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Summary. It is shown that formal Edgeworth expansions are valid for sums 
of weakly dependent random vectors. The error of approximation has order 
o(n -(s-2)/2) if 

(i) the moments  of order s + 1 are uniformly bounded 

(ii) a conditional Cramdr-condition holds 

(iii) the random vectors can be approximated by other random vectors 
which satisfy a strong mixing condition and a Markov type condition. 

The strong mixing coefficients in (iii) are decreasing at an exponential rate. 
The above conditions can easily be checked and are often satisfied when 
the sequence of random vectors is a Gaussian, or a Markov, or an auto- 
regressive process. Explicit formulas are given for the distribution of finite 
Fourier transforms of a strictly stationary time series. 

1. Introduction and Summary 

Consider a strictly stationary sequence X1 ,X  2 . . . .  of k-variate random vectors 
with mean zero. If X 1 , X  2 ....  are independent and if X 1 has a nonsingular 
covariance matrix, then the distribution of n-1/2(X~ +.. .  +Xn) is asymptotically 
normal. If third order moments  exist, then the error of the normal approxima- 
tion is of order n-1/2. If higher order moments  exist and the distribution of X1 
is smooth, then higher order approximations are valid. The smoothness con- 
dition usually imposed on X 1 is the following (Cram&): 

For all ~>0  there exists a positive ~ such that for t~lR k, [It][ >~ 

(1.1) IE exp(it r X l )  [ ~ 1 --3. 

The higher order approximations are of the following kind: 
s--2 

(1.2) = pr. 
r = 0  
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Here Po is the normal  distribution with mean zero and appropriate covariance 
matrix, and for r = 1 , . . . , s - 2 ,  G is a finite signed measure with p0-density G, 
say. The function G is a polynomial  with coefficients uniquely determined by 
the moments  of X 1 up to order r + 2 .  A detailed discussion of asymptotic 
expansions for independent random vectors is contained in Bhattacharya and 
Ranga Rao's  monograph  (1976). 

It is well known that the central limit theorem remains true if X1 ,X  2 . . . .  
are weakly dependent. Some concepts of weak dependence are m-dependence, 
uniform mixing, and strong mixing. The sequence X1,X2,  ... is m-dependent if 
for all p = 1, 2 . . . .  the sequences 

(1.3) (X 1 . . . .  ,Xp) and (Xp+m+l,Xp+m+2,...) 
are stochastically independent. In the uniform mixing concept the dependence 
between the sequences (1.3) is measured by 

q~(m) = sup IP(A c~ B) - P(A) P(B)[/P(B) 

where the sup is taken over all p = 1, 2,. . .  and all events A, B, P(B)> 0, where A 
is determined by (X 1 . . . .  ,Xp) and B is determined by (Xp+m+l, Xp+m+2,...) (see 
Ibragimov (1962)). In the strong mixing concept the dependence in (1.3) is 
measured by 

a(m) = sup [P(A c~ B) - P(A ) P(B)] 

where the sup is taken as above (see Rosenblatt  (1956)). Another type of weak 
dependence occurs in models of the following kind. Given a sequence 
Yo, Y+ 1, Y+ 2 . . . .  of independent identically distributed random variables and a 
measurable function f :  I R ~ I R  k, define 

Xj=f(Yj+p,p~Z) ,  j = l , 2  . . . . .  

We call the sequence X1, X 2 . . . .  a weakly dependent shift if for all j = 1, 2 . . . .  , 
E(Xj[ Y~:lJ-ql ~m) converges to Xj at a specified rate when m tends to infinity. 
A weakly dependent shift will not necessarily satisfy a strong mixing condition 
(see Ibragimov (1962), pp. 374/5). It is unknown whether all m-dependent se- 
quences are weakly dependent shifts. 

Proofs of the central limit theorem usually require the additional assump- 
tion 

(1.4) Z = lim Coy(n-  1/2(X 1 +.. .  + Xn) ) exists and is nonsingular. 
n 

When X 1 , X  2 . . . .  are iid, this assumption is satisfied whenever X~ has a 
nonsingular covariance matrix. For  weakly dependent random vectors 
X ~ , X  2 . . . .  condition (1.4) may fail even if X1 has a nonsingular covariance 
matrix: 

(1.5) Example. Let I71, Y2 . . . .  be a sequence of lid random variables, and for j 
=- 1, 2 . . . .  define 

The sequence X1 ,X  2 .. . .  is 1-dependent, and (1.4) never holds. 
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The following central limit theorems are known. 

(1.6) Theorem (Ibragimov (1962), p. 360, Theorem 1.4). Assume (1.4) and 
E llXl/12+a<oe for some positive 3. I f  X> X2, ... is uniformly mixing with 
lira ~o(m)=0, then 

(1.7) l imsup{lP{n-l /2(Xl  +.. .  + X , ) e C } - N ( C ) ] :  C convex, measurable}=O 
n 

where N is the k-variate normal distribution with mean zero and covariance 
matrix X. 

(1.8) Theorem (Ibragimov (1962), p. 367, Theorem 1.7). Assume (1.4) and 
E ]lXlll~+O< oo for some positive 6. I f  X1,  X2,  ... is strongly mixing with 

22 ~(m) a/(2 +a)< oo 
then (1.7) is true. 

The error of normal approximation has order n 1/2 when third moments 
exist and X 1 , X  ~ ... .  is m-dependent (Stein (1972), Tikhomirov (1980)) or Mar- 
kov dependent (Bolthausen (1980), Statulevicius (1969, 1970)). For uniformly or 
strongly mixing sequences and for weakly dependent shifts the best available 
bounds are of order n 1/2(logn)P, f l>0  (Stein (1972), Tikhomirov (1980), Ibra- 
gimov (1967)). Higher order approximations of the form (1.2) were first derived 
by Statulevicius (1969, 1970) and Durbin (1980). The results of Statulevicius 
hold for finite order Markov chains, but not for weakly dependent shifts - 
these do not necessarily satisfy the RMT-condition of Statulevicius. Durbin's 
conditions are hard to check even in the simplest case when X 1,X 2 ... .  is a 
weakly dependent shift which is m-dependent. 

We shall prove the validity of higher order approximations for the distribu- 
tion of n-1/Z(x 1 +.. .  +Xn) under (1.4), weak dependence assumptions, and a 
Cram6r type condition. Our Cram6r type condition is more restrictive then 
(1.1). In fact, assumption (1.1) is insufficient for our purpose even if XI ,X2 ,  ... 
is an m-dependent shift. This is demonstrated by the following 

(1.9) Example. Let Y~, I72 . . . .  and Z~,Z 2 ... .  be two sequences of independent 
identically distributed random variables, the Y's being independent of the Z's. 
Assume that 

P{Y1 = - 1/2} =P{Y~ = 1/2} = 1/2 

and that the distribution of Z ,  is normal with mean zero and unit variance. 
For j = 1, 2 . . . .  define 

Xj= Yj+ Zj+ 1 - Z j .  

The sequence X 1 , X  e . . . .  is a 1-dependent shift, and (1.1) and (1.4) hold. How- 
ever, the formal Edgeworth expansion 

(1.10) P { n - 1 / 2 ( X l + . . ' + X , ) < t } =  i (2rc) - l /2exp( -xe /2)dx+~ n 1/2) 
- - 0 0  
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is not valid for t=t=0. To see this we derive a valid higher order approximation 
for the distribution of 

n- 1/2(X 1 +.. .  + X,) = n-  1/2(Y 1 +.. .  + Y,) + n -  1 / 2 ( Z  n + 1 - Z 1). 

We have uniformly for telR 

P {n- 1/2(Y 1 + . . .  + Y,) < t} = i (2~)- 1/2 exp( - x2/2) dx 
-oo  

+ n -  1/2(2~)- 1/2 exp( - -  t2/2) S I ( H  1/2 t) 

+ o(n- 1/2) 

where S 1 is the 1st Bernoulli polynomial defined by 

Sl (X)=X-1/2 ,  0_<_x< 1, S l ( x + l ) = S l ( X  ), xelR. 
Hence 

P {n- 1 / 2 ( X  1 @ . . .  -J7 X n )  < [2} 

= (2re)- 1/2 exp( - x2/2) dx 
--oo t --cx~ 

+ n-  1/2(270-1/2 exp( - t2/2) S l(n 1/2 t + 21/2 r)} (27r)- 1/2 exp( - r2/2) dr 

-~ O(g/- 1/2) 
t 

= 5 (2re) -1/2 e x p ( - x i / 2 ) d x  
--co 

q-n-1/2(2g) -1/2 exp(--t2/2) ~ SI( /~1/2  t+21 /2  r)(27c) -1/2 exp(-r2 /2)dr  
--00 

+ o(n- 1/2). 

