Supplements and Corrections to the Paper:

A Classification of the Second Order Degenerate Elliptic Operators and Its Probabilistic Characterization

Z. Wahrscheinlichkeitstheorie und verw. Gebiete 30, 235-254 (1974)

Kanji Ichihara and Hiroshi Kunita

Mathematical Institute, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya, Japan

The purpose of this note is two-fold. The first, Theorem 1^* is an improvement of Theorem 1 in [2]. The second is a correction and an improvement of Theorem 2 in [2], which are divided to Theorem 2^* and 2^{**} below.

1. Local Classification

We quote quickly notations and assumptions from [2]. Let $X_1, X_2, ..., X_r, Y$ be C^{∞} -vector fields over a smooth, paracompact manifold M^d of dimension d, and let L be an elliptic-parabolic operator defined by $\frac{1}{2}\sum_{j=1}^{r} X_j^2 + Y$. The operator L is called parabolic at x of M^d , if there exists a local coordinate $(s, x^1, ..., x^{d-1})$ in a coordinate neighborhood of x such that X_i , Y are expressed as

$$X_{j} = \sum_{i=1}^{d-1} \sigma^{ij}(s, x^{1}, \dots, x^{d-1}) \frac{\partial}{\partial x^{i}},$$
$$Y = \sum_{i=1}^{d-1} f^{i}(s, x^{1}, \dots, x^{d-1}) \frac{\partial}{\partial x^{i}} + \frac{\partial}{\partial s}.$$

If such a coordinate does not exist at any neighborhood of x, L is called elliptic at x.

We denote by $L(X_1, ..., X_r, Y)$ the Lie algebra generated by vector fields $X_1, ..., X_1, Y$. The ideal in $L(X_1, ..., X_r, Y)$ generated by $X_1, ..., X_r$ is denoted by L_0 . Then L_0 is expressed as

$$L_0 = \left\{ \sum_{i=1}^d \lambda_i X_i + Z; \ Z \in L' \right\},$$

where L is the linear span of $[X, Z], X, Z \in L(X_1, ..., X_r, Y)$. The projection of the Lie algebra $L(X_1, ..., X_r, Y)$ to the point x of M^d is denoted by $L(X_1, ..., X_r, Y)(x)$. $L_0(x)$ is defined similarly. Then $\tilde{L}_0 = \{L_0(x); x \in M^d\}$ is an involutive differential system. A vector field X is called an element of \tilde{L}_0 if $X(x) \in L_0(x)$ holds for all x.

Throughout this note, we assume that $\dim L(X_1, ..., X_r, Y)(x) = d$ holds for all x of M^d . Then $\dim L_0(x) = d$ or d-1. Theorem 1 and Theorem 1' in [2] are valid without condition (A). In fact, we have

Theorem 1*. Let M_n^d be the set of all parabolic points of the operator L. Then

 $M_{n}^{d} = \inf \{x; \dim L_{0}(x) = d - 1\}.$

Proof. Set $M' = \inf \{x; \dim L_0(x) = d-1\}$. The relation $M_p^d \subset M'$ is proved in [2, p. 239]. Before the proof of the converse relation, we require a preliminary fact. Let x be any point of M'. Then there exists a neighborhood U of x included in M' and Z^1, \ldots, Z^{d-1} of \tilde{L}_0 such that every Z of \tilde{L}_0 is represented as $Z = \sum_{i=1}^{d-1} f_i Z^i$ in U with C^∞ -functions f_1, \ldots, f_{d-1} on U. The fact follows immediately from Frobenius' theorem.

Now let $\varphi_i, t \in (-\varepsilon, \varepsilon)$ be one parameter local group of transformations on U that induces Y. We shall prove that the differential $d\varphi_i$ induces the isomorphism of \tilde{L}_0 in U for $|t| < \varepsilon$. Let Z^1, \ldots, Z^{d-1} be a basis of \tilde{L}_0 in U described above. Set $Z_i^j = d\varphi_i Z^j$ ($|t| < \varepsilon$). Then it holds $\frac{dZ_i^j}{dt} = d\varphi_i [Z^j, Y]$. Since $[Z^j, Y] \in \tilde{L}_0$ holds for all Z^j , these are represented as $[Z^j, Y] = \sum_{i=1}^{d-1} f_i^j Z^i$. Therefore we have a system of linear differential equation

$$\frac{dZ_{t}^{j}}{dt} = \sum_{i=1}^{d-1} f_{i}^{j} Z_{t}^{i}, \quad j = 1, \dots, d-1, \ |t| < \varepsilon.$$

The solution is then written as $Z_t^j = \sum_{i=1}^{d-1} g_i^j(t) Z^i$, j = 1, ..., d-1 with regular matrix $(g_i^j(t))$. This proves that $Z_t^j, j = 1, ..., d-1$ is a basis of \tilde{L}_0 in U. We have thus shown that $d\varphi_t$ is the isomorphism of \tilde{L}_0 in U for $|t| < \varepsilon$.

