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Assume that a net (u~) of measures converges in some sense to a measure/~. 
Then we investigate whether for a given class ~ of functions, we can conclude 
that 

lim sup 1~ f d # ~ - ~  fdkt[ = O. 
c~ f e g  

The present paper  offers an axiomatic treatment which allows us to 
extend the "~-criterion' ,  until now only available in the weak convergence 
case, to the case of setwise convergence as well. Actually this was our 
principal motivation. 

The paper  is selfcontained and yet due to the development of new 
techniques there is only little overlap with previous research. 

Some concrete r e su l t s -ma in ly  refinements of known o n e s - a r e  derived 
with the present theory at hand. In particular, we characterize those probabili ty 
distributions on R n for which the empirical distributions almost surely converge 
to the theoretical one, uniformly over the class of convex sets. 

1. Introduction 

Let X be a set, N a a-field of subsets of X and N a (~, X, u f ,  c~f) subpaving of N (i.e. 
N contains ~ and X, and N is closed under finite unions and intersections). 

All measures considered are finite non-negative measures on N. 
For a measure/~ and a net (/~)~a of measures, we say that #~ q-converges to g, 

and we write/~--~#[N],  if 

#~X ~ I~ X 

and 

liminf/~ G >/~ G for all G ~ N. 
c~ 

introducing the paving 

Y = C N  
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of complementary g-sets, (q-convergence is equivalent to convergence of the total 
mass and 

l i m s u p g J < g F  for all F e ~ .  

If N is a subalgebra of N, g-convergence is equivalent to setwise convergence on 
N. In particular, N-convergence is the same as setwise convergence on all of N; this 
form of convergence will also be referred to simply as setwise convergence. 

If X is a topological space, N the Borel a-field and N the paving of open sets, N- 
convergence is equivalent to the familiar notion of weak convergence (we do not 
demand the Hausdorff  axiom). 

Let (x~) be a net on X and x ~ X. Then g-convergence of the corresponding 
point masses: ex ~e~[N]  is equivalent to convergence of x~ to x in the topology 
z ((r [We use the convention that z (.) means "topology generated by".] We point 
out that the sets in z(N) need not all be measurable, for instance, if N = N = Borel- 
sets on [0, 1], then z(N) consists of all subsets of [0, 1]. 

We remark that when g~ g-converges to/Z, we can use the ideas of the standard 
"Por tmanteau  theorem" (cf. Theorem 8.1 of [191) to deduce convergence proper- 
ties for functions. For example, it follows that ~ f d g ~ f d g  for every bounded f 
which is z(N)-continuous and N-measurable. 

Besides X, N and N, we assume that there is given a measure/Z and a uniformly 
bounded class 8 of real-valued N-measurable functions. 

For two measures g~ and g2, we put 

J]gl -/Z2IIr = sup {J~fdg 1 - f d g  21:f6 g}. 

By ~ we denote the quantity 

= sup limsup II/Z~ -g l l  8, 
(~) 

where the supremum is taken over all nets (#~) which g-converges to g. If desirable, 
we write ~(g, #). 

If ~ =0,  i.e. if II/z~-glL~--,0 for every net (g~) which g-converges to/Z, then g is 
called a g-uniformity class for g-convergence. If (~ = N we speak of a g-uniformity 
class for setwise convergence. Clearly, this is the least restrictive notion as any g- 
uniformity class for N-convergence is a/z-uniformity class for setwise convergence. 
I f g  is a g-uniformity class for setwise convergence for every measure/Z, g is called 
an ideal uniformity class for setwise convergence. 

In the other important  case, that of a topological space and N the paving of open 
sets, we say that g is a g-uniformity class for weak convergence if ~ = 0. If g is a g- 
uniformity class for every g-continuous/Z, i.e. for every g such that each f ~ g  is 
continuous almost everywhere w.r.t, g, then g is called an ideal uniformity class for 
weak convergence. We mention, that if g is a g-uniformity class for weak 
convergence, then g is necessarily g-continuous (cf. the remark following the proof 
of Theorem 7). 

The main aim of this paper is to derive necessary and sufficient conditions for 
to be 0. 
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Besides 4, we introduce 4 + and 4-, mainly to be thought of as auxiliary 
quantities, defined by 

+ = sup limsup sup (~fd#~- Sfd#), 

~- = sup limsup sup (If d#-~fd#~), 
(#~) cr f e g  

where the supremum is over all (#~) which (f-converges to g. Clearly, 

= max (4 § ~-). 

Our results depend on certain topological concepts which we now discuss. 
Let 7c be a topology on X. By q/(~) we denote the class of upper, and by 2.q~ (7c) the 

class of lower semi-continuous functions on X w.r.t, rc. Thus f e  ~(~) if and only if 
{ f  > t} e Crc, the paving of closed sets, for every real t. By ~+~ (.~) we denote the class 
of f e  ~(rc) with 0 < f < 1. 

For an arbitrary (bounded) function f on X, s denotes the upper, and f~- the 
lower semi-continuous envelope of f ,  i.e. 

f~+ =inf  {heq/(~): h>f}, 
f~- =sup {gs~(~) :  g < f } .  

Furthermore, we define the topological oscillation of f (w.r.t. ~) by 

0 , ( f )  =f ,+ - f . - .  

We see that D,(f)e~(rc). The usual oscillation of f over a set N is the quantity 

cor =sup {If(x)-f(y)l: xeN, yeN}. 

By standard results on semi-continuous functions we see that the value of the 
topological oscillation of f at a point x is given by 

0~ f(x) = inf cof(X(x)), 
N (x) 

where the infimum is over all neighbourhoods N(x) of x. 
Denoting by O~(A) the topological boundary w.r.t. ~ of the subset A, we have 

(1. denotes the "indicator function of"). 
Now return to the given objects X, ~ ,  (~, # and E. By//(N) we denote the set of 

all finite topologies contained in ~f, directed by inclusion. Equivalently, F/(N) is the 
set of all finite (~, X, ~ f ,  c~f) subpavings of ~f. 

We define r/, t/+ and t/- by 

r/= inf sup S ~fd#, 
f ~ g  

~/+ = inf sup f (f~+ - f )  d#, 
r~ f e n  

t/- = inf sup ~ (f-f~-) d#, 
rc fEcf 
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where all the infima are over rc ~ H(fq). We note that these infima may be replaced by 
limits over the directed set H(fq). If desirable, we may write t/(g, #), t/+ (g, #) and 

- (< #). 
Lastly, we introduce ( =  ((g,  #) by 

= sup S essinf0#(f~) d#, 
(j'~) 

where the supremum is over all subfamilies (f~)~m~) o f g  indexed by H(fq), and the 
integrand is the essential infimum w.r.t. # of the functions 0~(f~); rc ~ H(N). 

Our basic result is that the conditions ~ = 0, r/= 0 and ~ = 0 are equivalent. For a 
detailed formulation of this result, together with some further information, we refer 
to Theorem 5. The preparatory theoretical considerations are to be found in 
Sections 2 and 3. These sections also contain material of independant interest. 

Section 4 contains the main theoretical results. Besides Theorem 5 two further 
results are developed which express the condition for uniformity with reference to a 
single topology (compare with Theorem 5 which involves all the topologies in 
H(fq)). The topological concepts which are needed for this development seem to be 
new. 

In Section 5 we show how previous results, actually refinements of these, on 
uniformity classes for weak convergence may be obtained from the present ones. 

Section 6 points out a generalization of the theory to cases where g depends on 
a parameter  belonging to a directed set. Naturally, this more general setting could 
have been studied right from the beginning, but that would result, we believe, in a 
loss of clarity. 

Some applications are given in Section 7. For other possible applications we 
refer to I-2, 11, 16] and [18]. 

2. The Relation between ~ and !/ 

As explained in the introduction, the main results are expressed in terms of certain 
finite topologies on X. In our first lemma we summarize some simple but useful 
facts related to a fixed finite topology. 

Let n be a finite topology on X. Denote by c~ (~) the algebra generated by n - this 
is the Borel field w.r.t, re, if you w i s h - a n d  denote by %(rc) the set of all atoms in 
c~(~). For each x e X we define: 

A~=the atom (in c%(n)) containing x, 

G~ = the smallest set in n containing x, 

F~=the smallest set in Cn containing x. 

Furthermore, for an a tom A we define 

G a = the smallest set in n containing A. 

