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Summary. Let  X = ( X  1 . . . . .  Xd) be an lR<valued  L6vy process  on IR+ or 
ergodic  exchangeable  process  on [0, 1], and  let V =  (1/1, . . . ,  Ve) be a predict-  
able process  on the same interval.  U n d e r  suitable m o m e n t  condit ions,  it 
is shown that,  if the Lebesgue integrals ~ l~  Vj are a.s. n o n - r a n d o m  for all 

jeJ 
J c { 1  . . . . .  d} with ~J<=d-1 or  ~J<=d, respectively, then the p roduc t  
m o m e n t  E I~  ~ V~ dXj is the same as if X and  V were independent .  An  ana lo-  
gous  s ta tement  holds in discrete time. The  results imply  some invar iance  
proper t ies  of  exchangeable  sequences and  processes under  suitable predict-  
abls , ' ansformat ions  

1. Background and Motivation 

Let  41, 42, -.- be i.i.d, r a n d o m  variables  (r.v.'s) with a finite first m o m e n t  #1 = E ~k, 
and  consider  a predic table  sequence of r.v.'s t/l, q2 . . . .  (Thus each qk is a ssumed  
to be measurab le  with respect  to 41, . . . ,  ~k-1.) It  is wel l -known that,  under  
suitable integrabi l i ty  condi t ions  on the t/k, 

E Z ~k~lk=ff, E ~t/k. (]) 
k k 

If #1 = 0 while #2 = E ~ < oo, it is fur ther  known,  under  somewha t  m o r e  s tr ingent  
condi t ions  on the tl k, tha t  

E { ~  ~k t/k} 2 = #2 E ~ t/~. (2.) 
k k 

In  the special case when  t/k--1 {Z > k} for some suitable finite s topping  t ime 
z, (1) and  (2) reduce to the wel l -known Wald identities 

EX~=#1E'c, EX2 =p2 E'c, (3) 

* Research supported by NSF grant  DMS-8703804 



448 o. Kallenberg 

where X , =  ~l + . . -+4 , .  (Cf. Wald (1945). A modern discussion may be found 
in, e.g., Chow & Teicher (1978), and some recent results in Franken & Lisek 
(1982) and in Klass (1988).) 

The continuous time analogues of (1) and (2) are the formulas 

E~ VdX=#a E j" V, (4) 

E{J VdX}2=#2 E f V z, (5) 

for the stochastic integral of a suitable predictable process V with respect to 
a L6vy process X with finite first moment  # ~ = E X a ,  or with # 1 = 0  and #2 
= E X 2 < oe, respectively. Here (4) states essentially that stochastic integration 
preserves the martingale property, while (5) is the basic isometry for It6-type 
stochastic integrals. (Note that the integrals on the right of (4) and (5) are with 
respect to Lebesgue measure.) Again one obtains the Wald identities (3) by 
choosing V~ = 1 {~ > t} for a suitable stopping time ~. (Cf., e.g., Karatzas & Shreve 
(1988) for the mentioned results in the special case when X is a Brownian 
motion.) 

Our aim in this paper is to prove some very general versions of formulas 
(1), (2), (4) and (5). To appreciate these, it is helpful to think of the previous 
relations in terms of decoupling. More precisely, we may introduce two indepen- 
dent sequences (G)=d (~k) and (tt~)__a (tlk), or processes X' ~ X and V' d = V, and note 
that (1) and (2) are equivalent to :~.~ 

E {Z ~k r/k} d = E {Z ~, r/~,} d (6) 
k k 

for d = 1 and 2, while (4) and (5) are equivalent to 

E V d X }  d = E {f V' dX'}" (7) 

for d = 1 and 2. Thus informally the first and second moments of the sum ~ G qk 
or the integral ~ VdX may be computed, under appropriate conditions, as if 
the two sequences (G) and (qk) or the two processes X and V were independent. 

In Sect. 3, the identity (6) will be proved for arbitrary d e N ,  under suitable 
moment  conditions on the i.i.d, sequence (~j) and the predictable sequence (qk), 
and under the additional hypothesis that the sums over N 

s~=Y,~" (8) 
k 

be a.s. non-random for m = 1 . . . .  , d -  1, or at least for m = 2 . . . . .  d -  1 when #t 
-- E ~t = 0. Similarly (7) is proved in Sect. 5 for arbitrary d e N ,  under appropriate 
moment  conditions on the L6vy process X and the predictable process V, plus 
the extra requirement that the Lebesgue integrals over N+ 

S,, = ~ V" (9) 
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be a.s. non- random for m = 1, ..., d -  1, or for m = 2 . . . .  , d -  1 when #1 = EX~ = 0. 
Note  that the conditions on S,, are void for d =  1, and even for d = 2  when 
#1=0 ,  so that the above statements generalize the classical results. If  #1=0 ,  
one even gets for d = 3 the simple formulas 

E{~ktlk}3=#aES3 or E{~VdX}3=#3ES3, (lO) 
k 

with / l a = E ~  ~ or # 3 = E X ~ ,  respectively, in analogy with (1)-(5). The explicit 
moment  formulas for d > 4 are more complicated, though still tractable in the 
continuous time case. 

At this point it is natural  to ask for extensions of (6) or (7) beyond the 
case when (~k) is i.i.d, or when X is L6vy. Though the formulas for d = 1 and 
2 were seen to be essentially martingale results, exchangeability theory appears  
to be the proper  context for the general identities. Recall that, by de Finetti 's 
theorem, an infinite sequence of r andom variables is exchangeable, iff it is a 
mixture (in the distributional sense) of i.i.d, sequences. Similarly, a process on 
R +  is known to be exchangeable (i.e. right-continuous, starting at 0, and with 
exchangeable increments), iff it is a mixture of L6vy processes (cf. Kallenberg 
(1973)). Thus (6) and (7) hold, under appropriate  conditions, when (~k) or X 
is an ex treme (or ergodic) exchangeable sequence or process, respectively, indexed 
by N or ]R+, and it is easily seen (at least formally) how the results could 
be extended to the non-extreme case. 

Much less obvious, and in fact rather surprising, are the corresponding results 
for finite exchangeable sequences and for exchangeable processes on [-0, 1]. 
Recall that a sequence 31, .--, ~, is exchangeable, iff it is a mixture of so called 
urn sequences, where the latter are obtainable through successive r andom sam- 
piing without replacement from a set of size n. Thus the extreme or ergodic 
case is when the measure ~ 5r is a.s. non-random. Even the exchangeable pro- 
cesses on [0, 1] are known to have unique representations as mixtures of extreme 
or ergodic processes, where important  examples of the latter are given by the 
Brownian bridge and the empirical processes. The general exchangeable pro- 
cesses on [-0, 1], which we describe later, serve as approximations to summat ion  
processes based on finite exchangeable sequences. 

In Sect. 3 we shall prove, under a momen t  condition when d =  1, that (6) 
holds when 41 . . . . .  4, form an extreme exchangeable sequence, while ~/1 . . . . .  q, 
are predictable and such that the sums in (8) are a.s. non- random for m = 1 . . . . .  d. 
Similarly we prove in Sect. 4, again under suitable moment  conditions, that 
(7) holds when X is an extreme exchangeable process on [0, 1], while V is 
a predictable process on l-0, 1], such that  the integrals in (9) as a.s. non- random 
f o r m = l ,  .. . ,  d. 

To motivate a reader who might think that moment  formulas like those 
described are dull and of little interest, we insert a simple illustration, phrased 
in terms of gambling. Imagine an ordinary well-shuffled card-deck, from which 
you are invited to pick cards at random, one by one. Before you draw card 
number  k, you may  bet an amount  qk, and if the card is red you get the double 
amount  back, otherwise nothing. Assume also that you have to decide, before 
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entering the game, on the total amount  ~t/k to bet. Then (6) shows that your 
expected total gain is zero. This is surprising, because you know all through 
the game the proport ion of red cards in the deck, and it would seem to be 
a good strategy to bet large amounts when this proport ion is high. If even 

q~ has to be fixed in advance, then the variance of your total gain will also 
be independent of your  strategy, and so on for higher moments. 

Our moment  identities (6) and (7) are closely related to the predictable sam- 
pling theorem in Kallenberg (1988), an extension of a result by Doob  (1936), 
which states that if ~ ,  ~2,-. .  form a finite or infinite exchangeable sequence 
and if Za, z2, ... are a.s. distinct predictable stopping times w.r.t, the G, then 

( G , 4 : ~ , . . . ) ~ ( ~ , ~  . . . .  ). (11) 

In fact, we shall see in Sect. 6 how the latter result may be easily deduced 
from the identities in (6). In continuous time, one considers instead an exchange- 
able process on I =  [0, 1] or IR+, and a predictable /--valued process V on I, 
such that the paths of V are a.s. Lebesgue measure preserving transformations 
of I. The claim corresponding to (11) is then that the process 

(X o V - t ) , =  y l{V~<t}dX s, tel, (12) 
I 

has the same distribution as X. Here the proof  may be based on the moment 
identities (7). Thus the present results may be viewed as extensions of those 
in Kallenberg (1988). 

(The methods of proof  of the two papers are entirely different, and the present 
approach seems to provide some better insight into the nature of (11) and its 
continuous time counterpart.  This fact alone would be enough motivation for 
the present paper, since for finite sequences, formula (11) is just as surprising 
as (6), cf. Kallenberg (1985).) 

By using the present methods, we shall in fact be able to go further, and 
derive various extensions of the predictable sampling theorem. In particular, 
we shall prove a multivariate version, where different predictable mappings may 
be used in the different coordinates. Here the proof  rests on certain multivariate 
extensions of (6) and (7) of the form 

o r  

d d 

E ~I Z~jktljk =E ~I Z~'Jktl)k (13) 
j = l  k j = l  k 

d d 

E l~ SVidXj =E I~ SVjdX~, (14) 
j = l  j = l  

valid for suitable Nd-valued extreme exchangeable sequences (~lk . . . . .  ~dk), 
k = 1, 2, ..., or processes (X 1 . . . . .  Xa), and for predictable sequences (t/1 k . . . .  , qdk), 
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k =  1, 2 . . . .  , or processes (V1, ..., Va), where it is assumed that the sums or 
Lebesgue integrals 

Ss=~lT l t / jk  or S j = ~ I ~ V  j (15) 
k j~J  j~J  

are a.s. non-random for all J c { 1  . . . . .  d} with ~J<=d (in the finite case) or 
~-J~_d-1  (in the infinite case). Since (13) and (14) may be proved in the same 
way as (6) and (7) and without additional effort, we shall actually state and 
prove all moment  identities of this paper in their multivariate versions. With 
the mentioned application in mind, we shall further incorporate into our main 
results some other refinements that will make them more powerful, essentially 
without lengthening their proofs. 

We proceed to review some basic facts and to introduce some terminology 
and notation, which will be used throughout  the paper. First we recall the 
L6vy-Hinchin representation associated with a L6vy process X in ~a, which 
in case of finite first moments may be written in the form 

E e x p ( i u X t ) = e x p { i t u T - - � 8 9  i ~ -  1- - iux)  v(dx)}, u~lR a, t>=O, (16) 

in terms of the mean vector 7~IR d, the covariance matrix p of the continuous 
component,  and the L~vy measure v on lRa\{0}, where the latter is such that 
(Ix 12AIxl)v(dx)< oo. (In (16), u should be regarded as a row vector, and 7, 

X t and x as column vectors.) The distribution P X -  a and the triple (7, P, v) 
determine each other uniquely, and we shall refer to the latter as the directing 
triple of X. 

An N J-valued process X on I-0, 1] is known to be ergodic exchangeable, 
iff it has an a.s. representation (possibly on an extended probability space) of 
the form 

Xt=c~t+o-Bt+  ~ flk(l{'ck<t}--t), tel-0, 1], (17) 
k= l  

in terms of some vectors e, i l l ,  f12 . . . .  ~ _ d  some (d x d)-matrix a, some Re-valued 
Brownian bridge B, and some independent set of i.i.d, random variables 
za, ~2,---, each U(0, 1) (uniformly distributed on [0, 1]). Note  that the series 
in (17) converges a.s. uniformly in t. (Cf. Kallenberg (1973, 1974b).) Write p 
for the covariance matrix aa  T and fi for the counting measure ~b~k restricted 
to •d\{0}. Here it is clear that P X -  1 and (e, p, fi) determine each other uniquely, 
and we shall refer to the latter as the directing triple of X. 

