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Summary. We consider a time evolution of unbounded continuous spins 
on the real line. The evolution is described by an infinite dimensional stochas- 
tic differential equation with local interaction. Introducing a condition which 
controls the growth of paths at infinity, we can construct a diffusion process 
taking values in C(N). In view of quantum field theory, this is a time depen- 
dent model of P(~)I field in Parisi and Wu's scheme. 

w 1. Introduction 

Let cg= C(N, RU) be the space of all Ne-valued continuous functions defined 
on P, equipped with the compact uniform topology. NOR, p d) denotes Schwartz's 
space of 1R<valued C~~ on IR with compact support. The topological 
dual space ~'(IR, IR~) is the d-fold direct product of the space of Schwartz's 
distributions ~'(IR). For given continuous functions a(x)= (aij(x)): ]Ra--+lRd| 
and b (x) = (bi(x)): IR d ~IR ~ we consider the following infinite dimensional stochas- 
tic differential equation for a (g-valued process X = {X~(u)} : 

(1.1) dXt(u) = a(X,(u)) dBt(u) + b(Xt(u)) dt +�89 dt, uelR, 

where B, = {B: ..... B~} is a system of independent 9 '  (lR)-valued standard Brown- 
ian motions (simply called a Y(~,lRa)-valued standard Brownian motion, cf. 
It6 [4]) and A =d2/du 2. We interpret the equation in @'(1R,1Ra), since neither 
the first term of the right hand side of (1.1) nor the last one defines a g-valued 
process any more. A precise meaning of (1.1) will he given in w 3. 

This type of equation describes a diffusion process associated with P(~b)a 
model in the sense of Parisi and Wu [-8], where a(x) is the identity matrix 
and b(x)= - � 8 9  grad U(x) for some potential function U(x). 

Funaki [2] discussed (1.1) as an equation describing a random motion of 
an elastic string, where parameter u runs over a bounded interval. Marcus [5] 
also studied (1.1) in a restricted situation to carry out Parisi and Wu's program. 
However they actually treated the following equation instead of (1.1): 
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t 

(1.2) Xt(u) = y oo (u; Xo)+  S S q(t--s; u, v) a(Xs(v)) dBs(v) dv 
0 

+ i ~ q(t--s;u,v) b(X~(v))dsdv, 
0 

where q (t; u, v) = (2 x t)- 1/2 exp ( -  (u - v)2/2 t) is the heat kernel and Yt ~ (u; Xo) 
= ~ q(t; u, v) Xo(v) dr. 

Let us introduce a martingale problem associated with (1.1). W =  C([0, oo), c~) 
stands for the continuous path space taking values in c~ and let Or: W~C6 be 
the canonical projection at t >__ 0. (~ (resp. ~t) denotes the a-field on W generated 
by the canonical projections (up to time t). For  each open set G c l R  we define 

ID~ = { f : c ~ I R ; f ( X ) = f ( ( X ,  41) . . . .  , (X,  4,))for  some n > 1, 
r ..., ~ , e~(G,  IR d) and fe~(lRn)}, 

where ~(G,  N d) stands for the subspace of N(N,  N d) consisting of those elements 
with support  in G, N(~")  is the totality of real C~ on IR" with compact 

d 

support and (X,  4) = ~ X(u). r du= I ~ Xi(u) ~i(u) du. We denote by Df the 
N N . i = I  

Fr6chet derivative of f e D = I D a  and define the operator L with the domain 
D as follows: 

(1.3) Lf  (X) = �89 trace (a (X) a * (X) D 2 f (X)) + ( b (X), Df (X)) + �89 ( X, A Df (X)). 

Namely if f ( X ) = f ( < X ,  ~> ,  ..., (X,  ~>)elD, then 

Lf(X)=�89 (a*(X(')) Ck, a*(X(')) ~z) --c?x--Y((X'oxk r  (X, 4,)) 
k , l =  1 

+ ~ {(b(X(')),r189 ACk)} ~ y ( ( X , r  ... .  , (X,r 
k = l  

where a*(x)=(a*(x))=(ajdx)). A probability measure P on (W,(r is called a 
solution of the fig, L)-martingale problem starting from XeCg if 

(1.4) (i) P(Oo=X)=I, 
t 

(ii) f ( G ) -  ~ Lf(G) ds is a local martingale relative to (P, {(G}) for all f e D .  
o 

In the present paper we will first establish in w 3 the equivalence between 
the stochastic differential Eq. (1.1), the stochastic integral Eq. (1.2) and the (cg, L)- 
martingale problem (1.4). We will next discuss the existence and the uniqueness 
of solutions for Eq. (1.1). In order to guarantee the uniqueness we need to 
restrict the state space to a smaller one rather than cg, because even if both 
a(x) and b(x) are vanishing (then (1.1) is just a heat equation) the uniqueness 
fails in cg. Therefore we introduce a tempered subspace of ~ :  

E={XeCg;  lim X(u)e-~l~l=Oforevery2>O}. 
lu[-~oo 
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Note that E is a Fr6chet space with the topology induced by a system of norms 
{[']~}~.>o defined by IXlx=sup [X(u)l e -zl'l. We will prove in w the existence 

and the uniqueness of E-valued solutions for (1.1) under the assumption that 
both a(x) and b(x) are Lipschitz continuous. However, since our motivation 
consists in studying Parisi and Wu's stochastic quantization, we need to relax 
the global Lipschitz condition on b(x). Therefore in w 5 we will discuss this 
problem and give another sufficient condition for the existence and the unique- 
ness of E-valued solutions of (1.1), which is applicable to polynomial interaction 
model (P(qS)l model). 