F~ is the closure of {x} in the topology n. As G x is the smallest open set 
containing x, a net x converges to x in the topology ~ if and only if x~ e G~, 
eventually. If it is not clear which topology we consider, we write A~x, G ~  and F~.  
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For a bounded function f on X we have 

f~+ (x)=sup {f(y): y~ Gx}, 

f~- (x) = inf {f(y): y e Gx}, 

O~f(x)=col(Gx). 

We leave the simple proof of the following lemma to the reader. 

Lemma 1. Let zc be a finite topology on X. Then one has: 

(i) Ax=G~c~F~; x ~ X ,  

(ii) y e G ~ F y ~ A ~ ,  

(iii) G~=G A for all x~A; A~o(TC), 

(iv) The atoms A ~ ~o(TC) can be characterized as the maximal sets on which every 
upper semi-continuous function w.r.t. ~ is constant. 

For every bounded function f on X we have: 

(v) f~+=~supf.  14, 
G~ 

(vi) f ~  = 2 inff-  14, 
GA 

(vii) 0= f= 2~ /C~) .  14, 
the sums being over all A ~o(rC). 

Lemma 2. For every zc~II(N), ~+(~gl (n))--0. 

Pro@ We employ the general inequalities 

1 = 1 1 "  

valid for 0 __< g < 1. 
Assume that #=~#[~] .  To ~>0 choose ~o such that 

/I~F<=#F+~ for all c~__>a o and all F~CTr. 

Also choose n such that n - l # ( X ) < , .  
For any fa~//+~ (z~) and any ~>~o we then have 

! 1= 
~fd#~-  ~fd# < #=X + - E #~({f > v/n})-  ~fd# 

n 1 

1 1 1 
< n # X  +ne +n ~ # ( { f  > v / n } ) + ~ - y f  d# 

1 

<=3~. 

This shows that ~+(~//+1(~))=0. D 

P r o p o s i t i o n  1. ~ + = r/+. 
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Proof. To prove ~ + < t/+ assume, as we may, that all functions in g lie between 0 
and 1. Let #~-+# [(q]. To e > 0, choose rce/-/((~) such that 

~(f~+-f)d#<rl+ +e for all f e g .  

Then choose, applying Lemma 2, % such that 

~gd#~-~gd#<e for ~>c% and geJ#1(~r). 

For c~>~ 0 and f e g  we then have 

5fd#= - 5fd# < (Sf~+ d#, - 5f~+ d#) + ~ (f=+ - f )  d# 
<~/+ +2e.  

Hence 4 + <q+ +2e.  4 + <tl + follows. 
To prove ~ + > q +, let t be any number with t < r/+. We shall prove that ~ + > t. 

Fix, for a while, rce//(N). We can find f e n  with 

Sf=+d#>Sfd#+t. 

According to Lemma 1, (v), we can find, to each a e %(n), a point ya e Ga such 
that 

~f(Ya) #(A)>~fd# + t, 
A 

the sum being over all Ae%(rc). 
Put 

# ( A )  �9 
A 

ey denoting a unit mass at y. Then: 

#~X = # X ,  (1) 

~fd#~- ~fd# > t, (2) 

#~F<__#F for all FeCn. (3) 

(1) and (2) are obvious and (3) follows from Lemma 1, (iii) in the following way: 

# ~ F = ~  {#(A): y~ eF} = ~  {#(A nF) :  ya eF} < # F .  

When we now carry out this construction for every ~zeH(N), and let z~ run 
through the directed set H(N), we see by (1) and (3) that # ~ #  [~q]. And by (2), where 
we must now remember that the function occuring there depends on re, it then 
follows that ~ + > t. 

Proposition l applied to - g = { - f : f e g }  shows that ~ - = t / - .  Then 
=max(q +, q-)  follows. As 

max (tl+, tl ) <tl < 2 m a x  (t/+, rt-), 

we obtain: 
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Theorem 1. ~ = 0 if and only if t 1 = O. 

In case (f is an algebra, this is equivalent to a result of Stute (Theorem 1.2 of 
[14]). 

It follows from the proof that Theorem 1 remains true i f ~  is only assumed to be 
an algebra and if/~ is only assumed to be a finitely additive measure. 

The proof also shows that if(f is countable, or more generally ifH((f) contains a 
countable cofinal set, then, whenever g is not a #-uniformity class for (f- 
convergence, there exists a sequence (#,) which (f-converges to # such that [] #~ - # [IE 
does not converge to 0. 

Clearly, if there exists (f*, a(~, X, u f ,  c~f) subpaving of (f such that do is a #- 
uniformity class for N*-convergence, then do is also a/~-uniformity class for (f- 
convergence. As a corollary to the theorem, we see that conversely, if do is a #- 
uniformity class for N-convergence, then there exists a countable (9, X, ~ f ,  c~f) 
subpaving (f* of (f such that d o is even a #-uniformity class for (f*-convergence. 
Naturally, it is not true that there need exist a countable (~, X, ~ f ,  c~f) subpaving 
(f* of (f such that (f*-convergence implies (f-convergence. 

From the last remarks it follows, as in [16], Theorem 1.3, that if do is a #- 
uniformity class for setwise convergence with # a probability measure, then for 
every net (#~o)) of random measures defined on some co-probability space and 
obeying the strong law of large numbers with limit measure # (i. e., for every E e N, 
#~(E)~I~(E)  a.e. [co]), the Glivenko-Cantelli assertion 

I]~o~-#ll~--'0 a.e. [co] 

holds. 
The theorem also implies a converse to this: If do is not a #-uniformity class for 

setwise convergence, then there exists a net of random measures obeying the strong 
law of large numbers with limit measure #, such that the Glivenko-Cantelli 
assertion fails (we may take the co-probability space as a one-point space). 

As a consequence of the above discussion, we have: 

Theorem 2. A necessary and sufficient condition that the Glivenko- Cantelli assertion 

It#~-~ll~0 a.e. [co] 

holds for every measure # and for every net (#~) of random measures obeying the 
strong law of  large numbers with limit measure #, is that do be an ideal uniformity class 
for setwise convergence. 

3. The Relation between ~/and 

We shall establish the equality of t/ and ~ in a setting more general than really 
required for our uniformity problem. We believe that the result we arrive at is 
interesting in its own right. 

We start by recalling that a set N of functions between 0 and 1 defined on X is 
conditionally compact in [0, 1] x with the uniform topology, if and only if, for every 
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8 > 0, there exists a finite decomposition of X: X = 0 A~ such that the oscillation of 
1 

any function in ~ over any of the sets A~is at most ~ (cf. [3], Theorem IV.5.6.). 
The main idea of this section is contained in the following lemma. In loose terms 

the lemma shows that, under rather special circumstances, it is possible to modify a 
net of functions which is not downward filtering in a way which compensates for 
this missing property. 

Lemma 3 (modification lemma). Let II=(II ,  <) be a directed set, and let, for each 
7cell, ~ be a subset of [0, 1] x such that the following two conditions are satisfied: 

(a) @~ is conditionally compact for each ~zeFl, 

(b) ~ < ~ ,  f:eG~3LeG:fl>=A. 
Then, for every family (f~)~n with f~@~; rc~Fl, and any ~>0, there exists 

another .family ( h j ~ n  with h ~ e ~ ;  rceFl such that, for every finite subset 11 o G 1I, 
; there exists 7ZoeIl such that h~>f~ ~ - ~  for every ~zeH o, In short, the assertion can be 
�9 written: 

V(f j  Ve>O ~(h~) VFlofinite ~Zoe// :  minh~>f~o-e.  (4) 
~zeHO 

Proof. Let (f~)~A be a universal subnet of (J~)~n- Fix ~z~H and e > O. For each 
with ~z= ~ ~z, let g= denote a function in ~= with g= ~f==. By (a) there exists h=e~= with 
[]g~-h~[[ <~, frequently in c~ (here we consider the uniform norm), h ~ > f ~ - e ,  
frequently follows, and as (f~) is universal, we even have h~ > f ~ - e ,  eventually. 
Clearly, varying re, (h i  has the desired property. [~ 

As a special case of Lemma 3 we note the following result: I f  @~ is a finite paving 
on X for each 7~eII, and if, whenever A 2 e ~  with n2 >~l ,  there exists A l e ~  with 
A 1 ~A2,  then, expressed in the same short way as in (4), we have: 

V(A~) 3 (B j VH 0 finite 3rc0elI: ~ B~_A~o. (5) 
~e/]O 

Probably, this result is equivalent to the axiom of choice. 
As a corollary to Lemma 3 we get: 

Theorem 3. Let ( X, ~ )  be a set with a a-field, let H = (II, <__) be a directed set and let, 
for each ~zeH, ~ be a set of measurable functions in [0, 1] x. Assume that (a) and (b) 
from Lemma 3 hold. Then, for every measure # on N, we have 

inf sup ~fd# = sup inf~ minf~ d#, (6) 

where, on the right hand side, the supremum is over all (f~)~n with f , e ~ ;  ~zelI, and 
the infimum is over all finite subsets H o of 1I. 