In the previous informal account, the notions of predictable sequences, pro- 
cesses and stopping times, as well as that of stochastic integral, were understood 
to be with respect to the natural filtration induced by the sequence (~k) or 
process X. However, all results remain valid and will be stated in the more 
general setting where (~k) or X is exchangeable with respect to some general 
filtration o~ (or ~-exchangeable), in the sense of Kallenberg (1982, 1988). In 
the case of sequences (~g), it is then required that ~g be ~-measurab le  for each 
k, while the shifted sequence ~k + 1, ~g + 2 . . . .  should be contitionally exchangeable, 
given ~,~. Note that this holds automatically when ~ = a(~.l . . . . .  ~k). More gener- 
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ally, we may take ~k=~(~l  . . . . .  ~k, Ok), where the Ok are i.i.d. U(0, 1) and inde- 
pendent of the (k. (In our application to card games, this device allows for 
a randomized decision at each step.) In the case of infinite ergodic sequences, 
it is clearly equivalent that (~k) be ~-i.i.d., in the sense that each ~k is 
~-measurable  but independent of ~kk-1. 

The definition of ~--exchangeability for a process X on [0, 1] or IR+ is 
similar, and in case of ergodic exchangeable processes on ~ + ,  it is equivalent 
that X be ~.~-Ldvy, in the sense that Xs is R-measurable for each s, while 
the increment X t - X ~  is independent of ~ for any t>s. All filtrations are 
assumed to be standard, in the sense of satisfying the usual conditions of right- 
continuity and completeness. 

For an ~--exchangeable process X on [0, 1] as in (17), such that the flk 
are distinct and non-zero, the individual jump processes 1 {Zk<t} are again 
~-exchangeable, and have compensators given by l og (1 -  t/x Zk) (cf. Kallenberg 
(1988)). Though the rk may not even be ~l-measurable in general, it is easy 
to see how the basic probability space (t2, (9, P) and the associated filtration 
o~ may be extended, in such a way that X will have a representation as in 
(17) with the stated properties. (See Sect. 5 for a general discussion of such 
extensions.) Since the definition of a stochastic integral is not affected by an 
extension of the filtration (cf. Theorem 9.26 in Jacod (1979)), it is enough to 
prove our results in the extended setting, so we may assume, without loss of 
generality, that the appropriate extension is already accomplished, and that 
the Zk have the stated properties. 

Throughout the paper, efficient existence criteria and maximum inequalities 
will be needed for our stochastic sums and integrals. Such results are provided 
in Sect. 2. They may be new, and perhaps even of some independent interest, 
already for i.i.d, sequences and L6vy processes (cf. Propositions 2.1 and 2.2), 
for which they follow by iterated use of the BDG or Burkholder-Davis-Gundy 
inequalities (cf. Dellacherie & Meyer (1980)). The corresponding theory for sto- 
chastic integrals ~ VdX on [0, 1] is somewhat harder, but simplifies when ~ V 
is non-random, since in that case (and under suitable moment conditions) there 
exists a martingale M and a predictable process U, such that ~ VdX= ~ UdM 
(cf. Proposition 2.6). This result plays a key role in the paper, and gives a clue 
to the understanding of (7) when d = 1. A similar statement is true in discrete 
time, but will not be needed in this paper. 

Apart from (17) and some other specifically quoted results, no deeper knowl- 
edge of exchangeability theory is assumed in this paper, though the reader may 
wish to consult Aldous' (1985) lecture notes, supplemented by the author's papers 
Kallenberg (1973, 1974a, 1982, 1988), for some further background and motiva- 
tion. On the other hand, standard terminology, notation and results from sto- 
chastic calculus will be used freely without references, and here the reader may 
e.g. consult Dellacherie & Meyer (1975/1980) or Jacod (1979) for details. A 
special convention in this paper is to write Lebesgue integrals as ~f, without 
explicit integrator 'dt'  or 'd2'.  If nothing else is stated, Lp norms are defined 
with respect to the basic probability measure P. We shall often write a < b instead 
of a = 0 (b). When this relation is used in Sect. 2, the implicit constant is assumed 
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to depend on p, but not on any particular random sequences or processes which 
may occur. In subsequent sections, the dependence on possible parameters 
should be clear from the context. 

2. Preliminaries for Stochastic Sums and Integrals 

Here we shall first study predictable summation with respect to i.i.d, sequences 
~=(~1, 42 . . . .  ), where the underlying filtration ~ = ( ~ )  is indexed by 2g+ 
={0, 1 . . . .  }. Recall that a sequence q=(q t , / /2  . . . .  ) is said to be ~-predictable, 
if q, is ~ _  1-measurable for each n ~ N  = {1, 2 . . . .  }. 

Proposition 2.1. Fix p> 1, and write p' =p /x 2 and p " = p  v 2. Then we have, for 
any filtration ~ on 2s and for any infinite random sequences ~ and ~l in IR, 
such that ~ is Y-i.i.d. while t 1 is Y-predictable, 

Esup ~ ~kq~ ~<IE~I vE I~k -l-El~al pE 1,1~1"' 
n k 1 k 1 k 

(1) 

When this bound is finite, the sequence 

n 

# , =  ~kr/k--(E~) ~ qk, he;g+, (2) 
k = l  k = l  

converges a.s. and forms an Lp-martingale on 5+ = {0, 1 . . . .  ; o9}. 

Proof We may assume that the right-hand side of (1) is finite, and write r = Ck 
-- E ~k. Since ~ and qk are integrable and independent for each k, the products 
~ qk form a martingale difference sequence. Hence we get by the BDG inequality 

E sup Ck t& < E I E ~kl I r/k + E sup ~ qk 
n k = k 1 n k = l  l ~_ "}p ( m ")p/2 

+E ,2 2 
k 1 

Iterating the procedure, we get after m steps, with 2me (p, 2 p], 

e s u p  Z I E ~(t)l p~-rE I.,,! == 
n k = l  r = O  k 1 

too lp2-m + E Z r (km) tl 2" , 
k = l  

(3) 

where we define ~0) = ~k, and then recursively 

~r + 1) = (~r)_ E ~ ) )2  r = O, ..., m-- 1. (4) 
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The above argument is justified by the fact that 

E I ~ I ~ 2 - r < E I ~ k F ,  r=O,...,m, 

O. Kallenberg 

(5) 

which follows recursively from (4), if we write for r = O, ..., m -  1 

E i r 1~ i,,= . . . .  = E I ~  '~ - E ~g)I "=-~ 

<EI~")Ip z "4-IEs~g")Ip2-"<EI~")I ;2-r. 

Comparing (1) and (3), it is seen that the first terms agree. For the last term 
in (3), we get by subadditivity and independence 

k 1 k = t  k = l  

(6) 

Note also that, by subadditivity, 

t 
oo 

-k=ll~kl '~ , c>p'. (7) 

We now get (1) by combining (3) and (5)~7). The last assertion follows, since 
the martingale in (2) is uniformly integrable when the bound in (1) is finite. []  

Stochastic integration with respect to L6vy processes was studied extensively 
in Kallenberg (1975), and the following result extends the simple Corollary 4.1 
there. 

Proposition 2.2. Fix p > 1, and write p' =p /x 2 and p" =p v 2. Then we have, for 
any standard filtration ~ and any N,-valued processes X and V on IR+, such 
that X is ~ - L d v y  and directed by some (~, a 2, v) while V is o~-predictable, 

E sup i V d X  p ~<171 p E q lVl) p + ap E(~ v2s 
t 0 

-t-{(~lxlp'v(dx))V"/z-t-~lx[pv(dx)}EE(~lrip')v"/z-4-jlvlp], (8) 

in the sense that ~ V d X  exists and satisfies (8) when the bound is finite. In that 
case, the process 

'+ i M t =  ~ V d X - 7  V, t>O, (9) 
0 0 

converges a.s. as t ~ ~ and forms an Lp-martingale on IR+ = [0, ~ ] .  
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For our current and future needs, let us record the well-known norm interpo- 
lation formula 

[[f[lq< Hfllp V [If lit, O<p<q<r,  (10) 

valid in arbitrary measure spaces. For a simple proof, note that log ]l fir l# is 
convex in t > 0 by H61der's inequality. 

Proof To prove (8), it is clearly enough to decompose X into its drift, diffusion 
and purely discontinuous components, and to prove (8) for each. Now (8) is 
trivial if X is linear, and if X is a Brownian motion the integral process ~ VdX 
is a continuous local martingale with quadratic variation ~ V 2, so (8) follows 
by the BDG inequality. It thus remains to consider the case when X is purely 
discontinuous and centered. 

Letting m e n  with 2m~(p, 2p], and proceeding by iterated formal application 
of the BDG inequality, we then get as in the last proof 

Esup  +VdX p  2iC 
o 

where 

+E{~V2m(dX)2m} p2 =, (11) 

t+  

(dX) 2r= ~, (AXs) 2r, t=0 ,  r~N.  (12) 
0 s < t  

To justify (11), we need to show that the stochastic integral processes S VdX 
and 

t+ 

VZ'{(dX)2r--E(dX)2~}, t>=O, r = l  . . . . .  m - l ,  (13) 
0 

exist and are local martingales. But this holds by Definition 2.46 in Jacod (1979), 
provided that the right-hand side of (11) is finite. It is thus enough to show 
that the latter expression is bounded by the one in (8). 

To see this, note that 

E ~ [AXslq=t~lxlqv(dx), q>0, t>_-0, (14) 
s < t  

and that the jump process Jg on the left of (14) is again ~-L6vy,  provided 
that q>p'. Thus Jq is compensated, for qe[p', p], by the function on the right 
of (14), and we get by the subadditivity of x p2 m and the predictability of lVI p 

E V2mldXI 2 =<E Z ]V~AX, I p=E  IVl"~lxlPv(dx) �9 
t>O 0 

(15) 
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The estimate in (8) now follows from (11) by means of (10), (12), (14) and (15). 
The last assertion follows from the fact that finiteness in (8) implies uniform 
integrability of the process ~ VdX.  [] 

The remainder of this section is devoted to stochastic integration with respect 
to ergodic exchangeable processes on [0, 1], and we begin with a general integra- 
bility condition. 

Proposition 2.3. Let o~ be a standard filtration on [0, 1], and let X and V be 
R-valued processes on [0, 1], such that X is ergodic ~ and directed 
by (~, ~2, fl) while V is ~-predictable. Fix pc(O, 2] and e>=O with e>O if p >  1, 
and such that ~[f lk l~ that cr=O /f p<2 ,  and that o:=~f l  k if p < l .  Then 

V d X  exists on [0, 1] provided that 

1 

IV~lP(1-t)-~dt<oe a.s. (16) 
0 

Note in particular that (16) holds if ~lVIr<oe a.s. for some r>p.  Weaker 
conditions for integrability on intervals [0, t] with t <  1 may be obtained by 
adaption of the methods in Kallenberg (1975). 