For t =~ 0 the sequence 
oo 

Sl(n1/at+21/2r)(2rc)-l/2 exp(-r2/2)dr,  n = l , 2  . . . .  
cyo 

does not converge. Hence (1.10) is not true. Relation (1.10) holds for t 
~ I~ - 1 /  2 m ,  m ff  T]~ . 

Cases as the one considered in (1.9) are excluded by our conditional 
Cram& condition which will be introduced and discussed in Sect. 2. Notice 
that, in (1.9), the conditional distributions of X I + X  2, given Yp, Zp, p # 2 ,  are 
lattice distributions. 

In Theorem 2.8 we shall prove the validity of higher order approximations 
under general conditions (see (2.3)-(2.6)). These conditions are satisfied in the 
following examples (1.11)-(1.15). In other situations they can be checked easily. 

(1.11) Example. Let Y1, I12,... be a sequence of independent identically distrib- 
uted random variables with Lebesgue density g, let m > l  and h: Nm--dR be 
continuously differentiable, and define 

Xj=h(Yj+I . . . . .  Ys+,,), j = 1 , 2 , . . . .  

The sequence X 1, X2,. . .  is an m-dependent shift. 
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We assume that there exist Yz . . . .  , Y 2 m - 1  ~]R and an open subset 
UD{y~ .... ,Y2,,-1} such that g > 0  on U and 

0 
j =  1 ~ h(Xl'"" xm)[( . . . . . . . . .  ) =  (yj . . . . .  ym + j -  i) ::~ O. 

(1.12) Example. Let u Y_+a, Y_+2 . . . .  be a sequence of independent identically 
distributed random variables and co, p~/g a sequence of real numbers satisfying 

(i) ICp] <6 -z e x p ( - 3  Ipl) for some positive 6, and 

(ii) ~ cp4 =0. 
p =  --00 

Define 

Xj= ~ cpYj+p, j = l , 2 , . . .  
p =  --00 

and assume that Y0 satisfies Cram6r's condition (1.1). 
Notice that an arbitrary stationary autoregressive process 

~OXj+fizXi_l+...+fl~Xj ~=U~, j = 0 ,  +1, _ 2  . . . .  

can be written as 

Xj= ~ c~ Uj_ o 
o = O  

with Co, p~Z, satisfying (i) and (ii) above whenever 

/~o zr +/~1 z r-1 + ... +/?r =0  

has all its roots different and in {]z] < 1} (see Anderson (1971), Sect. 5.2). 

(1.13) Example. Let ~o,~.z,... be a homogeneous Markov chain, and f a 
measurable function on its state space I. We define 

Xj =/(~_), j = 1, 2 . . . .  

and assume that ~-a, 42, ... is strictly stationary, X 1 satisfies Cram6r's condition 
(1.1), and the transition kernel P(x,A) of the Markov chain satisfies 

sup [P(x, A)-P(x',  A)] < 1 

where the sup is taken over all x,x', and A (see Statulevicius (1969, 1970)). The 
last condition is satisfied whenever there exists a positive measure # such that 
for all x and A 

P(x,A)>#(A). 

(1.14) Example. Let Yo, Y_+z, Y+2 .. . .  be a strictly stationary Gaussian process 
with positive analytic spectral density, and let f be a nonconstant function 
which is continuously differentiable. Define 

Xj =f (Y) ,  j --- 1, 2, .... 
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(1.15) Example. Let X1,X2,... be a strictly stationary Markov-dependent 
sequence of random variables satisfying the regularity conditions of Example 
(1.13). For  fixed p and 0 < 2 1 < . . . < 2 p < r C ,  21+2j+0mod(2zc), l< i+j<=p,  and 
for N = 1, 2, .,. let 

dN(21, 2p)= (2~N) -1/2 v~ ,~ - i ,x j \  �9 .., z ~ e  ] 
n =  1 I j =  1 , . . . , p  

be the finite Fourier transform of X~, ,X N at 21, ,2 (see Hannan (1970), . . . . . .  p 

Chap. IV, 3). If E IX1]S+I< 0% then the distribution of dN(21 . . . .  ,2p) admits a 
higher order approximation with an error term of order O(N-(S-2)/2). The first 
term of the expansion is given in Anderson (1971), p. 482. 

The paper is organized as follows. In Sect. 2 the regularity conditions and 
theorems are stated and applied to our Examples (1.11)-(1.15). At the end of 
Sect. 2 the technical lemmas of Sect. 3 are combined to yield proofs of our 
theorems. Formulas are deferred to Sect. 4. From now on we drop the assump- 
tion that the sequence under consideration is strictly stationary. 

2. The Results 

Let X 1 , X  2 . . . .  be a sequence of k-variate random vectors on an abstract 
measure space (f2, d ,  P) with 

(2.1) E X j = O ,  j = 1 , 2  . . . .  
and 
(2.2) E q h X y + ~ < f l s + ~ < o %  j = 1 , 2 , . . . .  

Define the integer So<S by 

{; if s is even 
s~  - 1  i f s i s o d d .  

We assume that a sequence ~0,@+1,@+2, . . .  of sub-a-fields of d are given 
and the following assumptions are satisfied. 

(2.3) There exists a positive constant d such that for n , m = l , 2 , . . ,  with 
n- t -m r e > d - 1  there exists a @,_m-measurable k-variate random vector ~',,m for which 

E q[X,-"2,,m[ L <d  -1 exp( -dm) .  

Here @pq is the a-field generated by ~j ,  p < j < q .  

(2.4) There exists d > 0  such that for all re, n =  1,2 . . . . .  Ae~'_o~, Beg ,+ , , ,  

IP(A c ~ B ) - P ( A )  P(B)I <=d -~ e -din. 

(2.5) There exists d > 0  such that for all m , n = l , 2  . . . .  , d - l < m < n ,  and all 
t6lR k with ]lt[I >=d 

E IE(e "T(x"-m+ x . . . . . .  +...+ x . . . .  )1 ~ :  J:On)l <= e-d. 
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(2.6) There exists d > 0  such that for all m,n,p=l ,2 ,  ... and Ae~,"_+Pv 

E[P(A[~j" j=hn)- P(A[~j" O<[n-j[ <m+p)[ <d -1 e -a" 

Write  S,=n-~/2(X,  + ... +X,). For  r = 0  .. . .  ,s let X~,,(t) be the cumulant  of tTs, 
of order r, 

)~ ,(t) = ~ log E exp (ix t T S,)[~= o. 
' ax 

Here t T is the transpose of the k-vector t. Define the formal Edgeworth  
expansion ~g,,~ of S, by its characteristic function ~',,~(t)=exp(z2,,(t)) 

s 2 
+ ~ n -r/2 ~,,(t), where the functions ~, , ,  r =  1,2 . . . .  are defined by the formal 

identity 

exp (Z2,n(t)+ ~ (ro-  l "ff- 2 n(r- 2)/2 Zr, n(t)) 
(2.7) ~= 3 

=exp(z2,~(t))+ ~ ' - &~ 
r ~ l  

(2.8) Theorem. Let f : l R k ~ l R  denote a measurable function such that 
[f(x)[<M(l+[]xJ[ ~~ for every x~lR g. Assume that (2.1)(2.2), (1.4), (2.3)-(2.6) 
hold. Then there exists a positive constant 6 not depending on f and M, and for 
arbitrary to>0 there exists a positive constant c depending on M but not on f 
such that 

IEf (&)  - 5 f d  %, sl ~ c co(f, n -  ~) + o(n-(s-  2 + ~)/=) 
where 

co(f n-~)= ~ sup {] f (x + Y ) -  f (x)[ : [[Y[r <n-X} ~os(x) dx 

and cp~ is the normal density with zero mean and covariance matrix Z. The term 
o(n -(s-2+~)/2) depends on f through M only. 

(2.9) Corollary. Let the assumptions of Theorem (2.8) be satisfied. Then uni- 
formly for convex measurable C=IR k 

n {S,~ C} = T,,, s(C) + o(n -(s- 2)/2). 

As in [6] we can replace the smoothness conditions (2.5), (2.6) by smoothness of 
the function to be integrated. For nonnegative integral k-vectors ~z=(~ 1 .. . .  ,c~k) 
define 

0~ O~k 
p ~ -- 

ax~  " ax~k 

(2.10) Theorem. Let f: ~,k-~N, denote an infinitely differentiable function such 
that If(x)]< M(l  + [[xH s~ for every x6]R k and [D'f(x)[< M~(l + Hxl[ p=) for every 
nonnegative integral k-vector c~ and positive constants M~, p~. Assume that (2.1)- 
(2.4) and (1.4) hold. Then 

E f (S,) - ~ f d %,~ = o(n-(s- 2)/2). 
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Actually, the expansion is valid for f having a finite number r(e)> (s-2)/(2~) of 
derivatives only. The number e depends on 6, s, fi, d, k, fl~+,, and Z. We 
conjecture that s -  1 derivatives are sufficient. 