We can now apply the discussion in the proof of Theorem 1' to the present case without any change, and we see that all points of M^1 are parabolic. The proof is complete.

2. Global Classification

In case where $X_1, ..., X_r$, Y are analytic vector fields on analytic manifold, we have shown in Theorem 2 of [2] that the set M_p^d is empty or the whole space M^d . We shall show this fact in C^{∞} -case.

Definition (Hermann [1]). The Lie algebra L_0 is called locally finitely generated, if for any x of M^d , there exists an open neighborhood U and a finite

subset Z^1, \ldots, Z^n of L_0 (depending on U) such that any Z of L_0 is represented as $Z = \sum_{i=1}^{n} f_i Z^i$ on U with C^{∞} -functions $f_i, i = 1, ..., n$ on U.

Suppose that L_0 is locally finitely generated then L_0 is integrable, i.e., M^d is written as the disjoint union of maximal integrable manifolds of L_0 (Hermann [1]). Also, it holds $d\varphi_t \tilde{L}_0 = \tilde{L}_0$ for small |t| (The proof is similar as in the proof of Theorem 1*). Making use of these facts, we see easily that Lemma 3.4 in [2] is valid in this case. Therefore we have

Theorem 2*. Assume that L_0 is locally finitely generated. Then it holds M_p^d $=\phi$ or M^d . Further, $M_p^d = \phi$ holds if and only if dim $L_0(x) \equiv d$ for all x.

Lobry [3] shows that L_0 is locally finitely generated if L_0 consists of analytic vector fields. Thus the above theorem is a generalization of the first half of Theorem 2 in [2].

The latter assertion of Theorem 2 is not correct without additional condition. It should be rectified as follow.

Theorem 2.** Assume that X_1, X_2, \dots, Y are complete vector fields and that dim $L_0(x) = d - 1$ holds for all x. Assume further one of the following two conditions is satisfied.

(a) M^d is simply connected.

(b) There exists a regular maximal integral manifold of L_0 . Then, M^d is diffeomorphic to $T \times M^{d-1}$ where $T = (-\infty, \infty)$ or a circle and M^{d-1} is a maximal integral manifold of L_0 .

Before the proof. We have to correct Lemma 3.3 in [2] as

Lemma 3.3*. Let $A = \{\tau: \varphi_{\tau}(M^{d-1}) = M^{d-1}\}$. If condition (a) or (b) of Theorem 2^{**} is satisfied, then $A = \{0\}$ or a discrete subgroup isomorphic to integers.

Proof. If condition (a) is satisfied, the map F; $R \times M^{d-1} \to M^d$ defined by $F(\tau, x)$ $= \varphi_{\tau}(x)$ is diffeomorphic, since F is a covering projection. Thus $A = \{0\}$.

Suppose next that condition (b) is satisfied but there exists a subsequence $\tau_n(\pm 0)$ in A converging to 0. Let x be a point in M^{d-1} and let $x_n = \varphi_{\tau_n}^{-1}(x)$. Then $x_n \in M^{d-1}$ and $\{x_n\}$ converges to x in the topology of M^d . Since M^{d-1} is a regular submanifold, $\{x_n\}$ converges to x in the topology of M^{d-1} . (By definition of the regular submanifold, the topology of M^{d-1} coincides with that as the subspace of M^d .) Therefore the map F is not one to one on any neighborhood of x. This implies that F is not locally diffeomorphic, condradicting to Lemma 3.1. We have thus seen that $\sigma = \min\{\tau > 0; \tau \in A\} > 0$. The discussion of Lemma 3.3 then proves Lemma 3.3*.

The assertion of Proposition 3.1 is valid under condition (a) or (b) (but without condition (A)). As a consequence, we remark that M^{d-1} is always a regular submanifold, if M^d is simply connected. Further, the condition (b) is necessary for the assertion of Lemma 3.3* and Proposition 3.1*.

Corollary to Proposition 3.1* is stated as

Corollary*. Suppose that the universal covering space of M^d is compact. Then the operator L is elliptic.

In fact, if L is parabolic in M^d , $R \times M^{d-1}$ is a covering space of M^d . This contradicts that the universal covering space of M^d is compact.

Now we can see that the proof of Theorem 2 can be applied without essential change to the present Theorem 2^{**} .

Theorem 3' requires an obvious modification.

References

- 1. Hermann, R.: The differential geometry of foliations II. J. Math. Mech. 11, 305-313 (1963)
- Ichihara, K., Kunita, H.: A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 30, 235–254 (1974)
- 3. Lobry, C.: Controlabilité des systèmes non linéaires. SIAM J. Control 8, 573-605 (1970)

Received September 7, 1976