Here and below, we shall use the fact from Kallenberg (1988) that X is 
a special semimartingale on [-0, 1] with canonical decomposition of the form 

Xt = Mt - i Xs - o~ ds, te[O, 1], (17) 
0 

where M is an L2-martingale with associated quadratic variation process 

[M,M]t=EX, X ] , = a 2 t +  ~ f12 l{Zk<t}, te[O, 1]. 
k = l  

(18) 

Proof When p < 1, we may clearly assume that o-= 0, ~ = ~ fls, ~[fiJ I p< oo and 
j IVIV< oe a.s., and it is then enough to show that j V d X  exists as a Lebesgue- 
Stieltjes integral, i.e. that 

To see this, write 

1 

S IglldXl= ~ I/~sg~l<~ a.s. (19) 
0 . i=1  

Y,= ~ IBsl p l{zj<t}, te[O, 1], (20) 
j = l  

and note that Y is compensated by the process with density 

~ =  I3,,l"l{'ck>t}, t~Eo, 1), 
1-- tk= 1 

(21) 
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By subadditivity and dual predictable projection, we get 

'{i  "xt 
1 1 

<=E ~ IfljV~,I~=E f. IVI 'dY=E ~ IVIPN. 
j = l  o o 

(22) 

The same relation holds with V replaced by the predictable processes 

V,(t)=V(t) . l{t<a,},  te[O, 1], neN,  (23) 

where a 1 , 0- 2 . . . .  denote the EO, 1J-valued stopping times 

so we get 

o-,=sup t < l ;  5 IVFN< , neN,  (24) 
0 

an+ 

IVlldX[<oo a_s. ,  neN.  (25) 
0 

To obtain (19), it remains to notice that % =  1 for all sufficiently large n, which 
holds since N is a positive martingale and therefore a.s. bounded. 

Let us next assume that pe(1, 2] and ~lfi~lP< oe, and that (16) holds for 
some e > 0. Then 51vI < ~ a.s., so we may further take ~ = 0. Starting with the 
case when 0-=0, and defining M, Y and N by (17), (20) and (21), we get by 
(18), Jensen's inequality, subadditivity and dual predictable projection 

= {E {Zfi z V~.~),/2}p =<E {Zfl~ V~} p'2 
J J 

1 1 

< EY, Iflj V~,IP=E f IVFdY=E~  IVI"N. 
j 0 0 

(26) 

Replacing V by the processes V, in (23), we get from (26) 

{a!+ }1/2 
E Vid[M, M] < oo, neN,  (27) 

with the a. given by (24). As before, a , =  1 for sufficiently large n, so S VdM 
exists by Definition 2.46 in Jacod (1979). If instead p = 2  and a > 0 ,  we get in 
place of (26) 

t 
=E{az S vz + Zfl  z K2}=<E j" Vt2(a2 + Nt) dt, 

j o 
(28) 

and the existence of ~ VdM follows as before. 
To complete the proof for p >  1, it remains to show that V is Lebesgue- 

Stieltjes integrable with respect to the second component in (17), i.e. that 



458 O. Kallenberg 

V, XJ(1  - t )  is Lebesgue integrable over  [0, 1). To  see this, conclude from H61der's 
inequali ty tha t  

i I~X:l {i "I1/p(1 o q ~ f - d t <  IV, lP(1-t)-=dt~ ~o lStlq(1-t)-q'dt} l/q, (29) 

where p -  1 .q_ q -  1 = 1 and q' = (1 - e p -  1) q < q, and note  that  the first factor  on 
the right is a.s. finite by (16). To  show that  even the second factor  is finite 
a.s., we may  assume that  l < q ' < q ,  since ( l - t )  - r  is non-decreasing in q'. In 
that  case there is a p' > p satisfying p' - 1 + q, - ~ = 1, and by Theo rem 2.1 in Kallen- 
berg (1974a) we get I Xt IV' ~< 1 - t a.s. as t --, 1, so 

] X t l q ( 1 - t ) - q ' < ( 1 - t )  - r  +q/p" a.s., 

which is integrable over  [-0, 1), since - q' + q/p' > - q' + q'/p' = - 1. [] 

F o r  the remainder  of this section, we assume that  ~ ,  X ,  V, (o~, a z, fl), p 
and e are such as in Propos i t ion  2.3. We shall further  assume that  (1.17) holds 
for some B and Zl, ~'2 . . . .  with the stated properties.  Let  us write V -  5 V when 
the integral exists. 

Proposi t ion 2.4. For p < 1, we have 

while for  p >_ 1, 

1 

0 j = l  

a.s., (30) 

1 1 

I VdX= V+, f Vd,§ Z ,j(v,->) 
o o j = l  

a.s., (31) 

where the series on the right converges in probability. 

The  p roo f  requires a lemma of some independent  interest. 

L e m m a  2.5. F o r f i x e d  r~l-0, p -1 /x  1) we have 

oo 

lim sup ( t ( 1 - t ) )  -~ j ~ f l j ( l { r j < t } - t )  = 0  a.s. 
n --~ oo t 

(32) 

I f  instead 1 < r < p -  1, we get 

2irn sup t-" .~ fl~ 1 {z~_-< t} = 0 a . s .  
j = n  

(33) 
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The second part is stated here only for completeness and will not be needed 
in this paper. It follows easily by combination of Theorem 2.1 in Kallenberg 
(1974a) with Theorem 3 in Kallenberg (1974b). Alternatively, it may be obtained 
by adaption of the following argument to the case when r > l. 

Proof for r <  1. We may clearly assume that p >  1. Denote the sum in (32) by 
X,, and introduce the martingale M't = Xff(1 - t). By the BDG inequality, formula 
(18), the subadditivity of x p/2, and the ~--exchangeability of the -cj, we get for 
O<_t<_t + h <  l/2, 

t t p E JIM,.,  - Mt I I~-3 ~< E [([M', M'-I tt +"F21N] < E [(l-X, X]tt + h)P/2[~] 

---- E [-(~' fl~ 1 {t < zj < t + h})p/2l~-] 
J 

__< E[-~ [flj[P 1 {t < z j <  t+h}  [~-] 
J 

h 
- 1 - t  ~ r f l j lv l{z j>t}<-2h 2 l f i j f .  

J J 

Hence we obtain for any 0 = t o < t  I < ... <t,=t<= 1/2 

~E[IM't~--M;~_, I~1 ~ _ , 3  < t ~  I/~jl ~. 
k j 

We may then conclude from Lemma 2.3 in Kallenberg (1975) that, for some 
constant c > 0 and for any increasing and continuous function g : R +  ~ IR+, 

P{ sup [M;lP/g(ctZl~jF)~}< 2 ~ du 
t__< 1 / 2  j = e 0 g(u)' 

e>O. (34) 

Here the left-hand side depends only on g (x) for 2 x < c ~lf l j l  p, so we may choose 
g(x)=(x/c) pr for such x and let 1/g be integrable on (0, oo), to obtain 

_m 
P{ sup I X ~ l t - ~ }  ~ - v  ~ i~jl p, ~>0. (35) 

t - -  < 1 / 2  j =  1 

Applying (35) and the corresponding inequality for t >  1/2 to the processes in 
(32), we obtain as n --+ oo 

sup ( t ( 1 - - t ) )  -~ ~ ,  f l j ( l { ' c j = < t } - - t )  AO. 
j=n 

(36) 

It follows in particular that the processes on the left have paths in D[0, 1]. 
Since the individual terms are independent, it follows by Theorem 3 in Kallen- 
berg (1974b) that the convergence in (36) is in fact a.s. [] 
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Proof of Proposition 2.4. The result for p < 1 was established in the proof of 
Proposition 2.3, so it remains to take p >  1. Since (31) is trivial when the sum 

P 
in (1.17) is finite, it is enough to prove that ~ VdX,----~O, where X,  is the sum 

in (1.17) for j>n.  Writing M,  and N, for the associated martingales M and 
N in (16) and (21), and introducing the stopping times 

{ ' } a . = s u p  t < I ; J l V I P N . ~ I  , noN,  (37) 
0 

we get as before, by the BDG inequality and dual predictable projection, 

j E X" ! V2d[M,,,M,,] < E  1A IVFN. =<1. (38) 
0 0 

Now N,$0 as n ~ oo, so S]V]PN, ~ 0 a.s. by dominated convergence, and there- 
fore ~, = 1 for all sufficiently large n, while the integral on the left of (38) tends 

P 
to zero in probability. Thus ~ VdM,---~0. 

To prove the corresponding result for the compensating term, let p -  1 + q-  
=1, q'=q(1-e/p),  and r + q ' - l = l ,  where we may assume that l<q '<q ,  so 
that 0 < r < p -  1 < 1. Using H61der's inequality as in (29), we get 

iV( t )X , ( t )  { i]V~]P'~l /p(1 "]l/q o 1Ztt < ,.t, _ qr-q, sup IXn(t)l (1 (39) 

Here the first two factors on the right are a.s. finite as before, while the last 
one tends to zero a.s., by Lemma 2.5. [] 

The next result gives the fundamental connection to martingales when 
is constant, and will play a key role in Sect. 4. Recall that M is the martingale 
in (17). 

Proposition 2.6. Let p> 1, and assume that F" is a.s. non-random. Then 

V~dX,=c~'+ S V t - ~ Z [  V~d dMt a.s. (40) 
0 0 t 

For the proof we shall need the first part of the following lemma. The second 
part will be needed later. 

Lemma 2.7. Let the function f: IR + ~ ~ be locally integrable, and define 

1 t 

g~=t  Jo f~ds, t>O. 
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Then we have for any p > 1 and r >= 0 

~ [ & [ P t - ~ d t < ( r + P  p 1 ) v ~ [ f [ v t - ~ d t .  (41) 

I f  f is square integrable on [0, 1], we have in addition 

1 1 

j" (ft-- gt) 2 d t=  ~ (f t--gl)  2 dt. (42) 
0 0 

Proof To prove (41), we may clearly assume that f > 0  and ~ f > 0 ,  and by 
monotone convergence we may further assume the support of f to be compact 
in (0, Go), so that the left-hand side of (41) is finite and strictly positive. Writing 
Ft= t g t and letting p-1 + q - 1 =  1, we get by partial integration and H61der's 
inequality 

S g~ t - ~ d t =  Ft p t - ~ - p d t -  p ~  F t p - l f t r - r - p + l d t  
o o r+p- -  1 o 

_ p ~ g f - l f  t-rdt<- p ~ l l q (~  "ll/p r+p- -1  o - - r + p - - 1  gVtt-~dt fP t -~d t  ' 

from which (41) follows if we divide by the second factor on the right. 
In particular, f e L 2 [ O  , 1] implies g~L2[O, 1], and in that case we get by 

repeated use of Fubini's theorem 

1 1 1 s 1 1 

g2 ds= ~ s-2 Fs2 ds=2  ~ S -2 ds ~ f,F, d t = 2  ~ ftF~dt f S-2 ds 
0 0 0 0 0 t 

1 1 

= 2  S f t F t ( t - l - l )  d t = 2  ~ f & d t - g ~ .  
0 0 

Thus 

5 ( f - g ) 2 = S f 2 - 2 5 f g + S g 2 = S f 2 - 2 S f g + 2 5 f g - g 2 = S ( f - g l ) 2 .  [] 

Proof of  Proposition 2.6. First note that the stochastic integral in (40) exists 
by Lemma 2.7 and by the proof of Proposition 2.3. Since M is clearly indepen- 
dent of e, we may assume that e = 0. Define M ; =  X J ( 1 -  t) as before, and con- 
clude from It6's formula and (17) that 

dX  t = (1 - t) dM' t -  M' t d t = dM t -  M't d t. (43) 

Integrating (stochastically) by parts and using the constancy of V,, we get for 
t < l  

t i t +  i t +  1 1 S V M;ds=M', V ds- I dM; V dr= I dM;f V dr-M;S V ds, 
0 0 0 0 0 s t 



462 O. Kallenberg 

so by (43) 

'+o~ V~dXs=ei(V~ l-sl i V ~ d r ) d M ' + ~ t  , (44) 

Thus (40) follows by dominated convergence for stochastic integrals, provided 
we can show that the last term in (44) tends to zero as t ~ 1. To see this, 
use H61der's inequality with p-1 + q - l =  1 along with formula (18) above, to 
obtain 

X~t t i V I X  I (1  "1 1/q (1  "l lip < ,--t, ) [ (1 --s~eq/p~ 7 f , = l - t L g  " J Lg I v ~ F ( 1 - s )  ~ 
~< IX ,  I (1 - t)-{~ - ~/", 

and recall that the right-hand side goes to zero a.s., by Theorem 2.1 in Kallenberg 
(1974a). [] 

We conclude this section by proving a maximum inequality, similar to those 
in Propositions 2.1 and 2.2, for the stochastic integral in Proposition 2.6. Let 
us then denote the integrand by U, i.e. 