In our next theorem, smoothness conditions (2.5), (2.6) are not needed 
either. 

(2.11) Theorem. Under conditions (2.1)-(2.4) and (1.4) 

E(1 + I[ S, ]1'~ 1{ II s, II > ((~- 2) log n)1/2} = o(n-(s  - 2)/2). 

(2.12) Remark. Notice that the formal Edgeworth expansion ~,,, introduced 
here is not of the form (1.2): The functions ~, ,  depend on n. Hence the 
expansion 7J,,~ is not unique. However, under the assumptions of Theorem (2.8) 
an asymptotic expansion of the form (1.2) is valid whenever X1,X 2 .... is 
strictly stationary. More precisely, if (2.1)-(2.4) and (1.4) are satisfied, then there 
exist polynomials a~,j(t), r=2 ,  . . . ,s ,  j = r - 2 ,  ..., s - 2 ,  such that uniformly for 
IIt][ _< 1, r=2 ,  ...,s,j=O, . . . ,s-2 

s--2 
Z.,.(t)= ~, n - j /2a,J+,( t )+o(n-(*-2)/2) .  

j = r - 2  

In particular, a E 2 ( t ) = - t  T Xt/2. Define the formal expansion ~.*~ by its charac- 
teristic function 

s--2 
~*s(t)=exp(-tr Nt/2)+ ~ n -~/2 ~*(t) 

r= l  

where ff,.*(t) is defined by the formal identity 

Then 

s -2  ~ s - r  ) 
exp -trst/2+ ~ zJaa, j+2(Q+ (r!) -1  2 "Cr+J-2ar,r+j-2(t) 

j = l  r=3 j=O 

= e x p ( -  t r ~t/2) + ~ ~r ~*(t). 
r= l  

j(1 + Ilxli~)d I 7".,s- ~*.,. =o(n-(S- ~)/2~ 

where I I denotes the variation measure. 
Our conditions (2.3)-(2.6) will now be discussed in detail. Their wide 

applicability is due to the fact that we may choose the e-fields @j. If @j is the 
e-field generated by Xj, the condition (2.3) is satisfied, but conditions (2.5) and 
(2.6) can hardly be checked, when X 1, X 2 ... .  is a weakly dependent shift. Here 
we show that conditions (2.3)-(2.6) are satisfied in Examples (1.11)-(1.15) when 
appropriate e-fields are chosen. 

(i) In Example (1.11) we choose @j the e-field generated by Yj. Then (2.3), 
(2.4) and (2.6) hold. By assumption, there exists an open subset W of IR 2m-1 
with P{(Y1 .. . .  , Y2,,_ 0eW} >0  such that the map H: 

(xl . . . .  ,x~m_~) 

---+(X 1 . . . .  , X m _ l , X m + l , . . . , X 2 m _  1, ~ h(xj, xj+l .... ,Xm+j_l)) 
j = l  

is a local isomorphism on 14/7. 
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Write Pw for the conditional distribution of YI, II2 . . . .  , given 
(Y1 . . . .  , Y2m_I)~W, and let G be a Lebesgue-density of the distribution of H 
under Pw. The Riemann-Lebesgue lemma and the dominated convergence 
theorem imply that 

lim ~ (~ exp(it h 2 m -  1) G(hl . . . . .  h2 m- 1) dh2 m- 1) dhl"'" dh2 m -  2 = O. 
Itl ~oo 

This implies that for It[ > d  

E IE(eit(x'+'"+Xm)l Yj: j+m)[ <=e -a P ( W ) +  1 - P ( W )  

whence (2.5) follows. 
(ii) In Example (1.12) let ~ i  be the a-field generated by Yj. Then (2.4) and 

(2.6) are obvious, (2.3) follows from (1.12(i)), and (2.5) follows from (1.12(ii)) and 
the relation 

E ,E(e it(x~ m +'" + x"+'~), ~ j :  j . n), = E exp (it p=~_, Cp Yn) . 

The condition (1.12(i)) and (1.12(ii)) are satisfied for an autoregressive process 
defined in (1.12). Condition (1.12(i)) follows from the representation of the 
coefficients Cp as 

% = ~ kj x~ 
1 

with constants k 1 . . . .  , k r and xl ,  ..., x r the different zeroes of 

/~oZr+... + /~=0.  

Condition (1.12(ii)) follows from 

% = (~o +.. .  +/~) 
p = 0  

which cannot be zero. 
(For details see Anderson (1971), Sect. 5.2.) 

(iii) In Example (1.13) the a-fields Nj are generated by ~;. Then (2.3) and 
(2.6) are satisfied. Condition (2.4) follows from 

sup IP(x, A) - P(x', A)I < 1 

(see Statulevicius (1969) II, p. 644, Lemma 4). 
Condition (2.5) follows from Cram6r's condition for X 1 and Lemma 2 in 

Statulevicius (1969) II, p. 638. 
(iv) In Example (1.14) the a-fields @j are generated by Yi' Then (2.3) is 

obvious. Condition (2.4) is satisfied since the spectral density of Yo, Y_+I,... is 
analytic (see Ibragimov (1970), p. 35, Theorem 6). For arbitrary n the con- 
ditional distribution of 11,, given (Yj, j ~ Z ,  j+n) ,  is a nondegenerate normal 
distribution. Hence (2.5) holds. In order to prove (2.6) we notice that the 
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conditional distribution of Yo, given (Yj:j=#0), and given (Yj: 0<[j l<m),  are 
both normal. Hence it suffices to show that there exists a positive constant d 
such that for m = 1, 2,... 

E(E(go[ Yj:j=l=o)-g(Yo] Yj: 0<l  j[ ~rn))  2 

=EE(Yol Yj: j=t=O)2-EE(Yo[ Yj: O<]j[ <=m)2 <_d- l e -din. 

This, however, follows from Grenander and Szegi5 (1958), p. 189, Theorem. 
(v) In Example (1.15) we take the a-fields ~j  generated by Xj. Then 

condition (2.3) is true for the 2p-vectors 

Z,=(X,  cos(n2j), X, sin(n2j);j=l,...,p), n=  1,2, .... 

As in Example (1.13) we obtain that (2.4) and (2.6) hold. However, condition 
(2.5) will not be satisfied in general. Notice first that for t= ( t l ,  t2)~lR 2p 

I E(exp (i tr(Z,_ m +... + Z, + m)) [ X~ : j * n)[ 

= [E(exp(itrl(cos nR1,..., cos nap) X, 

+ itr(sin n21 . . . . .  sin n)~p) X,)] Xj: j = n - 1, n + 1)[. 

If 

(2.13) Itr(cos n)~ 1 . . . . .  cos n2p) + t~(sin n)~ 1 . . . .  , sin n2p)[ __> d 

then E IE(exp(itrZ,)lXj:j+n)l<e -d follows from the fact that (2.5) holds for 
the sequence X1,X2,. . . .  However, given d > 0  there will not exist d'>O such 
that (2.13) holds whenever Iltll>d'. According to Remark (3.44) the weaker 
assumption (3.45) will be sufficient for the validity of higher order approxi- 
mations. We have to show that (2.13) holds for sufficiently many n, Let S be 

N 
the asymptotic covariance matrix of ~ Z j, i.e. 

1 

2 ; = l i m n - l C o v  ( ~ Z j ) .  

The assumption 2 i + 2 ~ 0  mod(2rc) implies that 2; is nonsingular. Hence there 
exists e > 0 such that N__> e - 1 implies 

(2.14) g t r ~ Z j  >oNbltll 2. 
1 

Write H, = tT(cos n21 .. . .  , cos n2p) + r2r(sin n2a, ..., sin n2v). Then 

E t r Zj = ~ HiHjEXiX J 
i , j = l  

N 

<=dl[t[lp ~ ]EXiXjI+llt[I2p2~'IEXiXj] 
i , j ~ l  
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where the second sum extends over all i,je{1 .. . . .  N} for which (2.13) holds. We 
choose d > 0 such that 

and 
Iltll ~d 1/2. 

Then (2.14) implies that 

N -  1 ~ {je{1 . . . . .  N}: (2.13) holds for j} 

remains bounded away from zero. 

Outline of proofs for Theorems (2.8)-(2.12). Theorem (2.8) follows from Lemmas 
(3.3) and (3.33). If we take ~c=(s-2+6)/2 in (2.8), then (2.9) follows with 
Sazonov's lemma (see 1-2], p. 24, Corollary 3.2). 

For  Theorem (2.10) we sketch the proof. For details see [6]. Notice first 
that 

E f (S,) = E f (S*) + o(n-(s- 2)/2) 

(see the proof of Lemma (3.3)). As in I-6], for nonnegative k-vector 7 we can 
expand ED~f(S*+n-"U), where U is a random vector with distribution K 
from Lemma (3.3). Finally, Ef(S* +n- '  U - x U )  is expanded in a Taylor series 
in x at x=n  -e. 