The author wishes to thank Professor H. Ezawa for leading him to this 
problem. He is also grateful to Professors K. It6, T. Shiga and T. Funaki for 
valuable suggestions and kind encouragements. 

w 2. Stochastic Integrals 

In order to formulate the Eqs. (1.1) and (1.2) we will here define stochastic 
integrals with respect to a class of ~ '-valued martingales. We mention the case 
Y =~'OR). 

Let (f2, ~,, P) be a probability space with a reference family {~}~>=o- 50 denotes 
the predictable a-field on [0, ~ ) x  f2 relative to {-~t}, which is generated by 
all {~}-adapted left continuous processes. Let ~/~ (resp.~loc) stands for the 
totality of continuous square integrable martingales (resp. continuous local mar- 
tingales) on (f2, ~ P ,  {~}). For MeJ~loc, [M] ={[M]t} denotes the quadratic 
variational process. 

Definition 2.1. A ~'-valued continuous process M = {Mr} is called a ~ '-valued 
continuous local martingale with quadratic variational measure (abbr. Y-c.l.m. 
with q.v.m.), if 

(M-l) M o = 0  a.s. and {M., ~)a~lo~ for every ~ e ~ = ~ ( l R ) ,  

(M-2) there exists a nonnegative random Radon measure [M] on [0, oo) x IR 
such that [M]([0,  t] x A) is {o~}-predictable for every AeN(P~) (the topological 
a-field on IR) and for every ~ a ~  

P([{M. ,  ~)]~ = ~ ]~(u)[2 I-M] ([0, t], du) for all t > 0) = 1. 
N 

[M] is called the quadratic variational measure of M. 

Remark. O) [M]([0,  t] x A) is, in fact, a continuous process for each AeN(IR), 
since ]-{M., ~)]t is continuous in t for every ~e~ .  

(ii) A ~'-valued standard {Yt}-Brownian motion B = {Bt} is a Y-c.l.m. with 
q.v.m. [B](dt, d u ) = d t  x du. 

Now we define stochastic integrals. Let M be a @'-c.l.m. with q.v.m. We 
introduce the following classes of random functionals: 

~q~ o = qS" [-0, oo) x IR x f2 ~P , ;  ~(t, u, co) = ~ f~(t, co) gi(u) for some n >  1, 
i=1 

f l ,  .-. , f ,  bounded and {~}-predictable and gl, ..., g , e~0R)~ ,  
! 
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( 
~e(M) =~qS: [0, ~ )  x IR x f2--*N; {~}-predictable (i.e., 9~ x ~ (IR)-measurable) 

a n d f ~  ~4)( t 'u )2[M](dt 'du)<~ 

Lemma 2.1. Every (oE~(M) defines uniquely a ~'-c.l.m. with q.v.m. Im(~b) such 
that 

(I-l) /f qS(t, u, co)= ~ fi(t, co) gi(u)eYo, then 
i = 1  

( /m(r  = ~ I f i (s)d(M~,gi~)  a.s. forevery ~ ,  
i = i  0 

where the integrals in the right hand side are one dimensional stochastic integrals. 

(I-2) Im(e(O+ flO)=C~IM(4))+ flIm(O) a.s. for ~, t ieR,  and 4), O ~ ( M ) ,  

0-3) U~,(q~)] (d t, d u) = r (t, u) 2 [M]  (d t, d u), 

(I-4) Imr162162 for every stopping time a, where Mg=Mt^r 
= lto,r ) r u) and leo,, 1 is the indicator function of [0, a]. 

Proof. It is a routine work to construct a family {(IM(r162 that 
satisfies (I-i)~(I-4), so that we omit the details. Regarding as a process of linear 
fnnctionals on 9 ,  we see that {(Im(~b)," )t) satisfies (M-l) and (M-2) in Defini- 
tion 2.1 for each q~. 

To realize Im(~b) as a N'-valued process we mention a regularization theorem 
by S. Nakao [7] (cf. It6 [4] and Mitoma [6]). 

Lemma 2.2. Let ~ be a real vector space with a multi-Hilbertian topology t. 
Suppose M = {(M," )t} is a process of linear functionals on ~ such that 

(i) (M,  ~ ) 0 = 0  a.s. and (M, ~).~Jr for every ~ ,  
(ii) there exists a sequence of stopping times {a,} such that a,,~ oo a.s. and 

Hilbertian semi-norms {[1"[1,} defined by [I~[12=E [(M, ~)t^~,[ 2 are Hilbert- 
Schmidt weaker than t for every t > O. Then M has a unique a-concentrated 
~'~-valued continuous version, where ~'~ is the dual space of ~ with respect to 
"C. 

Therefore we have a ~'-c.l.m. with q.v.m. Ira(C) for every q~e~(M). It is 
immediately checked that the conditions (I-1)--~ (I-4) characterize IM(') uniquely. 
This completes the proof. [] 

IM(~) ) is called the stochastic integral of q5 e Y(M)  with respect to M and 
t 

is denoted by ~ c~(s, .) dM~. I f  q~e~L,~(M) satisfies 
0 

E r du <oo forall r > 0 ,  



Infinite Dimensional Stochastic Differential Equation 145 

then we can define X . ~ (  as follows: for any {4,} c @  such that 0 <  (,(u) 7 1 

lira E [  sup s,')dM~,~, - X t  =0. 
n - ~  O<_t<_T 

t 

Then Xt is denoted by ~ [. O(s, u) dM~(u) du. Similarly we shall use the following 

notation, o ~a 
t r 

~ (~(s, u) dM~(u)du = i ~ ~b(s, u) l[l,r](U ) dM~(u) du. 
O 1  O g (  

Finally we prepare some lemmas. 

