# Non-Stable Laws With All Projections Stable 

David J. Marcus

Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, Mass., 02139, USA

## 0. Introduction

We will show that for $\alpha$ small enough

$$
\exp \left(i \alpha r \cos (3 \theta)-r^{\gamma}\right), \quad \text { for } 0<\gamma \leqq 1,
$$

is the characteristic function of a probability law on $\mathbb{R}^{2}$. We then show that for $0<\gamma<1$ this law is not stable even though all of its projections are stable of index $\gamma$. This provides a counterexample to Theorem 4 of [4].

Definitions. Let $(r, \theta)$ be the polar coordinate system on $\mathbb{R}^{2}$. Fix $\gamma \in(0,1]$. Let $n_{0}$ be the smallest integer satisfying $n_{0} \gamma \geqq 4$. Define functions on $\mathbb{R}^{2}$ as follows:

$$
\begin{aligned}
& P=P_{\alpha}=\exp \left(i \alpha r \cos 3 \theta-r^{\gamma}\right), \\
& Q=\exp \left(-r^{\gamma}\right), \\
& G=G_{\alpha}=\sum_{m=1}^{4} \sum_{n=0}^{n_{0}}\left(\frac{(i \alpha r \cos 3 \theta)^{m}}{m!} \frac{\left(-r^{\gamma}\right)^{n}}{n!}\right), \\
& H=H_{\alpha}=\sum_{m=1}^{4}\left(\frac{(i \alpha r \cos 3 \theta)^{m}}{m!}\left(e^{-r^{\gamma}}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{n!}\right)\right),
\end{aligned}
$$

and

$$
F=F_{\alpha}=\left(e^{i \alpha r \cos 3 \theta}-\sum_{m=0}^{4} \frac{(i \alpha r \cos 3 \theta)^{m}}{m!}\right) e^{-r \gamma}
$$

So $P=Q+G+H+F$. The plan is to Fourier transform $Q, G, H$, and $F$. We will show $H$ and $F$ are $C^{4}$ and use this to show their transforms are $O\left(\|\xi\|^{-4}\right)$. The transform of each term of $G$ is homogeneous of degree at most -3 . The transform of $Q$ is $O\left(\|\xi\|^{-2-\gamma}\right)$ and no better. Then, by choosing $\alpha$ small, we can show the Fourier transform of $P$ is positive near infinity. Since $Q$ is known to be a characteristic function we will be able to choose $\alpha$ so that the transform of $P$ is close enough to that of $Q$ to be positive away from infinity. Since $G, H$,
and $F$ are not integrable we will take their Fourier transforms as tempered distributions. Section 1 presents the necessary information about Schwartz distributions and handles $G$. Section 2 handles $Q, H$, and $F$. Section 3 finishes the proof that $P$ is a characteristic function for $\alpha$ small. Section 4 shows the projections are stable, but the law is not.

## 1. Schwartz Distributions

We present a crash course in distributions (generalized functions). Many of the assertions made below have nontrivial proofs. See any book on the subject, for example [13], [5], [15], or [3]. If we are in $\mathbb{R}^{n}$ then a multi-index $\beta$ is an ordered $n$-tuple of nonnegative integers:

$$
\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)
$$

We write $D_{i}$ for $\frac{\partial}{\partial x_{i}}$. Then the differential operator $D^{\beta}$ is defined by

$$
D^{\beta}=\left(D_{1}\right)^{\beta_{1}} \ldots\left(D_{n}\right)^{\beta_{n}} .
$$