Proof of Theorem (2.11). Lemma (3.3) and Lemma (3.33), applied for ~=8, 
imply that 

E IIS~l? o l~lls~l I >_((s_2) logn)l/2} 

=~ Ilxl? ~ l{llxll__>((s_2) lognp/2 } ~.,s(dx)+co(g; rl-E) q-O(gl -(s-2)/2) 

where 

g ( x ) =  Ilxl?~ + Ilxl?~ -1  l~llxll >~<~ 2) 1ogn)1/2}. 

Since g is constant on {[Ixll <((s-2)logn) 1/2} and bounded on •k, 

o~(g; n-~)<c~{ l lx [ I  >((s-  2) logn)l/2-1}=o(n-(~-2)/2). 

Now the relation 

Ilxll s~ l~ll~lt >((s-- 2) logn) 1/a} IJYn,s(dX)=O(Fl-(S- 2)/2 ) 

implies the assertion. 

3. Lemmas 

To simplify our notations we use the following convention. Primary variables 
are the numbers s, So, k, fls+l, the covariance matrix 2; in (1.4), and the 
constant d in (2.3)-(2.6). The symbols e, c, C will be used for finite positive 
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generic constants which depend on the pr imary variables, but not on n. The 
symbol fi is used for a constant depending on our pr imary variables which has 
to be chosen appropriately. The variables m and K may depend on the 
pr imary variables and on n. We denote 

and define 

(3.1) 

where ~ C~(0, oQ) satisfies 

S.=n 1/2(XI-]-...-~- Xn) 

IX T(x)  = 
xn~ ~(l[xl[ n-~)/l[xll 

O(r)=r  if r < l ,  

~, is increasing, 

O(r)=2 if r > 2 .  

if Ilxll ~n~ 
otherwise 

For  j = 1 . . . . .  n let 

Yj = T(Xj) ,  
and 

We suppress the index n at T, Y~, and Zj. 
Define 

S* = n - i / Z ( Z ~  + . . .  + Z , )  
and 

Hn(t ) = E exp (it r S*), 

where tTa denotes the scalar product  of t and a. For  nonnegative integral k- 
vector 

write 
Ic~l - -  ~ 1  @"" -}- 0(k 

and 
c~l~l 

D ~ - 
c~t~l . . .  ~ t ~ k  

(3.2) L e m m a  (Petrov). Let  X be a k-variate random vector on an abstract 
measure space (0, d ,  P), let ~ c s~ be a sub-a-field, and c be positive. Suppose 
that for  t e lR  k, IItll > c  

g Ig (exp ( i tTx ) l~ ) l  < 1 --c. 

Then there exists a positive d such that for  [Ittl < c  

E IE(exp(i t r X) l ~)l < e x p ( -  d IItbl 2). 

Proof  Let X 1 , N  1 and X 2 , ~  2 be two independent copies of X , N  on some 
measure space (f2', d ' , P ' ) ,  and write N 3 for the a-field generated by N 1 w ~  2. 
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T h e n  for t e lR  k 

and  

T he  re la t ion  

E IE(exp(itrX)]~)l 2 = E IE(cxp(itrXO]~3)[ 2 

IE(exp(itr X Ol N3)[ 2 = E(exp(itr (X1 - X2))I N'3) 

= E(cos  tr(x1 - X2) I ~3)  a.e. 

1 - cos(2x)  < 4(1 - cos x), x e ~  

implies tha t  for m = 0, 1, 2 . . . .  

1 - cos (2 'n x) < 4m(1 -- COS X) 
Let  

T h e n  
g(t) = E  IE(exp(itr X) l ~)l 2. 

1--g(2mt)<=4m(1--g(t)), m = 0 , 1 , 2  . . . . .  

Fix t~lR k with ]ltll __<c. C h o o s e  m > 0  such that  

2m+1 Iltll >c~  2m Iltll. 
T h e n  

implies 

and  hence  

g ( t ) <  1--C for Iltl[ ~ c  

1 - g(t) > 4 " -  *(1 - g(2 m + * t)) 

>4-m-lc>=c -1 ]ltl] 2/4 

g(t) ~ exp ( - c -  x Iltll 2/4). 

This p roves  the lemma.  

(3.3) L e m m a  ( B h a t t a c h a r y a  [2], Sweet ing [14]). Let f: IRk-~IR denote a func- 
tion such that If(x)l <M(1 + IIx[I s~ for every xs lR  k. Then for ~ > 0  

IEf (S . ) -~  f dtP.,s[ 

< cM sup ~ ]D ~ [ ( H . ( t ) -  ~.,~(t)) I((n-~t) exp(it r e.)]l dt 
] e [ < k + l  +so  

+coo(g :  n-~)+o(n -(s 2+6)/2) 

where  
6 > 0 ,  g(x)=f(x)/(1 + Ilxll% 

co(g: n-~)=Ssup{lg(x+y)-g(x) l"  IlyH < n - ~ }  ebx.(dx), 
and  

n 

G = n - 1 / 2 ~ E y j .  
1 

Here  N n = Cov(S . )  a n d / (  is a c o n t i n u o u s  func t ion  with c o m p a c t  suppor t .  

Proof. Let  S'.=n 1/2 ~ yj. Let  e > 0  to be de t e rmined  later, an d  define 
1 

A={]lS,][<=nq, B:{llS',[]~n~}. 
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Then 
E IlS,,-S'll s~ = E  IIS,,--S',,IIS~ lAB+ l a B +  lXB ) 

= I 1 + 12 + 13 + I4, say. 

Using (x + y)" =< 2"(x" + y"), n, x, y > O, we obtain 

I~ <=(2n+)s~ 

I2 ~ 2s~ EII S. IIS~ 1A n + E II S'.llS~ 1B) < 2s~ s~ P {S. + S',,} + E I I S'. [IS~ 1.), 

13 ~ 2S~ IlS. IIS~ 1~ + (n~) so P {S,, + S',}), 

I4<2S~ ItS.II so t a + E  IIS;[I so 1~). 

Hence 

E IIS.-S' .[ISO~c(E IIS.II so 1 A + E  IIS'.II So 1B+n's~ 

Furthermore,  L e m m a  (3.30) implies that  for some positive c5 

E lIS.II + 1A=E IIS~176 liS.II so 1A 
so , so E , so < l E  [IS'.lI+~ [IS,,11 I S l E  IIS.II - IIS,,ll 1BI+IE IIS',,ll S~ 1B--E IIS,,II~~ 

< o(n-(S- 2 +~)/2)+ 2n '~~ P {S,, @ S',,} + E IIS,,I[ ~~ 1B. 

This yields 

E ]lS.--S'.[l~~ []S'.l[ ~~ 1B+n~s~ -(s-z+'5)/2) 

L e m m a  (3.33) implies that  for arbitrary positive integer r 

sup E II s'. II '+ < o0 
n 

and hence a choice 

yields 

This implies 

Finally, 

and 

0 < e < ( s +  1) f i - ( s -  2)/2 

E II S.  - S; II so = o(n-r  2v2), 

IE f ( S,,) - E f (S'.)I = o(n -<~ -  2)/2). 

e,, = O(n 1/2 n-S") = o(n-(s-  2 + ~)/2), 

~ f ("  + e , ) d ~ s = ~  fdTS, s+o(n-<S-2+~)/2). 

This together with Hn( t )exp[ i tWen]=Eexp[ i t r s ' , ] ,  Lemma (11.6), p. 98 of 
Bhat tacharya and Rao (1976) (which estimates the LI(IR k) norm of functions by 
the integral over derivatives of the Fourier-transform) and the smoothing 
inequality Lemma 5 of Sweeting (1977) proves the lemma. 

Let [a] denote the largest integer smaller or equal to a. For  x~lR k let 

kj 
fj, n(X)= I~ (ar, jx)~v'Jexp(in-l/2tWx), j = l  . . . . .  n, 

p = l  

where ap,j are bounded vectors in IR k, and ap, j a r e  nonnegative integers. Then 
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(3.4) Lemma. Let U 1 = l-I f~,n(Zs), U2= fj,.(Zj) and r=~c~p,~. I f  con- 
j = l  j=kq- l  p , j  

dition (2.3) and (2.4) are fulfilled we have 

(i) [cov(U1, U2) I < cnar e x p ( -  d [7/3]). 

I f  in addition 0 <_ r <_ s we obtain 

(ii) Icov(U1, U2)[ < c(1 + fls + 1) exp( - d [I/3]/(s + 1)). 

The inequality (ii) still holds when we replace Zj  by Xj  in the definition of U 1 
and U 2. 