Lemma 2.3. Let B = {Bt} be a Y-valued standard {~t}-Brownian motion. Suppose 

(~eo~(B) satisfiesE I r pd < o % p = 1 , 2  . . . . .  Then 

(2.1) E __<(p(2p-1)) p E[ ~ c~(t,u)2dulP}l/'dt . 
0 R IR 

Proof It suffices to show (2.1) for r u, co) =f( t ,  co) ~(u)es o. Then (2.1) immedi- 
ately follows, since 

t t 

I I cP(t,u)dB~(u)du=If(s)d(Bs,~)" [] 
0 7 R  0 

Lemma 2.4. Let (U, ~,  m) be a finite measure space and let X~/r Suppose 
~(t, u, co): [0, oo) • U • Y2~IR is {~}-predictable (i.e., 5" x ~-measurable) and 

T 

(2.2) ~ ~ ~(t,u)2m(du)d[X]t<oe forall T>O, P-a.s. 
0 U 

Then i O (s, u) d Xs has an { ~ }-predictable modification and 
0 

(i ) (2.3) oS(~v ~(s'u)m(du))dXs=~v ~9(s,u)dXs m(du), t>=O, P-a.s. 

We omit the proof. But we note that the same result holds for stochastic 
integrals with respect to a ~'-c.l.m. with q.v.m. 

w 3. On the Equivalence Between (1.1), (1.2) and (1.4) 

Our first task is to formulate the Eq. (1.1) as a stochastic differential equation 
in N ' = ~ ' ( R ,  Na). Next we will show the equivalence between the stochastic 
differential Eq. (1.1), the stochastic integral Eq. (1.2) and the (cg, L)-martingale 
problem (1.4). 
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Definition 3.1. By a solution of (1.1) we mean a Cg-valued continuous process 
X = {Xt(u)} defined on a probability space (f2, ~ P) with a reference family {~G} 
such that 

(i) there exists a ~ '-valued standard {~}-Brownian motion B = {Bt}, 
(ii) {Xt(')} is {~G}-adapted, 

(iii) with probability one X = {Xt(u)} and B = {B,} satisfy 

t t 

(3.1) X,---Xo + ~ a(X~('))dBs+ ~ (b(Xs('))+ l AX~)ds, t>=O, 
0 0 

in ~ ' ,  where y a(X~(.)) dBs= aij(X~(')) dB . 
0 = 1  

Now we introduce a family of integral equations. Given l, r~lR (/<r) and 
w ~ W, y t,, (u; w) stands for the solution of the following initial boundary problem: 

0 
(3.2) ~ Yt(u)=�89 / < u < r ,  

Yo(u)=wo(u), l<u<r, Y,(/)=wd/), Ydr)=wdr), t>O. 

Let qt'r(t; u, v) be the fundamental solution of O/Ot-1/2A with Dirichlet bound- 
ary condition at u=l and u=r. Then Ytl'r(u; w) can be represented as follows 
(cf. Friedman [1], Chap. 3, Problem 4): 

(3.3) 

i ql'r(t;u,v) wo(v)dv+�89 qt'r(t-s;u, Dws(l)- qt'~(t-s;u,r)w~(r ds. 
l 

Consider the following family of integral equations" 

t r 

(3.4) X,(u)=Ytt"(u;X.)+ ~ ~ qt,~(t-s;u,v)a(X~(v))dBs(v)dv 
0 l 

t r 

+ S ~ ql'*(t--s;u,v) b(x~(v)) dsdv, l<_u<_r, 
0 l 

- - o o < l < r < ~ .  

The meaning of the Eqs. (3.4) is similar to that of (1.1) in Definition 3.1. Note  
that the above equations are regarded as those for a Z-valued continuous pro- 
cess, although the stochastic integrals are defined for each fixed t > 0  and u~IR. 
Indeed let X={Xdu)} be an {o~}-adapted Cg-valued continuous process. Fix 
l, r ~ R  and denote by X2,,(u) the term defined by stochastic integration. We 
define a sequence of stopping times by 

z ,=inf{ t  > 0 ;  max IXt(u) l > n}. 
l<_u<_r 

Next fix 0 < t, t' and l < u, u' < r. An elementary calculation shows 
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t VV / v / 

(3.5) ! t!f(s,v) a.v,d  311/Ti lt-Clli +lu-u'i, 
where f (s, v )=qt#( t - s ;  u, v) Ito,a(s)-ql"(t '--s; u', v) lto,,,l(s ). Thus 
ma 2.3, we see that  for m = 1, 2 . . . .  , 

(3.6) 

using Lem- 

E[I X2 , , (u ) -  Xz,r  (u')l 2m; t, t' =< %3 
r 2 m  

[I) S E  [ f(s,v) t[o,z~](s)a(Xs(v))dBs(v)dv 2mJtl=tV,, 

< ( m ( 2 m -  1)) = sup la(x)12=(3/ l /~Jt - t ' f l /=+[u-u ' l )  ", 
Ixl<=n 

d 
where I a 12 = ~, I aij[ 2 for a = (aij) ~ IR a | R d. Here we recall Kolmogorov ' s  criteri- 

i , j = l  

on (a version for mult i -parameter  case, cf. Totoki  [10]). Since z,/~ oo a.s,, we 
can choose a joint ly  cont inuous {X2,,(u)}. 

Theorem 3.1. I f  there exists a sohttion of the stochastic differential Eq. (1.1), 
it is also a solution of the family of integral Eqs. (3.4), and vice versa. 

