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Let {f,} be a sequence of bounded continuous real-valued functions defined on 
R. If  B t is a Brownian motion process whose excursion a-field above zero is 
denoted by ~ ,  we show here how to evaluate conditional expectations of the 
form 

E e - X ( n ) t " f , ( B t , ) d t , ~ . . . [ e - X ( ~ ) ~ f ~ ( B ~ ) d t t l ~  
0 0 

where {2(n)},>=1 is a sequence of positive terms. Williams, in [4], has consid- 
ered related conditional excursion formulae but our method is simpler in that 
it involves little more than a judicious use of martingale calculus. In the 
interests of clarity we work only with Brownian motion but the method is 
quite general. It  applies equally well to any recurrent process and, although we 
do not do this here, it can also be used in the transient case provided that we 
work on an enlarged filtration, 

1. Preliminaries 

Let B t be a Brownian motion started at zero and having natural filtration ~t.  
t 

We write At=~l~Bs>=o~ds , C t = t - A  t and let rt denote the right continuous 
0 

inverse of A t. Then ~t is a ~ t  stopping time. Next introduce the local time L~ of 
B t which is always taken to be jointly continuous and normalised so that the 
occupation density formula becomes 

t 

f (B~)  ds = ~ f ( a )  L tda.  
0 R 

We also require the generalised Ito formula [3] for functions f which can be 
written as the difference of two convex functions. This states that 
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t 

f (Bt) =f(0)  + S f '  (B s) dBs +�89 ~ L~ ttf(da) 
0 R 

where/z I is the second distributional derivative o f f  Using this we get 

t 

B? l ,. o dBs+�89 
0 

The process /~t=B,~ takes non-negative values only and time-changing the 
above equation gives 

+~/.~. (*) 

vt 

Here ]~t=~ lws>=o)dB ~ is, from the Levy martingale characterisation, a new 
o 

Brownian motion. Now let us regard (,) as a stochastic differential equation 
with/~ given. 

Theorem 1.1 [lJ. The equation (,) has a unique fit adapted solution Bt whose 
_ _ 1  0 local time at zero is given by Lot-gE~. 

Write ~t to denote the filtration o f / ~  and note that ~t___~. Our key 
result on the connection between the two filtrations is the following. 

Lemma 1.2. Let M t be a square integrable ~ martingale such that (M, fl} =0. 
Then E [Moo-M0]2~J =0. 

Proof Choose FeL2(~oo, P) and write Ft=E[F[2~t]. By Theorem 1.1 ~t is the 
filtration of J~t so by Ito's representation theorem there is a 2~ t predictable 

process such t at 

t 

F,=Fo+Se dL- 
0 

Since (M, F} = 0 we have 

E[MOOF] = E l M  o F03 = E l M  o F] 

which completes the proof. 

2. First Order Formulae 

Let T=inf{t: Bt>=O }. For 2>0  and f a bounded continuous function defined 
on the real line write 

T 

Thus u(x) = R~.fl(x) satisfies 
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lu"=)~u-f (x<O) 

u(x) = 0 (x >_- 0). 

If It > 0 and t/= ] / ~  write g(x)= exp {t/(x A 0)}. We can use the generalised Ito 
formula to see that the following processes are local martingales orthogonal to 

i l~B,_>_o~ dBs. 
0 

Nt(#,y;2,f)=exp{_#Ct_2t 1 0 +~ ~Et} (Rx+uf)(St) 

+ �89 f ) ' (O- )  i exp { - t t C s - 2 s + � 8 9  yL ~ dL ~ 
0 

t 

+~ exp {-#C~-2s+�89176 1{~,< o}ds. 
0 

Mr(#) = g (Bt) exp { - # C, + �89 , L  ~ }. 

Lemma 2.1 [5]. E[exp { -#z ,}  [~o ]  =exp  { - # t - t l L ~  

Proof Introduce the ~ ,  stopping times T,=inf{t :  L~ We can apply Lem- 
ma 1.2 to Me, l{t<z, } and use Theorem 1.1 to get the result when t is replaced 
by t/x T,. But lim T, = + oo a.s. and the general result follows by taking limits. 

Theorem 2.2. Suppose that ~>0  is a ~ o  measurable random variable. Then 

=~ exp {-2s-l~L~ 
0 

-(Rxf)'(O-)~exp{-2s-1/~L~ ~ (**) 
0 

Proof. We prove this first for ~ = t. It is enough to consider two cases. 
(a) If f is supported on [0, + c~) the integral can be time-changed to give 

t 

~ exp { - 2 ~ }  f(/~)ds.  Now use the previous lemma. 
0 

(b) If f is supported on ( - o %  0] note that N~(0, 0; 2,f)  is an L 2 ~ mar- 
tingale. The result follows from Lemma 1.2 and the previous lemma by 
stopping at t. 