Actually, in this formulation, the result holds even if ~ is only a field and # is 
only supposed to be a finitely additive measure. Of course, in the a-additive case, we 
may write (6) more naturally in the form 

inf sup ~fd# = sup ~ essinff~ d#. (7) 
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The simplicity in the proof of Lemma3,  and hence also in the proof of 
Theorem 3, is to some extent due to the appeal to the axiom of choice. We now show 
how a result can be obtained without using the axiom of choice. The result is less 
general in as far as we assume t h a t / 7  = N  but, on the other hand, we weaken 
assumption (a) of Lemma 3. 

Proposition 2. Let  (X, N,/2) be a f in i te  measure space and, for  each natural number n, 
let ~,, be a class o f  N-measurable functions between 0 and 1. Assume that: 

k 

(a) For all n >= 1 and ~ > 0 there exists a f in i te  decomposition X = [ j  Ai, say, o f  X 
i = 0  

in sets f rom N such that #(A o) < e and such that o~f(Ai) < e for  all i = 1, . . . ,  k and all 

f E ~ . .  

(b) n<m,  f e ~ , ,  ~ 3 g e ~ :  g > f  

Then for  every sequence ( f , ) ,>l  with f , e ~ , "  n >  l, and any e>0,  there exists 
another sequence (h,),> 1 with h,e~, ,"  n ~ 1 such that, for  every n o > 1 there exists k 
>_ 1 such that 

/~({min h, < f k -  e}) < z. 
n~no  

In short, this assertion can be written." 

V(s Ve>O ~(h,)V,o 3k: /2({minh~ <fk-~})<e .  (8) 
n < n o  

In particular, it fol lows that 

inf sup ~]'d/2 = sup ~ infs  d#, (9) 
n f ~ n  (fro n 

where, on the right hand side, the supremum is over all sequences (f,),~>= 1 with f~E ~ " n 
>1. 

Proof. To prove (8), let (f~) and e > 0 be given. Put ~,~ =�88 2-m; m ~ 1. Determine 
decompositions 

Nm 

X =  ~) Ami; m >  l 
' i ~ O  

as specified by (a) such that, for each m > i, 

/2(A,,o)<%; cof(A,,i)<e ~ for i = l , . . . , N m  and f ~ .  

By the Cantor diagonal procedure, we can find a subsequence (s 1 of(f,,),=> 1 
such that, for all m> 1 and all i=  1, ..., N m, the limit 

lira sup Lk(x ) 
1r x ~ A m i  

exists. 
Fix, for a while, m > 1. For all k such that n k > m, let gk denote a function in ~m 

with gl, >f,k" By an elementary argument, which we shall leave to the reader, it can 
be proved that there exists a function h,,e~m, which may in fact be chosen among 
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the function gk; k > 1, such that 

sup [h.,(x)--gk(x)l<2~.,, frequently [k]. 
x E X  \ Amo 

It follows that 

hm>=fnk--2em on X'-.Amo, frequently [k]. 

Thus for each i=  1,..., N m and for each x~Ami, we have 

h m (x) > sup f.k(y) - 3 e~, frequently [k], 
y f f z imi  

hence, by the construction of (f~k), we have 

hm(x)>_ supf .k(y) -4e~ ,  eventually [k]. 
yffAmi 

It follows, that 

hm>_f,~-4G on X \ A ~ o ,  eventually [k]. (10) 

Now we vary m and consider (hm)m >__ 1. By (10) we see that for each no, there exists 
k such that 

nO 

{ m i n h , < f ~ - 4 e l } ~  U Ano. 
n < n o  n= 1 

By subadditivity of #, (8) follows. 
(9) is a simple consequence of (8). [~ 

It tbllows from the proof, that (8) holds if # is only assumed to be subadditive. 
For instance, we may take N = 2  x and # A = I  for A:I=~, / ~ = 0 ;  thus the result 
contains a proof of Lemma 3 not using the axiom of choice in case H = N. 

(9) depends on o--additivity, but if the right hand side is changed to the form 
appearing in (6), the result also holds in the finitely additive case. 

We leave the more general discussion and return to our problem of uniformity. 
So once more, we are faced with the objects (X,N,g), ~q and g and the 
accompanying concepts defined in the introduction. For  each ~ ~/7(N) consider the 
class of topological oscillations of functions in g: 

~ = {8~(f): f~g}.  

By Lemma 1, these classes are conditionally compact so that condition (a) of 
Lemma 3 is satisfied. Condition (b) of that lemma is obvious since, for ~1 < ~Cz and 
any bounded function f we have 

0~ (f)  > a,~= (f). 

As we may assume that g_~ [0, 1] x, Theorem 3 is readily applicable and we 
obtain the following result: 

Theorem 4. Let t l and ( have the meaning as explained in the introduction. Then tl = ~. 
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We remark that it does not seem at be so easy to find a quantity that relates in 
the same way to t/+ as ( relates to q. 

4. Main Results 

Let ~ be a topology on X, f a function on X and e > 0. By the zc, e-boundary o f f  we 
understand the subset of X defined by 

a~=(f) = {0n(f) > el. 

c~==(f) is closed in the topology zr. For an indicator function and an e with 0 <e 
< 1, we have 

~(1A) = ~(A). 

If ~z is a finite topology, we have 

#~=(f) = U {A r col( G ~) > e }. 

Theorem 5. Let X, ~ ,  ~q, 8 and # be as in the introduction. Then the following 
conditions are equivalent: 

(a) 8 is a p-uniformity class for (~-convergence, 

(b) inf sup ~ 0~(f) d # =  0, 
rcaH(~') f e g  

(b') Ve>0: inf sup#(0~J )=0 ,  

(c) V(f~)~m~): ]essinfO~(f~)d#=0, 

(c') V(f.).~m~ Ve>0: #(essinft?~(f~))=0. 

In (c) and in (c') it is understood that f~E6 ~ for all ~zd/(~). 

Proof The equivalence of (a), (b) and (c) follows from Theorems 1 and 4. The 
equivalence of (b) and (b') is obvious in view of the inequalities 

e #(0~=f) < ~ 0=(f) d# < co~(X). #(a=~f) + e #(x). 

The equivalence of(b') and (c') follows by a simple application of Theorem 3. 

As usual, changing the form of(c) and (c') in a way such that essential infima are 
avoided, it is seen that only finite additivity of # is essential. 

In accordance with one of the remarks made to Theorem 1, we see that if (a) 
holds then there exists a countable (~, X, U f  (~f)  subpaving ~* of(r such that (b), 
(b'), (c) and (c') even hold with ~f replaced by ~*. 

Corollary. In the setting of  Theorem 5, assume that both gt and ~2 are p-uniformity 
classes for (a-convergence. Then 

El" C2 = {fl "f2 :fl e~'el,f2 ~a2} 

is also a #-uniformity class for ~-convergence. 
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Proof Let K be a constant such that If(x) l < K for all x ~ X and all f e  gl w g2- From 
the inequality 

L f l '  f2 (X) - f i "  f2 (z)] < K ]fi (x) - f i  (z)[ + K If2 (x) - f2  (z) l, 

we get 

ae(fl "f2) < K(a~(f,) + a~ (f2)) , 

and the result follows readily from Theorem 5. 

A similar result can be obtained for the class of maxima or minima of a function 
in gl and a function in g2. 

Even though Theorem 5 seems satisfactory, it is possible to develop another 
general result which sometimes is advantageous. Note that the conditions of 
Theorem 5 depend on a whole class of topologies related to N. The main feature of 
the result we now aim at, is that it only invokes one single topology related to c~. In 
contrast to the situation in Theorem 5, this topology will generally not be finite, but 
should be thought of as approximating the topology r(N). That we can not work 
with -c(N) itself is partly because, in general, r(N) is not contained in N. 

We need some purely topological preparations. 
Let (X, ~) be a topological space. Let (f/) be a uniformly bounded net of functions 

on X. By the lower limit oscillation of (f/) we understand the function h, defined by 

h,(x) = inf liminfcof~(N(x)); x e X ,  
N(x) i 

the infimum being over all T-neighbourhoods N(x) ofx. The upper limit oscillation is 
the function defined by 

h*(x) = inf limsup cos~(N(x)); xeX .  
N(x) i 

If these functions coincide, say h,  = h* = h, then h is called the limit oscillation of(f/) 
and we write 

h = limosc(f/). 