1 1 
U t = V t - - ~  ! V~ds, te[O, 1). (45) 

The constant p may now be different from that in Proposition 2.3. 

Proposition 2.8. Fix constants p > 1 and q > 2 p, and write p' = p/x 2 and p" = p v 2. 
Then we have, for any X and V as above such that ~" exists and is a.s. non-random, 

Esup i P { i  } v/2 ~ ' U d M  <o-rE V z +{,F,I/~IP'} v'/~ E .[ IVl~} "/~, 
t 0 j ~- 0 

(46) 

in the sense that ~ U d M  exists and satisfies (46) whenever the right-hand side 
is finite. In that case, S U d M  forms a martingale on [0, 1], and the series in 
(31) converges in L v. 

Proof First we conclude from (18) that 

E U 2 d [M, M] = E ~r 2 I U2 + Z fl~ U,2} v/2 
,. o j 

~1 }p/2 2")P/2 
<o-PE J'U 2 +E{Zfl2Ur �9 

',-o j 

(47) 

We shall show that the right-hand side of (47) is bounded, up to a constant 
factor, by the expression in (46). If the latter is finite, ~ U d M  will then exist 
as a local martingale (which we already know from earlier results), and (46) 
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will follow by the BDG inequality. In particular, (46) shows that the process 
S UdM is uniformly integrable, and the asserted martingale property follows. 

To estimate the right-hand side of (47), we note first that S U2<S V2 by 
Lemma 2.7, which takes care of the first term on the right. As for the second 
term, assume that p < 2, and conclude by subadditivity that 

E {~, f12 U2}p/2 =< E Y',I/~j g~, I"_-< F, I&  I" sup E I U~, I". 
J J J J 

If instead p > 2, we obtain by H61der's inequality 

E {Z fl~ V~} p/2 "~ {2 f12}p/2 -I E Z fl~ IVy, I p < {Z f12}v/2 sup EI U,, f .  
J J J J J 

Thus it suffices in both cases to show that 

sup E[U~, I" ~ {E j I Vl~} p/~. 
J 

To see this, use dual predictable projection, H61der's inequality with r =  
(1-p/q)-1 ,  Fubini's theorem, and Lemma 2.7, to obtain 

EIU~'IV=E o j ' lU'fd(l{rj--<t})=Eoj" -- dt 

1 "1 1/r ( l "lP/q(" 1 
<2{E~o [U[q}v/q{Ei(1-t) -~) ~<~Eo~lV[q ) ~o.[(l--t)l-~} 1/~. 

To prove the last assertion, write X,  for the sum in (1.17) over indices j>n, 
let M, be the corresponding martingale M in (17), and conclude from Proposi- 
tions 2.4, 2.6 and 2.8 that 

E j~=n flJ(V~y-g) p=E 0 ]VdxnP 

= E I u d M ~ P  {j~=n "1P"/2(1 j" < ]flj[P'~ ~E j'l v[q} p/q, 
0 J ~- 0 

where the right-hand side tends to zero as n ~ oo. [] 

3. Moment Identities for Predictable Sums 

In this section we shall prove moment identities for certain predictable sums 
w.r.t, exchangeable sequences ~ in IR d. Thus we take the k-th element in 
to be a random vector ~.k=(~lk . . . . .  ~dk), SO that ~=(~jk) becomes an array 
indexed by jE{1 . . . . .  d} and k6{1,2 . . . .  } = N  or ke{1 . . . . .  n} for some heN.  
The associated filtration ~ = ( 4 )  is then indexed by g +  = {0, 1 . . . .  } or {0 . . . . .  n}, 
respectively. We emphasize that if-exchangeability is to be understood in the 
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joint sense in this section, i.e. the random vectors ~.x, 4 . 2 ,  ' - "  are assumed to 
form an exchangeable sequence. Along with ~ we also consider a predictable 
sequence q=(t/.k)=(t/jk ) in IR e, where j and k range over the same index sets 
as before. 

We shall first consider the case of finite sequences ~ and t/, both of length 
neN .  Let us then introduce the sums 

. . . .  ( 1 )  
k = l  j eJ  k = l  jeY 

Recall that a finite exchangeable sequence ~ = (~jk) is ergodic, if the counting 
measure 

#r ~, 6~,.k; #~ (B)=#{k ;~ . keB} ,  B c R  d, (2) 
k = l  

is non-random. In this case each Rs is constant, like any function of ~ which 
is invariant under permutations in index k. Our basic assumption is that even 
the sums Sj be non-random. In addition to this we shall need a technical condi- 
tion, to ensure the existence of moments:  

(C1): There exist constants pl . . . . .  pa> 1 with ~ P 7  1 < 1, such that 

F:lrljklPJ<o0, j = l  . . . . .  d, k = l , . . . , n .  

Theorem 3.1. Let ~ be a filtration on {0 . . . . .  n} and let ~ and tl be random 
n-sequences in ~ ,  such that ~ is ergodic ~-exchangeable while r I is ~,~-predictable. 
Assume that (C 0 is fulfilled, and that Sj  is a.s. non-random for every J c { 1 . . . . .  d}. 
Then 

(I (3) 
j = l  k = l  

for some polynomial P~ in the sums R s and Sj.  In particular E 1 = n - ~ R a S 1 ,  
and under the further assumption R j - S  j - 0  we have 

1 n 
E 2 - -  R 1 2  $ 1 2  , E 3 - R 1 2  3 S 1 2  3 . (4) 

n - 1 (n - 1)(n - 2) 

A slightly more general statement will be proved in Lemma 3.4. But first 
we need to prove a couple of preliminary results, where the first one will also 
be useful later on. 

Lemma 3.2. For xjke~, . , j= 1 . . . . .  d, k e N ,  with 

~ ]xjkl<oo,  (5) 
j = l  k = l  

define 
d 

P :  ~ [ I  Xj, kj, (6) 
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where the summation extends over all choices o f  distinct k I . . . .  , k e e N .  Then P 
is a polynomial in the sums 

Sj = ~ 1~ Xjk, 0 =4 = J c { 1, ..., d). (7) 
k = 1 j e J  

Proo f  For d = 1 we have P = $1, and we shall proceed to general d > 1 by induc- 
tion. Thus assume that the corresponding quantity with products over 
je{1 . . . .  , d - I }  is a polynomial Pd-1 in the sums S s with 0 # J c { 1  . . . .  , d - l } .  
Then we get, with ka, .. . ,  ke distinct throughout, 

d d - 1  

Z I1 Z 1-I x. yxe, d 
(kj) j =  l k l  . . . . .  k a - 1  j = l  ka 

where 

d - 1  

: Z l-Ix.j(se-Zx J 
k l  . . . .  , k d - 1  j = l  i<d  

d - 1  

k~ . . . .  , k d - 1  j : l  i < d  k l  . . . .  , k d - t  j :# i ,d  

-=SePd-~(Sj, J ~  {1, ..., d -  1})-  y '  Pe_ ~ (Sa,, J ~  {1, ..., d -  1}), 
i<d  

j =fJ, icJ, 
~ ( J w { d } ,  i eJ .  

Thus the statement remains true in the case of d factors. [] 

Lemma 3.3. The assertions o f  Theorem 3.1 are true when t 1 is non-random. 

Proo f  Writing rc for an arbitrary partition of the set {1, ..., d} into at most 
n subsets J, and (ks) for an arbitrary collection of distinct indices kj, Jerc, 
we get by the assumptions on 

E I ]  ~ ~Jk t / jk :2  2 El i  ]-[ ~J, kJr/J,k. 
j =  1 k =  I r: (k j )  J j e J  

= Z  Z {EH ]-[ ~j,k,} {[I I~/;.k,} 
rc (ks) J j s J  J j e J  

_ y ( n -  #~)! 
n! {E I l I ] , , . ) .  

7z (ky) J j e J  (ky) J j e J  

which has the asserted form by Lemma 3.2. 
For d = 1, we get in particular 

E:t=E '~, ~kr/k=(E~t)~ rlk=-n-lR1St. 
k = l  k = l  
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To get E 2 and E3 without effort when Rj=--Sj=-O, note that E d is homogeneous 
of degree d in both the ~k and the t/j k, so that necessarily 

E 2 = c 2 R 1 2 S 1 2 ,  E3=c3R123S123 ,  

for some constants c 2 and Ca. The latter may easily be obtained by direct compu- 
tation in some simple example. We omit the details. []  

Lemma 3.4. Let ~ ,  ~ and t I be such as in Theorem 3.t, except that the measure 
#~ and the sums Ss are only assumed to be ~o-measurable, the former with bounded 
support. Then 

E r rl~k @0 = P,d {R j ,  S j} a.s., (8) 
k=l  

for some polynomial P,d in the sums Rs and Sj. 

Proof Let us first notice that the product  in (8) is integrable by (CO and H61der's 
inequality, so that the conditional expectations here and below exist. The state- 
ment of the lemma is trivially true for n/x d = 0, if the product  over an empty 
set is taken to be one. We shall proceed to general n > 1 by induction, so assume 
that the statement is true with n replaced by n - 1  and for all d. Writing J 
for an arbitrary subset of {1, ..., d}, we get 

E ~ 0  = E  Z H r  2 Cjkflj k ~0 
k=l  J iSJ jeJk=2 3 

Now the sums 

SIj = ~ I ~ t l j k = S j - I ~ j l ,  O::~=J~{1 . . . .  ,d},  
k = 2 j~J j~J 

(9) 

are ~,~o-measurable, while the measure 

#~= ~ ~ . k = # r  
k=2 

is ~ -measurab le ,  so the induction hypothesis shows that the inner conditional 
expectations 

are polynomials in the sums S~, I c { 1  . . . . .  d}, as well as in the variables Cjk 
with j =  1 . . . . .  d and k = 2  . . . . .  n. Thus the sum in (9) is a polynomial in the 
sums Sj, in the random variables t/l~, ..., t/d1, and in the conditional product  
moments of the variables ~jk, given ~o- 
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Let us now introduce an array r =(~)k), by suitable randomization, such 
that 4' is conditionally independent of ~, ,  given ~'o, with the same conditional 
distribution as 4. (This amounts to a randomization of the order between the 
vectors ~.1, ---, ~.,.) Write ~ ' = ~  v a(~'.~, ..., 4'.k) for k = 0  . . . .  , n, and note that 
the hypotheses of the lemma remain fulfilled for the triple (Y', ~', t/). Repeating 
the above computat ion in the new situation, and noting that the result depends 
only on quantities which are the same in both cases, we get a.s. 

E 4jk r/jk ~o = E ~)k ~0 
k = l  k = l  

But Lemma 3.3 shows that the inner expectation on the right is a polynomial 
P,d in the sums Rs and Sj.  (Note that the sums Rj  are the same for ~ and 
~'.) Since the latter are ~o-measurable, this proves the assertion for sequences 
of length n, and hence completes the induction. []  

This also completes the proof  of Theorem 3.1, so we may turn to the case 
of infinite sequences. Here we shall write 

# j = E ~ I { j t ,  # ~ , = E I ] ( 4 j t - f j ) ,  Sj= ~, ~[rljk, 0=[=J~{1, .. . ,d}, 
j e J  j e Y  k = 1 j e J  

whenever these quantities exist. Let us further introduce the condition 

(C2): There exist some constants Pl, -.-, Pe > 1 with ~ p - 1  < 1, such that 

IE4 j l lE  In~kl+El~;~l v' I,Tj,, I")~ "Y/= < oo, j = l ,  ..., d, 
k = t  k = 1  

where p) = pj A 2 and p~ = pj v 2. 

