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Summary. It is shown that formal Edgeworth expansions are valid for sums
of weakly dependent random vectors. The error of approximation has order
o(n=C=22) if

(i) the moments of order s+1 are uniformly bounded

(i1) a conditional Cramér-condition holds

(i) the random vectors can be approximated by other random vectors
which satisfy a strong mixing condition and a Markov type condition.

The strong mixing coefficients in (iii) are decreasing at an exponential rate.
The above conditions can easily be checked and are often satisfied when
the sequence of random vectors is a Gaussian, or a Markov, or an auto-
regressive process. Explicit formulas are given for the distribution of finite
Fourier transforms of a strictly stationary time series.

1. Introduction and Summary

Consider a strictly stationary sequence X, X,,... of k-variate random vectors
with mean zero. If X,,X,,... are independent and if X, has a nonsingular
covariance matrix, then the distribution of n™ (X, + ...+ X,) is asymptotically
normal. If third order moments exist, then the error of the normal approxima-
tion is of order n~ 2. If higher order moments exist and the distribution of X
is smooth, then higher order approximations are valid. The smoothness con-
dition usually imposed on X, is the following (Cramér):
For all e>0 there exists a positive & such that for teR¥, |t| =¢

(1.1) |[Eexp(it™ X,)|<1-6.
The higher order approximations are of the following kind:

s—2
(1.2) W =3 a2,
r=0
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Here p, is the normal distribution with mean zero and appropriate covariance
matrix, and for r=1,...,s—2, p, is a finite signed measure with p,-density g,,
say. The function g, is a polynomial with coefficients uniquely determined by
the moments of X, up to order r+2. A detailed discussion of asymptotic
expansions for independent random vectors is contained in Bhattacharya and
Ranga Rao’s monograph (1976).

It is well known that the central limit theorem remains true if X,,X,, ...
are weakly dependent. Some concepts of weak dependence are m-dependence,
uniform mixing, and strong mixing. The sequence X, X,,... is m-dependent if
for all p=1,2,... the sequences

(1.3) (Xy,...,X,) and (X X

ptm+12 p+m+2:--')

are stochastically independent. In the uniform mixing concept the dependence
between the sequences (1.3) is measured by

@(m)=sup |P(AnB)— P(4) P(B)|/P(B)

where the sup is taken over all p=1,2,... and all events A4, B, P(B)>0, where A4
is determined by (X,,...,X,) and B is determined by (X, 1, X, 1 ny2 ) (s€€
Ibragimov (1962)). In the strong mixing concept the dependence in (1.3) is
measured by

a(m)=sup |P(4 nB)— P(4) P(B)|

where the sup is taken as above (see Rosenblatt (1956)). Another type of weak
dependence occurs in models of the following kind. Given a sequence
Yy, Y,,,Y,,,... of independent identically distributed random variables and a
measurable function f: RZ—R¥, define

X;=f(Y;,, PeL), j=12,...

We call the sequence X,,X,,... a weakly dependent shift if for all j=1,2,...,
E(X;| Y,:|j—ql £m) converges to X at a specified rate when m tends to infinity.
A weakly dependent shift will not necessarily satisfy a strong mixing condition
(see Ibragimov (1962), pp.374/5). It is unknown whether all m-dependent se-
quences are weakly dependent shifts.

Proofs of the central limit theorem usually require the additional assump-
tion
(1.4 Y=limCov(n "*(X;+...4+X,)) exists and is nonsingular.

When X,,X,,... are iid, this assumption is satisfied whenever X, has a
nonsingular covariance matrix. For weakly dependent random vectors
X,,X,,... condition (1.4) may fail even if X, has a nonsingular covariance
matrix:

(1.5) Example. Let Y,,Y,,... be a sequence of iid random variables, and for j
=1,2,... define
X;=Y,,,~Y,.

J

The sequence X, X,,... is 1-dependent, and (1.4) never holds.
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The following central limit theorems are known.

(1.6) Theorem (Ibragimov (1962), p. 360, Theorem 1.4). Assume (1.4) and
E|X,|**°<o0 for some positive 5. If X,, X,, ... is uniformly mixing with
lim @ (m)=0, then

(7Y limsup{|P{n~"*(X,+...+ X,)e C} —N(C)|: C convex, measurable} =0

where N is the k-variate normal distribution with mean zero and covariance
matrix X.

(1.8) Theorem (Ibragimov (1962), p. 367, Theorem 1.7). Assume (1.4) and
E||X,|I>*°< oo for some positive 6. If X,, X,, ... is strongly mixing with

Zam)?+) < oo
then (1.7) is true.

The error of normal approximation has order n~"? when third moments

exist and X, X, ... is m-dependent (Stein (1972), Tikhomirov (1980)) or Mar-
kov dependent (Bolthausen (1980), Statulevicius (1969, 1970)). For uniformly or
strongly mixing sequences and for weakly dependent shifts the best available
bounds are of order n='?*(logn)’, B>0 (Stein (1972), Tikhomirov (1980), Ibra-
gimov (1967)). Higher order approximations of the form (1.2) were first derived
by Statulevicius (1969, 1970) and Durbin (1980). The results of Statulevicius
hold for finite order Markov chains, but not for weakly dependent shifts -
these do not necessarily satisfy the RMT-condition of Statulevicius. Durbin’s
conditions are hard to check even in the simplest case when X,,X,,... is a
weakly dependent shift which is m-dependent.

We shall prove the validity of higher order approximations for the distribu-
tion of n=Y* (X, +...+X,) under (1.4), weak dependence assumptions, and a
Cramér type condition. Our Cramér type condition is more restrictive then
(1.1). In fact, assumption (1.1) is insufficient for our purpose even if X, X,, ...
is an m-dependent shift. This is demonstrated by the following

(1.9 Example. Let Y,,Y,,... and Z,,Z,, ... be two sequences of independent
identically distributed random variables, the ¥’s being independent of the Z’s.
Assume that

P{Y,=—1/2}=P{Y,=1/2}=1/2

and that the distribution of Z; is normal with mean zero and unit variance.
For j=1,2,... define

XJ.:YJ.+ZJ-+1—ZJ-.
The sequence X, X,,... is a 1-dependent shift, and (1.1) and (1.4) hold. How-
ever, the formal Edgeworth expansion

t

(1.10) P{n (X +...+X)<t}= | 2n)~"?exp(—x%/2)dx+o(n"1?)
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is not valid for t=+0. To see this we derive a valid higher order approximation
for the distribution of

A 4+ X )= (Y Y)Y, 7).
We have uniformly for teR

P{n 'P(Y,+. ..+ Y)<t}= i (2m)~ 12 exp(~x?/2) dx

+n12Q2m)" 2 exp(—t?/2) S, (n*? 1)
+o(n~1?)
where S, is the 1st Bernoulli polynomial defined by

Six)=x—1/2,0=x<1, S;(x+1)=5,(x), xeR.
Hence

Pn=*(X,+..+X,)<t}

t t+n-1/221/2y
= { { (2m)~ Y% exp(—x2/2)dx

— 00 — 00

+n7M2Q2m) " V2 exp(—12/2) S;(nM2 1+ 212 7)) 2n) " M2 exp(—r?/2) dr
+o(n=1?)

