corresponding result for BM(SI). For n > 3 (i.e. dim S"- ~ >2) we use Theo- 
rem1 in [3]. Define q~z(S)=[logs[-'A1 and d?d(s)=s d-2 for d>3.  Then if 
f :  [0, oo)~ (0, oQ) is monotone decreasing 
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IP{d(x, R t  ~ Ot)< f ( t  ) i.o.} 

=lP{d(x, Y~m)<f(t) i.o. [ a ' ( t )~  1} 
co 

= IP { 5 q~. -*  ( f ( a - 1  (s))) d s = oo ] or' (t) --, 1 } 
co 

=IP{5 {b,_ l(f(t)) o-'(t) dt= oo I a ' ( t )~ 1} 

=1 o r 0  

according as ~ , _ l ( f ( t ) ) d t  diverges or converges. The result follows upon 
t a k i n g f ( t ) = e x p ( - T t )  if n = 3  a n d f ( t ) = t  -~ if n>4.  [] 

Since 1 - ( x ,  y ) =  2 sin 2 (�89 y)) for x, yeS"-1 we obtain the following. 

Corollary 6.3. Fix xeS"-1.  

(i) I f  n=2, IP{{x, R710 , )=1  i.o.}=1. 
(ii) I f  n=3, IP{(x,R~-t  Ot) > l - e x p ( -  Tt) i.o.}= l for all 7>0. 

(iii) I f  n > 4, IP { (x,  R 210,)  < 1 - t -  1, eventually} = 1 for all 7 > 2/(n - 3). 

Theorem 6.4. Let {4,: t>0} be the stochastic flow of Theorem 5.2 and let O=Oco 
= lira y,. Fix xeS  "-1. 

t-+CO 
(i) I f  n = 2 then ~ - ,  (x) hits each of the points 0 and - 0  infinitely often as 

t + o o  wpl.  
(ii) I f  n = 3  then ~t~(x) approaches within e x p ( - T t  ) of each of the points 0 

and - 0 infinitely often as t ~ oo wp 1, for 0 < 7 < 1. 
1 

(iii) I f  n > 4, lim sup 7 log d({ t- 1 (x), 0) < - {(n - 1) wp 1. 
t - * C O  

1 
Proof Recall that lim sup-~ log d(Ot, 0 ) = - l ( n - 1 )  wpl.  In addition for n = 2  

t ~ C O  b 

we may use the intermediate value property for segments of S 1. Therefore it 
suffices to prove each of the statements in the theorem with 0 replaced by 0,. 
Notice that we can now drop the restriction 7 < 1 in part (ii). From the formula 
for/)y we obtain 

(1 -]ytl)2(1 -- {x, R,- 1 Or)) (6.3) 
1 

Or)-(1 -lytl)2 + 21y,[(1 + {x, g7  ~ Or)) 
and 

(1 + [y,I)2(1 +(x ,  e t  10t) ) 
1 + ( g t -  * (x),  0 , )  - - -  

(1 --lytl)  2 + 2tytl(1 +(x ,  R; -~ Or))" 
(6.4) 

We now obtain (i) by using Corollary 6.3(0 in Eq. (6.3) and Corollary 6.30) 
with x replaced by - x  in (6.4). Similarly to prove (ii) observe that if 
1 - ( x , R ~ - l O , ) < e x p ( - 2 7 t )  then by (6.3) we have 1 - ( ~ - l ( x ) , O t ) < e x p ( - 2 ? t ) .  
Also for any (5 > 0 if 1 + (x, R t- 10,) < exp ( -  (27 + 2 + 6) t) then by (6.4) we have 

4 e x p ( - ( 2 2 + 2 + 6 )  t) 
1 + ( g , -  1 (x),  0 , )  < 

(1 -- [y,l) 2 
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1 
and the result follows since - l o g ( 1 - l y t l ) ~  - 1  wpl  (for n=3).  Finally to prove 

t 
(iii) observe that if ( - x, R;- 1 0t ) < 1 - t -  ~ then 

SO 

1 - (~t- l(x), Or) < (1 -lyt]) 2 (2 - t -  ~) 
-= (1 - ly,I)  2 + 2 ly,[ t-~ 

lim sup 1 log d(~t-l(x), Or)=�89 sup 1 log(1 --(~,-~ (x), 0,)) 
t~co t ~ c o  t 

< - � 8 9  [] 

We see that in S 1 and S 2 the process {r t>0}  does not converge to 
0co. However it does spend most of its time near 0co. The following result is 
true for all n > 2  although for n > 4  it follows trivially from the previous 
theorem. We denote by I r the indicator function of an event F. 