If it is desirable to stress the dependance on z, we talk of the limit oscillation w.r.t. ~. 
If f / = f  for all i, the limit oscillation exists and coincides with the previously 

introduced topological oscillation 0,(f). 
Note that h,  and h* can also be expressed by the formula 

h , =  inf liminf ~(f/), 
=eH(~) i 

h*= inf limsup as(f/). 
nalI (O i 

For a net (Ai) of subsets of X we define the lower limit boundary F, and the upper 
limit boundary F* by 

F, = {x: V (N (x) c~ A i =t= ~ and N(x) c~ C A i :~ ~), eventually in i}, (11) 
N(x) 

F* = {x: V (N(x) ~ Ai ~ ~ and N(x) ~ C A~ :~ ~), frequently in i}. (12) 
N(x) 
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If F, = F * =  F, say, then F is called the limit boundary of (Ai) and we write 

F = lim bd(Ai). 

In case fi = 1A~ for all i, then, with the above notations, h, = lv, and h* = lp,. 
If (X,z) is locally connected, (11) and (12) reduce to 

F, = {x: V N ( x ) ~  O~Ai~fJ , eventually in i}, 
N(x) 

F* = {x: V N(x)c~ O~Ai=t=~, frequently in i}, 
N(x) 

hence in this case the limit boundary of (A~) exists if and only if the topological limit 
of the net of boundaries (~r A~) exists, and when so, the two sets coincide. We note 
that this simple relation to the notion of topological limit need not hold if (X, z) is 
not locally connected. 

Lemma 4. Let (X, ~) be a topological space and let ( f )  be a uniformly bounded net of 
real valued functions on X. Then: 

(i) The lower limit oscillation and the upper limit oscillation of (fi) are both upper 
semi-continuous. 

(ii) I f  ( f )  is an universal net, then the limit oscillation exists. 

(iii) I f  r has a countable base and if ( f )  is a sequence, then the limit oscillation 
exists for some subsequence of (f). 

The simple verification is left to the reader. 

Theorem 6. Let N o be a countable (fJ, X, ~ ) f  (-If) subpaving of N. 

(i) I f  ~ h dl~ =0 for every h obtainable as the limit oscillation w.r.t, the topology 
Z(No) of a sequence of functions from ~, then C is a #-uniformity class for N- 
convergence. 

(ii) I f  furthermore, z (No)= z(N), then the above condition is also necessary for 
to be a #-uniformity class for N-convergence. 

Proof First observe that any limit oscillation w.r.t, z(No) is ~-measurable; this 
follows by Lemma 4, (i) since No is countable. 

(i) Let G l, G2,... be an enumeration of the sets in N 0. Denote by ~, the 
(g, X, O f  ~f)-closure of {G 1 . . . . .  G,}. Let (f,) be any sequence of functions from d o 
and put 

g = inf 0~.(f,). 
n 

We shall prove that ~ g d# = 0. By Theorem 5, (c) this will imply that do is a #- 
uniformity class for N-convergence. 

By Lemma 4, (iii), the limit oscillation w.r.t, r(No) exists for some subsequence of 
(s Assume for notational convenience, that the limit oscillation of(f,) itself exists. 
Put h = limosc(f,). 

We shall prove that g<h .  To do this, let x ~ X  and let N(x) be a V(No)- 
neighbourhood ofx. Choose n o such that x ~ G,o ~_ N(x). Let n > no and denote by H,, 
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the smallest set in n n containing x. Then H, ~_N(x), hence 

col= (N (x)) _-> COl. (Hn) : 0=~ (f~) (x) > g (x). 

It follows that 

liminf col= (N (x)) > g (x) 
n 

and as this holds for every r(No)-neighbourhood N(x), h(x)> g(x) follows. 
Since g__<h and Shd#=O, S g d # = 0  follows. 

(ii) Now assume that "c(No)=~(N ) and that g is a #-uniformity class for N- 
convergence. Let h=l imosc( f , )  with (f=) a sequence on g. We are to prove that 
~hd#=O. 

Given t>0 ,  we choose by Theorem 5, (b), nEH(N) such that 

O~fd# < t for all fE# .  

Let Ai; i = 1  .. . .  ,k be the atoms in %(n). Choose, to each i, xi~A i such that 

h (xl) > sup {h (x): x ~ A i} - t. 

Let 1 _<iNk and let Gi be the smallest set in n containing x~. As N_~ Z(No), G i is 
a z(No)-neighbourhood of xi, hence 

l imin f col= ( G i) > h ( x i). 
n 

It follows that 

coi=(Gi) > h(xi) - t, eventually in n, 

hence, for all xeAi  we have 

~ ( f , ) ( x ) > h ( x ) - 2 t ,  eventually in n. 

As this holds for all i=  1,... ,  k, there exists an n such that 

a~(f,)>=_h-2t. 

It follows that 

~ h d # < t + 2 t # ( X ) .  

As t was arbitrary, this shows that ~ h d# = O. [7 

In accordance with previous remarks we note, that even if there exists no 
countable N o such that Z(No)= z (N), it is always possible when g is a #-uniformity 
class for V-convergence, to find a countable N such that ~ h d# = 0 for every limit 
oscillation h w.r.t. Z(No) of a sequence on g. However, this class N o will usually 
depend both on g and on #. 

In case g is a subclass of N', the condition appearing in Theorem 6 is that #(F) 
= 0 for every F obtainable as the limit boundary of a sequence of sets from g. A 
special instance of this result is the following: 



Uniformity in Convergence of Measures 15 

Corollary. Assume that z((y) is locally connected and that z((y) has a countable base. 
For a subclass o ~ ~_ ~ and a measure # we then have that ~ is a #-uniformity class for 
(Y-convergence if and only if #(F) = 0 +for every F obtainable as the topological limit 
of a sequence of boundaries of sets in & 

The topological limit here refers to the topology z(~f) and the boundaries also 
refer to z(~). 

The proof is easily carried out by first noticing that there exists a countable base 
~o contained in (Y (cf. Theorem 1.1.7 of [5]). 

The result was first proved in a special case in [17] (statement immediately 
preceeding Theorem 5). 

We note that, since z((y) is assumed to have a countable base, (y-convergence 
coincides with weak convergence of measures w.r.t, z((y). 

If the measure # has extra smootness properties, it is possible to avoid the 
countability assumptions of Theorem 6. Even though it is possible to formulate a 
general result (by expressing the conditions in terms of an extension of the measure, 
cf. Theorem 5.1 of [,19]), we restrict ourselves to the weak convergence case. For the 
notion of r-smooth measures, see [,19]. 

Theorem7. Let (Y be a topology on X, ~ a uniformly bounded class of Borel- 
measurable functions and # a z-smooth measure. 

Then ~ is a #-uniformity class for weak convergence if and only if ~ h d# = 0 for 
every function h obtainable as the limit oscillation of a net of functions from ~. 

Proof As the ideas in this proof are more or less the same as those employed in the 
proof of Theorem 6, we only give an outline. 

For the "if" part we employ (c) of Theorem5, noting that due to the z- 
smoothness of #, 

essinf 0~(f~) d# =~ inf 8~(f~) d#. 

The essential step is then the proof of the inequality 

inf 8+ (f~) < limosc (f~), 
7Z C~ 

where (f~) is a subnet of (f~) for which the limit oscillation exists. Briefly, this can be 
proved as follows: To x ~ X  and N(x), an open neighbourhood of x, choose eo such 
that N(x)~7c~ for all c~>c%. Then, for a>eo ,  the oscillation off~+ over N(x) is 
>inf~?~(f~)(x). This implies the desired result. 

The proof of the "only if" part follows closely the corresponding part of the 
proof of Theorem6. [~ 

Note that z-smoothness of # is not required for the proof of necessity. We show 
by an example that z-smoothness of # is essential for sufficiency. 

Example. Let ~ be the first uncountable ordinal and consider [,0, ~2] in the order 
topology. [-0, (2] is a compact Hausdorffspace. Let ~ be the paving of all A _~ [0, f2] 
such that either A contains a closed unbounded subset of [,0, f2] \ {~} or else the 
complement of A has this property. We point out that closed here refers to the 
subspace [,0, f2] \ {f2}. According to [-9], N is the Borel a-field on [,0, f2]. Let # 
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denote the measure on ~ defined by 

/z(A)={~ otherwise.if A contains aclosed unbounded subset of [0, ~]  "-. {[2} 

Then/~ is a measure which is not z-smooth. According to [8], this observation is 
due to Dieudonn6. We refer to [8], 52.10 or to [9]. 