Proof. Suppose {X,(u)} is a solution of (3.4), Let ~ ( R , / R  a) be fixed. Choose 
a bounded interval (l, r) that  contains the support  of ~. F r o m  the definition 
of Y,(u) = Ytt'~(u; X.) we see 

t 

�89 d  )ds= (g, 
o 

Denote  by X,,,(u) the ith term of the right hand  side of (3.4) ( i=2 ,  3). Changing 
the order of integration repeatedly (cf. Lemma 2.4), we get 

t t r 

�89 I <Xi,s,A~) ds= I I a*(Xs,(v)) 
o o l r 

�9 { i ([q"~(s--s ' ;u ,v)A{(u)du) l t , , ,oo)(s)ds}dB, , (v)d  v 

= ( X 2 , , , 4 } -  a(X,( '))dBs,  , 

and 
t t 

�89 ~ (X3,s, A ~} ds = (X3,s, ~) - ~ (b(X,(.)), 4} ds. 
o o 

Since Xt (u) = Y,(u) + X2,t(u) + X3,, (u), 1 < u < r, it follows that  

Therefore {Xt(u)} is a solution of (1.i). 
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Conversely let {Xt(u)} be a solution of (1.1). Fix l, r ~ ,  then we have 

( X t - -  Yt, r = i ~ a*(Xs(u)) ~(u) dB~(u) du 
0 

where Yt(u)= Y,l"(u; X.). Denote by {q~,} the totality of eigenfunctions of 1/2A 
with Dirichlet boundary condition at u---l and u = r (1/2 A qS, = - 2 ,  qS,, qS,(u)= 0, 
u~(l, r)). Since Y~ coincides with X~ at u-= l and u = r, it follows that 

t 

(X~--  Y~, Cn) = I ~ a*(Xs(u)) Cn(U) dB~(u) du 
0 R 

t 

+ f ((b(X3, 4 ) . ) - 2 . ( X ~ -  Y~, 4).))ds, 
0 

and consequently 
t 

( X t -  Yt, dp.)= ~ ~ e - z"(t-~) a*(X~(u)) (an(u) dB~(u) du 
0 R 

+ i e-Z"~t-S)(b(X~)' ~ , )  ds 
0 

= (X2,,,  c~,) + (X3,t,  (o,), for n = 1, 2 . . . . .  

Therefore {Xt(u)} is a solution of (3.4). []  

If we restrict the state space into the space E, we can use a more convenient 
Eq. (1.2) in place of (3.4). Here we note that the continuity of solutions is consid- 
ered with respect to the topology of E and that the corresponding path space 
C([0, oo), E) is equipped with the compact uniform topology. 

Theorem 3.2. Suppose a(x) is bounded and ]b(x)l< K ( l  +lxlP), x e lR  d for some 
K > 0 and p > O. I f  there exists an E-valued solution of the stochastic differential 
Eq. (1.1), it is also a solution of  the stochastic integral Eq. (1.2), and the converse 
is true. 

Proof. Because of Theorem 3.1, it suffices to prove that any solution of (3.4) 
satisfies (1.2) and this is verified by letting (1, r)/~IR in (3.4). To this end we 
use the following. 

Lemma 3.1. For w~C([0, oo), E) extend Yt~'~(u; w) to u ~  such that it coincides 
with w outside (l, r). Then Y~Z"(u; w) converges to Yt~(u; Wo) = ~ q(t; u, v) Wo(V) dv 
as (1, r ) , ~  in C([0, oo), E). 

Proof. We keep the expression (3.3) in mind. First using the method of image, 
we have 

O<q( t ;u , v ) -@*( t ;u , v )<q( t ;u ,  21 -v )+q( t ;u ,  2 r - v ) ,  l<u,  v<r.  
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Hence it follows that 

I =  i q"'(t; u, v) We(V) d r -  ~ q(t; u, v) Wo(V) dv 
l N 

<-_ ~ q(t;u,v)(Iwo(Zr-v)l+lWo(V)l)dv 
r 

l 

+ ~ q(t;u,v)([Wo(21-Ol+two(v)l)dv, u~(l,r). 
- o o  

We may a s s u m e / < 0 < r ,  then for 2 > 0  the first term is bounded by: 

(3.7) 
oo 

21wob. ~ q(t;u,v)eXVdv 
r 

< 21Wolx e - ~  ~ q(t; u,v) e2~V dv= 21Wol~ e2~t e-Z~ e z~'". 
N 

Next noting q~"(t; u, v)>O and @r(t; u, l)= ql'r(t, u, r )=0  and applying Fatou's  
lemma, we have 

q"'  (t-- s; u, l) w, (/) - ~Tv q'', (t - s; u, r) w, (r)) d s 

t 

<�89  sup Iw,(1)l ! q ' . ' ( t - s ;u , l+a) /ads  
6 3 , 0  L O N s < - t  

+ sup [w,(r)[ f @~(t-s ;  u, r -~) /~ ds . 
O<--s<t  0 

Let 2 > 0, then 

i t? ;qZ'r(s;u'v)e-~2~/2dS[o (3.8) lim t/a qZ#(t-s;u,l+c})ds<=e~'-t/2~7 v 
a ~ O  0 v = l  

<2ea2t/z(1--e-Za(r-t)) -1 eat e -~", u~(l,r). 

From (3.7) and (3.8) it follows that sup [I+Jf2a tends to 0 as (l ,r)~lR for 
O<~t<_T 

every 2 > 0 and T >  0. Thus the lemma is proved. 

We now let (l, r),-'lR, then each term in the right hand side of (3.4) tends 
to the corresponding term in (1.2). To see the convergence of the third term, 
we have only to note that {b(X,(u))} is again an E-valued process since 
[b(x)[<K(l+lxlP). The proof is complete. []  

Finally we show the equivalence between the stochastic differential Eq. (1.1) 
and the (cg, L)-martingale problem (1.4). 
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Theorem 3.3. I f  P is a solution of the (r L)-martingale problem (1.4), then { Xt = Or} 
is a solution of the stochastic differential Eq. (1.1) on some extension of 
(W,, N, P, {Nr}). Conversely let {Xdu)} be a solution of (1.1), then its probability 
law on (W, ~) solves (1.4). 