= 3 (2n)~ Y2 exp(—x?/2)dx

+n~12Q2n) " V2 exp(—1t%/2) Of S (' 422 ) 2n) Y2 exp(—r?/2) dr
+o(n~ /%), -
For t 40 the sequence
TSl(n1/2t+2”2r)(2n)“”2exp(—r2/2)dr, n=1,2,...

does not converge. Hence (1.10) is not true. Relation (1.10) holds for ¢
=n"12m, meZ.

Cases as the one considered in (1.9) are excluded by our conditional
Cramér condition which will be introduced and discussed in Sect. 2. Notice
that, in (1.9), the conditional distributions of X, +X,, given Y,, Z,, p=2, are
lattice distributions.

In Theorem 2.8 we shall prove the validity of higher order approximations
under general conditions (see (2.3)-(2.6)). These conditions are satisfied in the
following examples (1.11)-(1.15). In other situations they can be checked easily.

(1.11) Example. Let Y,,Y,, ... be a sequence of independent identically distrib-
uted random variables with Lebesgue density g, let m=1 and h: R"—>IR be
continuously differentiable, and define

X;=h(Y;, 1, Yo, J=12,...

v Ljm

The sequence X,,X,, ... is an m-dependent shift.
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We assume that there exist yg,...,y,,_,€R and an open subset
Us{y,,..s¥3mm_1} such that g>0 on U and

m

1%
> P h(X 15 -eos Xl s, ot 90y - 1) F O

j=1

(1.12) Example. Let Y,,Y,,,Y.,,... be a sequence of independent identically
distributed random variables and c,, peZ a sequence of real numbers satisfying

(i) lc,| <6 " exp(—3p|) for some positive 4, and

i Y ¢, +0.
p=—0

Define
X.= z c Y, j=1,2,...

J pitp’
p o0

and assume that Y, satisfies Cramér’s condition (1.1).
Notice that an arbitrary stationary autoregressive process

BoX;+B X; y+...+B.X; ,=U;, j=0,%1,+2,..
can be written as
Xj: Z Cp Uj—p
p=0
with ¢, peZ, satisfying (i) and (ii) above whenever
Boz +By 27+ ...+ B,=0

has all its roots different and in {|z| <1} (see Anderson (1971), Sect. 5.2).

(1.13) Example. Let &,,&,,... be a homogeneous Markov chain, and f a
measurable function on its state space I. We define

Xj:f(éj)v j:1:2’-"

and assume that £,,&,,... is strictly stationary, X, satisfies Crameér’s condition
(1.1), and the transition kernel P(x, A) of the Markov chain satisfies

sup |P(x, Ay—P(x', A)| <1

where the sup is taken over all x,x’, and A (see Statulevicius (1969, 1970)). The
last condition is satisfied whenever there exists a positive measure p such that
for all x and 4

P(x, )z w(A).

(1.14) Example. Let Y,, Y, ,,Y,,,... be a strictly stationary Gaussian process
with positive analytic spectral density, and let /" be a nonconstant function
which is continuously differentiable. Define

X,=f(Y), j=12...
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(1.15) Example. Let X,,X,,... be a strictly stationary Markov-dependent
sequence of random variables satisfying the regularity conditions of Example
(1.13). For fixed p and 04, <...<A, =7, 4;+4;#0mod(2n), 1<i+j<p, and
for N=1,2,... let

N
dN(lll,...,),p): ((27TN)_1/2 Z Xne—in/lj)
j=1,..,p

Vl:l - » »

be the finite Fourier transform of X,,..., Xy at 4,,...,4, (see Hannan (1970),
Chap. 1V, 3). If E|X,[**" <o, then the distribution of d"(4,,...,4) admits a
higher order approximation with an error term of order O(N~¢~2/2), The first
term of the expansion is given in Anderson (1971), p. 482.

The paper is organized as follows. In Sect. 2 the regularity conditions and
theorems are stated and applied to our Examples (1.11)-(1.15). At the end of
Sect. 2 the technical lemmas of Sect. 3 are combined to yield proofs of our
theorems. Formulas are deferred to Sect. 4. From now on we drop the assump-
tion that the sequence under consideration is strictly stationary.

2. The Results

Let X,,X,,... be a sequence of k-variate random vectors on an abstract
measure space (£, o7, P) with

2.1 EX;=0, j=12,..
and
(2.2) E\|Xj||s“§ﬁs+l<oo, j=12....

Define the integer s, <s by

S if 5 1s even
Sq=
° 7 )s—1 if sis odd.

We assume that a sequence %,,%2,,,%,,,... of sub-o-fields of o/ are given
and the following assumptions are satisfied.

(2.3) There exists a positive constant d such that for n,m=1,2,... with
m>d~" there exists a 277 »-measurable k-variate random vector Y, , for which

E|X,—Y, | <d""exp(—dm).
Here 2} is the o-field generated by 7, p<j=<gq.
(24) There exists d >0 such that for all m,n=1,2,..., AeP" , BeZ" .,

\P(A~B)—P(A) P(B)| <d~ ' e~m

(2.5) There exists d>0 such that for all mn=1,2,..., d"*<m<n, and all
teR* with |t} =d

E |E(eilT(Xn—m+Xn—m+1+~--+Xn+m)| @]]:5:”“ _S_e‘d.



Asymptotic Expansions for Sums of Weakly Dependent Random Vectors 217

(2.6) There exists d >0 such that for all m,n,p=1,2,... and Ae@,’,‘f}‘,’
E|P(A|2;:j+n)—P(A|2;: 0<|n—j|Sm+p)<d ‘e ™

Write S,=n""*(X,+...+ X,). For r=0,...,s let y, () be the cumulant of ¢”S,
of order r,

-

)= 108 E explixt” S )0

Here t7 is the transpose of the k-vector i Define the formal Edgeworth
expansion ‘Pn of S, by its characteristic function ¥, (f)=exp(y, ,(t)

+ Z n~"2 B (1), where the functions B, r=1,2,... are defined by the formal

Fond

1dent1ty

mp@mm+§oﬂ*f*w“”%mm)
@.7)

—exp(y )+ Y 7 B

(2.8) Theorem. Let f:R*—>R denote a measurable function such that
I EMA A+ | x|*) for every xeR¥. Assume that (2.1) (2.2), (1.4), (2.3)-(2.6)
hold. Then there exists a positive constant & not depending on f and M, and for
arbitrary x>0 there exists a positive constant ¢ depending on M but not on f
such that

lEf(Sn)—ffd ¥, IScolf, 1) 4 o(n 2902
where

w(fin™)=[sup{lf(x+y)—fX): [yl =n~"} @5(x)dx

and @y is the normal density with zero mean and covariance matrix X. The term
o(n=6=2%92) depends on f through M only.