Denote by g the class of all subsets [~, (2] with e ~ [0, f2]. It is easy to see that the 
net (e~)~Eo,a ~ of point masses converges weakly to # (it also converges to ea)- Hence 

is not a #-uniformity class for weak convergence. 
On the other hand, the condition of Theorem 7 is satisfied since, i fF = limbd(Ei) 

with all the Ez in g, then either F = {f2} or F avoids an entire neighbourhood of f2, 
hence # F = 0 .  

Naturally, Theorem7 admits a corollary analogous to the corollary to 
Theorem 6: 

Corollary. For a locally connected topological space, and a z-smooth measure #, a 
class ~ of  Borel sets is a I~-uniformity class for weak convergence if  and only if, # F = 0 
for every set F obtainable as the topological limit of a net of boundaries of sets in ~. 

5. Uniformity Classes in Uniform Spaces 

In previous research ([2] and [19]), conditions for uniformity in weak convergence 
were developed in metrizable or uniformizable ( = completely regular) spaces; these 
conditions were expressed in terms of a metric or a uniformity. Even though 
Theorems 5 and 7 are applicable in completely general topological spaces, it is of 
interest to see how the older resul ts -actual ly  slight refinements of these results 
- m a y  be deduced from the present results. 

Let X be a completely regular topological space (not necessarily Hausdorff) 
provided with its Borel field. Consider a fixed uniformity on X and denote by ~' the 
class of open and symmetric members of the uniformity. For U ~ q/and f a bounded 
measurable ffmction, we define the U-oscillation of f as the function 

~v(f)(x)=c%(uD]); xEX. 

For e > 0, the U, e-boundary of f is the set 

av,~(f) = {x: ooy(g Ix]) > ~} = {he f> ~}. 

All these sets are open, hence Ovf  is lower semi-continuous. 

Theorem 8. Let ~ be the open and symmetric members of a uniformity on X,  let ~ be 
a uniformly bounded class of Borel measurable functions, and let # be a z-smooth 
measure on X.  Then the following conditions are equivalent: 

(a) g is a #-uniformity cflass for weak convergence; 

(b) inf sups Ovfd#=O; 
U ~ q /  f e d  ~ 

(b') Ve>O: inf sup#(~v,J) - -O;  
U ~ '  f ~ d  ~ 
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(c) 3 %  countable V(fv)w~o: ~ inf @(fv)d#=O; 
U~Ollo 

(c') 3 %  countable V(fv)w,oVe>O: #( ~ av,=(fv))=O. 
Ue~o 

In (c) and in (c') it is understood that ~0___~ and that .(ueE for every Ue~ o. 

Proof. (a) ~ (b): given t > 0, choose by Theorem 5, (b) ~e//(~), with ~ the paving of 
open sets, such that 

~?~fd# < t for all f e &  

Since, for any G e N, the family of all G* e N for which U [G*] __ G holds for some 
U e ~  is upward filtering with union G, we can, by r-smoothness of#, find Ue~g and 
to each Ge~z a set G*eN such that 

U[G*]~_G for all Gear, 

# (U {G \ G * :  Ge~}) < t. 

We claim that for any f :  

#u f<= a~f on the set X "-. [9 {G'-. G*: Ge~}. 

Clearly, if we can prove this, (b) will follow. Assume then that x lies in non of the sets 
G \G *;  Gerc. Let G be smallest set in ~ containing x. Then, as xeG*:  

avf(x) = oo(U [x]) < co;(g [G*]) < coi(G) = a=f(x), 

as desired. 

Clearly, (b) ~ (b') ~ (c) ~ (c). 

( c )~(a ) :  Assume that h = l i m o s c ~ )  with f~e8 for each i. By Theorem7, it 
suffices to show that S h d# = 0. Two observations are essential for the proof we shall 
give of this: 

(i) For  every Ue~# and every t>0 ,  there exists a finite set A~_X such that 
# ( X \  U[A])<t. 

(ii) For  any U e ~ ,  any U * e ~  with U*o U*__ U, any finite set A~_X, and for 
any t > 0 there exists f e d  ~ such that h < Or f +  t on the set U* [A]. 

(i) is obvious by r-smoothness of #. 

To prove (ii), f is chosen among the functions f such that 

liminf~oi~(U*[xJ)<col(U*[x])+t for all xeA. 

Then, if yeU*[x] with xeA, U*[x] __ U[y] and we have 

h(y) < lim inf col, (U* [x]) < o)I(U* [x]) + t < Ovf(y ) + t, 

as desired. 
Employing (i) and (ii) together with an "e2-n-argument '', it is easy to deduce 

that S h d# = 0 from (c). [J 



18 F. Topsoe 

One may ask if the conditions 

(d) V(fv)w~u: ~ess inf(?u(fu ) d# =0;  

(d') V(fu)o~ ~ V 8 > 0: #(ess inf~v,~(fu)) = 0 
are necessary and sufficient for g to be a #-uniformity class for weak convergence. 
Note that (d) and (d') are obtained from (c) and (c') by reversing the order of the 
existance and the all-quantor. Necessity of(d) and (d') is obvious. It is not difficult to 
prove, using the ideas of the above proof, that a strengthening of(i) from that proof 
implies sufficiency: 

Proposition 3. In the setting of Theorem 8, assume that there exists, to each t < #(X), a 
family (Av)wo u of finite subsets of X such that 

#(ess inf U [Au]) > t. (13) 

Then (d) and (d') are both necessary and sufficient for g to be a #-uniformity class for 
weak convergence. 

The condition of this result covers the case where q/has  a countable base, for 
instance q/could be induced by a metric, and also the case when, to each t <#X,  
there exists a compact and measurable set K such that #K > t. 

We note that the essential infima occuring in (d), (d') and in (13) may be 
replaced by ordinary infima (intersections) by changing the functions to their upper 
semi-continuous envelopes and the sets to their closures. 

Example. Let X be the half-open interval [0, 1) and let 2 be Lebesgue measure on X. 
Provide X with the Sorgenfrey topology, i.e. the topology having all intervals of the 
form [a, b) as a base, cf. [5]. Then X is a Lindel6f space, and 2 is z-smooth. Let q/ 
denote the class of all neighbourhoods of the diagonal in X x X and let q/* be the 
subclass of q/consisting of all sets of the form 

U { J x J : J ~ J }  

where j is a (necessarily countable) class of pairwise disjoint intervals of the form 
[. ,  .) covering X. From the fact that any open covering of X has a refinement J of 
pairwise disjoint intervals of the form [. ,  -), it follows that any set in q/contains a 
set in ~*. This implies that q/is a uniformity on X, indeed it is the finest uniformity 
on X compatible with the given topology. 

Let (Au)v~u, be any family of finite subsets of X indexed by Ueq/*. We claim 
that 

F=~{U[Au]: ue~*} 

is countable. We show this by proving that for any xeF with x > 0, there exists y < x 
such that the interval (y, x) is disjoint with F. To see this, let (Y,)n__> 1 be chosen so that 
0=Yl<Y2<..- and x - n - l < y n < x ;  n > l  hold. Let J be the covering of X 
consisting of all the intervals [y,, y,+ 1); n>  1 and the interval Ix, 1], and denote by 
U the union of the sets g x J with J e J~  Then U eq/*. Since A U is finite, there exists n 
such that [y,, x) is disjoint with Au. Then [y,, x) is also disjoint with U[Au], hence 
also with F. 
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As F is countable, 2(F)=0, and as all the sets U[Av] ; U ~ *  are closed, we 
have, by v-smoothness of 2, that 

)o(essinf U [Av]  ) = 0. 
Us~ 

These considerations show that the v-smooth measure 2 does not satisfy the 
condition of Proposition 3. 

If we denote by C the class of all finite subsets of X, it follows that (d) is satisfied, 
but clearly, g is not a 2-uniformity class for weak convergence. Actually, this shows 
that a claim made in the notes and remarks to Sections 12-14 of [19], concerning a 
generalisation from Radon measures to z-smooth measures, is unjustified. [3 

6. A Refinement to Classes of Functions Depending on a Parameter 

Let X, ~ ,  N and # be as in the introduction. Let I--  (I, <) be a directed set and let, 
for each i~I, g~ be a non-empty class of real-valued N-measurable functions 
between 0 and 1. 

We say that (El) is a p-uniformity system for g-convergence if 

lim sup I~ fdp~-~ fd# t=O 
f ~gi= 

for every net (#u, i~)~V with # ~ # [ N ]  and (i~)~ D a subnet of / .  When we here speak 
o f / a s  a net, we have the identity map I-+I in mind with the domain directed by <. 