Proof. Let P be a solution of (1.4), then 

t 

Mt=Or-Oo- S ds 
0 

defines a @'-c.l.m. with q.v.m, on (W,, (q, P, {Nr}) and 

d 

[M](dt, du)=(k~= laik(Or(u)) ajk(Ot(u)) dt x du). 

Suppose det (a(x))~ 0 for all x MR d and denote by e(x)= (ei~(x)) the inverse matrix 
of a(x) for xe lR  d. Then 

r 

Bt= S ~(0~(')) dM~ 
0 

is a ~ '-valued standard {~t}-Brownian motion and 

Mr= i a(O~(.))dB~. 
0 

This means {Xr=G} is a solution of (1.1). If det(a(x))=0 for some x's, we can 
prove it by applying the same method used in finite dimensional cases (cf. Ikeda 
and Watanabe [-3]). 

The converse is an immediate consequence of It6's formula. []  

w 4. Existence and Uniqueness - Lipschitz Condition 

We show here that the Lipschitz conditions on a(x) and b(x) guarantee the 
existence and the uniqueness of solutions for the Eq. (1.1). 

Theorem 4.1. Suppose a(x) and b(x) are Lipschitz continuous, i.e., there exists 
a constant K > 0 such that 

] a ( x ) -a ( y ) ]+ lb (x ) -b ( y ) l<KJx -y  j for x,y~IR d, 

and further suppose a(x) is bounded. Then for each Xo~E the Eq. (1.1) has an 
E-valued solution starting from Xo. Moreover the pathwise uniqueness of solutions 
holds on E. 

Proof By virtue of Theorem 3.2 it is sufficient to prove the theorem for the 
integral Eq. (1.2). 

Let s~ denote the class of all predictable processes Xdu) such that for every 
2 > 0  and T > 0 ,  

(4.1) IIIXlll~,r= sup E[S  IXt(u)12e-~l"ldu]<oo. 
O<=t<=T N. 
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We define the mapping 4~ on d by 

t 

(4.2) ob(X)(t, u)= Y~~176 Xo) + y y q(t-s;u, v)a(Xs(v))dBs(v)dv 
0 ~R 

t 

+ ~ I q(t-s;u, vlb(xs(v)ldsdv 
o ~. 

= Y,~ (u; X o ) +  ~2(Xl(t, u)+ ~,3(x)(t, u). 

Since a(x) is bounded, we have by (3.6), 

(4.3/ E l~2(x)(t, u)-  ~2(Xl(t', u')[~ 
< (m (2 m - 1))m sup l a (X)] 2 m ( 3 / ~  ]t - (I 1/2 + [u - u' [)m. 

x 

Modifying the proof  of Kolmogorov's  criterion, we can deduce from (4.3) that 
~2 (X) defines an E-valued continuous process. Next we choose a constant K' > 0 
such that I b (x)[2 < K' (1 + Ix ]2) for x ~ N  a. Then we have 

(4.4) 1~3(X)(t,u)12< ~q(t-s;u,v)2eXlVldsdv I S lb(XAv))[ 2e-~'l~ 
O N  0 N 

t 
_< t ~  e~2'/2 (eZ" + e -~'") K' ~ { f (1 + [X~(v)[ 2) e -;'lvl dr} ds. 

0 

Hence ~3(X) also defines an E-valued process and so does ~(X). Furthermore 
�9 maps d into itself. 

Let X 1, X 2 e d .  We observe 

E l  I I{b2 (Xa)(t, u)-ez(X2)(t, u)[ 2 e -~1"[ du] 
N 

=~ {J R 'q(t-s;u'v)aE[a(Xa~(v))-a(Xas(v))[adsdv} e-~l"tdu 

t 

~ 1 ~ - 1  e~.2T/2 K 2 ~ t~__s-i E[~  ]XI(v)--XZ(v)[ 2 e -al~l dv] ds, 
0 

and 

E [ ~  [t~3 ( X 1 ) ( t ,  u)--1~1~3 ( X 2 ) ( t ,  u)] 2 e -~'l"l du] 
R 

} ] "[. I q(t-s; u, v)[b(X1(v))-b(X2s(V))r 2 ds dv e -~l"l du 
o N 

<=Te~'2r/2K2 i El i  ]X1(v)-X2(v)12e-alVldv] ds, O<_t<_T, 
0 R 
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where we used the estimate: 

q(t;u,v)e-~lUldu<= min ~ q(t;u,v)e~"du=e~2'/2 e -~lvl 
N ~= ++-2 N 

Therefore, if we set C = 2(T3/2 + (2n)-1/2)eZ~r/a K 2, then we have 

(4.5) IIl~(Xl)-~(XZ)lll~,,<<-c i / ~ - s -1  [llXl-X2lll~,sds, O<t<T. 
0 

Now we use a successive approximation. Defining X n§ 1 by ~ (X ~) inductively 
(X ~ = Y.~ ("; Xo)), we see that there exists a constant M > 0 such that 

IllS "§ -Xnlll~,r<MC"r(1/2)"r((n+ 1)/2) -1 T n/2. 