(2.9) Corollary. Let the assumptions of Theorem (2.8) be satisfied. Then uni-
formly for convex measurable C cIR*

P{S,eC}=", (O)+o(n =22,

As in [6] we can replace the smoothness conditions (2.5), (2.6) by smoothness of
the function to be integrated. For nonnegative integral k-vectors o=(oy,...,%,)
define

o 0%

Ox T ox

%

(2.10) Theorem. Let f: R*>R denote an infinitely differentiable function such
that | f(x)] SM(1+||x]|®) for every xeR* and |D*f(x)| £ M, (1+ |x|?) for every
nonnegative integral k-vector o and positive constants M, p,. Assume that (2.1)-
(2.4) and (1.4) hold. Then

Ef(S,)—[fd¥, ;=o(n ¢~7)
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Actually, the expansion is valid for f having a finite number r(g) > (s—2)/(2¢) of
derivatives only. The number ¢ depends on &, s, f, d, k, B,.,, and X. We
conjecture that s —1 derivatives are sufficient.

In our next theorem, smoothness conditions (2.5), (2.6) are not needed
either.

(2.11) Theorem. Under conditions (2.1)-(2.4) and (1.4)
E(L+1S,0) Ly, (5— 2 togmrzy =01~ 7 272).

(2.12) Remark. Notice that the formal Edgeworth expansion ¥, ; introduced
here is not of the form (1.2): The functions P depend on n Hence the
expansion ¥, ( is not unique. However, under the assumptlons of Theorem (2.8)
an asymptotic expansion of the form (1.2) is valid whenever X,,X,,... is
strictly stationary. More precisely, if (2.1)-(2.4) and (1.4) are satisfied, then there
exist polynomials a, (¢), r=2,...,s, j=r—2,...,5—2, such that uniformly for
£, r=2,...,8j=0,...,5—2

s—2

La)= Y n%a  (O+om 2
j=r—2

In particular, a,,(f)= —t" Zt/2. Define the formal expansion ¥ by its charac-
teristic function

s—2
Px () =exp(—1T Xt/2)+ Y n~"2 Br()
r=1
where P*(1) is defined by the formal identity

exp (—t Zt)2+ 2 T’az je2(O)+ z =t Z T Zar P . z(t))

j=0

8

=exp(—tT Zt/2)+ Z r Pt
Then

JA+IxIM 18, — B =0(n™C7272)

where | | denotes the variation measure.

Our conditions (2.3)~(2.6) will now be discussed in detail. Their wide
applicability is due to the fact that we may choose the o-fields Z;. If &; is the
o-field generated by X, the condition (2.3) is satisfied, but conditions (2.5) and
(2.6) can hardly be checked, when X, X,,... is a weakly dependent shift. Here
we show that conditions (2.3)-(2.6) are satisfied in Examples (1.11)-(1.15) when
appropriate ¢-fields are chosen.

(i) In Example (1.11) we choose &; the o-field generated by Y;. Then (2. 3)
(2.4) and (2.6) hold. By assumption, there exists an open subset W of R?™-!
with P{(Y;,.... Y,,,_)eW}>0 such that the map H:

(15 sXam1)
—»(xl,...,xmAI,me,.. 2 Xo 15 Zh x;, ]+1"">xm+j~—1))

is a local isomorphism on W.
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Write B, for the conditional distribution of Y;,Y,,..., given
(Yy,....,Y;,,_,)eW, and let G be a Lebesgue-density of the distribution of H
under B,. The Riemann-Lebesgue lemma and the dominated convergence
theorem imply that

lim {([exp(ithy,_,)Ghy,....hyp_1)dhy,_)dhy...dhy, _,=0.

|tI—>oo
This implies that for |t|=d
E|E( 05+ 4] Y2 jm)| e PW)+1~P(W)

whence (2.5) follows.

(i) In Example (1.12) let &; be the o-field generated by Y;. Then (2.4) and
(2.6) are obvious, (2.3) follows from (1.12(1)), and (2.5) follows from (1.12(ii)) and
the relation

E|E(eit(Xn7m+...+Xn+m)| @jij:i:”ﬂ =

Eexp (it > cpY,,)

p=-m

The condition (1.12(i)) and (1.12(ii)) are satisfied for an autoregressive process
defined in (1.12). Condition (1.12(i)) follows from the representation of the
coefficients ¢, as

€= 21: kj x;’
with constants k,...,k, and x, ..., x, the different zeroes of

Boz +...+5,=0.

Condition (1.12(ii)) follows from

ZOcp=(ﬁo—i-...—l~[3,)‘1

which cannot be zero.

(For details see Anderson (1971), Sect. 5.2.)

(iii) In Example (1.13) the o-fields 9; are generated by &;. Then (2.3) and
(2.6) are satisfied. Condition (2.4) follows from

sup |P(x, A)—P(x’, A)| <1

(see Statulevicius (1969) 11, p. 644, Lemma 4).

Condition (2.5) follows from Cramér’s condition for X, and Lemma 2 in
Statulevicius (1969) 11, p. 638.

(iv) In Example (1.14) the o-fields 2, are generated by Y,. Then (2.3) is
obvious. Condition (2.4) is satisfied since the spectral density of Y, Y,,,... is
analytic (see Ibragimov (1970), p.35, Theorem 6). For arbitrary n the con-
ditional distribution of Y,, given (Y,, jeZ, j+n), is a nondegenerate normal
distribution. Hence (2.5) holds. In order to prove (2.6) we notice that the
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conditional distribution of Y, given (Y;: j#0), and given (Y;: 0<|j|<m), are
both normal. Hence it suffices to show that there exists a positive constant d
such that for m=1,2, ...
E(E(YolY;: j#0)— E(Y,| Y;: 0<|jl =m))*
=EE(Y,|Y;: j#0)? —EE(Y,|Y;: 0<|jlsm)*<d " te "™
This, however, follows from Grenander and Szegd (1958), p. 189, Theorem.

(v) In Example (1.15) we take the o-fields &; generated by X;. Then
condition (2.3) is true for the 2p-vectors

Z,=(X,cos(nl), X, sin(ndy); j=1,....p), n=12, ...

As in Example (1.13) we obtain that (2.4) and (2.6) hold. However, condition
(2.5) will not be satisfied in general. Notice first that for t=(r,,t,)eR*?
lE(eXp(itT(zn—m+ A +Zn+m))|XJ : J#n)|
=|E(exp(iti(cosnly,...,cosnl ) X,
+it3(sinniy,...,sinnd,) X ) X;: j=n—1,n+1).

If
(2.13) |t1(cosniy,...,cosnd ) +ty(sinnd,, ..., sinnld ) =d

then E|E(exp(it” Z,)|X,: j&n)|<e™? follows from the fact that (2.5) holds for
the sequence X, X,,.... However, given d>0 there will not exist d'>0 such
that (2.13) holds whenever ||t =d'. According to Remark (3.44) the weaker
assumption (3.45) will be sufficient for the validity of higher order approxi-
mations. We have to show that (2.13) holds for sufficiently many n. Let X be
N
the asymptotic covariance matrix of ) Z i L€
1

N
>=limn~!Cov (};Zj).