Theorem9.  The following are equivalent: 

(a) (C,.) is a #-uniformity system for g-convergence, 

(b) inf limsup sup~0~fd#=0,  
~z~H(95) i f~d~  

(c)V(~, i~,f~)~D : ~ ess inf 0~(f~) d# = O. 

In (c) it is understood that (rc~, is, f~)u,v is a net such that (~ ,  iu)~D is a subnet of 
H(N) x I (i.e., for every (~, i), (~z~, i~)>(~, i), eventually in ~) and that s for all 
c~D. 

We note that (b) is equivalent to the condition 

lim sup f O~f d# = O, 
(~,i) f eg l  

the limit being over the directed set H(N) x I. 
The proof of Theorem9 is easily carried out by generalizing the proof of 

Theorem 5 in a rather straight forward manner. Perhaps it is not entirely clear how 
the modification lemma, Lemma 3 should be generalized, so let us discuss that, and 
leave all the remaining details of the proof to the reader. 

To generalize the modification lemma, let/7 and I be directed sets, and for each 
(~, i) let ~,~ be a class of functions between 0 and 1. (We shall need this with ~,~ the 
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class of all ~ ( f )  with fegi .  ) Assume that, for every i and n 1 _-<n2, the implication 

f 2 e ~ 2 , i ~ f l > f 2  for some f~ e ~ , i  

holds, and that, for every n, ~){@~,i: ieI} is conditionally compact. 
Then, for every net (n~, i~,f~)~D with (n~, i~)~ D a subnet o f / 7  x I and with 

re* i* f *~  s  ~, for all c~eD, and for every e > 0, there exists a "modification" ( . . . .  J~ J~D 
of the same type as the given net such that, for every finite subset D o _ D there exists 
c~0eD such that 

min f*  >s  - e. 
c~EDo 

It is not difficult to establish this generalized modification lemma. 
It follows from Theorem9, that if (g~) is a #-uniformity system for fq- 

convergence, there exists f#o, a countable (~, X, ~)f, (~f)  subpaving of fr such that 
(g~) is even a #-uniformity system for No-convergence. 

Theorem 10. Let f~ be a topology on X, (g~)~x a net of classes of Borel-measurable 
functions between 0 and 1, and # a z-smooth measure. Then (gl) is a #-uniformity 
system for weak convergence if and only if, for every net ( i~,f~)~D with (in) a subnet of I 
and with f~egi~ for all c~eD, and for which limosc (f~) exists, we have 

limosc(s d# = 0. 

For necessity, z-smoothness of # is not needed. 
With a little care, it is also possible to generalize Theorem 8. However, we shall 

leave this to the interested reader. 

7. Applications 

The first result of this section arises when investigating the conditions for #- 
uniformity to hold for every measure #. It is necessary, at least convenient, With 
topological assumptions, and we only formulate a result for weak convergence. 

Let (X, re) be a topological space and let (gi)i~ be a family of classes of Borel- 
measurable functions between 0 and 1, indexed by a directed set I. The family (8i) is 
said to be equicontinuous in the limit at the point x if, to every e > 0 there exists a 
neighbourhood N(x) ofx  and an index ioet such that, for any i>  io, any f e ~  and 
any yeN(x) ,  I f  x - f  yl <e holds. If this condition is satisfied for all x e X ,  (gi) is 
everywhere equicontinuous in the limit. If I is a one-point set, these concepts reduce 
to the usual concepts of equicontinuity. 

Note that (g~) is equicontinuous in the limit at the point x if and only if, for every 
net (x~, i~)~ D such that (i~) is a subnet of I, and x~-~x, we have 

lim sup If(x~) - f ( x )  l = 0. 

We introduce the set of non-equicontinuity: 

D((gl) ) = {x: (~) is not equicontinuous in the limit at x} 
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and also, we introduce a certain function, which could be called the index of 
equicontinuity, by 

0((~.)) = inf limsup sup 0~f. 
rc~Fl(f~) i f ~ i  

Our notation is slightly unprecise, in that the dependance on the topology is 
supressed. 

It is straight forward to check that the sets 

{x: 0((4))(x)->_ t} 

are all closed, hence 0((o~i)) is always upper semi-continuous. As 

U ((4)) = {#((4)) > 0}, 

D((o~i)) is always measurable, indeed, it is always an F~-set. 

Theorem 11. Let the topological space X and the family (~i)isI be given. 

(i) I f  12 is a z-smooth measure and if (Ni) is 12-almost everywhere equicontinuous in 
the limit, then (gi) is a #-uniformity system for weak convergence. 

(ii) A necessary and sufficient condition that (gi) is a #-uniformity system for weak 
convergence for every v-smooth measure, is that (Ei) is everywhere equicontinuous in 
the limit. 

Proof. (i) We know that 12(D(C~))--0. It follows that 

~(4)d12=0. 

Consider any net (~ ,  i~,f~) as appearing in (c) of Theorem 9. We have 

essinf t?~(f~) d12 = ~ inf ~?~(f~) d12 < S 0(CI) d12 = 0, 

and the desired result follows from Theorem 9. 

(ii) Sufficiency follows by (i) and necessity is established rather easily by 
consideration of point masses. 

The proof could equally well have been based on Theorem 10. 
We have been unable to decide if the result holds without the restriction to z- 

smooth measures. For necessity in (ii) no such restriction is needed. As is well 
known, this restriction is also superfluous if I consists of one element and gf of one 
function (Theorem 8.1, (vii) of [19] - a  proof based on the implication (b) ~ (a) of 
Theorem 5 can also be carried out). 

In the present generality the result is new. I f /conta ins  just one element, it is well 
known under various restrictions, cf. [11, 2, 6]. 

Theorem 11 can be applied to a study of joint continuity of the map (#,f) ~ Sfd#  
and also to a study of preservation of weak convergence under mappings. Since one 
only obtains slight refinements and variants of previous results ([19], sections 16 
and 17), we shall not embark on a discussion of this. 

Another possible application of Theorem 11 is to establish the joint cintinuity of 
the formation of product measures (12, ~/) ~ # | t/. Based on Theorem 11, this can be 
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carried out for completely regular spaces and z-smooth measures. This result, for 
Radon measures, has been announced previously by the author on various 
occasions. The reason why we do not give the details here is that quite recently, 
P. Ressel has proved a more general result by a nice direct argument, cf. [12]. 

We shall derive some uniformity results for classes of sets. We mainly work in an 
euclidean space. 

Lemma 5. Let ~ be one of the following classes of closed subsets of an euclidean 
space: 1 ~ The class of all hyperplanes. 2 ~ The class of all boundaries of convex sets. 
3 ~ The class consisting of all hyperplanes and all euclidean spheres. 

Then, if A is the topological limit of any sequence (or net) of sets from 9,  A is a 
subset of a set in 9.  

Actually, A is even a member  of 9 ,  so that N is closed in the notion of 
topological limit, but this is of no significance for our applications. 

Since the proof  is straight forward, and since most of it is contained in [ 17] and 
[18], we leave the details to the reader. However, we do want to point out that with 
the general results of section 4 at hand, all one has to do in order to prove concrete 
uniformity results for classes of sets is to establish closure properties of the type 
appearing in the lemma. Therefore, the lemma is very essential. Observe that it is a 
pleasant, and somewhat surprising feature of our theory, that closure properties 
suff ice-  compactness is not needed. 

Theorem 12. Let ~ be one of the following classes of subsets of an euclidean space: 1 ~ 
The class of closed halfspaces ; 2 ~ The class of measurable convex sets; 3 ~ The class 
of closed halfspaces and closed euclidean balls. Then ~ is an ideal uniformity class for 
weak convergence. 

Proof Apply the corollary to Theorem6 or the corollary to Theorem7 in 
connection with Lemma 5. 

Combining with the corollary to Theorem 5, we see that for each m, the class of 
sets expressible as an intersection of at most m closed halfspaces is an ideal 
uniformity class for weak convergence. 

Theorem 12 is not new. For  instance, case 2 ~ is due to Ranga Rao [-11] and to 
Ahmad [1] ([1] is only an announcement and does not seem to have been followed 
up by a real publication). We also mention [2] and [-18] and refer to the references 
and further results given there. 

Theorem 13. Let E consist of all closed balls in a compact metric space. Then ~ is a #- 
uniformity class for weak convergence for every # which vanishes on every sphere. 