Theorem 3.5. Let Y be a filtration on ~ +, and let 4 and r 1 be infinite random 
sequences in IR a, such that ~ is ~-i.i.d. while q is ~-predictable. Let {K1, ..., Kin} 
be a partition of {1, ..., d}, such that the corresponding subarrays of ~ are indepen- 
dent. Assume that (C2) is fulfilled, and that all products #jSj  are a.s. non-random, 
as well as all sums S s with 2 <_<_ # J < d and J c Ki for some i. Then 

d 

j = l  k = l  

=E f i  E{]-[I~j}P~,{SI}=E f i  E{]-[S,}P~',{#z}, (10) 
i = 1  ~i J i = 1  nl J 
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where ~zi denotes an arbitrary partition of K i into subsets J, and where each 
P~i is a polynomial in the sums $I indexed by arbitrary unions I of sets in ~zi, 
while each P~i is a polynomial in the moments I~ indexed by arbitrary subsets 
I of sets in ~zi. In particular E 1 = #1 E S1, and under the further assumption # j S j - 0  
we have E2 =#'12 ES12 and E 3 =]2123 ES12 a . 

Weaker versions of this result may be obtained from Theorem 3.1 through 
a suitable approximation argument. However, a direct proof  seems to be required 
to obtain the above statement in its full strength. A similar remark applies 
to the corresponding continuous time results in Theorems 4.1 and 5.1. 

The theorem follows from Lemma 3.7 below. But first we need the result 
in a special case. 

Lemma 3.6. The conclusions of Theorem 3.5 are true when ~l is non-random. 

Proof First conclude from (C2), Proposition 2.1 and H61der's inequality that 
Ee exists. F rom (C2) it is further seen that Sj exists whenever # j+0 .  Finally, 
it is seen from (C2) and H61der's inequality that Ss exists for all J c {1 . . . .  , d} 
with #~J> 2, and that #j  exists for all J. Similar arguments show that q can 
be approximated by a sequence with finitely many non-zero elements, so we 
may assume that already r/has this form. 

By independence, Ee splits into a product  of similar expressions, with the 
products taken over the sets K~ . . . . .  Kin. It is thus enough to consider each 
factor separately, so we may assume that m =  1. Writing rE for an arbitrary 
partition of {1 . . . . .  d} into subsets J, and (ks) for a corresponding assignment 
of arbitrary distinct indices in N, we get 

j =  1 k= 1 = (ky) J j e J  

~z J (k j )  J j e S  

By Lemma 3.2, the second factor on the right is a polynomial in the sums 
$I with I a union of sets in re. This proves the first representation in (10), 
and the second one follows if instead we collect the terms corresponding to 
the different products I-Is~. The explicit formula for El ,  and for E 2 and E a 
when #j--0,  are easily obtained in this case by direct computation. If instead 
Sj = 0 for some j, we may reduce to the case # j =  0 by subtracting #j from 
each ~jk, which neither affects the sum ~ j k r b k  nor the moments # t12  and 
#'123. []  

Lemma 3.7. Let ~ ,  ~ and q be such as in Theorem 3.5, except that the products 
#jSj  as well as the sums Sj with 2<= # J <d and J c K i f o r  some i are only assumed 
to be ~.~o-measurable. Then 

E ~jk ~ljk = E a.s., (11) 
1 k = l  "= 

where the P~ are polynomials of the stated form. 
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Proof  First we note as before that the quantities involved in (11) exist because 
of (C2). To prove (11), we shall proceed by induction over d e E + ,  starting with 
the triviality 1 = 1 for d=0 .  Thus we fix a deN,  and assume that the statement 
is true for dimensions < d. Whenever Sj exists, write 

k>n j e J  k<~n j e J  

and note that the sequence (Uj,,) is predictable. By the induction hypothesis, 
we may conclude that 

E[~[ ~ Cjkr/jkl~,] = f i  P]~r,(#z, UI,,,) a.s., neN,  
j ~ J  k>n i = 1  

where the factors on the right are polynomials in the products #j Uj,, with 
j e J ~ K i ,  in the moments #~ with I ~ J c ~ K i ,  and in the sums UI,, with I ~ J n K  i 
and # I > 2. Letting J denote an arbitrary proper subset of { 1, ..., d}, and condi- 
tioning in the n-th term below, first on ~ and then on ~,_  1, we obtain 

k = l  J n = l  i~J j e J k > n  _1 

J n = l  iCY r = l  

=E #so Z I l q i ,  [ ]  PJ~Kr(#,, UI,,) ~o �9 
J n = l  i(~J r = l  

The remaining argument is similar to that in Lemma 3.4. Thus we construct 

some ~'--"~ independent of Y ~ =  v ~, ,  and put ~ s  ~'.k) for 

ke2g+. Since the above computation gives the same result for the triple (Y', ~', t/), 
we get 

E ~jk ~/jk = E ~ ~k qjk ~0o 
k : l  k = l  

: k k a . s .  

k 

Here the right-hand side has the desired form by Lemma 3.6, which completes 
the induction. [] 

4. Moment Identities for Predictable Integrals on [0, 1] 

In this section we shall prove moment identities for certain stochastic integrals 
with respect to exchangeable processes on [0, 1]. Thus we consider lR<valued 
processes X = ( X  1 . . . .  , Xd) and V=(V1 . . . . .  Vd) on [0, 1], where X is ergodic 
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exchangeable and directed by (e, p,/3). Put r r .=,r  -/-2 and define for non-empty 
- - J  - -  r ' J g  

J c { 1 ,  ..., d} 

j e J  k = l  k = l  

1 1 

Vj = I ]  Vj, Ss = I Vj, Vj = [ I  (VJ-  S j), S~- = j" Vj, (2) 
j e J  0 j e J  0 

whenever these expressions make sense. Note that flj is to be regarded as a 
measure on IR\{0}. We shall need the following condition. 

(C3): There exist some constants p j > l  and qj>2p~, j = l ,  . . . ,d ,  with 
~, p ;  1 __< 1 and such that for every j 

Ic~jlE IV j I +~ jE  Vj z + [ f l jk l "E~iVj lqJ< oo. 
0 k O  k = l  0 

Theorem 4.1. Let Y be a standard filtration on [0, 1 l, and let X and V be 
Na-valued processes on [0, 1], such that X is ergodic Y-exchangeable and directed 
by (~, p, fl) while V is Y-predictable. Assume that (Ca) is fulfilled, and that all 
the products ej S j, Pij Sij and flj Sj are a.s. non-random. Then 

d 1 

Ed:= E In[ f Vj dXj  = ~" { ~  o h Si} { I ]  Pjk S'jk} { [ I  B j} P~ {S~-}, 
j = l  0 ~z i j , k  J 

(3) 

where the summation extends over all partitions z~ of {1, ..., d} into singletons 
{i}, pairs {j, k}, and sets J with #e J>2 ,  and where each P~ is a polynomial in 
the integrals S't indexed by arbitrary subsets I of sets J e ~. In particular E 1 = ~1 St ,  
and under the further assumption c~2Sj=-O we have E2=(P12+B12)S'~2 and 

E 3 =  B 1 2 3 S 1 1 2 3  . 

As in case of Theorem 3.5, there is also a dual form of (3) with B and 
S' interchanged in the last two factors, and such that each P~ is a polynomial 
in the sums B, indexed by arbitrary unions I of sets J6~.  When X has finite 
variation, it is natural to write g)= g j - B  j, and to replace (3) by the relation 

d 1 

E d = E I~ S Vj dXj  = ~ {I~ c~) S j} {I~[ B j} P~ {S,}, 
j = l O  ~ j J 

(4) 

where Tc denotes an arbitrary partition of {1, ..., d} into singletons {i} and sets 
J, and where each P~ is a polynomial in the integrals S~ indexed by arbitrary 
subsets I of sets Jerc. 

For  the proof of Theorem 4.1 we shall need two lemmas, where the first 
one will also be needed later. Let us write M* = sup I Mt 1. 

t 
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Lemma 4.2. Let  M 1 . . . . .  M d be continuous ~ -mar t inga les  starting at O, and such 
that Pig = [Mi ,  Mj]  oo is a.s. non-random for  i =~j. Further assume that II M *  II pj < oo 
for  some constants pj>>=l, j = l , . . . , d ,  where p - l - ~ p 7 1 < l .  Then the mart- 
ingale 

d 

has a continuous version satisfying []M* Ilv < oe, and moreover 

E M t = M o = ~ I p i j  a.s., 
r i , j  

(6) 

where the summation extends over all partitions re of  the set {1 . . . . .  d} into pairs 
{i,j}. In particular, E M t = M o = O  a.s. when d is odd. 

Proof. Write 

vj(t) = EM,, Mj]t, p , =  Vj(oo), J = {i,j} c {1, ...,d}, 

and conclude from It6's formula that 

j = l  j = l  0 i * j  J 0 i~J  

t____0, (7) 

where the last summation extends over all (unordered) pairs J c { 1 , . . . ,  d}. 
Applying this formula to the integrands in the last sum and proceeding recursive- 
ly, we get 

IIMJ=ZfI-[M*dMa + E Z...ZZIdVa, I...SdVjkI[]M, dMa 
j j i l<=k<d/2 gl gk J i 

+Z... Z IdV,  I...SdG,2, 
J1 Jd/2 

(8) 

where the last sum occurs only when d is even. Here the summations in the 
k-th term extend over all sequences of disjoint pairs J 1 , . . . ,  Jk C {1, . . . ,  d} and 
over remaining indices j, while the product  in the integrand extends over all 
indices i q=j outside Ji . . . .  , Jk. Finally, the integration is taken over the set 

{ ( t  1 . . . .  , tk+ 1)elRA++ 1 ; t 1 =>t2> ... >=tk+ 1 =>0}. 

Similar conventions apply to the last sum in (8). 
We shall now use the fact that, if V1, ..., Vk are continuous functions of 

bounded variation starting at 0, then 

k 

EId ,i...Id k= H v,, 
r j = l  
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where the summation extends over all permutations r=(rl ,  ..., rk) of (1 . . . . .  k). 
Applying this to (8), we get 

HMj=ZIHM, dMj+ ZZJdHvj[.HM, dM +Z[Ivj, (9) 
j j i l<=k<d/2 ~z' j J i ~z J 

where the inner summations in the k-th term extend over all (unordered) collec- 
tions n' of k disjoint pairs J~{1 ,  ..., d}, and over remaining indices j, while 
the last product is taken over all other indices i. Moreover, integration is now 
over the set {(h, t2) elR2 ; tl > t2}. 

Next we integrate by parts in (9) to obtain 

13M,=ZIIIM, aM, 
J J 

+ Z YY{Hv, .HM, aMFIHV, HM, aMA+Y. I1v,. 
l<k<d/2 re" j Y i J i rc J 

Changing the order of summation and noting that the products I-[ Vj(oo)= H PJ 
are a.s. constant, we finally obtain 

co 

HMA~176 5 {IlpJ-HVAHM, aMj+ZHp , 
j j n' 0 J J i zg J 

(lo) 

where the inner summation in the first term extends over all partitions n' of 
the set {1 . . . .  , d}\{j} into pairs J plus a remaining set of indices i. The assertions 
of the lemma will follow immediately from (10), if we can only prove that the 
integral processes on the right are bounded by random variables in Lp. 

To see this, let p s l = p i - l + p f  1 when J={i,j}, and note by the BDG and 
H61der inequalities that 

[I VI IIpj ~ II {[M,, M,] [M j, Mj]} 1/2 I1~ 

Ill-M,, Md*/2 lip, II I-Mj, Mj]X/2 I1,,~ ~ IIM~* lip, IIM~ live. 