The assumption 4;+4;%£0mod(2n) implies that 2 is nonsingular. Hence there
exists >0 such that N>&~! implies

N 2
(2.14) E (tTZZj> =eN ]
1

Write H,=t](cosniy,...,cosni,)+t3(sinniy, ...,sinnd,). Then

N

N 2
E (tT;zJ.) = Y HHEXX,
i,j=

N
sd|tlp 3 IEXX|+]e)?p* Y |EX, X

ij=1
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where the second sum extends over all i,je{l,..., N} for which (2.13) holds. We
choose d >0 such that

d'r<gp! (iIEX;XA)_l
and '
lelzd*.
Then (2.14) implies that
N=14{je{l,..., N}: (2.13) holds for j}

remains bounded away from zero.

Outline of proofs for Theorems (2.8)~(2.12). Theorem (2.8) follows from Lemmas
(3.3) and (3.33). If we take x=(s—2+9)/2 in (2.8), then (2.9) follows with
Sazonov’s lemma (see [2], p. 24, Corollary 3.2).
For Theorem (2.10) we sketch the proof. For details see [6]. Notice first
that
Ef(S,)=Ef(S})+o(n~ =72

(see the proof of Lemma (3.3)). As in [6], for nonnegative k-vector o« we can
expand ED*f(S¥+n~°U), where U is a random vector with distribution K
from Lemma (3.3). Finally, Ef (S*+n~*U —xU) is expanded in a Taylor series

inxatx=n"°%

Proof of Theorem (2.11). Lemma (3.3) and Lemma (3.33), applied for k=g,
imply that

E NS, 15,112 (65— 2) 1ogmir2y
:I [l Lijixl 20— 2) togmyizy T, s(d %) + (g5 n~%+o(n=¢"2?%)

where
g0 = X1+ 1% %)™ Ly 5 s 2) togmray-
Since g is constant on {||x| <((s—2)logn)*/?} and bounded on R,
o(g; n™ L cdy{|x]| > ((s—2)logn)/? — 1} =o(n=~2/2),
Now the relation
FII%® Ly s 5 2 togmyrrzs P, s(@X) = 0(n™ 67212

implies the assertion.

3. Lemmas

To simplify our notations we use the following convention. Primary variables
are the numbers s, s,, k, B,,,, the covariance matrix X in (1.4), and the
constant d in (2.3)-(2.6). The symbols ¢, ¢, C will be used for finite positive
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generic constants which depend on the primary variables, but not on n. The
symbol f is used for a constant depending on our primary variables which has
to be chosen appropriately. The variables m and K may depend on the
primary variables and on n. We denote

S,=n""*(X,+...+ X))
and define

if x| =<n

X
(3.1) TW:{xnﬂ Y(lxlnPylx]  otherwise

where e C*(0, o0) satisfies

vy =r if r=1,

i is increasing,

Yyr)=2 if r=2.
Forj=1,...,nlet

%=T(X),
and
Z,=Y,~EY,
We suppress the index n at T, Y, and Z;.
Define
S*=n=1*Z,+..+2Z)
and

H (t)=E exp(it" S¥),

where tTa denotes the scalar product of ¢ and a. For nonnegative integral k-
vector

o={0ly, ..., 00)
write

lo| =0ty + ... o
and

3l
Dime—
ot ... Otyx

(3.2) Lemma (Petrov). Let X be a k-variate random vector on an abstract
measure space (Q,.57,P), let B be a sub-o-field, and c be positive. Suppose
that for teRRF, ||t =c

E|E(exp(it™ X)|#)| <1 —c.
Then there exists a positive d such that for |t| Zc
E |E(exp(it” X)| ) <exp(—d||t]?).

Proof. Let X,, 4, and X,,%, be two independent copies of X,# on some
measure space (€, o/, P"), and write #, for the ¢-field generated by %, U%,.
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Then for teR*

E|E(exp(it" X)|B)* =E |E(exp(it” X )| %,)*
and
\E(exp(it” X,)| B3)* = E(exp(it" (X — X,))| %)
=E(cost™(X,—X,)|%,) ae.
The relation
1—cos(2x)<4(1 —cosx), xeR

implies that for m=0,1,2, ...

1 —cos(2"x) <4™(1 —cos x)
Let
g(t)=E|E(exp(it” X)|B)*.
Then
1—g(Q"n 41 —g), m=0,1,2,....

Fix telR* with |¢| <c. Choose m=>0 such that

27 |t > ez 2" |t]).

Then
g)sl—c for |t =c
implies
1—g®)z4 " 1(1-g(2"* 1)
247 tezemt )| */4
and hence

g)<exp(—c~" [t]|*/4).
This proves the lemma.

(3.3) Lemma (Bhattacharya [2], Sweeting [14]). Let f: R*SIR denote a func-
tion such that |f(x) £ M(14 | x||®) for every xeR¥. Then for x>0

Ef(S)—ffd¥,
<cM  sup [ID*[(H,(5)—¥, @) K(n~"t)exp(it’e,)]|dt

laj<k+1+s0

+cco(g: n—K)+0(n—(572+5)/2)

where
0>0, g(x)=f (x)/(1 + [ x]*),

w(g: n)=[sup{lgx+y)—gx)|: |ly| £n~*} &y (dx),
and

e,=n"'?YEY,
1
Here X,=Cov(S,) and K is a continuous function with compact support.

Proof. Let S,=n""?3%" 7Y, Let >0 to be determined later, and define
1

A={[S,=n"}, B={IS,| =n‘}.
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Then
E|S, =S, *=E|S, =S, I*(Lyp+ 145+ 115+ 115
=l +I,+1,+1,, say.

Using (x+y)" <2*(x"+y"), n,x, y>0, we obtain

I, =@y P{S,*5},

LE2E S, 1015+ E S, 15) S2%((n°)° P{S,*S,} + E |IS,[* 1),

L =2°(E|[S, ] 15+ (1) P{S,+S.}),

L=2°E|S,II° 11+ E[S,1* 1p).
Hence

E S, —S,|°Sc(E IS, I 14+ E[S,|% Ly+n° P{S, 5.}

Furthermore, Lemma (3.30) implies that for some positive ¢

E S, 1z=E|S,[I*—E|S,[*1,
SIENS I —E IS, I+ E S, = ENIS, % 15/ +1E [S,[* 15— E [|S,II* 1 4]

So(n™ 622 L o0 PS, £ S} E S, [0 1.

This yields
E IS, =S, SelB IS, 15+ 10 P{S,+8,}) + o(n=¢=2+97)

Lemma (3.33) implies that for arbitrary positive integer r
sup E||S,]" < oo

and hence a choice

O<e<(s+1)f—(s—2)/2
yields

E|S,—S,[*°=0(n"c"?).
This implies

|Ef(S,)—Ef (S;,)| =o(n¢~2"?),
Finally,
enZO(}’ll/zHASB)ZO(I’lﬁ(SﬁZ-Fa)/Z),
and
[fC+e)d ¥, =[fd¥ +on=t-27072)

This together with H, (¢)exp[itTe,]=Eexp[it" S,], Lemma (11.6), p.98 of
Bhattacharya and Rao (1976) (which estimates the L'(R¥) norm of functions by
the integral over derivatives of the Fourier-transform) and the smoothing
inequality Lemma 5 of Sweeting (1977) proves the lemma.