The order of $D^{\beta}$ is

$$
|\beta|=\beta_{1}+\ldots+\beta_{n}
$$

If $|\beta|=0$ then $D^{\beta} f=f$.
If $\Omega$ is an open subset of $\mathbb{R}^{n}$ we define

$$
\begin{aligned}
C(\Omega) & =C^{0}(\Omega)=\{f: \Omega \rightarrow \mathbb{C} \mid f \text { is continuous }\} \\
C^{k}(\Omega) & =\left\{f \mid D^{\beta} f \in C(\Omega) \text { for all } \beta \text { satisfying }|\beta| \leqq k\right\} \\
C^{\infty}(\Omega) & =\left\{f \mid D^{\beta} f \in C(\Omega) \text { for all } \beta\right\} \\
C_{0}^{k}(\Omega) & =\left\{f \in C^{k}(\Omega) \mid \operatorname{supp}(f) \text { is compact }\right\}
\end{aligned}
$$

and

$$
\mathscr{O}(\Omega)=C_{0}^{\infty}(\Omega)
$$

If $\Omega$ is clear from the context (usually $\mathbb{R}^{n}$ ) we write simply $C^{0}, C^{\infty}, \mathscr{D}$, etc. Here $\operatorname{supp}(f)=$ support of $f=$ closure in $\Omega$ of $\{x \mid f(x) \neq 0\}$. We place a pseudotopology on $\mathscr{D}(\Omega)$ by saying " $\phi_{i} \rightarrow 0$ in $\mathscr{D}(\Omega)$ " if there is a compact subset $K$ of $\Omega$ with $\operatorname{supp}\left(\phi_{i}\right) \subset K$ for all $i$ and $\lim _{i \rightarrow \infty} \sup _{K}\left|D^{\beta} \phi_{i}\right|=0$ for all $\beta$. We now define the dual space $\mathscr{D}^{\prime}(\Omega)=$ distributions in $\Omega$ by
$\mathscr{D}^{\prime}(\Omega)=\left\{T: \mathscr{D}(\Omega) \rightarrow \mathbb{C} \mid T\right.$ is linear over $\mathbb{C}$ and if $\left\{\phi_{i}\right\}$ is any sequence in $\mathscr{D}(\Omega)$ and $\phi_{i} \rightarrow 0$ in $\mathscr{D}(\Omega)$ then $\left.T\left(\phi_{i}\right) \rightarrow 0\right\}$.

The space of rapidly decreasing functions is

$$
\mathscr{S}_{n}=\left\{f \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid P_{N}(f)<\infty \text { for } N=0,1,2, \ldots\right\}
$$

where

$$
P_{N}(f)=\sup _{\substack{x \in \mathbb{R}^{n} \\|\boldsymbol{\beta}| \leqq N}}\left(1+\|x\|^{2}\right)^{N}\left|D^{\beta} f(x)\right| .
$$

We give $\mathscr{S}_{n}$ the topology generated by the seminorms $P_{N}$ for $N=0,1,2, \ldots$ The tempered distributions, $\mathscr{S}_{n}^{\prime}$, are those distributions which may be extended to be continuous on $\mathscr{S}$, i.e.

$$
\mathscr{S}_{n}^{\prime}=\left\{T: \mathscr{S}_{n} \rightarrow \mathbb{C} \mid T \text { is continuous and linear over } \mathbb{C}\right\}
$$

So $\mathscr{S}_{n}^{\prime} \subset \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ by restriction. This inclusion is one-to-one. If $f$ is a locally integrable function then we define $[f] \in \mathscr{D}^{\prime}$ by

$$
[f](\phi)=\int f \phi \quad \text { for } \phi \in \mathscr{D},
$$

where all integrals are with respect to Lebesgue measure. If $f$ doen't grow too fast near infinity then [ $f$ ] can be extended to be in $\mathscr{S}^{\prime}$ by

$$
[f](\phi)=\int f \phi \quad \text { for } \phi \in \mathscr{S} .
$$

For example, if $f$ is bounded by some polynomial near infinity and is locally integrable then $[f] \in \mathscr{S}^{\prime}$. If $f$ and $g$ are in $L^{1}$ then $[f]$ is in $\mathscr{S}^{\prime}$ and

$$
[f]=[g] \Rightarrow f=g \quad \text { a.e. }
$$

We define the distribution $D^{\beta} T$ by $D^{\beta} T(\phi)=T\left((-1)^{|\beta|} D^{\beta} \phi\right)$.
For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ we define the Fourier transform, $\hat{f} \equiv \mathscr{F}(f)$, by