By the same inequalities, we hence obtain for fixed j and re' as above 

sup i { H P j - H v j } H M i d M j  P 

0 J J i 

{ 0  ~ { j ~ I P J - - I j I j  Vj}2~ii M 2 d [ M j ,  M j ] ) I / 2  p 

< ][H V* H M * [ M j ,  Mj]~2l]p 
J i 

d 
----<HIIVj*[IpjHIIM~IIp, II[Mj, Mj]I/2I]pj~ H [[M~llpk<~ 

d i k = l  
[]  
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Lemma 4.3. Let M be a continuous W-martingale on [-0, 1], let V1, ..., V d (d > 1) 
be ~-predictable processes on [0, 1] with ~ V1 = ... =~ Va=0 a.s., and let 72 1 . . . .  , 72 d 

be i.i.d. U (O, 1) random variables such that the processes 1 {z j<= t} are Y-exchange- 
able. Assume for some constants p, ql, ..., qd > 1 with p -1+ 2 ~ q f  1< 1 that 

Then 
EIM*F<oQ;  EJ'I VjlqJ< oo, j = l  . . . .  ,d. (11) 

d 

EM1 1-[ Vj('cj)=0. (12) 
j = l  

Proof By Proposition 2.6 we have 

1 1 

Vj(zj)= ~ Vi(t)d(l{zj<t})= ~ UjdMj, j = l ,  . . . ,d, (13) 
0 0 

where the martingales Mj and the predictable processes Uj are given by 

M j ( t ) = l { z j < t } - l o g ( 1 - t a r j ) ,  te[0,  1], (14) 

i  (sl s, 
t 

t~[0, 1). (15) 

Since the martingale M and the integral processes Nj= j Uj dM~ are mutually 
orthogonal, we get by It6's formula 

d t t +  

M(t) I-[ N ( t ) =  I Y [ N d M + Z  I M I ] N , d N  
j = l  0 j j 0 i * j  

a.s., t6[0, 1]. (16) 

Thus (12) will follow if we can show that the integral processes on the right 
are martingales. 

To see this, choose p~<qJ2, j = l ,  ..., d, such that p - l + ~ p [ l = 1 .  Using 
the BDG and H61der inequalities plus Proposition 2.8, we get from (11) 

{i 7 Esup < E  I]N~2d[M,M] <E[M, M31/ZI]Nf 
t 0 j j j 

l_i f  1 } l / q )  <][[M,M]I/2GHIINfII,~<IIM*IIp EYlbl ~, < o o ,  
j j ~. 0 

so by uniform integrability the integral on the left must be a martingale. In 
the same way we get for j =  1 . . . . .  d 

E sup M 1] N, dNj < E M2 I] N? d [N~, N3 < 0o, 
t i * j  i * j  



474 O. Kallenberg 

where the finiteness of the second expression shows that the stochastic integral 
on the left is a local martingale, and hence justifies the use of the BDG inequality 
in the first step. []  

Proof of Theorem 4.1. Note first that E d exists, in view of (C2) and Propositions 
2.6 and 2.8. By Proposition 2.4 we may integrate termwise in (1.17), and by 
Proposition 2.8 it is enough to assume that X has finitely many jumps. Writing 
Xj( t ) -  X j ( t ) -  o~jt, so that X)(1) - 0, we get 

e VjdXj=e  jSj+ I v;dx =  jsjelq I 5 'dX; 
j = l  0 j = l k  0 " jaJO 

where the summation extends over all subsets J c { 1, ..., d}. Thus we may further 
assume that ~ j -  S 1 -  O. 

For each j =  1, ..., d we write M s for the martingale component of Bj and 
define Uj by (15), so that 

1 1 

S VjdBj= S UjdMj=Nj(1), j=  1 .... , d, (17) 
0 0 

by Proposition 2.6, where the integral process Nj on the right is a continuous 
Lqj-martingale. From Lemma 2.7 it is further seen that for i 4 j  

1 1 1 

[Ni,  NjJa = ~ Ui U j d [ M i ,  M j] = Pij  ~ gi g j =  Plj  I Vii gJ= Pi jS i j "  
o o o 

By Lemma4.2  there hence exists for every J c { 1 ,  . . . ,d} some continuous 
Lp~-martingale M j  (p~- ~ = ~ p; 1) satisfying 

J 

1 

M j ( 1 ) = I - [ N j ( 1 ) = I ]  I VjdBj, (18) 
jeJ jeJ 0 

and 
E M j(1) = ~ I ]  [N~, NjJl = ~ [ I  P~J Sij, (19) 

~j i,j ~j i,j 

where the summations in (19) extend over all partitions rcj of J into pairs {i, j}. 
Let us now write n' for an arbitrary collection of disjoint sets J c  {1 . . . .  , d}, 

put J'= ~ jc, and let the indices k j e N ,  J~n', be different but otherwise arbitrary. 
Using Proposition 2.4 and (18), we get 

j = l  0 j = l  kO k = l  

~' (k j )  J 

= Z ~, I~ flJ,kjE M j'(1) l~ Vj(rkJ)" 
re' (k j) Y J 

Writing 
[1 vj (eke) = [ I  {sj + (eke)- 
J J 
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and expanding the product on the right, it is seen from Lemma 4.3 and (19) 
that 

E Mj ' ( l l ] - I  Vj(ZkJ)=-EMs'(III~Ss= Z [IPr  
J J n j ,  i , j  J 

so we get 
d 1 

E H ~ V j d X i = Z [ I P i t S o I T l s s Z  1-I[3,.k,. 
j = l  0 n i , j  J (k j )  a 

(20) 

By Lemma 3.2, the inner sum on the right is a polynomial in the sums BK 
with K a union of sets Jsn ' .  If instead we collect the terms involving a given 
product EIBK, it is clear that the coefficient will be a polynomial in the integrals 
Sj with J a subset of some K. This completes the proof of (3). 

The explicit formula for E 1 follows immediately from (3), while those for 
E2 and E3 when et S t -  0 are obtained from (20) with S~ in place of Ss. [] 

5. Moment Identities for Predictable L6vy Integrals 

In this section we shall prove moment identities for certain stochastic integrals 
with respect to L6vy processes. Thus we consider lRd-valued processes X 
=(XI ,  ..., Xa) and V=(V1, ..., Vd) on IR+, where X is L6vy and directed by 
(7, P, v). Put _jgr .=__ r'jjgll" "/2 , and define for non-empty subsets J c {1, ..., d} 

N,= I gl I I1 xtu(dx,...dx,), V,= II V,, S,= [ V,, 
j e J  j e J  j e J  0 

(1) 

whenever these expressions make sense. The following condition will be needed. 

(C4): There exist some constants Pl . . . . .  pd> 1 with ~ P f  1< 1, such that for 
a l l j  

17tl E~I v / +  ~t s {S vj2}"./~ 

+ S [xjI ~ v(dx) E [{I I v~I~>}.Y/2 + ff I Vjl'q < oo, 

where p) = Pt/x 2 and pj = Ptv  2. 

Theorem 5.1. Let ~ be a standard filtration on ]R + , and let X and V be lRd-valued 
processes on IR+, such that X is ~ - L d v y  and directed by (% p, v) while V is 
~-predictable. Assume that (C4) is fulfilled, and that the products 7i St (for d > 1), 
Pit Sij (for d > 2), and Nj Sj (for 2 < #~ J < d) are a.s. non-random. Then 

d 

s I] ~ V~dXt=eEIIT, s, Fl(pj~+NjklsjkIIN.S., 
j = l  0 ~ i j , k  J 

(2) 

where the summation extends over all partitions n of {1 . . . . .  d} into singletons 
{i}, pairs {j, k}, and subsets J with ~ J>=3. 
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Note that Njk can be omitted from the second product  on the right, provided 
that sets J with # J = 2 are allowed in n. If X has locally finite variation while 
I VI is integrable on IR +, one may introduce the constants 7)= 7 j - N j ,  and write 
(2) in the form 

E ~I ; VjdXj=EEI~7;S,I]NjSj ,  (3) 
j = l  0 ~z i Y 

where the summation extends over all partitions ~ of { 1 . . . .  , d} into singletons 
{i} and subsets J. 

The method of proof  is similar to that for Theorem 3.5, though technically 
more complicated. The key step is Lemma 5.8, where we proceed by induction 
over d to establish a conditional version of (2) (though formally in terms of 
optional projections). Our proof  of Lemma 5.8 requires v to be bounded, so 
a reduction to that case is given through the construction in Lemmas 5.4 and 
5.5. We shall also need some simple moment  estimates, as provided by Lem- 
mas 5.2 and 5.3. The remaining Lemmas 5.6, 5.7 and 5.9 are simple results in 
real analysis and stochastic calculus, which ought to be known, though we 
were unable to find references. 

Unless otherwise stated, we assume that X and V are such as in Theorem 5.1, 
and in particular that (C4) is fulfilled. As before, let pj be defined for subsets 
J c { 1  . . . .  , d} b y p s  l = ~ p f l .  

J 

Lemma 5.2. For any J c { l  . . . . .  d} with # 3 > 2 ,  we have 

fI] lxjl~v(dx)E{IIV~l,},J/~<oo, l <p<=ps. (4) 
j s J  

Proof We may assume that 

Slxjl~Jv(dx)<oo, E($1VjI~}~Y/Z+E~IV~I~,<oo, j6J, (5) 

since (4) is trivially true if any of these integrals vanishes. Then H61der's inequali- 
ty yields 

~[IIxJ'Jv(dx)<oo, E~I Vjl~J<oo, 
jEJ 

so by norm interpolation (formula (2.10)) it remains to show that 

SI]lxjlv(dx)<o~, E{.[I VjI}'~< ~ .  
j~J 

To see this, note that x p A 2 < x z/x 1 + x p for x, p > 0, so that by (5) 

SIxj[P)v(dx)<=I(x2A 1) v(dx)+~[xjlPJv(dx)<oo, j~J. 

By norm interpolation we get from (5) and (6) 

~[xjlPv(dx)<oo, E{S I VjI~}PJ/P < oo, p)<=p<=pj, j~J. 

(6) 

(7) 
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Now clearly 

jEJ  j e J  

so we may choose some qje[p) ,  pj], j e J ,  satisfying ~q~-1=1.  Using (7) with 

p = q j, we get by H61der's inequality s 

H Ixjl v(dx)< H {S IxJlq'v(dx)} 1/q'< co, 
j eJ  j s J  

E {S l vj IF-__< E 1-1 {S I V~l~,F~/~, < H {E {S I Vjl~'}='./~'} "'/~' < oo, 
jeY j~J 

as desired. [] 

In the special case when p = O, we introduce the covariation processes X j  
and their associated total variation processes X j ,  given for J c{1 . . . . .  d} with 
@ J > 2  and for t>O by 

xAt)= F, 1-[ AXe(s), s Z I] IAXj(s)I = i IdX~l. (8) 
s<t j e J  s<<_t j e J  0 

Note that X s and 3;j are again Y-Lbvy with L6vy measures v s and ,T j,  given 
for Bore1 sets BcIR\{0}  by 

vj(B)=v{xe]Rd; H xjeB}, vj(B)=v{xeNd; H Ixjl~B}. (9) 
j e J  j eJ  

p - 1  In particular Xj  has drift N s. Recall that p j t  = ~ i - 
J 

Lemma 5.3. I f  p = O, we have for  any J ~ { 1 . . . . .  d} with @ J >_ 2 

E{~IVjdX~I}PJ< sup {SHixjlpv(dx)} .J/p sup E{JlV~V}",/~<~. (10) 
I <=p<=PJ j eJ  I <=p<PJ 

Proo f  The expression on the right is finite by Lemma 5.2 plus norm interpola- 
tion, so Proposition 2.2 applies with X, V and p replaced by J(j ,  IV j[ and pj, 
and (10) follows. [] 

Lemma 5.4. Fix  arbitrary numbers m j ~ ,  0 @ J c { 1 ,  ..., d}. Then there exists 
some measure # on the cube C = [ -  1, 1] d, such that # ( C ) = ~  Imz[ and moreover 

SHxjy(dx)=ms, 0 @ J c { 1 ,  ..., d}. (11) 
j eJ  

Proo f  Suppose we can find some probability measures #+ and # f  on C satisfying 

S H x , # f ( d x ) =  _ 1 { i=J} ,  0@i, J c  {1, ..., d}. (12) 
i e l  
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Then the measure 

# = ~ (ms v 01 #J- -- ~ (mr a 0) #}- (13) 
J J 

has clearly the desired properties. To construct # f ,  fix keJ ,  and let 4j, 
j ~ J \ { k } ,  be independent random variables (on some probability space) with 
P{4j= 1} = P{4j= - 1} = 1/2. Choose ~k such that l~ 4j = + 1, and let ~ j=0 for 

J 

j6J .  Take # f  to be the distribution of (41, ..., 4d). Then (12) is trivially fulfilled 
for I\J=~O or I c J \ { k } ,  and i f k 6 I ~ J  we get 

5 I ~ x i # f ( d x ) = E I ~ 4 i = + - E l ~ 4 i l ~ { j  =-t-E I~ 4 ~ = •  �9 [] 
ie I  i~I iEI jEJ  j~Y\ I  

For the purpose of the next 1emma, say that the probability space (f2', (9', P') 
is an extension of (~2, (9, P), if P is the image of P' under some U/O-measurable 
mapping 0: f2 '~  ~2. Note that any random element 4 on f2 then extends, with 
preserved distributional and path properties, to a random element 4' on Q' 
through the composition 4 '=4o0 .  We shall further say that a filtration ~ '  
on ~2' extends ~- on ~2, if ~ is also ~ ' /~ -measurab le  for every t. In this case, 
adaptedness and predictability are automatically preserved by the extension, 
as is the stopping time property of a random variable. Usually (~2', (9', P') is 
formed as a product of (~2, (9, P) with some other probability space, in which 
case ~ is always taken to be the natural projection of (2' onto f2 (cf. Ikeda 
& Watanabe (1981), p. 89). 