Theorem 6.5. Let {it: t>__0}, 0co and x be as above. For any neighbourhood U of 
Oco in S ~-~, the process {r t=>0} spends only a finite time outside U with 
probability 1, i.e. 

cO 

S I~c~(x)r176176 wpl .  
0 

Proof. Since 0t~0co wpl  it suffices to prove the result with d(r 0t)>e 
replacing the condition ~t l (x ) r  Given e > 0  there exists k < ~  such that 
d(~i- 1 (x), Or) > s implies d(R;- 1 0t ' _ x) < k(1 -lYtl). (This follows from (6.2)). Re- 
call from Proposition 6.1 that, conditional on d=a{lY~l:  s>0},  Rg~Ot is a 
time changed BM (S ~- ~). Therefore 

= ~ Ip (d(e7 ~ 0t, - x )  < k(1 -lY,I) I d )  dt 
0 

CO 

_<k, S (1 - l y ,  I) "-~ dt 
0 

<oo wpl  

where the constant k~ depends only on k and n. The result now follows 
immediately. []  

Corollary 6.6. For any continuous f: S"-1 ~ N and any x~S ~-1 

1 if(~:l(x))ds_~f(Oo~) wpl.  
t o  
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Note. This result may be compared with the ergodic theorem for {r > 0 }  

1 t 

! t f ( r  ~ f ( y )  dm(y) wpl.  
S n 1 

The following result describes the local stability of the inverse flow 
{~71. t=>o). 
Theorem 6.7. Let {~t: t_>0}, 0~ and x be as above. Then with probability 1, for 
all v eT~S~- I \ {O}  

lira inf 1 t-~o~ t l ~ 1 8 9  

and 

Proof. 

= ~ - � 8 9  1) /f n>_4 
lim sup _1 log lD~t l (x ) (v ) l  

t-~oo t ~ � 8 9  /f 2 < n < 3 .  

ID ~F 1 (x)(v)[ = ID (/)yt)(R t x)(R r v) l 

(1 -lYtl 2) [vl 
[Rtx + yt] 2 

(1 - lyt l  2) Ivl 

= (1 -lY~l) 2 + 2 lYtl (1 + (x ,  R;- 1 0~)) 

The proof now follows from Corollary 6.3 and Corollary 2.5. [] 

Notice that if n = 2  or 3 then lim-1 loglD~;_l(x)(v)[ does not exist. This 
t~(x3 t 

shows the non-existence in general of "backward" Lyapunov exponents (i.e. 
Lyapunov exponents for the flow obtained from a backward s.d.e.). 

Finally for any Borel subset U of S n-1 we consider m(r  say. 
This more properly belongs in Sect. 5 as the measure m t is the image of the 
measure m under the mapping Ct. In general let v be any Borel probability 
measure on S n-1 and let vt(U)=v(~;- l (U))  for all Borel subsets U of S "-1. Then 
{vt: t>0}  is a Markov process in the space M(S ~-1) of Borel probability 
measures on S "-1. The following result describes the limiting behaviour of this 
Markov process. For  x e S  "-1 let 6(x)eM(S "-1) denote the unit mass at x. Let 
C(S ~-1) be the set of continuous functions from S"-1 to R and B(x, ~) the 
open ball with centre x and radius e in S "-  1. 

Theorem 6.8. Let  v be any Borel probability measure on S ~- 1 and v t= vr Let  
z e S  n- 1. Then v t -  (5 (~r(z)) ~ 0 weakly as t ~ ~ with probability 1, i.e. 

f ( y ) d v t ( Y ) - f ( ~ t ( z ) ) ~ O  as t ~  
S n - 1  

for all f e  C(S ~- 1) with probability 1. 

Proof. d(~r(z), - R;- 1 Or ) = d(D_ y~(z), - Or) ~ 0 as t ~ ~ wp 1. Therefore it suffices 
to prove vt--(~(--Rt 10t)-->O weakly as t-~oo wpl .  Since the distribution of 0~ 
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is non-atomic we have v({0oo})=0 wpl .  From now on we restrict to a fixed set 
of probability 1 on which 0t--+0~o , [Ytl--' 1 and v({0o~})=0. Given f~C(S "-~) 
and e > 0  there exists 6 t > 0  such that v(B(O~o,261))<e/4HfH. Therefore there 
exists T o such that if t >  T o then v(B(O,, 61))<e/4 IIfll-Also 

d(~ , (x ) ,  - R,  - ~  00  = d ( 9 _ , t ( x ) ,  - 03 - - ,  0 

as t-+ oe uniformly for xr 61). Since f is uniformly continuous there exists 
6 2 > 0  such that d(yl, y2)<62 implies If(yO-f(yz)l<�89 Choose T, such that if 
t > T  a then d({t(x),-R;-lOt)<az for all xCB(O,,61). Then for t > m a x ( T  z, To) 
we have 