Proof. Let g=[I/3]. Using condition (2.3) there exists a ~j_+~ measurable 

random vector 32~ such that E IlSj-~jll<_l-exp(-dg). Let Up, /9=1,2 be de- 
- d  

fined similarly as Up, /9=1,2 with Zj replaced by _gj-EYj. Since U I is ~ + g -  
measurable and U 2 is ~,+Z_g-measurable, condition (2.4) entails 

<! (3.5) sup ]P([TI~A, 1 2 2 ~ B ) - P ( U ~ A ) P ( t 2 2 ~ B ) l = d e x p ( - d g  ). 
A,B 

Using 

(3.6) I g l g 2 - g ,  g21<=lgll Ig2-(221 + 117211 g l -  Ual, 

we derive (the truncation function T is Lipschitz!) 

(3.7) Icov(UI, C2) - cov ([31, U2)I =< cn~a exp(-dg) .  

By (3.5), [coy(U1, U2) I <cn "~ exp(-dg) ,  thus proving (i). 
(ii) Truncation of Xj at M, i.e. replacing Xj by T~t(Xj), where 

x if [[x[] =<M 
T~t(x)= xM4'(llxll M-a)/[IxII otherwise, 

yields random variables 

k 

UI,~=I-I fj,,(TM(Zj) ) and U2,M= ( I  fi,,(T~t(Zj)) �9 
1 k=l 

It is not hard to show that 

(3.8) IE UI,MU~,~--E U~ Cr~l +I~ CI,~ ~ U~,~,-E U~ ~ U~I <=c~s+~ M -(~+~-~ 

k 

Let C1,M=~f~,.(T~(T(Xj)-EYj)) and let U2,M be defined similarly. Note 
i 

again that T~u and T are Lipschitz functions. Using (3.6) and (3.8) and con- 
dition (2.3) we deduce 

(3.9) Icov(U 1, U2)-cov(UI,~t, Ua,~)l <=c~+~ M-(~+I-~)+cM~-~ exp(-dg) .  
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Relat ion (3.5) implies I cov(U1, ~t, Ue. M)I < Mr exp ( -- dg). This together with (3.9) 
and the opt imal  choice of  M proves the assertion. 

In  order  to expand the c.f. H,(t) and its derivatives in terms of  n -1/2 we 
have to estimate the cumulants  of  S* (which determine the coefficients of  the 
expansion) as well as the derivatives of the remainder  term of the expansion. 

It is convenient  to in t roduce some more  notations.  
Let  E t U = E U exp l i t  T S*]/Hn(t ). 
Define the semiinvariants of  order p 

T * tct(a T S* . . . .  , ap S, ) 

_ 0 ~ lnH, ( t+~la~+. . .+epap) ,  
~ 1  " ' "  ~ p  ~ . . . . .  ~p=o  

where a 1 . . . .  , apelR. Write  

T , , r , b r _ r , j  b T s ,  t] G(a S , , . . . , a  r S . , b  S . . . . . .  S * ) - G ( a  S, , , . .  

j-tlmes /-times 

The Taylor  expansion of  In H,(t) can be written 

l n H , ( t ) =  ~ tr S*nr) r! -1  q-Rs+l(t), 
r = 2  

where 1 
(3.10) R s + l ( t ) = s ! - l S (  l_tl)slcnt(i tr  ,(s+l) s. )d~. 

0 

Since we have to evaluate derivatives of  expansions in dimension k >  1 note 
that  

~ ~=oRs+ l(t + ea) 
(3.11) 1 

- - 1  �9 T * p  �9 T * q  =s! yd t l ( 1 - t l )~*Cpq t lP+q-~ - lK ,  tOt S, ,za S, ) 
0 

where cpq>0  are combinator ia l  coefficients and the summat ion  ~ *  extends 
over all p,q>O such that  O<q<l ,  O < p < s + l  and p + q > s + l .  

Note  that  the semiinvariants are multil inear forms in the r andom variables. 
Hence, 

(3.12) t%t(t r ,v  T , q _  S . . . . .  t r Zip, a r Z1, , ... a r Zlq ) H -(p+q)/2 a S, ) -  ~ K.t(t  T Z i p  , 

where the summat ion  extends over all indices l < j l  . . . . .  Jp < n  and 
1 < 11 < . . .  __< lq< n and the semiinvariants on the r.h.s, are given by 

0 .. 0 l n E e x p [ i ~ t T s  . 
~ 1  "0~p-+q ~1 . . . . .  ~p+q :o 

+ e 1 t T Zjl +. . .  + ~pt T Zjp ~- F.p+ 1 ar Zll +. . .  + ~p+q aT Z J .  
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Similarly one defines a semiinvariant of order r for random variables Vh, .... Vjr 
(instead of t r Zj~), where V~ is o-(Zg-measurable. It is well known that (see e.g. 
Zhurbenko (1972)) 

(3.13) tct(Val . . . . .  V#)= ~ X*c(I1 ....  , Iv) ( -1)  ~ 15I Et [I  V1 
v= 1 j =  1 l e I j  

where C(11,...,Ir) denote combinatorial coefficients and the summation extends 
over all decompositions {1,2 . . . . .  r}=11vo12vo ... voI~ into v disjoint parts. As- 
sume that j ,  <=j2<= ... <=Jp<Jp+l <Jp+2 < . .-<Jr and that jp+, - j p  is maximal. 
Let Vj, Z} denote independent copies of Vj, Z~, 1 <j<__n (having the same joint 
distribution). 

The following identity easily follows from (3.12): 

0=80e, 8 l n E e x p [ i t r ( s , + s , , )  
" " ~  g1=82 . . . .  ~ s  

(3.14) +e ,  B, + "'" + gp V~p + gp+ 1%+, + "" +gr V~'] 
r 

~- E E#C(I1 . . . .  , I t ) ( -1 )  ~-1 I~I (Et H Vz)Et H v~ 
v = l  j=J. leI jcsJ  1 l~IjcsJ 2 

where J1 = { 1, 2 .... , p} and J2 = {P + 1 .. . . .  r}. 
Let S~)=--in-1/etry*Z~, where ~*  extends over all l < j < n  such that 

IJ-Jll >mr  for every j , ~ l c  {1,2, ...,n}. Furthermore let 
r j  

(3.15) Zr=  [ I  l-I (arpZj), where ajvelRk, [[ajp[[<l. 
j~ l  p= 1 

(3.16) Lemma. Under conditions (2.1)-(2.4) we have 

[E t Z~[ <= c {E[Z~[ [sup {[E exp [S([)] ] �9 0 -< v < K} + pK] 
+ c exp(--dm/3)2Kn Itl~} IH~(t)l-1 

for every [[tH <cnl/2m - u z  and some 0 < p <  1. 

Proof. Using a method similar to that of A.N. Tikhomirov (1980) we arrive at 
the identity (write A([)= exp [S([- 1)_ S~r)] _ 1) 

H~ (t)E t Z I = EZ r exp [S~ 1)] + EZ~ A ~) exp [S~ I)] 

and repeating this step 
~ ,  v - 1  ) K 

= EZ,  , , ~  A~ ~) exp[S}~'~ + EZ, Iq[ A~")exp[S}K)]. 
V= 1 \ r = ~  r ~  1 

Since exp[S([ ~] is weakly dependent on A([ ~ and Z> r < v - 1 ,  Lemma 3.3 shows 

EZ~ H Ag ~ exp[S~[ ~] = EZ,  1~ Ag ~ E exp[Sg ~1 + 2~O(exp(-dm/3)n I~t~. 
r = l  r = l  

Furthermore, 

EZI v- * [I  A~[ ) < EIZxl-['Ag)I2~/2, 
"I"=1. 
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where ~I' denotes the product  over all even indices r < v -  1, 

< glz~l 1-['E [A%~>l 2 ~/2 + v2~ O ( e x p ( -  dm/3) nl~l~). 

Since glA~)l<(EIS~-~)-S~)12)~/2<(lllmcn-~lltll2)~/2<p/2, p < l ,  we have 

[H,(t)E~Z~[ < cEils[ [sup{[E exp [S~)] I �9 v < K - 1} + pK] 
+ 0(2  Kn I~1~ exp(--  rod/3)) 

thus proving L e m m a  (3.16). 
: L e t  Zh,  ZI2 denote  r andom variables defined as in (3.15), where m i n i  2 

- m a x l l > m .  
Then  the following estimate holds 

(3.17) Lemma.  For every t fulfilling ]ltlb <~n ~-~rn-1, 0 < ~ < 1 ,  

IE, Z h Z~z - g ~ z ~  EtZI~ 1 <= cn pCII' I+ Ihl)[(exp ( - d m  1/2) q- (ml/2) ! - a e~/~] IH,(t)l- 2. 