Lemma 5.5. For every e > 0 there exists on some extended standard filtered proba- 
bility space (f2', (9', ~ ' ,  P') an NJ-valued Y ' -Ldvy  process X'  on IR+, such that 
X'  is directed by (7, P, v') for some bounded and boundedly supported LOvy measure 
v' with the same moments N s ( # J > 2) as v, and such that moreover 

E Vj d X ) -  Vj < e. (141 
0 j = l  0 

Proof For each n s N ,  form a process Y, on ~ +  by adding to the drift and 
diffusion components of X the centered sum of jumps in X with size between 
n-1 and n. Note that both Y, and X - Y n  are again ~,~-L6vy, and directed by 
(7, P, 1<,) and (0, 0, ~',), respectively, where t% is the restriction of v to the set 
{x ~lRd: n-1 < I xl < n}, while ~', = v - 1<,. For J ~ { 1 . . . .  , d} with # J > 2, put 

m . ,  = I 1-I 117[ xj x), 
jEJ j~J  

(15) 

and form a measure #, as in Lemma 5.4. Next define on the Lebesgue unit 
interval (I, N, 2) a centered compound Poisson process Z ,  with L6vy measure 
#,, and consider all random processes as functions on the product space 
(~2', (9', P')=(f~ x 1, (9 x ~ ,  P x 2). Let ~ be the ((9', P')-completed filtration on 
~2' generated by ~ and Z, ,  and note that ~ ,  is automatically right-continuous. 
It is easy to check that the pair (Y,, Z,) and hence also the sum U, = I1, + Z,  
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are ~,'-L6vy. Note also that U, is directed by (7, P, v,), where v, = ~c, + # , ,  and 
that v, gives the same values as v to the moments Nj with 4# J > 2. 

It remains to show that (14) is fulfilled for X ' =  U, when n is large. We 
may then assume by (C4) and Lemma 5.2 that (with p)=pj/~ 2) 

~lxjlPv(dx) <c~,  Pe[P),Pi], j = l ,  ..., d, (16) 

~,y~lxjlv(dx)<~, J~{X .... ,d}, # S > 2 .  (17) 
j e J  

From (15)-(17) we get by dominated convergence as n ~oo 

~]xj[P~c'n(dx)~O, p~[p),p2], j = l ,  ..., d, 

IxjlP#n(dx)<#,(IRd)=Y. Im, jI < y I]  Ixjl ~c',(dx) --,0. 
J j ~ d  

(18) 

(19) 

Hence, by (C4) and Proposition 2.2, 

V j d ( X , - U . , )  p G ; Vid(X , -  Y.2) v' + ; VidZ. ,  --,0. (20) 
0 0 0 PJ 

Since also ][~ VjdXjHpj< oo for each j, we may conclude by H61der's inequality 
that the left hand side of (14) tends to zero as n ~ oo. [] 

Lemma 5.6. Let F 1 . . . . .  F e be right-continuous functions of locally bounded varia- 
tion, and define for J a { 1  . . . .  , d} with # J > 2 

Fj(t)--Fa(s)= ~ I-IAF~(u), - o o < s < t < o o .  (21) 
u~(s,t] j ~ J  

Then 
d d t+  

[ I  Fj(t)-- 1-[ F~(s)= E I dF,(u)YIF~(u-) ,  
j = l  j = l  J s+  jq~J 

- o o < s < t < o o ,  (22) 

where the summation extends over all non-empty subsets J c {1, ..., d}. 

Proof This is obvious for d =  1, and for d = 2  it reduces to the formula for 
integration by parts. The assertion for general d follows easily by induction. [] 

Lemma 5.7. Let X,  Y and A be random processes on N,+ , such that X is measurable 
with E X * < o o ,  while Y is optional and A is adapted and right-continuous with 
locally bounded variation. Assume that E [X~; z < Go] = E [Y~; r < oo] for every 
stopping time z, and that E ~lXll dAI < oo. Then E ~X dA = E SYdA.  

Proof For any stopping time z, 

E = E E X ,  I~-7] a.s. on {z<oo}, 

so by Jensen's inequality 

Eli El; ~< o03 ~ E [IX~[; ~< oo]. 
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Assuming without loss that A is non-decreasing, and letting zt, t>O, denote 
the associated random time change, we get 

E j'l gl dA= ~ Ell Y~,I; -c,< oo3 dt<= ~ E [IX~,I; ~c,< oo] dt= E.[ IXl dA. 

Using Fubini's theorem, we thus obtain 

E~YdA=IE[Y~,;z,<oo]dt=~E[X~;zt<oo]dt=E~XdA. []  

We are now ready for our key lemma, where we assume again that X and 
V are such as in Theorem 5.1. For any subset J c { 1 ,  ..., d} with #J__>2, we 
write 

Uj(t)= ~ Vj(s)ds, t>=O. (23) 
t 

Lemma 5.8. Assume that 7, p=O, and that v is bounded with bounded support. 
Let M be a continuous martingale with ]lM*l[p< oo, where p-1 + ~ p f  l < 1, and 
assume that Nj Sj is a.s. non-random even for J = {1, ..., d}, unless M is constant. 
Then we have for any stopping time z 

d 

EM~ y[ ~ V j d X j = E M ~  I~NjUs(z), (24) 
j = l  z +  n J 

where the summation extends over all partitions n of {1, ..., d} into sets J with 
:t#J>2. 

Proof We shall proceed by induction over d, starting for d =0  with the fact 
that M~ has optional projection M r Let us thus fix a deN,  and assume that 
(24) is true with d replaced by 1 . . . . .  d - 1 .  To extend (24) to d, fix T >0, and 
proceed as follows, where each step will be explained in detail below: 

d d 

j = l  z +  j = l  z v T +  

z v  T +  

= E M ~ Z  I Vs(t)dXj(t)]--[ S VjdXj 
J ~+ j C J  t +  

z v T +  

= E Z  I Vj(t)dXj(t)MtZl-INxUl(t)  
J ~+ ~'  I 

v v T  

=E ~ N s  S Va( t )d tMt~y lNiUi( t )  
J z r:" I 

z v T  

= E M ~ Z N I  I Vj(t) dtZ~NlUl(t) 
Y ~ n" I 

= E M ~ Z  I~ Ns U,(z)-- E Moo Z yl  N, Uj(z v T) 
J ~ J 

= E M ,  Z I~ Ns Uj(z)--EM~ Z [INs Uj('c v T) 
J ~ J 

(integration by parts) 

(optional projection) 

(dual predictable projection) 

(optional projection) 

(integration by parts) 

(optional sampling). 
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Here the integration by parts in the first step is according to Lemma 5.6 but 
in reversed time. The optional projection in the second step is by the induction 
hypothesis plus Lemma 5.7. Note that the inner summation on the right extends 
over all partitions n' of the set {1 . . . . .  d } \ J  into subsets I of size >2, and 
that the integrability requirements are fulfilled by Proposition 2.2 and Lem- 
ma 5.3. Since the new integrands are continuous adapted, and hence predictable, 
we may proceed in the next step by a dual predictable projection, where each 
process Xj(t) is replaced by its compensator, which is Njt if # J > 2 and vanishes 
otherwise. Note that the outer summation on the right is restricted to subsets 
J c {1 . . . .  , d} with :~ J > 2. The third step is formally justified by Proposition 2.2 
with p =  1, where the integrability condition follows from the fact that, by 
H61der's inequality and Lemma 5.2, 

T I T E.[ V~MI-IU~I~ILM*I I~ J'V~ HI IUFI l~ ,<oo.  
0 I 0 Pa I 

(25) 

In step number four we are using Lemma 5.7 again to replace Mt by Moo, 
where the required integrability conditions now follow as in (25). Step number 
five is again by reversed integration by parts, as in Lemma 5.6. The sum in 
the first term is now ~-measurable, unless M is constant, so we may replace 
Moo by E [-Moo 1~] = M~, which yields the final expression. 

To complete the proof, it remains to notice that, by H61der's inequality 

while 

~o VjdXj< j~1 ~o ~aXj , EMoo I-I = JIM*lip 
j = l  z v T +  " rvT+  P j  

co 

EMooY I]N,V,( v T) _-<llv*llpY, IILN, I f 
p j '  J rr J z v T  

where the expressions on the right tend to zero as T ~  ~ ,  by Proposition 2.2 
and Lemma 5.2 plus dominated convergence. [] 

The following simple result will be needed to prove Theorem 5.1 when d = 2. 

Lemma 5.9. Fix p, q> 1 with p-1 + q - 1 <  1, and let M and N be martingales 
with IlM*llp< oo and llS*[lq< oo. Then 

E Moo Noo = E M o N O + E [M, N-] Oo. (26) 

Proof By the BDG and H61der inequalities, 

Esup i { ~  }1/2 M_ dN <E M 2 _ diN, N] < EM* [-N, N]~2__< HM*II  ][[N, N-j  1oo/2 [[q 
0 

~< IIM*lqp IlN*llq< ~, 

and similarly with M and N interchanged, so the processes S M_ dN and ~ N_ dM 
are uniformly integrable martingales, and (26) follows from It6's formula. [] 



482 o. Kallenberg 

Proof of Theorem 5.1. Since the assertion holds for d =  1 by Proposition 2.2, 
we may assume that d>2 .  In that case the products 7jSj are non-random, 
so we get with X)(t) = Xj ( t ) -  7j t 

j =  1 0 J j e J  jCJ  0 

(27) 

where the summation on the right extends over all subsets J c {1 . . . . .  d}. Thus 
we may henceforth assume that X is centered. By Lemma 5.8 we may further 
take v to be bounded and boundedly supported. 

Write B and Y for the continuous and purely discontinuous components 
of X, and denote the integral processes ~ V~ dBj by Mj. Then the quantities 

[Mi, Mj] oo = ; V~ Vj d [B,, Bj] = Pij Sij, i #j, (28) 
0 

are non-random when d >  3, so in that case there exist by Lemma 4.2 some 
continuous martingales Mj ,  J c { 1 ,  ..., d}, satisfying Ms(cO)=l-IMj(oo ), 
][m*[lpj< or, and s 

EM.r=EHpljSij, O # J c { 1 ,  ..., d}, (29) 
~' i , j  

where the summation on the right extends over all partitions n' of J into pairs 
{i,j}. Putting M s =  1 when J = 0 ,  we get by Lemma 5.8 with v = 0  

j =  1 0 J j(~J 0 ~z i , j  J 

(30) 

with summations first over arbitrary subsets J c { 1, ..., d}, and next over parti- 
tions n of {1, ..., d} into pairs {i,j} and subsets J with #J=>2. This completes 
the proof  for d > 3, so it remains only to take d = 2. But in that case the first 
equality in (30) holds with Mlz=M1M2,  as does the second one, since by 
(28) and Lemma5.9 

EMl(oo)M2(oo)=E[M~,M2]m=EplzS12. [] 

6. Invariance Under Predictable Transformations 

Our aim in this section is to demonstrate the power of the moment  identities 
of the previous sections, by giving new and simple proofs of certain invariance 
theorems involving predictable transformations of exchangeable sequences or 
processes. First we shall show how the predictable sampling theorem of Kallen- 
berg (1988) and its continuous time analogue follow easily from the appropriate 
moment  formulas. 
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We begin with the claim that  (1.11) holds for any finite or infinite ~ - e x -  
changeable sequence 41, ~2 . . . . .  and any sequence of a.s. distinct Y-predic table  
stopping times z~, z2 . . . . .  By conditioning on the (permutation) invariant o--field 
(cf. Aldous (1985)), we may reduce to the case when (~k) is ergodic. By a suitable 
t ransformation of the state space, we may  further assume that the ~k are bounded 
by a constant. 