This means that {X"} is a Cauchy sequence in ~r Let X2~ = lira X~(.) (LE-limit 
n---~ oo 

for each t), then X ~ ( - ) =  4)(X~176 ") a.s. for each t. ~ (X ~) is a desired solution, 
since ~(X) defines an E-valued continuous process for each Xe~r 

We can immediately see that X ~ is a unique solution of the equation X 
= #)(X), X e d and d contains any E-valued solution of (1.2). Thus the pathwise 
uniqueness of solutions holds for (1.2) on E. [ ]  

We can make a step forward in the case of Funaki's string model. 

Theorem 4.2. For each l, reN. ( l<r)  and we W consider the following stochastic 
differential equation: 

(4.6) dXt(u) = a(Xt(u)) dBt(u) + b(Xt(u)) dt + �89 dt, ue(l, r), 

Xo(u)=wo(u), ue(l,r), Xt(1)=w~(l), Xt(r)=wt(r), t>O. 

Suppose a(x) and b(x) are locally Lipschitz continuous, i.e., for every N > 0 there 
exists a constant Kn > 0 such that 

l a ( x ) - a ( y ) l + l b ( x ) - b ( y ) l < g N l x - y [  for x, ye{xe lRa; lx l<N}.  

Further suppose a(x) is bounded and there exists a constant C > 0  such that 

(4.7) ( b ( x ) - b ( y ) ) . ( x - y ) < C ( I x - y l a + l x - y l ) ,  x, yeP,  d. 

Then the existence and the uniqueness of solutions hold for (4.6). 

Proof. It suffices to show the theorem for the following integral equation (cf. 
Theorem 3.1): 

t r 

(4.8) Xt(u)=Ytz'~(u,w)+ ~ ~ qt,~(t-s;u,v)a(X~(v))dB~(v)dv 
0 l 

t r 

+ ~ ~ ql'*(t--s; u, v) b(X~(v)) ds dv 
0 l 

-~- Y t ( u ) - - ~  X 2 , t ( u ) - . ~  X 3 , t ( u ) ,  u e [ l , r ] .  
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Using a standard truncation method we see that the above equation has a 
temporally local solution. Let {Xt(u)} be such a solution. We define a sequence 
of stopping times by z .= in f{ t>O;  max [Xt(u)[> n} and set -c = lim z.. The local 

u~[l,r] n~ov 

Lipschitz continuity of a (x) and b (x) implies the pathwise uniqueness of solutions 
until the explosion time z. 

We will show z =  oo a.s. Note  the estimate (3.6). Since a(x) is bounded, we 
see by Fatou's lemma, 

(4.9) , 2,,. t' E[IX2,du)-Xi,,,(u)l ,t, <~l 

=< (m(2m - -  1)) m sup l a ( x ) [ 2  m ( 3 / V ~  It - ( [ 1 / 2  -b [u - u '  l) m. 
x 

Hence, just as in the proof of Kolmogorov's  criterion, it follows that 

(4.10) sup max[X2,du)l<oo forany  T > 0  a.s. 
0 < t < ~ A T  u~[l,r] 

Because b(x) is locally Lipschitz continuous, we may assume that b(Xs(u)) is 
jointly H61der continuous. Then Xa,t(u) is continuously differentiable in t and 

~ x3.(u) = �89 A X3,,(u) + b(X,(u)) 

(cf. Friedman [1], Chap. i). Since X3,d/)= X3,t(r)=0, integration by parts yields 
the following: 

1 d 
f [X3,t(u)[ 2= du= f [Xa,,(u)l 2"-2 X3,,(u)-{�89 ,(u)+b(Xt(u))} du 

2m dt t t ' 

<= f [X3,t(u)] 2m-2 X3,t(u)" {b(Xt (u) ) -b(Xt (u) -  X3,t(u)) 
l 

+ b(X,(u)- x3.,(u))} du 

~ C  I JX3 , t l l 2mq  - [IX3,t l l  2 m - 1  I I Ib(Xd ' ) -x3 ,d ' ) ) l+cII ,  

where IlXlr is the U"((l, r), Nd)-norm of X and we used the condition (4.7) and 
H6tder's inequality. Therefore, 

d 
d-t IlX3,tl/< C UX3,rl[ + nlb(Xt( ' )-xa, t( ' ) )[  + Cl[. 

Noting that X3 ,0=0  and X =  Y A - X  2 -{--Y 3 and applying Gronwall's lemma, we 
have 

(4.11) I[X3,t[I < e ct i []] b(Y~(" ) + Xz,s(" ))[ + Cll ds 
0 

and, in particular, 
t 

(4.12) max [X3,t (u)[ < e ct ~ (max [ b (Y~ (u) + X2,s (u))r + C) d s. 
u e [ l , r l  0 u 

From (4.10) and (4.12) we obtain z = oo a.s. This completes the proof. []  
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Remark. (i) Suppose d =  1 for simplicity. If b(x) can be written as a sum of 
a nonincreasing function bl(X), a Lipschitz continuous function b2(x) and a 
bounded function ba (x), i.e., b (x) = b ~ (x) + b2 (x) + ba (x), then b (x) satisfies the 
condition (4.7). 

(ii) The inequalities (4.11) and (4.12) are still valid, if b(x) is just continuous 
and satisfies (4.7). 

w 5. Existence and Uniqueness - Another Condition 

In the previous section we have shown that the boundedness and the Lipschitz 
continuity of a(x) and b(x) imply the existence and the uniqueness of solutions 
for the Eq. (1.1). However, as we have mentioned in the introduction, it is 
not sufficient for the study of stochastic quantization which is our motivation. 
So that we here give another sufficient condition. 

Theorem 5.1. Suppose a(x) is bounded, Ib(x)l<=K(l +lxlP), x~N. a for some con- 
stants K > O, p > 0 and there exists a constant C > 0 such that 

(5.1) ( b ( x ) - b ( y ) ) . ( x - y ) < C ( l x - y [ 2  + lx -yh ) ,  x, ye lR  d. 