Proof. Let  Z), 1 < j  < n denote  an independent  copy of the series Z j, 1 < j  < n, 
and let Z'~j be defined in the same way as Z b ,  j = 1, 2. Fur thermore ,  introduce 
~=Z~ j =  1, 2 and Sm=in-1/zz(3)tr(Zp+Z'p), where ~ ) d e -  

P P p 
notes summat ion  over p = l  . . . .  ,max(I~), ~(3) denotes summat ion  over p 

P 
= m a x ( I 1 ) + l  . . . .  , m a x ( I 0 + m - 1  and ~(2) denotes the summat ion  over the 

p 
remaining indices. Let  Uj = (ZIj - Z'Ij ) exp [ ~ ] .  

Wri te  

(3.18) A =(EtZ,  Z~2-EtZhEtZ~)H, ( t )  2 = E U  1 exp[S , J  U 2 
K--1 

= ~ r!-~EU1S~U2+EIU1 U2lO(t)(mna-�89 -~ 
1"=0 

where 10(t)[ < 1. Let  Tj = in- 1/2 tT(Zj + Z)). 
Expanding S~, we have 

gSlSrmU2= E g g l r j , ' " r j ~ s 2 "  
Jl ..... J~ 

N ote  that  every sequence U~, Tj,, ..., Tj,, U 2 of r andom variables contains a 
'gap '  of length at least [3m/(r+ 1)], say between T# and T # + .  

Hence,  

(3.19) 
: E g I r j l . . ,  r j ,  g r i p  + 1.. .  r j r  U 2 -t- o ( n  fl(111 l+ 112[) exp( - md/(r + 1))) 

using L e m m a  (3.4). 
No te  that  by construct ion E U 1 T j . . .  Tip = 0. 

Relations (3.18) and (3.19) imply 

K--1 
]A] < n  p(II~I+I/21) ~ exp( -md/ ( r+ 1))r! -1 + E l  U1U2I~KK! - 1. 

r ~ 0  
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Choosing K = [m z/2] we obtain 

I AI < en p(I~ I+ 1121)(exp ( _ dm~/2) § (ml/2) ! - 1 em t/2) 

which proves the Lemma (3.17). 

(3.20) Lemma.  Let O,(t) be as in (3.27). 7hen 

Rs+ ~ <e(1 § § § IltIl~+~), 
0 

0 < e < 1, for every t fulfilling 

(3.21) 0,(t) < 0% I[t][ <=en -~-~+~/2, 

where aMR g with []a][ < 1. 

Proof Relations (3.11) and (3.12) show that it is sufficient to estimate 

n--r 

(3.22) ~ c(r)~(g)l~ct,(Vjl,..., Vj)l,s + l <_r<_s+ 1 + l, 
g=O 

where Vj=a~Zj, I l a f l< l  and the summation ~(g) extends over all indices 
Jl <J2 < . . .  <J, such that  g = sup {lip+ 1 -Jpl: 1 < p < r}. When the 'maximal  gap'  g 
is smaller than n ~, Lemma (3.16) with K=cm,  c>O and (3.13) together imply 

(3.23) Ix~,(Vj~, .... V~)I 
< c(r)((1 § fls + 1) np( . . . .  1)+) § { 1 § [-v~"~(t)§ pCm]r IHn(t) I -~}, 

where 

(3.24) v}")(t)=sup{lEexp[S(F)]l:p<l, lll<r}, x+ =max(x,0) ,  

choosing m=O(n~), o < e < l ,  small and o < p < l  sufficiently close to 1. On the 
other hand, when g is larger or equal to m=o(n ~) relation (3.13) and identity 
(3.14) show that it is sufficient to estimate 

j= 1 leIj  j= 1 lEljc~J1 l~l j~J2 

which can be done by successive applications of Lemma (3.17). 
Hence, we get 

(3.25) [Kt~(Vjt, ..., Vj~)l<=eexp(-cn~/2)lHn(t)l-r, c>0 .  

Since there are at most  n(g+1)  r-1 indices having a maximal gap smaller or 
equal to g, the sum in (3.22) can be bounded by 

cn(m + 1y(1 + /~+  1)n/~( . . . .  1)§ {[V}g(t)+pC~] [H,(t)I-~}~ 
(3.26) n 

+ n  ~ (g+ 1) ~-1 exp(--cn~/2)lH,(t)l-q 
g > m  
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Hence relation (3.11) and (3.12) together with (3.26) prove 

0~r=o (t+ea) <c(1  2)/2n--~+r~(o,(t)s+l+l+l)(l IItLIS+l), R s  + 1 q- fls + l ) n  - ( s -  q- 

(3.27) O,(t) = (v~)(t) + exp( -  cn~/N))/IHn(QI 

thus proving Lemma (3.20). 

(3.28) Lemma. F o r  2<_r<_s we  have  

(3.29) r , a r ~ , ] l  • p n - ( r - 2 ) / 2 R r / s + l  I~co(al S,, --., ~r ~,,, --- ~,o Vs+l ]tal II..-Ila~ll. 

Proo f .  Using Lemma (3.4) together with (3.12)-(3.14) (with 1/=0) and the 
decomposition (3.22) we can argue similarly as in the proof of Lemma (3.20). 
[When the maximal gap in the sequence of indices Jl --<... <Jr is g, we have 

__ Rr/s + 1 [~o(alrZjl, ..., ar~Zjr)l <_ c e x p ( - d m / 3 ( s  + 1))la 1 I1..-Harll b ' s+ l  ' 

This together with ~ (g+ 1) ~-1 e x p ( - c g / 3 ) < c ( r ) <  o9 proves Lemma (3.28)]. 
g=O 

For a detailed proof see Bulinskii and Zhurbenko (1976). 

(3.30) Lemma. F o r  a n y  a 1 . . . .  , a ~ l R  k w e  have  

r . r . _ t % ( a r z S , , . . . , a r S , ) l  ItCo(al S,, . . . ,a  r S,,) 
_ _  ['42 ~n - ( s -2 ) /2 - -8  l <_r<_s and 0 < ~ < 1 .  _<c 11al N-.. [larll (1 + v~+ a,,~ 

Proof. The proof is similar to the proof of Lemma (3.20). Let Vj = aT X j and Vj 
= a r Z j  = a r ( r ( x )  - ET(X)). By Cebygev's inequality II ET(Xj)H < n-s~ ~ +1- ae- 
lation (3.12) and (3.13) entail that it is sufficient to bound 

tl--g 

(3.31) ~ c(r)2(~>l~Co(V~,,.., v j ) -  ~0(vj,, .... V2)ln-r/~ 
g=0 

Here we used the same notation as in Lemma (3.20). When the maximal gap, 
say g, of the sequence j~ < . . .  --<Jr is smaller than n ~ the mixed cumulants may 
not be small and we estimate their difference [~co(V~ . . . . .  Vj)-~o(Vj~ . . . . .  vj)l, 
using the inequality 

I E Vt , . . . V~ - E V~ I . . . V[~ I 
p--1 

(3.32) < 2 [EV~I-"V[.(Vt.+~-V[.+~)V~.+~"Vz~I 
q=O 

<--c(n-~a fi~+ l v~+ lR(P-1)/(s+ l) + n-(~+ ~-P)t3 fl~+ l)ilat~ll " �9 t1%1I 

which follows from (~ebygev and H61der-type inequalities. By similar argu- 
ments applied to products of moments we obtain 

[nq 

E 2(g) l~o(Vj '  , . . . .  V j r ) - - ~ t ~ o ( V j ' l  . . . .  ' VJtr)]~/~-r/2 

(3.33) g=O 
<=cn(1 + fl2+ l)(n~ + 1)r(n-~ + n -(~+ l-r)+ p) n -~/a Naj, II . . .  I[aj.ll. 
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When  the maximal gap g is larger than n ~ we may apply Lemma (3.4) and 
Lemma (3.16) to derive (as in the proof  of L e m m a  (3.20) and L e m m a  (3.30)) 
that ~co(Vji . . . . .  Vj) and t%(V/~ . . . . .  Vj) are neglegable. The corresponding part  of 
the sum in (3.31) is of order 

n(g + 1) r - 1  exp( - dm/3(s + 1))(1 + rise+ 1). 
g _>_ [nq 

Choosing fl sufficiently close to �89 this together with (3.32) proves the assertion. 

(3.33) Lemma.  For every t fulfilling []t[[ <en ~, we have 

[O~(H.(t)- ~,~(t))l 

=c(1 + fls+ 1)(1 + [[t]13(s-1)+l~l)exp(--cl]tl[ 2) n -(s-  2)/2~. 

Proof. By L e m m a  (3.28) we obtain for I]t[] <cn ~ 

, l1 s<lc~l 
(3.34) ID a ~ ~Co(itrS*gr!-l[=O n -(1~1-2)/2 3 < ] e l < s  

r = 3  ~n -1/2 Htll 3-1~1 1~1<2. 

Using (3.10) we have 

A = D  ~ H . ( t ) - e x p  ~ K o ( i f f S * ~ ) r !  -1 

(3.35) 
= ~ c~l~2D~ exp ~Co(itYS*r)r! -1 D~2(exp[R~+l(t)] - 1). 