$$
\hat{f}(\xi)=\int f(x) e^{-i x \cdot \xi} d x
$$

(Many books use slightly different definitions.) $\mathscr{F}$ is a linear homeomorphism from $\mathscr{S}$ onto $\mathscr{S}$. For $T \in \mathscr{S}^{\prime}$ we define the Fourier transform, $\hat{T} \equiv \mathscr{F}(T)$, by

$$
\hat{T}(\phi)=T(\hat{\phi}) \quad \text { for } \phi \in \mathscr{S}
$$

Notice, $\phi \in \mathscr{S}$ implies $\phi \in L^{1}$. $\mathscr{F}$ is a linear bijection of $\mathscr{S}_{n}^{\prime}$ onto $\mathscr{S}_{n}^{\prime}$. If $f \in L^{1}$ then

$$
\widehat{[f}]=[\widehat{f}] .
$$

If $T \in \mathscr{D}^{\prime}(\Omega)$ and $\Omega^{\prime} \subset \Omega$ is open then the restriction of $T$ to $\Omega^{\prime}$ is

$$
\left.T\right|_{\Omega^{\prime}}=\left.T\right|_{\mathscr{R}\left(\Omega^{\prime}\right)}
$$

and $\left.T\right|_{\Omega^{\prime}} \in \mathscr{D}^{\prime}\left(\Omega^{\prime}\right)$. If $T \in \mathscr{D}^{\prime}(\Omega)$ and $\phi \in C^{\infty}(\Omega)$ then $\phi T$ defined by

$$
(\phi T)(\psi)=T(\phi \psi) \quad \text { for } \psi \in \mathscr{D}(\Omega),
$$

is in $\mathscr{T}^{\prime}(\Omega)$. The support of $T$ is the smallest closed (in $\Omega$ ) subset $X$ satisfying $\left.T\right|_{\Omega \backslash X}=0$. We write $X=\operatorname{supp}(T)$. The singular support of $T(\operatorname{sing} \operatorname{supp}(T))$ is the smallest closed subset $X$ such that there is an $f \in C^{\infty}(\Omega \backslash X)$ satisfying

$$
\left.T\right|_{\Omega \backslash X}=[f]
$$

We say a function $f$ is homogeneous of degree $m$ if $f(t x)=t^{m} f(x)$ for $t>0$ and all $x$. If $\phi$ is a function then we denote by $\phi(\cdot / \lambda)$ the function defined by $\phi(\cdot / \lambda)(x)=\phi(x / \lambda)$, where $\lambda \in \mathbb{R} \backslash\{0\}$. If $T \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ then let $T_{\lambda} \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ be defined by $T_{\lambda}(\phi)=\lambda^{-n} T(\phi(\cdot / \lambda))$. We say $T$ is homogeneous of degree $m$ if

$$
T_{\lambda}=\lambda^{m} T \quad \text { for } \lambda>0
$$

If $f$ is homogeneous of degree $m$ then so is [ $f]$. We also have a converse.
Lemma 1.1. Let $T$ be in $\mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and homogeneous of degree $m$. Let $f \in C^{0}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and suppose $\left.T\right|_{\mathbb{R}^{n} \backslash\{0\}}=[f]$. Then $f$ is homogeneous of degree $m$.
Proof. Choose $\phi \in \mathscr{D}, \phi \geqq 0$, and $\int \phi=1$. Let $\phi_{j}(x)=j^{n} \phi(j x)$. The sequence $\left\{\phi_{j}\right\}$ is called an approximate identity. Let $y \in \mathbb{R}^{n} \backslash\{0\}$ and $\lambda>0$. We want to show $f(\lambda y)=\lambda^{m} f(y)$. Let $\psi_{j}(x)=\phi_{j}(x-y)$. Then for $g \in C^{0}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ we have

$$
\lim _{j \rightarrow \infty} \int \psi_{j} g=g(y)
$$

$\left(\int \psi_{j} g\right.$ may not make sense for small $j$, but for $j$ large enough $\operatorname{supp} \psi_{j} \subset \mathbb{R}^{n} \backslash\{0\}$.)