Let [a] denote the largest integer smaller or equal to a. For xeR* let

kj
fin@)=T] (@] ;xyriexp(in="*tTx), j=1,...,n,
p=1

where a,, ; are bounded vectors in RR¥, and a, ; are nonnegative integers. Then
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n

(3.4) Lemma. Let U, = ﬁ [idZ), Uy= 11 f;,4Z) and r=3 «, ;. If con-
dition (2.3) and (2.4) are ﬁ{l?illled we have e "

(1) lcov(U,, U,)| < cnf" exp(—d[1/3]).
If in addition 0<r <s we obtain

(i) lcov(U, Up)| S c(1+ B, 1) exp(—dL1/3]/(s +1)).

The inequality (ii) still holds when we replace Z; by X; in the definition of U,

and U,.

Proof. Let g=[l/3]. Using condition (2.3) there exists a @}.’jg measurable
_ — 1 _

random vector X; such that EHXJ-—XjHégeXp(—dg). Let U,, p=1,2 be de-

fined similarly as U,, p=1,2 with Z; replaced by X ;—EY,. Since U, is 2{7*-

measurable and U, is &7 ,,_,-measurable, condition (2.4) entails

- - - ~ 1
(3.5) sup |P(U,e4, U,eB)—P(U,eA) P(U,eB)| éﬁ exp(—dg).
A, B
Using
(3-6) |U1U2"Ull72|§|U1||U2_62|+|[72||U1_ﬁ1|>

we derive (the truncation function T is Lipschitz!)
(3.7) lcov(U,, U,)—cov(U,, U,)| <cn'f exp(—dg).

By (3.5), [cov(U,, U,)| < cn"# exp(—dg), thus proving (i).
(ii) Truncation of X; at M, i.e. replacing X; by T,,(X), where

NE if x] <M
w(%)= xMy(|x| MY/ |x|  otherwise,

yields random variables

U =T1fnTul2)) and Uz,M:ﬁlﬁ,n(TM(zj)>.

It is not hard to show that

(38) |EU, U, y—EUUJ+|EU, yEU, ,—EU EU)|<cfB, . M~E+177,

k
Let U, =[]/ (T(T(X)—EY)) and let U,, be defined similarly. Note
1

again that 7T,, and T are Lipschitz functions. Using (3.6) and (3.8) and con-
dition (2.3) we deduce

(3.9) |cov(Uy, UZ)_COV(ULM= UZ,M)| scBoiy M= eyt exp(—dg).
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Relation (3.5) implies |c0v(l71,M, UZ,M)' S M"exp(—dg). This together with (3.9)
and the optimal choice of M proves the assertion.

In order to expand the cf. H (¢) and its derivatives in terms of n=*/? we
have to estimate the cumulants of S¥ (which determine the coefficients of the
expansion) as well as the derivatives of the remainder term of the expansion.

It is convenient to introduce some more notations.

Let E,U=EU exp[it" S*1/H (t).

Define the semiinvariants of order p

Kk(a] S¥,....a] S¥)
0 0
=—...— InH,(t+e,a,+...+¢,a,),
681 agp g1=...=¢p=0 pe
where ay,...,a,eR. Write

K@ S¥, ..., a" S*,bT S*, ... bT S¥)=x(a” S*J, bT S*1.

Jj-times I-times

The Taylor expansion of In H,(f) can be written

InH,(6)= Y x,(it" S¥)r1" '+ R, (),
r=2

where 1
(3.10) R @=s!""" [(1—n)x,,(it" SFC*D)dy.
0

Since we have to evaluate derivatives of expansions in dimension k>1 note
that
al

g Rs+1(t+8a)

e=0

3.11) )
=s!=tfdn(l—n)> Y *c, n? 4 L, (it SFP,ia" S¥Y)
)

where c¢,, 20 are combinatorial coefficients and the summation Z* extends
over all p,g=0 such that 0=¢g=<],0<p=<s+1and p+g=s+1.

Note that the semiinvariants are multilinear forms in the random variables.
Hence,

(3.12) Km(tTSj:‘I’,aTS:“1)=Z;cm(tTZjl,...,tTZjP,aTle,...,aTZlq)n‘(’”“‘”/2
where the summation extends over all indices 1<j,...,j,=n and

1<1,=<...£]_<n and the semiinvariants on the r.h.s. are given by

0 0
de, T Oe

pP+qie1=...=&p+g =0

tetT Zy 4o T Z; e, at 2+ te,a Z) ]

In E explint™ S*
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Similarly one defines a semiinvariant of order r for random variables V,,..., V;

(instead of ¢7 Z,), where V,_is o(Z; )-measurable. It is well known that (see e.g.
Zhurbenko (1972))

(3.13) K (Vipsoos V, Z Y*ey, .. I)(=1) HE [T¥

lely
where c¢(I,, ...,1,) denote combinatorial coefficients and the summation extends
over all decompositions {1,2,...,r}=I,Ul,u ... VI, into v disjoint parts. As-

sume that j1§j2§...§jp<jp+1£]p+2ﬁ ..=j, and that j,, ,—j, is maximal
Let V], Z’ denote independent copies of V,, Z;, 1 <j<n (having the same joint
distribution).

The following identity easily follows from (3.12):

0 ¢

O=r—...— In E exp[itT(S* 4+ S*")
a81 aar E1=é2=..=£=0
(3.14) Fe Vit e,V +e, 0 Vi o +e V]
=2 Yrely, L))V ITE [T WE T %
v=1 j=1 leljnd; lel;jnds

where J,={1,2,...,p} and J,={p+1,...,r}
Let SP=in"'2¢"Yy*Z,, where ) * extends over all 1<j<n such that
lj—Jjil>mr for every ]IEIC{l 2,...,n}. Furthermore let

(3.15) Z =11 I_[ (a],Z)), where a;,eR" [a;,|<L.

jel p=1
(3.16) Lemma. Under conditions (2.1)-(2.4) we have
|E, Z,| Sc{E|Z,|[sup{|Eexp[S{"]|: 0SvEK) +p*]
+cexp(—dm/3)2%a Py | H (1)~

for every |t] Scn*?m~Y? and some 0<p<1.

Proof. Using a method similar to that of A.N. Tikhomirov (1980) we arrive at
the identity (write 4 =exp[SY~V -5P]—1)

H,(0E,Z,=EZ;exp[S{"] + EZ, 4 exp[S{"]

and repeating this step
v—1

= 2 EZ, (H A‘”) exp[SM+EZ, H AP exp[SP¥T.

r=

Since exp[${"] is weakly dependent on A and Z,, r<v—1, Lemma 3.3 shows

v—1 v—1
EZ, [] 49 exp[SP']= (EZI I Af{’) E exp[S1+2"Oexp{ — dm/3)nl118,
r=1 r=1
Furthermore,

v—1
\Ez, [T 49| ZEIZ, [T 491272,
r=1
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where ]_[’ denotes the product over all even indices r<v—1,
<E|Z|[]E|4912"? +v2 O(exp(—dm/3)nT1F).
Since E|AV|S(E|SY~ D —SPPH)Y2 <({(Ilmen™ 1 |t H)H? < p/2, p<1, we have

|H,()E,Z;| < cE|Z,|[sup{|E exp[S{"]]: vEK —1} +p]
+02%n118 exp(—md/3))

thus proving Lemma (3.16).
“Let Z,, Z;, denote random variables defined as in (3.15), where minlI,
—max I, zm.
Then the following estimate holds

(3.17) Lemma. For every t fulfilling ||t|<en*fm~! O0<e<l,
|E.Z;,Z,,—E,Zy EZ,| £cnf WD [exp(—dm' )+ (m' 1)1 =1 e ]| H (1) 2.