We have shown that (**) holds if ~ is a simple ~ o  measurable non-negative 
random variable so the general case now follows by taking limits. 

Remarks. (a) On comparing the above with [2] 4.2 we find that -(R~f)'(O-) 
is the Laplace transform of the excursion law of B t from zero. This provides a 
probabilistic interpretation of the theorem (see [4]) and gives a method of 
calculating the excursion law. 
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(b) By integration, i f f  is suppor ted  on ( -  o% 0], we get 

F [i ] e f. e-~f(B~)cls = - ( e J ) ' ( o - ) e  exp {-2v~} dL~ . 
LO A 

P. McGill 

3. Higher Order Formulae 

In order  to avoid  undue  complicat ion we shall introduce the following no- 
tation. 

/, = (2(1), 2(2), ...) 2(n) > 0  

f =  (f~,f2, ...) 

f.  bounded  cont inuous and suppor ted  on ( - o %  0]. 

Kt(n, ~, f)= K,(2(1), 2(2), ..., 2(n); f t , f2  . . . . .  f ,) 
tn t2 

= i dt, e-Z(")t"L(Bt, ) ~ dr,_ t . . .  ~ dtl e -  x(i}tt fa (Bt~). 
0 0 0 

It is convenient  to write Kt(O , 2, f ) - 1 .  We also need the local mart ingales 

-i Nt(")(#,7; L f )  - Ks(n- l ,Z , f )dN~(# ,7;  2(n),f,). 
o 

Finally, if 1 _< r_< n, write 

Re(n, )f-R,(. ,r~ZERp(,,r+,Z+~ [Rp<,,.)f,] .] 

where p(n, r) = # + ~ 2(0. 

Lemma 3.1. 

i = - IRa(n, r) f ] ' ( 0 - )  y e ,L~~ 
r = l  0 

Proof By stopping at T,,, as in L e m m a  2.1, we can use L e m m a  1.2 and the N~ 
local mart ingale  N(")( . . . .  ~,, f) to obtain zt tP% Y ,  
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E ['i ] e x p { - g C s - 2 ( n )  s+�89176 -1,  2, f) dsl~o = 

t L ~ 
- [ R ~ ( . ) + J . ] ' ( O - )  ~ e '  " 

0 

�9 E[exp { - # C~s- 2(n) %} K~s(n - 1, 2, f)L~o] dL~ 

+E exp{-#Cs-(2(n)+2(n-1))s+�89 ~ 

�9 [ f . -  1 Rz(.)+.f.] (Bs)K,(n - 2 ,  2 ,  f)  ds I~oo ] 
_1 

Now iterate to-get the required formula. 
If # = 7 = 0  this lemma expresses E[-K~t(/%2. f)[~oo] in terms of conditional 

expectations of the type E[e-U~K~(m, 2, f)I~ool where m < n. 

L e m m a  3 .2 .  

E[e-U~K~t(n, 2, f) I ~ ]  

= e x p { - #  t - r / L  ~ } 

�9 E exp{-#Cs-2(n)s+srlI2s}(gf,)(Bs) 
L 0  

.gs(n-l,2,f)dsl~oo]. 

Proof Putting ~= t/x T,, and using Ito's formula together with Lemma 1.2 we 
have 

E [-exp { - # C~ + rl L~162 K~(n, 2, f)L~ 0o] 

= E. [M~_(Iz) K~(n, 2, f)I~ oo] 

= E[!  M~(#)dK~(n,2,f)lJJ ~] 

= E [ ~  exp { -  # C S - 2(n)s +�89 ~ (gf,,)(B s) Ks(n- 1, 2, f) ds I~oo]. 
L 0  

Now take the limit in m and the result is clear. 
This formulation of Lemma 3.2 was pointed out to us by T. Jeulin and is 

simpler than our previous version�9 Note that the formulae of this section are 
valid only if the functions {f,} are supported on ( - 0 % 0 ] .  If not, then the 
integrals involved must be decomposed as in the previous section�9 In any case 
it is clear that these two results enable us to reduce the evaluation of an nth 
order conditional excursion formula of the type described above to the evalua- 
tion of lower order formulae. 
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Remark. Suppose that  the stochastic differential equa t ion  

t t 

X t = X o + ~ a(X~) dB, + ~ z(X~) ds 
0 0 

has a un ique  s t rong recurrent  solution.  Then  all of the above results remain  
valid if B t is replaced by X t, except that  g(x) mus t  be replaced by the solut ion 
of 

� 8 9  u ' ( - o e ) = 0 ,  u (x) - -0  if x > 0  

and  t/ mus t  be replaced by u'(O-) .  Of course in this case R z f  will denote  the 
resolvent  of the process X t killed at T. 
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