I S T(y)dv , (Y)-f ( -R;  -~031 
S n -  1 

= I ~ ( f (~ , (x) ) - f ( -  R;- * Or) ) dv(x)l 
S n - i  

< 2  Ilfl[ v(B(0t, 31)) 

+ sup {I f ( i t (x) ) - f ( -R;  -1 0r)l: x(EB(Ot, 32) } 
<�89189 as required. [ ]  

The theorem shows that the Markov process { v t : t > 0  } on M(S "-1) is 
asymptotically stationary. In the limit we obtain the stationary process 
{6(X,): t > 0 }  in M(S "-1) where {X(t): t > 0 }  is a BM(S "-1) with initial distribu- 
tion m. Notice that in this example the invariant measure on M(S "-1) for the 
process is supported on atomic measures. See Le Jan [-13] for examples of 
stochastic flows where the invariant measure has no atomic measures in its 
support. 

References 

1. Arnold, V.I., Avez, A.: Ergodic problems of classical mechanics. New York: Benjamin 1968 
2. Baxendale, P.H.: Wiener processes on manifolds of maps. Proc. Royal Soc. Edinburgh 87A, 

127-152 (1980) 
3. Baxendale, P.H.: Recurrence of a diffusion process to a shrinking target. J. London Math. 

Soc. 32, 166-t76 (1985) 
4. Bismut, J-M.: M6canique al6atoire. Lecture Notes in Math. 866. Berlin Heidelberg New York: 

Springer 1981 
5. Carverhill, A.P.: Flows of stochastic dynamical systems: ergodic theory. Stochastics 14, 273- 

318 (1985) 
6. Elworthy, K.D.: Stochastic differential equations on manifolds. Cambridge University Press 

(1982) 
7. Ichihara, K., Kunita, H.: A classification of the second order degenerate elliptic operators and 

its probability characterization. Z. Wahrscheinlichkeitstheor. Verw. Geb. 30, 235-254 (1974) 
8. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam- 

Tokyo: North Holland/Kodansha 1981 
9. It6, K., McKean, H.P.: Diffusion processes and their sample paths. Berlin-Heidelberg-New 

York: Springer 1965 
10. Klingenberg, W.: Riemannian geometry. Berlin: de Gruyter 1982 
11. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. I. New York: In- 

terscience 1963 
12. Kunita, H.: On backward stochastic differential equations. Stochastics 6, 293-313 (1982) 



Stochastic Flows of Diffeomorphisms 85 

13. LeJan, Y.: Equilibrium state for a turbulent flow of diffusion. Proceedings "Stochastic pro- 
cesses and infinite dimensional analysis". Bielefeld 1983. Pitman Research Notes in Mathe- 
matics 124 (1985) 

14. Malliavin, M-P. and P.: Factorisations et lois limites de la diffusion horizontale au-dessus d'un 
espace Riemannien symetrique. Th6orie du potential et analyse harmonique. Lecture Notes in 
Mathematics 404, 164-217. Berlin- Heidelberg-New York: Springer-Verlag 1974 

15. Oseledec, V.I.: A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynami- 
cal systems. Trans. Moscow Math. Soc. 19, 197-231 (1968) 

16. Pinsky, M.A.: Stochastic Riemannian geometry, Probabitistic analysis and related topics. 
Vol. 1, pp. 199-236. New York: Academic Press 1978 

17. Prat, J-J.: Etude asymptotique et convergence angulaire du mouvement Brownien sur une 
vari6t6 a courbure negative. C.R. Acad. Sci. Paris S6r. A 280, A1539-A1542 (t975) 

18. Ruelle, D.: Ergodic theory of differentiable dynamical systems. Inst. Hautes Etudes Sci. Publ. 
Math. 50, 275-305 (1979) 

i9. Wong, E., Zakai, M.: Riemann-Stieltjes approximations of stochastic integrals. Z. Wahrschein- 
lichkeitstheor. Verw. Geb. 12, 87-97 (1969) 

Received September 9, 1984; in revised form February 28, 1986 