Relat ion (3.34) together with Lemma (3.20) entail 

[A[ __<c(1 + IltH I~l)[itlrS+ 1 (1 +f l s+  1) 
(3.36) �9 n- (s -  2)/2 -~ exp( - c [[t[[ 2)(1 + 0,(t)l~l). 

Note  that  for complex a e ~  k with HIm(a)H < tl L e m m a  (3.30) still holds (with the 
Euclidean norm replaced by the Euclidean norm ][a[] in 112k). By Lemma (3.30) 
and L e m m a  (9.7), p. 73 in Bhat taeharya and Rao  (1976) we have for complex 
vectors t described above 

exp (~2~Co(itr S*r)r!- I ) 

(3.37) = exp [o(n- (~-1)/2 +, N t [] 9] (kO (t) +/~( t ) )  

= ~.,s(t)+Rs(t), say 

where 

I/~s(t)[ ~cn-(~-1~/2(1 § j(I]t[I s+l + IPtl] 3(*-1))exp(-e2 IPRe t/12 + %~/2). 

Since the r.h.s, of (3.37) is an analytic function of t, Cauchy's  inequalities for 
derivatives of analytic functions can be used to estimate the derivatives D'R~(t) 
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by  means  of  

max  {I/~s(z)l : [I z j -  till = q, z E ff;k,j -= 1 . . . .  , k} rl-I~1. 

Using  ] 7~,,s(t) l < c e x p ( -  c lRe t II 2), c > 0 for [I Im t ll < t / a n d  II R e  t ll -<_ c n ~ we ob ta in  

(3.38) i D ~ ( t ) l  < cn-(~- 2)/2-~(1 + IItll 3(~- 1)) exp(  - c ][t[I 2) 

for  every  tE]R_ k, IIt]l ~ c n  e. 
Hence ,  

I D~(H.(t)- ~,~(t))l 
(3.39) <c( l  +~,+O(l  + lltl[3(s-1)+l~l)(l +O,(t)l~l+~)exp(_c[itl[2)n-(~-2)/2-~. 

I t  r ema ins  to e s t ima te  the  func t ion  O,(t) def ined  in (3.27). Le t  T~ = n-1/2 ~ Zj , ,  
p= l  

1 < l<n  for  any  sequence  J1 <J2 < -.. <Jr and  def ine H ( T  l, t ) = E  e x p [ i t r  T[]. Re-  
l a t ion  (3.10), L e m m a  (3.20) and  L e m m a  (3.28) t oge the r  can  be  used to p rove  for  
l < l < n  and  c~=0: 

H ( T  z, t) = e x p [  -�89 T T~ 2) + cn -  3/2 -~ I[ tl] 3 lOt,3(t)], 
where  

(3.40) 10z, a (t)] < sup {[ (exp( - c n ~) + H(T~(,~ ), t))/H(T~, t)13 : [I1 __< 3, 0 < p < m, Tl} 

and  T~(~ ) is re la ted  to  T z as S(~ p) is re la ted  to S* in L e m m a  (3.16). Here ,  e, c and  
m are  i n d e p e n d e n t  of  l, 1 _< l_< n. W e  c la im tha t  

(3.41) sup{lOz,a(t)l:Ht]h<n~}<2 for  l = 1 , 2 , . . . , n  

p r o v i d e d  n is suff icient ly large  (depend ing  on  s, k, d,/?s+ 1). 
Inequa l i t y  (3.41) t r ivial ly  ho lds  for  / = 1 .  S uppose  it ho lds  for  l < l _ < r .  

Assuming  tha t  it does  no t  ho ld  for  / = r + l ,  i.e. t h e r e  exists a t o, such tha t  
Lltol L < n  ~ a n d  10r+l ,3( to) l=2 ,  we have  

2 < sup [ e x p ( -  cnZ~)/H(T~+l, t o) + H(Tx(P~)+I, to)/H(T~+l, to)[ 3 
I,p 

These  a s sumpt ions  t oge the r  wi th  (3.40) imply  

2 __< sup [ exp(  - cn 2~) + exp [�89 ~o( tT T~(p)2+ 1) - ~o( tT T~ 21)l 
I,r 

(3.42) 
- 4 c n -  3/2-~(r + 1)]ltl] 3113 

p r o v i d e d  n is suff icient ly large. 
Since 

I~o( t r  Ti(~)+z 1) - Ko( tr T~2+ 1)l 

< c2 Iltll 2 g ][ T~+ 1 - TI(~) + 1 ]1 I/T~+I + Tx(,P~)+ 1 [1 

<clltl lemn -1/z 

<__n ~-~, ~<�89 
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relat ion (3.42) yields a contradic t ion when n is sufficiently large, thus proving 
(3.41) for l = r + l .  

This completes  the p roo f  of (3.41). 
Hence,  

10.(t)l < 2  (~+l'l)/z for every IItH _-<n ~ 

which completes  the p roof  of L e m m a  (3.33). 

(3.43) L e m m a .  For every c, e, and E > 0 there exists a positive 6 such that 

implies 
c n ~  Iltrl ~ n  E 

ID~H,(t)[<=6-aexp(-n~), lc~l<k+ 1. 

Proof It  suffices to show that  there exists a positive ~ such that  for r = 0  . . . . .  k 
+ 1  and a s lR  k, na ] ]= l  

~ ;  H,( t  + 2a) 4=o 

The  left hand  side equals 

which is bounded  by 

__ 6 -1  exp( - nO). 

[E(ar S*) ~ exp(itr S*)] 

IE(ar Z ~) .. . (a t  Z jr) exp(itr S*)l 

and 

Then 

where the sum extends over  j l  , . . . jre{1 . . . .  , n}. These are n r terms. We shall give 
upper  bounds  for each term. Fix -0 .o J1 . . . . .  j r~{1  . . . .  ,n}, and for m e n  to be 
de termined later let 

I = { j 6 { 1  . . . .  ,n} :[j-j~ >=3m, p= l . . . .  ,r}. 

Divide I into blocks A1,B 1 . . . .  ,Az ,B l as follows. Define j l  . . . .  ,Jz by 

Jl = i n f I ,  

Jp+ 1 = inf{j >jp + 7m: j~I}  

and let I be the smallest  integer for which the inf is undefined. Wri te  

Ap = 1-[ { ei'" ~/2zj : [j _j,] <__ m}, p = 1 . . . . .  I, 

B p = l - [ { e i t " - l / 2 z J : j p + m + l < = j < j v + l - m - 1 } ,  p = l  . . . .  , l - i ,  

B l = l -  [ {e it"-,/2zj : j > j l + m +  1} 

R = (aTZjo)...(aTZj9) ~[ {e itz~ :jq~I}. 

1 

(a r Z jo). . . (a T ZiP) e its~' = l-[ Av B p R. 
1 
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We have 

~ 1~I % )  < ~ ER A p B p ( A q - E ( A q l ~ / j * j q ) )  BpE(A, I~ j : j  
q = l  q + t  

FO " " ! ! t r p = 1 . . . . .  l we shall approximate Ap, Bp, R by random variables Ap, Bp, R 
such that A is bounded by 1 and N.Jp+~'~"-measurable, B'. is bounded by 1 and �9 P 3 p -  
~]2_~i-t-measurable, and R' is bounded by 2n B and measurable with respect to 
the o--field generated by {~t: there exists j(sI with [l- j[  <m}. 

Using condition (2.3) we see that this can be done with the following 
accuracy: 

EIAp-A'pl ~nnE d -1 exp( -dm) ,  

E [ B p - B p [  <_nnE d -1 exp(-dm),  

E[R - R' I < (n + r) (2 ha) ~ ned-  1 exp( - din). 

Condition (2.6) yields that for p = 1, ..., 1 

EIE(A;I~j: j , j p ) - E ( A ' p l ~ j :  0 < ~-Jt,  J <3m)l <2d-1  e-am. 

Furthermore, 

E ]g(A'pl ~j: J :#j~) - E(Ap ]~s: j #Je)[ < E [A; - A'p] <= n ~ +~ d -~ e - a,,, 

Hence 

E R t  Vl ]-[ A p B p - E R '  - .  B'~E(A.'pI~j: 0 <[J--jpJ <3m) 
1 1 

ApBp- -ge ' I~A 'pB 'p l+lER I 1 A p B p - E R  ' ' �9 <3m), . . . .  BeE(Az, I~i.  0 < ]j--jel 
.1 1 t 1 

---=It + /2 ,  say. 