Proof Let (Bn),> 1 be a sequence of closed balls in the compact  metric space (X, d) 
and assume that the limit boundary F of (B,) exists. Let x, be the center and r, the 
radius of B n. By compactness, we may assume that (x,) converges, say x,--, x. By 
compactness, we may assume that the r,'s are bounded and then, we may assume 
that (r,) converges, say r,--, r. It is easy to check that d(y, x) = r for every yeF,  i.e. F is 
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contained in the sphere with center x and radius r. An application of Theorem 6 
finishes the proof. 

It is not true in general that g in Theorem 13 is an ideal uniformity class for 
weak convergence- fo r  instance, this does not hold in the unit interval with the 
usual metric. Of course, the result implies that if the compact metric space satisfies 
the additional requirement that every sphere is contained in the boundary of a ball, 
then the class of closed balls is an ideal uniformity class for weak convergence. 

A slightly more general result is obtained if we instead of compactness assume 
that closed balls are compact and if we put an upper bound on the radia of the balls 
in & 

We shall now prove some results for setwise convergence. 
Let (X,N) be a measurable space and let d be a subalgebra of ~.  d -  

convergence is then equivalent to setwise convergence on d .  Assume that g is a #- 
uniformity class for d-convergence.  Then, for every Y ~ d ,  g I Y is a #[ Y-uniformity 
class in the space Y for d ] Y-convergence. Here 6" [ Yis the class of restrictions of the 
functions in 6 ~ to Y,, #[Yis the restriction of#  to Yand d l  Yis the restriction o f d  to 
Y The stated result follows immediately from Theorem 5. The following lemma is a 
kind of converse saying that if uniformity holds for many restrictions, then 
uniformity holds in the original space. 

Lemma 6. Let (X, ~ ,  #) be a measure space, d a subalgebra of ~ and g a uniformly 
bounded class of measurable functions. Assume that for each ordinal number c~ less 
than a certain countable ordinal number y, there is given a measurable set X~. For c~ 
< 7, denote by #~ the restriction of # to X~ \ U Xi, considered as a measure on X~. I f  
the following conditions are satisfied: i<~ 

(a) X~ E W for all ~ < ?, 
(b) U X~=X,  

(c) for all e<7,  NIX~ is a #,-uniformity class in the space X~for dlX~-conver- 
gence, 

then g is a #-uniformity class (in X )  for d-convergence. 

Proof. For e < 7  put Y~=X~\  U Xi" Given e>O, choose A, a finite subset of [O,y[ 
such that i < 

#(U {Y.: ~ I-o, ?[ \ A } )  <~. 

Denote by n the number of elements in A. Let ~ A  and choose, according to 
Theorem 5, ~ ,  a finite subalgebra of the algebra d IX~ in X~, such that 

O~(f)d#~<e/n for all f e# lX~ .  
X~ 

Denote by ~z the finite subalgebra of d generated by all the sets in the zc~'s; c~ cA. 
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If If(x)] < K  for all f e g ,  x e X ,  it is seen that  for f s g ,  

~ 0 ~ ( f ) d # = ~  ~ 0 ~ ( f ) d #  
X ~<~ Y~ 

< 2 K e + ~  ~ 3 ~ ( f ) d # ~  
a~A X~ 

< 2 K e + e .  

By Theorem 5, this shows that  N is a #-uniformity class for ~4-convergence. 

Theorem 14. Let E be one of the following two classes of subsets of an euclidean 
space: 1 ~ The class of all closed halfspaces, 2 ~ The class of all closed euclidean balls. 
Then ~ is an ideal uniformity class for setwise convergence. 

Proof. Let us limit the discussion to the space R 3. Consider  case 1 ~ Let # be any 
measure on R 3. We shall construct  a certain scheme of subsets of R 3 : 

X 0, XI~ . . .  

~o,~,... 
(70, (71, . . .  

R 3" 

Here x o, x~ . . . .  is chosen as a sequence of  points in R 3 containing all a toms of  #. 
Then #c, the non-a tomic  part  of  #, is given by 

#~=#[R3\{Xo,  Xl .. . .  }. 

do, f l ,  "" is chosen as a sequence of lines containing all lines f with # y )  > 0. Put 

oo 

0 

Then #1(~')=0 for any line in R 3. 
% ,  al ,  ... is chosen as a sequence of planes containing all planes o- with #~(o-) 

> 0. Put  

f12 = # 1 [  R 3  N, ~ fin" 
0 

Then # 2 ( a ) = 0  for any plane a in R 3. 
Denot ing by co the first infinite ordinal, we define, for each e < 3 e) a subspace X~ 

of  R 3 in the following way:  

X,  = {x,} for n = 0, 1,... 

X,o+.=~ . for n = 0 ,  1, ... 

X2o,+n=an for n = 0 ,  1, ... 

X3~o = R  3 . 
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We shall apply Lemma 6 with ag = ~ ,  ~ = 3c0 + 1 and X~'s as defined above. 
Consider an ~ < 3 co. Then X~ can be considered as an euclidean space (for c~ < co we 
get a one-point space) and glX~ coincides with the class of halfspaces in X~ 
(including ~ and X~). Since, in the notation of Lemma 6, g~ is E I X~-continuous in the 
space X~, we conclude by Theorem 12, 1 ~ that glX~ is a g~-uniformity class for 
weak convergence (in X~). Afor t ior i ,  g l X ,  is a #~-uniformity class for setwise 
convergence (in X~). 

By Lemma 6 it now follows that E is a p-uniformity class for setwise conver- 
gence (in R3). This is the desired result. 

Now consider case 2 ~ Since the proof  in this case is very similar, we only give an 
outline. 

Again we consider a fixed measure #. This time the X~'s are constructed 
according to the scheme 

Xo, X 1 . . . .  (X~ for 0<c~<co) 

4,~1, ... (X~ for co<c~<2co) 

Co, cl, ... (X~ for 2co~a<3co)  

ao, a I . . . .  (X~ for 3co<c~<4co) 

So, sl, ... (X~ for 4co<e<5co)  

R 3 (Xso,). 

The x's and the f 's  are constructed as before, i .e . - intui t ively s p e a k i n g - b y  
removing all mass concentrated on points and then by removing all mass 
concentrated on lines. The c's refer to circles and are constructed by removing all 
mass concentrated on circles, o-'s are constructed as before by removing all mass 
concentrated on planes, s's denote spheres and are constructed by removing all 
mass concentrated on spheres. 

The essential fact to establish, is then, that for each 0_< c~ < 5 co, N rX~ is a #,- 
uniformity class for setwise convergence (in X~). We even have uniformity for weak 
convergence (in X~). For  ~<2co this is easy. For  2co <c~<3co and for 4co <c~< 5co, 
this follows from Theorem 13. For  3co<c~<4co and for c~=5co, this follows from 
Theorem 12, 3 ~ . 

Case 2 ~ was first proved by Elker [4]. 
We turn to a closer study of uniformity over convex sets in R N. Some 

preparations are needed. As a general reference to convex analysis, we mention 
[13]. 

Let A _c R N. co(A) denotes the convex hull and aff(A) the affine hull of A. If A is 
finite, co(A) is a polytope. For a convex set C, dim(C) denotes the dimension of C 
( =  the dimension of aft(C)). By r i(C) we denote the relative interior of C, and by 
~?~I(C) the relative boundary of C; these concepts are defined by considering C as a 
subset of aft(C). For  an affine subspace H of R N, Cg(H) denotes the class of 
measurable convex subsets of H. We write cg instead of Cg(RN). The following result 
is intuitive and easy to prove by standard techniques as developed in Chapters 1-2, 
[13]. 
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Lemma 7. Let C be a k-dimensional subset, and A a finite subset of R N. Then the set 

E=CO( C C~ A)C~ Orel( C) 

is a finite union of polytopes of dimension at most ( k -  1). 

Our next lemma is an "affine" decomposition property for measures which was 
really allready employed in the proof of the first part of Theorem 14. It is the same 
property as that derived in Section 7 of [11]. Recall, that a measure is supported 
by a set A if the complement of A has measure 0. 

Lemma 8. Let # be a measure on R N. 

(i) For each 1 <_ k <- N there exists uniquely determined measures I~ik I and #i'kl such 
tt ! that #=/~ikj+#Ek~, such that Iltkl is supported by a countable union of (k-1) -  

dimensional affine subspaces and such that #1'kl vanishes on every (k - 1)-dimensional 
affine subspace. 

(ii) I f  ~ is a measure vanishing on every (k - 1)-dimensional affine subspace and if 
< #, then ~ < #[kl. 