$$
\begin{aligned}
f(\lambda y) & =\lim _{j \rightarrow \infty} \int f(\lambda z) \psi_{j}(z) d z \\
& =\lim _{j \rightarrow \infty} \lambda^{-n} \int f(x) \psi_{j}(x / \lambda) d x \\
& =\lim _{j \rightarrow \infty} \lambda^{-n} T\left(\psi_{j}(\cdot / \lambda)\right) \\
& =\lim _{j \rightarrow \infty} T_{\lambda}\left(\psi_{j}\right) \\
& =\lim _{j \rightarrow \infty} \lambda^{m} T\left(\psi_{j}\right) \\
& =\lim _{j \rightarrow \infty} \lambda^{m} \int f \psi_{j} \\
& =\lambda^{m} f(y) . \quad \dashv-1
\end{aligned}
$$

For $m \in \mathbb{R}$ we define $S^{m}\left(\mathbb{R}^{n}\right)$, the symbols of degree $m$, by

$$
S^{m}\left(\mathbb{R}^{n}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid \forall \beta \exists C\left(\left|D^{\beta} f(x)\right| \leqq C(1+\|x\|)^{m-|\beta|}\right)\right\} .
$$

And set $S^{\infty}\left(\mathbb{R}^{n}\right)=\bigcup_{m} S^{m}\left(\mathbb{R}^{n}\right)$. For a reference see any book on pseudo-differential operators, e.g. [3]. We now show that functions which are homogeneous near infinity are symbols.
Lemma 1.2. Let $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Let $R$ and $m$ satisfy

$$
f(t x)=t^{m} f(x) \quad \text { for } t>0, \quad\|x\| \geqq R
$$

Then $f \in S^{m}\left(\mathbb{R}^{n}\right)$.
Proof. For $\|x\| \geqq R$ and $t>0$ we have

$$
t\left(D_{i} f\right)(t x)=\frac{\partial}{\partial x_{i}}(f(t x))=\frac{\partial}{\partial x_{i}}\left(t^{m} f(x)\right)=t^{m} D_{i} f(x) .
$$

So

$$
D_{i} f(t x)=t^{m-1} D_{i} f(x) .
$$

Etc. $\dashv$
If $f$ and $g$ are in $S^{\infty}$ then so is $f+g$. Also, $\mathscr{S}$ is contained in $S^{m}$ for all $m$.
Lemma 1.3. If $f$ is a symbol then there is a $T \in \mathscr{P}^{\prime}$ and a $g \in \mathscr{S}$ satisfying
a) $\operatorname{supp}(T)$ compact,
b) $\operatorname{sing} \operatorname{supp}(T) \subset\{0\}$, and
c) $[\widehat{f}]=T+[g]$.

Proof. First note that $x^{\beta} f$ is a symbol for all $\beta$. For $T \in \mathscr{P}^{\prime}$ we have

$$
\widehat{D^{\beta}} \widehat{T}=(i \xi)^{\beta} \widehat{T}
$$

and

$$
\widehat{x^{\beta} T}=(i D)^{\beta} \widehat{T} .
$$

If $g$ is a $C^{|\beta|}$ function then $D^{\beta}[g]=\left[D^{\beta} g\right]$. If $g \in C^{\infty}$ and $x^{\beta} g \in L^{1}$ for $|\beta| \leqq k$ then (by Lebesgue Dominated Convergence) $\hat{g} \in C^{k}$.