We have 

and 

I~ <2(21+ 1) (n+r) (2nP)'ned - ~ e -~" 

I ] q - - 1  

12<= ~ ER'  I- [ A'pB'v(Aq--E(AqI~j:j:~jq)) 
q~  1 i 

�9 B ' E  ' �9 , . e (Ael~j 'O<l j -Jv l  ( 2n~)r'4 d - * e - d "  
q + l  1 

The first sum vanishes since 

q - - 1  1 

R' l-[ A'pB'p and I-[ B'pE(A; l~ j :O<) ' - j e j<3m)  
l q + l  

are both measurable with respect to the a-field generated by ~j : j~ jq .  
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Recall that the functions 

E(A'pl ~j:O < [j-jpl ~ 3m), p = l, ..., l 

are weakly dependent since jp+~- jp>7m,  p =  1 . . . .  , 1 - 1 .  Using condition (2.4) 
we obtain 

ER'~]  3m) ~ <3m) B'pE(Apl@j:O<~-jp[< _-<(2na)~E E(Apl~j:O<[j-Jpl 
1 

1 

<(2nP)~ [I  ElE(A'pl~/O<U-Jpl <3m)l + (2n~)~l.4d- ~ e -d~. 
1 

With condition (2.5) and Lemma (3.2) we find an upper bound for 

EIE(A'pI~j:O < ~-Jpl < 3m)[. 

We have for IItH __>d the relation EIE(ApI~j:j#jp)[ <e -a, and hence by Lemma 
(3.2) for all t~lR k Iltll < d  

E IE(AvI~j: j#jp)I  __< e x p ( - d  lit II 2/n). 

We have for all telR k 

EIE(A~I~/0 < ~-jpl ~ 3m)l 
~nE+ l d -1 e-dm+ ElE(Apl~j:O<U--jpl ~3m)[ 

<n~ + l d -  l e-am + E lE(Ap l~: j  #jp)[ 

< nE-1 d-1 e-dm + max (exp (_d  [[t[[ 2/n), e-d). 

If we choose K appropriately and let m be the integral part of K log n, then the 
assertion of the lemma follows from 

n 

e x p ( - d  Iltll 2/n)m ~ e x p ( - d  Iltll 2/K log n)) 

< e x p ( - d ' n  ~/2) for I[tll ~ c n  ~ 

and some d' > 0. 

(3.44) Remark. For some applications, e.g. for finite Fourier transforms, as- 
sumption (2.5) is too restrictive. From the above proof we observe that 

[E(exp(i t(Xj_ m +.. .  + X j+ m) l ~,:  / #j)[ < 1 -- p 

must hold for a sufficiently large number of Jv s. Hence the proof works with 
the following weaker assumption: 

(3.45) There exists a positive constant p such that for every n > p - 1  

# {j~{1 . . . .  ,n}: for all p - a < m < n ,  

[E(exp(it(Xj_m + . . . - t - X j + m ) [ ~  l : l # j)[ < 1 -- p} > pn. 
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4. Formulas 

Explicite formulas for the functions P~* of Remark (2.12) are given for s = 4  
(including terms up to order n -a) and strictly stationary sequences X1, X2, ... 
of random vectors. We first consider the case k--1 (univariate random vari- 

n 
ables). Write G,r for the cumulant of S,=n-�89 of order r. Then, when EX 1 

G,a=EX 2 + 2 ~ EX,X,+ 1-n-12 ~ j E X I X j +  1 -~-O(g/-1),  
j = l  j = l  

H I/2v -EKe+3 ~(EX2Xj+lq-EXlX}+l)q-6 ~ EXlXl+iXl+i+ j Ln, 3 - -  

j = l  i , j = l  
+ o(n- ~/2), 

nG, g=EX~-3(EX~)Z+ 4 ~ (EX1X~+l+EX31Xj+1) 
j = l  

+ 6  ~ E(X2-EX~)X2+a 
j = l  

+12 ~ EX1XI+,(X~+i+,-EX 2) 
i,j=l 

+ 4  ~ E(X1Xh+I--EX1Xh+I)Xi+h+IXj+i+h+I 
h , i , j = l  

+ o(n~ 

Let f2, f3, f4 be cumulant spectral densities of X1, X 2 .. . .  of order 2, 3, 4, i.e. 
forjl,j2,J3 =0, 1, 2 . . . .  

EXoXj, = i e-i~*~f2(x) dx, 

EXoXjlXJ~= i i e-~ 
--Tg --~ 

and 

cum ~ X,1, X,3  = i iiei'l e '2Ye ' z ix,,,ztdxdYdz 
where 

cum4(X, Y, U, V) =EX YU V-EX YE U V-EX UE YV-EX VE YU 

and X = X - E X ,  Y,U,V are defined analoguously. Whenever f2,f3, f4 are 
smooth, 
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Z,,z=2rcf2(0) + n - a  i sinx , 1 -~ sin2x/2 fz(X) dx + o(n- ), 

Z,, 3 = n-  1/2 (2 ~)2f3 (0 , 0) + o(n- 1), 

Z,, 4 = n-  1(2r03f4(0, 0, 0) + o(n- ~). 

The functions ~* of Remark (2.12) in this case read 

rio* (t)= exp(-�89 ' fz(0)), 

~* (t) = ~(i t) 3 (2 g)2 f3 (0, 0) fl0 e (t), 

l~2g~(t) = (-- _Trc f2(x ) ~dx,s inx 2 

+ (24)-i (2r03 f4(0 ' 0, 0) t 4 

- (72)  -1 (2~) 4 f3z (0, 0) t 6)/50*(0. 

We now derive the corresponding formulas for the finite Fourier transform 
dN(21 .. . .  ,2p) (see Example (1.15)). The random vector d s has complex com- 
ponents. In order to apply our theory we split d N into real and imaginary parts 
and deal with a 2p-variate random vector with real components. Write d N 

N N =(d , , . . . , d2p  ) for this vector. For our formulas we need approximations for 
Z,,N(t), telR 2p, the r-th order cumulant of tTd N. 

Since 
2 p  

Z~,N(t) -= 2 t j . . . t j t%(d~,. . . ,d nj) 
j 1 , - - - ,  J r  = 1 

it suffices to derive approximations for Ko(dJl . . . .  ,diN), Jl,  . . . , J ,=  1, ..., 2p. For 
)Le[--n, ~z] write 

N - - 1  

DN(2) = ~ Xje ~j~, 
0 

N - 1  

~N(,~)= ~ e %  
0 

Then for 2, #, v~[-rc ,  re] 

EDN(~) DN(#)DU(v) = i i AN(v-x) AN(#--y) AN(2 + x + y) f3(x, y)dxdy 

=~O(N ~ if 2 + # + v ~ 0 ( 2 r 0  
[(2~) e Nf3(# , v)+O(N ~ if ) . + # + v = 0  (2~z) 

and for 2, #, v, ~ [ - z , ~ z ]  

cum(4)(DN().), DN(#), DN(v), DN(~)) 
rg 

= i i ~AN(#-x)AU(v-y)AU(~-z)AU(2+x+Y+z)f4(x,Y ,z)dxdydz 
- r g  rc - r e  

=J'O(N ~ if 2 + # + v + ~ 0 ( Z ~ t )  
[(2~)3Nf~(u,v, 4)+O(N ~ if 2 + # + v + # ~ 0  (2z). 
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Finally, if , ~ + # - 0  (2~), then 

eiN(~,+#) 
EDN('~) DN(#) = - 2 rcf2 (2) 1 - e ~u~a +u) 

+ 2 re f2 ( -/~)/(1 - e IN(z +u)) 

+ i h(x)-h(-#) dx+o(NO) 
-~z 1- -e  i(x+u) 

w h e r e  h(x) = (f2(x) - f2(2) ) / (1  - e i(~-x)). 
I f  2 + # - 0  (2~), t h e n  

E [DN(L)[ z = E D N()~) DN(--  2~) 

= 2 7 c f 2 ( 0 ) N -  i s i n ( 2 - x )  
_ ~ sin 2 (,~ - x)/2 (f;(x) -f~(2)) dx 

+ o(N~ 

�9 d N Approx ima t ions  for ~o(d N, . . . .  Jr) are ob ta ined  easily: e.g. for r =  2: 

N-1 N-1 ) 
too (2rcU) -1/2 2 Xjc~  -1/2 2 X j c o s # j  

0 0 

= (2 rc N) -~ �9 �88 (E Ot~(2) ON(#) + EDN(2) ON( -- #) + EDN(-- 2) DN(#) 
+ EDN(- 2 )  O N (  - #)) 

N-1 N 1 ) 
K0 (2~zg) -a/2 Y, X~c~ -1/2 X X j s i n N  

0 0 
= (2 ~ u ) - a .  I (E DN(X) DN(#) _ E D~(2) DN( _ #) _ ED~(  _ ;~) ON(#) 

+ E D N ( -  4) D N ( -  #)). 

Not ice  tha t  in the non-s ta t ionary  case considered here, the N - a - t e r m  of Z2,N(t) 
does not  converge  in general. 
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