Then for each X e E  the Eq. (1.1) has an E-valued continuous solution starting 
from X. 

In order to prove Theorem 5.1 first, following Funaki [2], we derive the 
string model (cf. (4.6)) by a polygonal approximation and then we take a limit 
(/, r),z~,~. In the following we always assume the boundedness of a(x) and the 
condition (5.1). 

For  a while we fix two points Xo, x le]R d and we use cd to denote 

{Xa C([0, II, p a); X(0)= Xo, X(1)= xl}. 

Let us introduce a stochastic differential equation on ]R dtN- 1), N = 2, 3 . . . . .  

(5.2) d x t ( k ) = y N a ( X , ( k ) ) d B , ( k ) + b ( x t ( k ) ) d t  

+ ~ A ~ X t  dt, l<_k<__N-1, 

N 

where {B~(k)} is a system of independent d-dimensional Brownian motions and 

N o t e  that the Eq. (5.2) has a non-explosive solution (cf. Theorem 4.2). Let XeC~ 

and let {X~ ( k ) }  be a solution of (5.2) starting from {X (k )} .  Then a C~-valued 
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process is defined by 

Lemma 5.1. Let Pu be the probability law on C([0, oo), cd) induced by {X~(u)}, 
N = 2, 3, ..., then the family {PN} is tight. 

Proof Let qU(t;k/N, j/N) be the fundamental solution of 8/(? t - 1 / 2  A u with 

qU (t; O/N, f iN) = qU (t; N/N,  j /N) = 0 
and set 

f . ( ))s tis"esthe'ollow . i te  .  
equation: 

N - - 1  t N /s 

N [ k \  N [ k \  N / k \  

We define YtU(u), xN, t(U) and X~,,(u) for ue[0,  lJ as in (5.3). First we see that 
Y~U(u) converges to the solution of the heat equation with the fixed boundary 
condition. Just as in the proof  of Theorem 4.2, we get 

i(m: ) max X~,t <e c~ x b Y~ +Xz,s +C ds. 
l g k < _ N - 1  

Furthermore an estimate similar to (4.9) holds (cf. Funaki [2]), i.e., for every 
m = 1, 2, ..., there exists a constant M > 0 such that 

E IX~,,(u)-X~*,,(u')12"<=m(It-t'lm/Z+lu-u'lm), N > 2 .  

Thus the argument in the proof  of Kolmogorov's  criterion tells us that for 
any T >  0 there exists a sequence K,  > 0, n =  1, 2 . . . .  , such that 

lim inf P([X~(u)[ < K ,  for 0<t_< Tand  ue[0,  1])= 1. 
n ~ o o  N > 2  

Therefore we obtain easily the tightness of {PN}- []  

Let P be any weak limit of {PN}. Then following the methods in Stroock 
and Varadhan's book ([9], Chap. 11), we can show that P(Oo=X, 0~(0)=X(0), 

0t(1)=X(1), t > 0 ) = l  and f(Ot)--i Lf(Os) ds is a local martingale relative to 
0 
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(P, {fqt}) for every f~K){o,a). In view of Theorem 3.3, this means that for every 
l, r~lR (l < r) and X e E the following stochastic differential equation has a solu- 
tion. 

(5.5) dX~'r(u)=a(X~"(u))dBt(u)+b(X~'r(u))dt+}AX~"(u)dt, us(l,r), 

X~r(u)=X(u), u~(I,r), X~'~(/)=X(/), X~"(r)=X(r), t>O. 

Choose a solution of (5.5) {X~'r(u)} and extend it to u ~  such that it coincides 
with X(u) outside (l, r). Let Px ~'" be its probability law on C([0, oo), E). To prove 
the tightness of the family {Px ~'~} we further assume that I b(x)l_-< K(1 +lxlP), 
x ~IR d. Note that {X~"(u)} satisfies the following integral equation: 

t r 

xl'r(u)= Y~t'r(u; )~)+ ~ ~ qZ"(t-s;  u, v) a(X~'~(v)) dBs(v) dv 
0 l 

t r 

+ ~ ~ qt'*(t--s; u, v) b(X~'~(v)) ds dv 
0 1 

r/"(u)+ "" = x~ , , (u )+XT, , (u ) ,  u~(l,  r), 

where )7~C(I-0, ~) ,  E) is defined by 0t(X) = X  for t=0 .  

Lemma 5.2. For every T > O, )L > 0 and m = 1, 2, ..., 

(5.6) sup sup E [X~,r(u)lZ'e-ZlUld <oo. 
l , r e R , e  l > a  O < t < T  Ll  

Proof. Since l ,  XLo = 0, (4.9) implies 

E I g~5,(u)12" < (m(2m-- 1))" sup la(x)12m(3 t / ] / ~ )  m. 
x 

Just as in the proof of Theorem 4.2, we have (though integration by parts yields 
some extra terms, we can easily deal with them) 

1 d fr l ,r  2 m  < ' ~  [*]2v l ,r 2 m  21u I [X3,,(u)I e- du IX3,,(u)l e-  Xl"l dU= 4m t 2m dt 1 J J 

l , r  2 m - - 2  l ,r  ISz,t(u)[ X3,t(u).b(X~'r(u))e -zlul du. + 
l 

Therefore we get 

<=e(C+aZ/4m)~ o ~ (Ib(Y~Z'r(u)+X~'s(u))l+C)2m e-ZlUldu] 1/zmds" 
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Noting ]b(x) l<K(l+[x]  p) and combining with Lemma 3.1, one can complete 
the proof. [] 

Lemma 5.3. For every i=2,  3, T >0, 2 > 0 and m = 1, 2, . . . ,  there is a constant 
M > 0 such that for every l, r ~IR (r - 1 > 1) 

(5.7) E l , r  l , r  t ] 4 m (  , [Xi,t(u)--Xi, t,(u ) =M(] t - - t  [i/2 +lu--u'l)m eal~l 

for O< t, t' < T, l <_u, u' <r: [ u - u ' l <  1. 