Fix $k$. Since $f$ is a symbol we may choose $\beta=\left(\beta_{1}, 0, \ldots, 0\right)$ large enough so that

$$
x^{\delta} D^{\beta} f \in L^{1} \quad \text { for }|\delta| \leqq k .
$$

Then $\widehat{D^{\beta} f} \in C^{k}$ so there is a $g \in C^{k}$ satisfying $[g]=(i \xi)^{\beta} \widehat{[f]}=i^{\beta_{1}} \xi_{1}^{\beta_{1}} \widehat{[f]}$. Since $k$ is arbitrary this implies sing supp $\widehat{f f}] \subset\left\{\xi_{1}=0\right\}$. Similarly we get sing supp $\widehat{[f]}$ $\subset\left\{\xi_{j}=0\right\}$ for $j=1, \ldots, n$. This implies sing supp $[\widehat{f}] \subset\{0\}$. Since $x^{\beta} f$ is a symbol, if we choose $\delta$ large enough we have

$$
D^{\delta}\left(x^{\beta} f\right) \in L^{1} .
$$

So,

$$
(i \xi)^{\delta}(i D)^{\beta} \widehat{[f]}=\left(D^{\delta}\left(x^{\beta} f\right)\right)^{\wedge} \in L^{\infty} .
$$

Hence, if $\phi \in \mathscr{D}$ and equal to one on the unit ball we see there is a $g \in \mathscr{S}$ satisfying

$$
(1-\phi) \widehat{[f]}=[g] .
$$

Hence, we may take $T=\phi \widehat{[f]}$.
Lemma 1.4. Let $T \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ be homogeneous of degree $m$ with $\operatorname{sing} \operatorname{supp}(T) \subset\{0\}$. Then $T \in \mathscr{S}^{\prime}, \hat{T}$ is homogeneous of degree $-m-n$, and there is an $f \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, homogeneous of degree $-m-n$, satisfying $\left.\widehat{T}\right|_{\mathbb{R}^{n} \backslash\{0\}}=[f]$.
Remark. This lemma appears as an exercise in [3], Chap. 1, Sect. 10.2, page 64.
Proof. It is clear that $T$ can be extended to be in $\mathscr{S}^{\prime}$ since outside of the origin it is given by a function which is $O\left(\|x\|^{m}\right)$ as $\|x\| \rightarrow \infty$. Now for the homogeneity of $\widehat{T}$. Let $\phi \in \mathscr{G}$. Then

$$
(\phi(\cdot / \lambda))^{\wedge}(\xi)=\int \phi(x / \lambda) e^{-i x \cdot \xi} d x=\lambda^{n} \int \phi(y) e^{-i \lambda y \cdot \xi} d y=\lambda^{n} \widehat{\phi}(\lambda \xi),
$$

and so

$$
\begin{aligned}
(\widehat{T})_{\lambda}(\phi) & \left.=\lambda^{-n} \hat{T}(\phi(\cdot / \lambda))=\lambda^{-n} T((\phi(\cdot / \lambda)))^{\prime}\right) \\
& =\lambda^{-n} T\left(\lambda^{n} \hat{\phi}\left(\cdot / \lambda^{-1}\right)\right)=\lambda^{-n}\left(\lambda^{n} T\left(\hat{\phi}\left(\cdot / \lambda^{-1}\right)\right)\right) \\
& =\lambda^{-n} T_{\lambda^{-1}}(\hat{\phi})=\lambda^{-n-m} T(\hat{\phi})=\lambda^{-n-m} \widehat{T}(\phi) .
\end{aligned}
$$

This shows $\hat{T}$ is homogeneous of degree $-m-n$. Now let $\phi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ and equal to one on a neighborhood of the origin. We have

$$
\hat{T}=(\phi T)^{\wedge}+((1-\phi) T) \wedge
$$

The Paley-Wiener Theorem (see [13], Chap. 7, Thm. 7.23, p. 183) implies that the Fourier transform of a distribution with compact support has empty singular support. Hence

$$
\text { sing } \operatorname{supp}(\widehat{\phi T})=\emptyset
$$

Since sing $\operatorname{supp}(T) \subset\{0\}$ there is an $h \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with $\left.T\right|_{\left.\mathbb{R}^{n}\right\}\{0\}}=[h]$. Lemma 1.1 implies $h$ is homogeneous of degree $m$. So, $(1-\phi) T=[(1-\phi) h]$, and $(1-\phi) h$ is a symbol by Lemma 1.2. Now, Lemma 1.3 gives