(iii) There exist uniquely determined measures #Eol, #[ll,"',#[NI such that 
N 

I~ = ~ I~Ekl and such that each #Ek~ is supported by a countable union of k-dimensional 
0 

affine subspaces and vanishes on every affine subspace of dimension less than k. 

As to the proof we just mention, that one may start proving existence in (i), then 
(ii), then uniqueness in (i) and lastly (iii). 

Clearly, #ik~ = ~ /~Eil, /111q = Z #Eq' 
i < k  i>=k 

We call #tkl the k-dimensional part of#. #rol =/~ill is the atomic part of/~ and/~i'11 
the non-atomic part. 

Theorem 15. Let l~ be a probability measure on R N. The following conditions are 
equivalent: 

(a) For every net (#~) of measures which converges to I~ on c~, the convergence is 
uniform, i.e. 

lira sup I#~(C)-#(C)I--0;  

(b) For every random net (#~o) of measures such that, for each C~C~, #~o~( C) 
converges to #( C), almost surely [co], we have 

lim s u p l ~ = ~ ( C ) - ~ ( C ) l : 0  a.s. [coJ; 
c~ C ~ g  

(c) Denoting by (#,,~) the empirical measures pertaining to the theoretical 
distribution #, we have 

lim supl#,~o(C)-l~(C)l=O a.s. [co]; 
n ~  C e ~ g  

(d) For every Cecg, we have 

~[k](~relC)~---0 where k=dim(C).  
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Before the proof, let us comment on the significance of condition (d). In a 
different wording, (d) says that for every affine subspace A of R N, the measure 
obtained by restricting/~ to A and removing all "aNne singularities", that is all 
concentration of mass on affine subspaces of A of lower dimension than that of A, 
should be well enough "smeared" out over A so that it vanishes on the boundary 
- calculated in A - of every convex subset of A. 

Naturally, in (d), we need only consider sets C with r i(C)4=ft. Also notice that 
we may replace P[k] by #i;] in (d). Since the requirement in (d) is automatically 
fulfilled for sets of dimension at most 1, it follows by the inclusion ~?r~l(C) _~ 0 (C) and 
the inequalities 

~ ,  t t  t l  l !  
# =#m >#[2] >=" >=PIN] 

that the condition 

p~h](0 C) =0  for all Ceqf 

is sufficient for (a), (b) and (c) to hold. 
(c) was first proved by Ranga Rao (Theorem 7.1 of [11]) under the condition 

#i'11 ((? C)=0  for Ce~.  For  a stronger result derived under this condition, see [18]. 
Fabian [6] was the first to establish (a); he assumed that p(0 C)= 0 for Ce~.  Stute 
[14] considers (a) and (c); he imposed the condition that p be absolutely continuous 
with respect to some product measure (that this condition implies (d) may be 
proved directly, cf. [8], but is not entirely trivial). In [15] Stute proves a result which 
essentially amounts to the equivalence of (c) and (d) when N = 2. 

It has been pointed out to me that Elker obtained essentially the same result as 
our Theorem 15 (Theorem 3.3 of [4]). Elker was then the first to obtain the result. 
The main difference between the proofs is that Elker only has available the "t/- 
criterion", whereas we make use of the "~-criterion". 

The reader who does not want to return to the proof below, should watch the 
effect a replacement of (g by the class of closed convex sets will have. 

Proof of Theorem 15. For  an affine subspace A, let d(A) denote the algebra of 
subsets of A spanned by ~(A). Put d = W (RN). It is easy to see, for instance by P 11 
of [19], that if p, converges to p on ~, then p~ converges to p on d .  Therefore, (a) 
asserts that ~ is a y-uniformity class for W-convergence. Similarly, if#~o)(C)--* p(C) 
a.s. [co] for Ce~ ,  then #~,o(E)~F(E) a.s. [co] for E ~ ' .  The implication (a) ~ (b) 
follows from these remarks in connection with the discussion preceding Theorem 2. 

The implication (b) ~ (c) follows by the strong law of large numbers. 

(c)~(d)"  Let CeCg and put k=dim(C).  Let X1, X2,... be a sequence of 
independant random vectors, all with distribution #. For  each n > 1 and each co in 
the background probability space, put 

C n o  ) = c o ( C  (~ { X  1 ((D), . . . , X n  (do)} ) .  

Then CnoT~. Clearly, 

c.~o ~ {x~(~) ,  . . . ,  x , ( ~ ) }  = ~ n {x~(~) ,  . . . ,  x , ( ~ ) } ,  
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hence #.~,(C=~o)=#.~(C), and it follows that 

#=~(C.o)~#(C) a.s. [co]. (15) 

We have that 

#( C.o) = #( C.~ a r i( C)) + #( C.~ c~ Ore,( C)) 

< #(r i(C)) + #(C.~ nard(C)) 

and by an application of Lemma 7, that 

#(c.=) < ~(r i(c)) + ~I~Go~(C))" (16) 

(15) and (16) implies that, almost surely, 

lim sup sup I #= o,(C) - # (C) ] 
n ~ o O  C E ~  

> lim sup I #,o,(C,o,)- #(C=o,) I 
n ~ o o  

>__ #(C) - #(r i(C)) - #'lkl(0rel(C)) 

Therefore, by (c), #[kj(Orel C)=0. 
(d) ~ (a): For simplicity, assume that N = 3 .  Construct x's, d's and ~r's and 

corresponding sets X~ and associated measures G (c~ < 3 co) precisely as in the first 
part of the proof of Theorem 14. Denote by cg~ the restriction of cg and by ~4~ the 
restriction of ag to X~. Then ~g~=~f(X~), d~=d(X~) .  

Fix c~<3co, and let k =dim(X=). By Lemma 8, (ii), #= <#'~;1" Denoting by 0~ the 
boundary operation in the space X~, it follows from (d) that 

/Q(0~ C)=0  for all C~cg(X=) (17) 

(you first get this with ~re~ in place of 0~, but the transition to 0~ is clear). 
Now remark, that there exists a countable subclass of .4~ which generates the 

usual topology on X~. Combining this fact with Theorem 6, (i), with Lemma 5, 2 ~ 
and with (17), we conclude that cg= is a #~-uniformity class (in X~) for d~- 
convergence. This being so for all e < 3 co, it follows by Lemma 6, that cg is a #- 
uniformity class for ~r [7 

Let cg, denote the class of all closed convex subsets of R N and let (a*), (b*) and 
(c*) be the statements obtained from (a), (b) and (c), respectively, by replacing cg with 
off,. Clearly, such a replacement will not affect (d). With (a*), (b*) and (c*) instead of 
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(a), (b) a n d  (c), and  cg, in s t ead  o f  c(, all  s teps in the  a b o v e  p r o o f  go th rough .  

A c c o r d i n g l y ,  we  h a v e  the  f o l l o w i n g  resu l t :  

The conditions (a), (b), (c), (d), (a*), (b*) and (c*) are equivalent. 

F r o m  the  outse t ,  it is c lear  tha t  (c) ~ (c*). As to (a) and  (a*) no  i m p l i c a t i o n  seems 

o b v i o u s  b e f o r e h a n d .  In  this  c o n n e c t i o n  we no t i ce  tha t  c o n v e r g e n c e  on cg, does  n o t  

imp ly  c o n v e r g e n c e  on  ~g: C o n s i d e r  #,. = u n i f o r m  d i s t r i b u t i o n  in R 2 o n  the  sphere  

wi th  cen te r  0 and  r ad ius  r. By an  a r g u m e n t ,  wh ich  we  shal l  l eave  to  the  reader ,  it can  

be  seen that ,  as r~' l ,  #,(C)--,I~I(C) for  eve ry  C ~ * .  Clear ly ,  for  the  o p e n  un i t  bal l  B, 

#r(B)-- ,  1 b u t / ~ B = 0  so tha t  the  c o n v e r g e n c e  c a n n o t  be  e x t e n d e d  to  ~g. 

W e  suspec t  t ha t  i f #  satisfies (d), a n d  if#~ c o n v e r g e s  to/~ on  cg,, t hen  #~ c o n v e r g e s  

to # on  cg. So far, we h a v e  on ly  been  ab le  to s h o w  tha t  t~(C)~#(C) for eve ry  

r e l a t ive ly  o p e n  c o n v e x  set. 

Acknowledgements. Thanks are due to P. Gaenssler and to W. Stute who pointed out that a previous 
version of Theorem 15 was incorrect. 

That one may consider Lebesgue measure as a pathological measure in the way explained in the 
example of section 5, was pointed out to me by Jan PachI. 
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