Proof The estimate for i = 2  immediately follows from (4.9). To simplify the 
notation we set f (s ,  v ) = @ ' ( t - s ;  u, v) lto,tl(s)-qZ'r(t'-s; u', v) 1Eo,t,3(s ). Since 
]b(x)l <K(1  + Ix f), by using Schwarz inequality and Lemma 5.2, we have 

E l , r  l , r  ~ 4-m IX3,,(u)-X3,~,(u)[ 

;- < ~f(s,v)Ze~~ E I I[b(X]"(v))l 2e-al~jdsdv 
l 0 l 

< m '  j j f(s ,v)2e2~r~fdsdv f ( s ,v )2dsdv  , 0_<t___T, 
0 l \ 0 l 

where M' is a constant independent of I and r. On the one hand 

t V t '  r 

I f(s,v)2 e2~r< dsdv 
0 1 

t v t "  r 

< j j {qe#(t-s;  u, v) z lto,,q(s ) 
0 1 

+ql"'(t'--s; u', v) 2 lto,,,l(s)} e 2zlvl ds dv 
< 2eZ2t(2t/n)l/2 e2a I~1 + 2eZ:t'(2t,/n)~/2 e2~l,'l. 

Hence the estimate for i=  3 follows from (3.5). [] 

Lemma 5.4. Let {Be} be a family of  probability measures on C([0, oo), E). Then 
{PN} is tight if it satisfies the following conditions: 

(i) there exists a constant 7 > 0  such that sup ~ [Oo(O)[Y der~< oo, 
N 

(ii) for each T >  0 and 2 > 0, there exist positive constants c~, 13 and M indepen- 
dent of  N such that 

IOt(u)-O~(v)l~ d PN <- M ( l t - s lZ  +~ + l u - v l  z +p) e~l"l 

for O<t, s<= T, u, velR: l u - v [  <1. 

Proof Note that a relatively compact set A in C([0, T], E) (T > 0) is characterized 
by the following conditions: 

(i) for every K > 0 ,  A is uniformly bounded and equi-continuous on 
[0, r ]  x [ - -  K, K], 

(ii) for every 2>0,  lim sup sup [wt(u)[ e-~'l"l---0. 
K ~ o o  w ~ A  O<=I<=T, Jul>=K 
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Hence the 1emma is shown by the similar arguments in the proof of Kolmo- 
gorov's criterion (cf. [10]). [] 

We are ready to prove Theorem 5.1. 

Proof of Theorem 5.1. A series of Lemmas 5.2~5.4 and Lemma 3.1 imply the 
tightness of {Pxt'~}r_z~l on C([0, oo),E). Clearly any weak limit of {P~"} as 
(l, r) ,~ IR is a solution of the ((g, L)-martingale problem starting from X. Thus 
we obtain the existence of solutions for the stochastic differential Eq. (i. i) because 
of Theorem 3.3. [] 

Finally, we show a uniqueness theorem. 

Theorem 5.2. Suppose a(x) is a constant matrix, I b(x)l =<K(1 +]xlP), x~]R d for 
some positive constants K and p, and there exists a constant C > 0 such that 

(5.8) (b (x ) -b(y ) ) . (x -y )<C I X - y l  2 for x, ye]R d. 

Then the pathwise uniqueness of solutions holds for the Eq. (1.1) on E. 

Proof. Let (X, B) and (X', B') be two solutions of (1.1) on the same probability 
space with the same reference family such that Xo = X;  and B---B' a.s. If both 
X and X' have E-valued continuous sample paths, then Theorem 3.2 tells us 
that 

t 

Xt (u)- X', (u) = ~ j q ( t -  s; u, v)(b (Xs (v))- b (X's (v)) d s d v. 
0 N. 

Following the proof of Lemma 5.2 and using the condition (5.8), we have 

1 d i IZt(u)l 2 e-~l"l du<(C+)~2/4) i IZt(u)l 2 e-Zl"l du 
2 d r 1  t 

+u~=t,)Zt(u)'{ ~--~ Zt(u)l+~'Ze(u)]} e-~'u[' 

where Z = X - X ' .  The boundary terms tend to zero as (l, r )7 N~, since for each 
T > 0 and )L > 0 we can find a constant M > 0 such that 

~-~q(t;u,v) e'~lVldv<=Mt-t/ae "~1~[, O<_t<_T, u~a.  

Therefore 
t 

J IZ,(u)l 2 e-~"~ au<(2c+'~2/2) J (J I z'(u)12 e-~"~ au) as. 
0 P. 

Hence from Gronwall's lemma we obtain Zt = 0, i.e., X = X' a.s. [] 

Because the arguments on the uniqueness of solutions of stochastic differen- 
tial equations due to Yamada and Watanabe (cf. [3]) are valid for our situation, 
Theorem 5.1 and 5.2 assert that (L, ID) generates uniquely a diffusion process 
on E under the conditions in Theorem 5.2. In particular let U(x) be a real 
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function on IR e which can be written as a sum of a convex Cl-function and 
a C2-function with compact  support (so called double-well  potential is described 
by a function of  this type). Then we see that b ( x ) = - � 8 9  satisfies the 
condit ion (5.8). Thus we have a diffusion process associated with P(qS)I model.  
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