Proof. Let Zj, 1<j<n denote an independent copy of the series Z;, 1<j<n,
and let Z; be defined in the same way as Zy, j=1,2. Furthermore, mtroduce
T,= Z(”m‘”th(Z +2'),j=1,2and S —mﬂl/zzﬁ)tT(Z +Z.), where z(” de-

notes summation over p=1,...,max{l,), 2(3) denotes summation over p
=max(l,)+1,...,max(I,)+m—1 and Y? denotes the summation over the

p_ .
remaining indices. Let U;=(Z; —Z} )exp[T}].
Write
(.18) A=(E,Z, Z,,—E,Z, E,Z, )H,t)*=EU, exp[5,]U,
‘ K—1
= Y rI7*EU, 8" U, +E|U, U,|0(t)(mnf~ ||t )*K!~*
r=0
where |0(t)| £1. Let T,=in"'?*t"(Z;+ Z).
Expanding S}, we have
EU, S U,= Z EU,T,...T, U,.

1441

een ]

Note that every sequence U,, T;,...,T., U, of random variables contains a

‘gap’ of length at least [3m/(r+ 1)1]1 say lj)etween T and T, T, ..
Hence,
(3 19) E(U )( Jp+1° 2)
| —EUI T]1 T, ET +1...TjrU24-o(rz"("1"“'12l’exp(—md/(rJr1)))

using Lemma (3.4).
Note that by construction EU; T;,...T; =0.
Relations (3.18) and (3.19) imply

K—-1
| 4] <nfIIHIED S exp(—md/(r +1))r1 =+ E|U, U, KK 11,

r=0
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Choosing K =[m'/*] we obtain

|4] < enf I+ 1RD(exp(—dm'?) 4 (mY/2)1 = 1™ ")
which proves the Lemma (3.17).
(3.20) Lemma. Let 0,(t) be as in (3.27). Then

al

Fr Ry, (t+¢a)

e=0

Sc(l4 B )n™ TP 1A0,(00 T (L + el

O<e<1, for every t fulfilling
(3.21) .()<co, [t|Sen—sFHI2,
where acR* with ||a| <1.

Proof. Relations (3.11) and (3.12) show that it is sufficient to estimate

n—r

(3.22) Y )Y@l (Vi- s VL sH1SrSs+ 141,
g=0

where V;=a]Z;, |a;/<1 and the summation ) ® extends over all indices
J15j,<... =j, such that g=sup{lj,,; —j,|:1 <p<r}. When the ‘maximal gap’ g

is smaller than n’, Lemma (3.16) with K=c¢m, ¢>0 and (3.13) together imply

en (V- V3

3.23

(3.23) < () (L1 By ) P59 {1+ [V 0)+ 0T |HL ()],
where

(324)  W()=sup{Eexp[SP]: p<LUI<r),  x. =max(x,0),

choosing m=0(n®), o<e<1, small and o<p<1 sufficiently close to 1. On the
other hand, when g is larger or equal to m=o(n®) relation (3.13) and identity
(3.14) show that it is sufficient to estimate

HlEtHVl_HlEt 1_[ VlEt n V;
j= Jj=

lel; lel;jndy lel;jnds

which can be done by successive applications of Lemma (3.17).
Hence, we get
(3.25) Kin (Vi oes V)| Scexp(—cn) [ H@| 7, e>0.

Since there are at most n(g+1)~! indices having a maximal gap smaller or

equal to g, the sum in (3.22) can be bounded by

(3.26) en(m+ 1Y (1+ B, JrPe =D+ (L () + o "1 H ()] 71}

tn'S (g 1y~ exp(—cn®?) H,(0)] "

gzm
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Hence relation (3.11) and (3.12) together with (3.26) prove
al
Frg

(3.27) 0,(t)= (v () +exp(—cn®?)/|H,(t)|

R, y(t+ea)| Se(l+ B Jn~ 72 2n= 340, W+ (L + e,

thus proving Lemma (3.20).

(3.28) Lemma. For 2<r<s we have

(3.29) Ko(alSF,-oay SHIScn™ 22 B gyl a, .

s+1

Proof. Using Lemma (3.4) together with (3.12)-(3.14) (with #=0) and the
decomposition (3.22) we can argue similarly as in the proof of Lemma (3.20).
[When the maximal gap in the sequence of indices j, £... <j, is g, we have

Ko(a1Z )5 af Z;)| Scexp(—dm/3(s+ D)lay ... |a, | B3

This together with OZO: (g+1y 'exp(—cg/3)<c(r)<oo proves Lemma (3.28)].
For a detailed proofg;e(é Bulinskii and Zhurbenko (1976).
(3.30) Lemma. For any a,,...,a,cR* we have
lko(at 8%, ...,al S*)—ky(al'S,,...,a’ S,)|
chalH da (1 + B2, Jn= =225 1<r<s and O<e<l.
Proof. The proof is similar to the proof of Lemma (3.20). Let V] —aTX and V]

=a} Z;=al(T(X;)—ET(X})). By Cebysev's inequality [|[ET (X)) <;fs‘3,85+1 e-
latlon (3 12) and (3 13) entall that it is sufficient to bound

n—r

(3.31) Z ()Y ®ko(Vys s Vi) =160 (Vis s Vi)™,

g=0

Here we used the same notation as in Lemma (3.20). When the maximal gap,
say g, of the sequence j, <...<j, is smaller than »° the mixed cumulants may
not be small and we estimate their difference [xq( “,...,er)—;co( e Vil
using the inequality

\EV;,...V; —EV},..V]|
p—1
(3.32) < Z EVye K (H = Vi Wiy V)

<o B DI =G L-DER g, . ay |

which follows from Cebyev and Hélder-type inequalities. By similar argu-
ments applied to products of moments we obtain

n%]

Zoz(g)lKO( Jj1r e ) KO( Jjir e ]r)|n_r/2
3.33 g=
B33 n 4 B2, Y Iy By 2 .
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When the maximal gap g is larger than »° we may apply Lemma (3.4) and
Lemma (3.16) to derive (as in the proof of Lemma (3.20) and Lemma (3.30))
that x,(V;,, ..., V;) and xo(V;, V}) are neglegable. The corresponding part of
the sum in (3. 31) is of order

Y. nlg+1) " exp(—dm/3(s+ 1)1+ B, o).

gz[nf]

Jir e

Choosing B sufficiently close to 1 this together with (3.32) proves the assertion.
(3.33) Lemma. For every t fulfilling |[t|| < cn®, we have

ID*(H,(t)— £, ()|
<c(l+ B,y )1+ 2] 36D+ exp(—ct]|2) n= 6= D2,

Proof. By Lemma (3.28) we obtain for |¢|| <cn®

S 1 s<lol
(3.34) Z G((tTS*) 1= =0 | p—0lel=2/2 3<|o)<s
- n U2 P <2

Using (3.10) we have

A:Dd( (1)— exp[i thS;“r)r!*l])

(335) ;
= Y ¢ DUexp [z Ko(itTS,’f')r!‘l]D“Z(exp[RHl(t)]—l).
ay+az=a r=2

Relation (3.34) together with Lemma (3.20) entail

[ Al c(T+ (e )11+ B,y o)

3.
(3.36) =62 exp(—c £]2)(1 + 0,(0)).