As in Kallenberg (1988), we introduce the allocation sequence 

c~ k = inf{j; zj = k}, k = 1, 2, .. . ,  (1) 

associated with the z~. Fixing arbi trary constants ca, c2, . . .e lR such that at 
most  finitely many  are distinct from 0, we get 

E cj ~j  = E c~ ~k, (2) 
j k 

where coo = 0 by convention. Since the sequence (c~k) is predictable, and since 

E Z c7 (3) 
k j 

is a constant  for each m e N ,  it follows by Theorem 3.1 or 3.5 that  

E { 2  c, ~ . , } "  = E { 2  c, ~j} '~ , m e N .  (4) 
J J 

Here the sums within brackets are bounded, so the moments  determine their 
distributions, and therefore 

ZCj~7:jd2cj~j. (5)  

1 J 

Thus (1.11) follows by the Cram6r-Wold theorem. 
The proof  of the continuous time version is similar. Assume for the sake 

of simplicity that the exchangeable process X is ergodic, i.e. a L6vy process 
or a process of the form (1.17). Given any predictable and a.s. measure preserving 
transformation V of the time scale, it is required to show that  the process X o V -  1 

defined by (1.12) has the same finite-dimensional distributions as X. 
Let us then fix a finite set of times t l ,  t2,. . ,  and associated real constants 

c~, c2, ..., and write 

Zck(Xo v-~),~= j" {Yck 1 {E__< t~}) dX,. (6) 
k k 

By the hypothesis on V, we have 

S{Eckl{E<tk}}"ds=~{ZCkl{S<=tk}}"ds, meN, (7) 
k k 

so if the appropr ia te  momen t  conditions are fulfilled, we may conclude from 
Theorem 4.1 or 5.1 that 

E{ZCk(XoV-t)t~}m=E{ZCkXtk} m, meN. (8) 
k k 
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If the moments determine the distributions, we obtain 

1 d 
~, Ck (Xo V -  )tk = ~ ck X,k, (9) 
k k 

and the assertion follows as before. 
The required moment conditions are automatically fulfilled for the processes 

in (1.17), and also when X is a L6vy process with bounded jumps. For a general 
L6vy process X, we may introduce the processes X ,  obtained by deleting all 
jumps of modules > n. Then 

d 
((X.o V-1)tl, (Xno V-1)t2, . . . )= (Xn(tl) , X ,  (t2) . . . .  ), (10) 

and as n ~ 0% the right-hand side tends to (X~I, Xt2 . . . .  ). Applying the statement 
for bounded jumps to the Poisson process of jump times for X - X , ,  it is further 
seen that the left-hand side of (10) tends in distribution to the corresponding 
sequence for X. Hence the assertion is generally true. 

The predictable sampling theorem and its continuous time counterpart have 
non-trivial extensions to the multivariate case. To state these, say that a finite 
or infinite sequence of IRa-valued random vectors ~=(~.1, ~.2, ...) with ~.k 
=(41k, ..., 4ek) is separately exchangeable, if the distribution of ~ is invariant 
under arbitrary, possibly different permutations in the d coordinates. (To distin- 
guish this from the original notion of exchangeability, where the same permuta- 
tion is being used for all coordinates, we may refer to the latter as joint exchange- 
ability.) Similarly, an lRd-valued process X on [0, 13 or N+ is said to be separate- 
ly exchangeable, if X starts at 0, is right-continuous, and has separately exchan- 
geable increments. In each case, the definition extends in an obvious way to 
the context of arbitrary filtrations ~-, defined on the appropriate index set. 

The next result shows that the distribution of 4 or X remains invariant 
under possibly different predictable permutations or measure preserving trans- 
formations in the d coordinates. 

Proposition 6.1. Let 4=(4.1, ~.2 . . . .  ) be a finite or infinite, IRa-valued, separately 
~-exchangeable sequence indexed by I, and let Zjk, j = i, ..., d, k~l ,  be I-valued, 

~-predictable stopping times, a.s. distinct for f ixed k. Then (~z~k) d= 4. I f  instead 
X is an IRa-valued, separately ~-exchangeable process on I--  [0, 13 or JR+, while 
U1 . . . .  , Ud are ~-predictable, a.s. measure preserving transformations of  I, then 

(XlO U 1 1 ,  . . , ,  Xd o Ud- 1 ) s  

To see how this follows from previous results, we need a simple lemma 
of some independent interest (along with its corollary). 

Lemma 6.2. A finite or infinite ]Rd-valued random sequence ~=(4.1, 4.2 . . . .  ) is 
extreme separately exchangeable, iff the N-valued sequences ~j. =(4j l ,  4jz,---), 
j =  1, ..., d, are mutually independent and ergodic exchangeable. Similarly, an 
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iRe-valued process X = ( X 1  . . . .  , Xd) on [0, 1] or lR+ is extreme separately ex- 
changeable, iff the lR-valued processes X1,  ..., Xe are mutually independent and 
ergodic exchangeable. 

Proof We may e.g. consider the case of processes X = ( X 1 ,  ..., Xd). Directly 
from the definitions it is clear that, if X is extreme separately exchangeable, 
then each component  process X~ is ergodic exchangeable. Moreover, each Xj 
is seen to be conditionally exchangeable, given the processes X~ with i+ j ,  and 
since Xj  is extreme, the conditional distribution must be a.s. independent of 
X i, i+j.  This shows that X1 . . . .  , Xd are independent. 

Conversely, it is clear that any set of independent ergodic exchangeable 
processes X1, . . . ,Xe  gives rise to a separately exchangeable process X 
= (X1, ..., Xe) in IR a. To see that X is extreme, write its distribution as a mixture 
of extreme distributions, and note as before that each of these is a product  
measure #1 x . . .  X#d, with the #~ ergodic exchangeable. But since X1, ..., Xd 
are extreme, the measures #1, ..., #e must be a.s. unique, and the extremality 
of X follows. []  

Corollary 6.3. Any iRe-valued extreme separately exchangeable process on [0, 1] 
or lR+ is also jointly ergodic exchangeable. The corresponding statement holds 
for infinite (but not for finite) separately exchangeable sequences. 

Proof For  processes on lR+ we note that, if X1, ..., X e are independent L6vy 
processes in lR, then X = ( X 1  . . . . .  Xe) is a L6vy process in ira, and is therefore 
jointly ergodic exchangeable. A similar argument applies to infinite sequences. 
For  processes on [0, 1] we note that, if X1 . . . .  , X d are independent processes 
in lR of the form (1.17), then X = ( X I  . . . .  , X~) is an iRe-valued process of the 
same form. []  

It is now clear, in the three cases covered by Corollary 6.3, how the assertion 
of Proposition 6.1 may be obtained through an application of the multivariate 
moment identities of Theorems 3.5, 4.1 and 5.1. Though the original methods 
of Kallenberg (1988) in the one-dimensional context could be extended, with 
some effort, to cover the present more general situation, the approach via 
moment  identities seems to be easier and more natural in this case. 

For  finite sequences, extremality in the sense of separate exchangeability 
does not imply extremality in the joint sense. Nevertheless, the moment  method 
can still be adapted to this case, via the following slightly extended version 
of Theorem 3.1, which may be proved by similar arguments. We omit the details. 

Lemma 6.4. Let Y be a filtration on {0, ..., n}, and consider two random n- 
sequences ~ and t 1 in IR d, such that ~ is ~-exchangeable while t 1 is ~-predictable. 
Let { K1, ..., K,~} be a partition of  {1 . . . .  , d} which splits ~ into independent ergod- 
ic sequences. Assume that (C1) is fulfilled, and that for each ie{1, ..., m}, the 
sums Sj with J c K i are a.s. non-random. Then 

d 
[~ I~ ~ ~Jkl~jk = f l  P,,K~{Rs,Ss}, (11) 

j = l  k = l  i = 1  

where each P,.K is a polynomial in the sums R j  and Sj  with J c K. 
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The invariance theorems in continuous time admit vast improvements, in 
the special case when the exchangeable process X is assumed to be continuous. 
From our present point of view, this merely reflects the fact that only the first 
and second order integrals S~= ~ Vj and Si;= ~ Vii V~ enter into the hypotheses 
and conclusions of Theorems 4.1 and 5.1. The situation is particularly nice 
when S 1 . . . . .  Sd a.s., since in that case both (4.3) and (5.2) reduce to 

d 

E I~ ~ Vj dXj  = Z 1-[ Pig Sja, (12) 
j = l  rc j , k  

where ~z ranges over all partitions of the set {1, ..., d} into pairs {j, k}. Thus 
in particular, all moments of odd order equal zero in this case. 

The following simple result, which in the case of Brownian motion could 
also be obtained directly from elementary properties of the It6 integral, illustrates 
the power of formula (12). Say that a Brownian motion or bridge B is defined 
with respect to a filtration ~ ,  if B is ~-exchangeable. 

Proposition 6.5. Let B be a Brownian motion on I=IR+ or a Brownian bridge 
on I =  [0, 1], each defined with respect to some standard filtration 2 ,  and let 
V~: (2 x I ~IR,  teI ,  be a family of ~-predictable processes with ~ V~ =0  a.s. for 
each t, and such that 

S V~Vt=sAt a.s., s, t s N + ,  (13) 
0 

o r  
1 

S V ~ V ~ = s A t - s t  a.s., s, te[O, 1], (14) 
0 

respectively. Then the process Yt=~ VtdB, t~I, is another Brownian motion or 
bridge. 

Proof. If I =  [-0, 1], we get by Theorem 4.1, for any d ~ N  and tl . . . . .  tde[-0, 1], 

d d 

E l-[ Y t j=Z l~ ( t iA t j - - t i t j )  =E H Btj, 
j = l  ~ i , j  j = l  

(15) 

where ~ ranges over all partitions of the set {1, ..., d} into pairs {i,j}. Since 
any Gaussian distribution is determined by its moments, the assertion follows. 
The proof for I=N.+  is similar. [] 

As a non-trivial example, we may take V= (V~) to be an integrable and ergodic 
exchangeable process on I=IR+ or [0, 1], directed by some triple (7, o.2, v) or 
(~, o -2, fl), respectively, satisfying 

y=O and a 2 + ~ x 2 v ( d x ) = l  (16) 
o r  

~ = 0  and 2 2 a + Z f l j  =1.  (17) 
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Choosing the Lebesgue unit interval as our probability space, we may regard 
each random variable Vt as a deterministic process on [0, 1], which as such 
is trivially predictable. If I = I R + ,  we extend Vt to a process on IR+ by putting 
Vt(u)=0 for u > l .  Then (13) and (14) reduce to obvious moment  properties 
of the process V. Using Proposit ion 6.3, we may hence conclude that the process 
Yt = ~ Vt dB, t~I ,  is another Brownian motion or bridge on I. This is surprising, 
if we think of the integral Y= ~ VdB as a stochastic average over the paths 
of V, in the sense of integration with respect to Gaussian white noise on f2 
with control measure P. Note that integration with respect to P instead would 
yield the expected value of V, which is identically zero. 

Acknowledgment. I am grateful to a referee for his careful reading of the manuscript, which lead 
to numerous corrections and minor improvements. 
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