Note that for complex aeC* with ||Im(a)l| <5 Lemma (3.30) still holds (with the
Euclidean norm replaced by the Euclidean norm ||a| in €¥). By Lemma (3.30)
and Lemma (9.7), p. 73 in Bhattacharya and Rao (1976) we have for complex
vectors ¢t described above

exp ( Y Ko(itTS,’,“')r!‘l)

=2
(3.37) =exp[o(n=C=V2+ ¢|)](F, 1)+ R(1)
=%, 0 +R,0), say

where

IR(OI=en™ D21+ B, (e + 121°C~ ) exp(—c, [IRe ]| +c5n%).

Since the r.h.s. of (3.37) is an analytic function of ¢, Cauchy’s inequalities for
derivatives of analytic functions can be used to estimate the derivatives D*R_(r)
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by means of

max{|R(2)|:|z;— ;| =n, zeC4 j=1,...,k}n 1.
Using I‘f/n’s(t)|§cexp(—c|RetH2), c¢>0 for |Imt| £y and |Ret| < cn® we obtain
(3.38) ID*R(D) S cn =225 (1 + [|¢| ¢~ ) exp(—clit]?)

for every teR¥, ||t|| <cn”.
Hence,
|D*(H, 1) %, o)
B3 el By U+ [0 (1 40,0 ) exp(—c e Hn== D12,

1
It remains to estimate the function 6,(¢) defined in (3.27). Let Ti=n""?>} Z, ,

p=1
1<1<n for any sequence j, <j,<...<j, and define H(T,,¢)=Eexp[it" T]]. Re-
lation (3.10), Lemma (3.20) and Lemma (3.28) together can be used to prove for
1<i<nand a=0:

H(T,, t)=exp[ —5x,(t" T?) +cn™>2~*|t]°10, 5(t)],
where

(3.40) 10, 3(8)| Ssup{|(exp(—cn®)+ H(TH, )/ H(T,, - [1|<3,0=p=m, T}

and T/® is related to T; as S¥’ is related to S} in Lemma (3.16). Here, ¢, ¢ and
m are independent of I, 1 £/<n. We claim that

(3.41) sup{|0, ;()]:[tf =n} <2 for [=1,2,...,n

provided n is sufficiently large (depending on s, k, d, B, ).

Inequality (3.41) trivially holds for I=1. Suppose it holds for 1</=r.
Assuming that it does not hold for I=r+1, ie. there exists a f,, such that
ltoll <n® and |6, ., 5(to)|=2, we have

2§SIUP |exp(—cn2€)/H(Tr+ 1» t0)+H(7}(ﬁ)+ L)/ HL o, to)|3~
,p

These assumptions together with (3.40) imply

2 <sup|exp(—cn?)+expl3lro " T2 ) ~Ko(t" T3 1)l
Ir

G4 —den= =+ Do) P

provided » is sufficiently large.
Since
1ot T2 1) —x0(t" T2 )l
<G ItIPENT,, — TI<,1?+1H 1Ty + TI(,I;)+1 |
<clt|*mn=1/?

— L
ntTE e<y,
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relation (3.42) yields a contradiction when n is sufficiently large, thus proving

(3.41) for I=r+1.
This completes the proof of (3.41).
Hence,
10,(8)| 2641507 for every [¢] <’

which completes the proof of Lemma (3.33).
(3.43) Lemma. For every c, ¢, and E>0 there exists a positive 6 such that

cn* < t] sn®
implies
ID*H,(t)| S8~ exp(—n®), JalSk+L

Proof. 1t suffices to show that there exists a positive J such that for r=0,...

+1 and aeR¥, |a| =1

dr

H,(t+a) <6~ Yexp(—nd).

A=0
The left hand side equals

|E(@” S}y exp(it” S5)]
which is bounded by

YNE@'Z,)...(a" Z; ) exp(it” S¥)|

where the sum extends over j,,...j,e{l,...,n}. These are n" terms. We shall give
upper bounds for each term. Fix j9,...,j%{1,...,n}, and for meN to be

determined later let
I={je{l,...,n}:[j—jo123m p=1,...,r}.
Divide [ into blocks 4,, B4, ..., 4,, B, as follows. Define j,,...,j,; by
ji =infl,
Jpr=infG2),+Tm:jel}
and let [ be the smallest integer for which the inf is undefined. Write
A,=[Tte™ P2 j—j|<m}, p=1,...1,
B,=[[{e"™ "% j,+m+1=<j<j, (—m—1}, p=1,..,1-1,
B=[]{e" "% j>j+m+1}
and
R=(a"Z)..(a" Z,) || {e"™: j¢I}.
Then
1
(aTng)...(aTng)e"’Sﬁ:nApoR.
1
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We have
1 1
lER HAPBP—ER HBPE(AI,@J.:j#jp)
1 1

g—1

!
RT] A,B,(A,—E(A,)2;:j %)) [1 B,E(4,19;:j+},).
1 g+ 1

For p=1,...,] we shall approximate A,, B,, R by random variables 4, B, R’
such that A is bounded by [ and @JP“’" measurable B/, is bounded by 1 and
@JP“ ! measurable and R’ is bounded by 2nf and rneasurable with respect to
the o-field generated by {Z;: there exists j¢lI with |[—j| <m}.
Using condition (2.3) we see that this can be done with the following
accuracy:
E|A,—A)|<nn"d ™" exp(—dm),

E(B,—B<nn®d~" exp(—dm),
E|R—R|Z(n+r)2nPY nfd="' exp(—dm).
Condition (2.6) yields that for p=1,...,]
E|E(A)D;: j+],)~E(A,)9;: 0<|i—j | S3m)| £2d7 e
Furthermore,
E|E(A,)F;: j+],)—E(A,|9;: j*]j I SE|A,— A)) SnF+1d=Te 4,

Hence

4 1
IERUAPBP-ER’HB;,E(A;@J.: 0<lj—j,/<3m)

1 l l (
g'ER[llApo—ER']le |+|ER’HA’ B,—ER’ [1[ B, E(4,|9,;:0<|j—j,|<3m),

=1 +1,, say.
‘We have
I, 2220+ ) (n+r)2nfynfd="edm
and
1 qg—1
I, < R H A B (A, —E(A,|D;:j%],)

q=

E
H A’I@ 0<y—j, 1Z3m)|+ Z @nfy-4.d=tedm
Plie
The first sum vanishes since

q—1 1
R[] 4,B, and [] B,E(A4,|9,:0<|j—j,]<3m)
1

g+1

are both measurable with respect to the o-field generated by 9;:j+j,.
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Recall that the functions
E(4,12,;:0<|j—j|=3m),p=1,...,1
are weakly dependent since j,, {—j,=7m, p=1,...,1—1. Using condition (2.4)

we obtain

1 1
ER/I:[B;,E(A;|@j:O<U—jP| <3m)| <QnfYE TI[E(A;,|@J.:0<U—J'I,| <3m)

1
<@y T EIEA,2;:0<]j—j | <3m) +2nf)y1-4d~ e~
1

With condition (2.5) and Lemma (3.2) we find an upper bound for
E|E(A,|2;:0<|j—j | <3m).
We have for ||t =d the relation E|E(Ap|@j:j=i:jp)|§e*d, and hence by Lemma
(3.2) for all teR* ||t|| <d
E|E(A,|9;: j+j,) <exp(—d |t]|*/n).
We have for all teR*
E|E(4)| Z;:0<[j—j,| <3m)

<nft'd ‘e "+ E|E(4,|2;:0<|j—j,I<3m)|

gnE“d_le‘d'"+E|E(Ap|9j:j:t:jp)|

<nFtd=le =™ L max(exp(—d |t]|?/n), e 9.

If we choose K appropriately and let m be the integral part of K logn, then the
assertion of the lemma follows from

n

exp(—d||¢)|*/nym <exp(—d |t]*/K logn))
<exp(—d'n¥?) for |t|=cn®

and some d' >0.

(3.44) Remark. For some applications, e.g. for finite Fourier transforms, as-
sumption (2.5) is too restrictive. From the above proof we observe that

|E(exp(it(X j_p+ ..+ X, ) D+ S1—p

must hold for a sufficiently large number of j,’s. Hence the proof works with
the following weaker assumption:

(3.45) There exists a positive constant p such that for every nzp—*

#={je{l,...,n}: forall p~'<m<n,
|E(exp(it(Xj_m+...+Xj+m)|@l: I£H)<1—p}=pn.
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4. Formulas

Explicite formulas for the functions 13* of Remark (2.12) are given for s=4
(including terms up to order n~!) and strictly stationary sequences X, X,, ...
of random vectors. We first consider the case k=1 (univariate random vari-

ables). Write g, , for the cumulant of §,=n"%) X of order r. Then, when EX,
=0’ 1
Xn, 1 = 03

n2=EX342Y EX, X, ,—n"'2Y JEX,X,  +o(n™"),
j=1 j=1

j= i=
nl/zxn,3=EXi’+3 Z (EX%X;'+1+EX1X?+1)+6 Z EX1X1+iX1+i+j

j=1 i,j=1
+o(n™2),

Nins=EX{—3(EX)*+4 Y (EX X; (+EX{X;.))

j=1
+6 Y E(X?—EX?) X2,
j=1
+12 Z EX1Xi+1(X?+i+1_EX%)
i,j=1

+4 Z EX X, 1 —EX X ) Xivne 1 X jrivnst

hi,j=1
+0(n°).
Let f,, f5, f, be cumulant spectral densities of X, X,,... of order 2,3,4, ie.
forj1=j27j3:07 1: 29

EXX,; = | e f,(x)dx,

-7

EXoX; X;,= [ etimemimgix, ydxdy
and i
Cum(4)(X0,Xj1,Xj2,Xj3): E } } e~ iixg=iiy g =iz f (x y Z)dx dy dz
where

cum*(X, Y, U,V)=EXYUOV-EXYEOV-EXUEYV-EXVEYU

and X=X—EX, YU,V are defined analoguously. Whenever f,, f3, f, are
smooth,
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=200 [ 2 o)
n. 3 =n"1221)%f5(0,0)+o(n™Y),
Yua=n""21)*£,(0,0,0)+o(n™").

The functions I-N;* of Remark (2.12) in this case read

B¥(H)=exp(—4t22m)" £,(0)),
Pr(0)=L(i1)*2m)>? f3(0 0) B(t),

Bx( ( jfz() dxt?

sin x/2
+(24)1(2m)° £,(0,0,0) ¢*
—(72)" ' @n)* f2(0,0)¢°) B*(0).
We now derive the corresponding formulas for the finite Fourier transform
d¥(qs .y 4,) (see Example (1.15)). The random vector d¥ has complex com-

ponents. In order to apply our theory we split 4 into real and imaginary parts
and deal with a 2p-variate random vector with real components. Write d~

sin x

=(dY, ...,d5,) for this vector. For our formulas we need approximations for
%y, n(0), telR??, the r-th order cumulant of ¢7d".
Since
2p
Trw(@)= Yty ko(d), e d3)
Jiseesjr=1
it suffices to derive approximations for Ko(dh,. ,dﬁ) Jir--nje=1,...,2p. For

rel —mn, 7] write
N-1

DN(l) — %: Xj ei}'lj

N-1
- Rz
5

Then for 4, p, ve[ — 7, 7]

EDY(A) D" (u) DN (v)= } } A¥(v—x) A (u—y) ANA+x+y) f5(x, y)dxdy

_[ON®Y if A+ u+vE0 (27
(27 Nfy(u, v)+ON®) if A4pu+v=0(2n)

and for A, y, v, (e[ —m, 7]
cum® (D (), DV (), DV(v), DY (&)

T

= 5 ) }AN(#—X)AN(V—)’)AN@—Z)AN(/1+x+y+z)f4(x, y, z)dxdydz

_fO(N®) if A+p+v+EER0(2n)
2rE Nf(w v, )+ON®) if A+pu+v+E=0(2n).
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Finally, if A4+ x=0 (2=), then

iN(A+p)

EDY(3) DY()= —27f,(%) 1 ovaTm

+27fy(— /(1 —e M)
N 7§[ h(x) —h(—p)

[0 dx+0o(N°

-7

where h(x)=(f,(x)—f,(A)/(1 —e* ).
If 2+p=0 (2n), then

E|D¥(W)|2=ED¥() D"(— 1)

=27f,(O) N — |
+0(N°). -

sin(4A—x)

23 Vi)~ dx

N

Approximations for x,(d},, .

..,dY) are obtained easily: e.g. for r=2:

N-1 N-1
Ko ((ZnN)‘”Z > X;cosAj,2nN)12 Y chosuj>
0] 0

=(@2nN)~*- L (EDY(A) DV () + ED"(2) D¥(— p) + ED"(—4) D"(n)
+EDN(—2) DY(—p)

N-1 N—-1
Ko ((27'CN)_1/2 Y. X;cosij,2nN)"1? Y stinuj>
[¢] 0

=(2nN)~* - J(EDY(2) D¥(1)~ ED(2) D"(— ) — ED"(—2) D¥(n)
+EDN(—2) DY(—p)).

Notice that in the non-stationary case considered here, the N~ !-term of y, y(¢)
does not converge in general.
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