$$
\text { sing supp }\left(((1-\phi) T)^{\wedge}\right) \subset\{0\}
$$

So sing supp $(\hat{T}) \subset\{0\}$. Hence, there is an $f \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with $\left.\hat{T}\right|_{\mathbb{R}^{n} \backslash\{0\}}=[f]$, and Lemma 1.1 gives the desired homogeneity of $f$. -1
Theorem 1.5. For all $C>0$ there is an $\alpha_{0}>0$ such that $\left|\widehat{G_{\alpha}}(\xi)\right| \leqq C\|\xi\|^{-3}$ for $\|\xi\| \geqq 1$ and $0 \leqq \alpha \leqq \alpha_{0}$.
Proof. Recall

$$
G_{\alpha}=\sum_{m=1}^{4} \sum_{n=0}^{n_{0}}\left(\frac{(i \alpha r \cos 3 \theta)^{m}}{m!}-\frac{\left(-r^{2}\right)^{n}}{n!}\right) .
$$

Now, $\frac{(i r \cos 3 \theta)^{m}\left(-r^{v}\right)^{n}}{m!n!}$ is homogeneous of degree $m+\gamma n$ so

$$
\left[\frac{(i r \cos 3 \theta)^{m}\left(-r^{\gamma}\right)^{n}}{m!n!}\right] \text { is also. }
$$

Also, it is $C^{\infty}$ except at the origin. Hence, by Lemma 1.4 there exists


$$
\left[\frac{(i \alpha r \cos 3 \theta)^{m}\left(-r^{\gamma}\right)^{n}}{m!n!}\right]_{\mathbb{R}^{2} \backslash\{0\}}=\alpha^{m}\left[f_{m, n}\right]
$$

For $\|\xi\| \geqq 1$ we have

$$
\left.\left|\sum_{m=1}^{4} \sum_{n=0}^{n_{0}} \alpha^{m} f_{m, n}(\xi)\right| \leqq \sum_{m=1}^{4} \sum_{n=0}^{n_{0}}\left(\sup _{\|\xi\|=1}\left|f_{m, n}(\xi)\right|\right) \alpha^{m}\|\xi\|^{-2-m-\gamma n}\right) .
$$

Since $-2-m-\gamma n \leqq-3$ and $m \geqq 1$ (so we can make $\alpha^{m}$ small), the lemma is proved.

In the previous theorem we wrote " $\widehat{G_{\alpha}}(\xi)$ ". Now $G_{\alpha} \notin L^{1}$ so we haven't defined $\widehat{G_{\alpha}}$. We have, however, defined $\left.\widehat{G_{\alpha}}\right]$. But this is a tempered distribution so even if there is a $g$ with $[g]=\left[\widehat{G_{\alpha}}\right]$, this $g$ is only determined almost everywhere. However, we know that $\operatorname{sing} \operatorname{supp}\left(\widehat{\left[G_{\alpha}\right]}\right) \subset\{0\}$ so there is a canonical $C^{\infty}$ choice for $g$ in $\mathbb{R}^{2} \backslash\{0\}$. To clarify what is happening, here is a lemma.
Lemma 1.6. Let $f \in L^{1}$. Let $g$ and $h$ satisfy $f=g+h$, $\operatorname{sing} \operatorname{supp} \widehat{[g]} \subset\{0\}$, and sing supp $\widehat{h}] \subset\{0\}$. Let $\tilde{g}, \tilde{h} \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ satisfy

$$
\left.\widehat{[g]}\right|_{\mathbb{R}^{n} \backslash\{0\}}=\left[\left.\begin{array}{lll}
\tilde{g}] & \text { and } & {[\widehat{h}]}
\end{array}\right|_{\mathbb{R}^{n} \backslash\{0\}}=[\tilde{h}] .\right.
$$

Then $\left.\hat{f}\right|_{\mathbb{R}^{n} \backslash(0\}}=\tilde{g}+\tilde{h}$.
Proof. $\widehat{[f]}=\widehat{[g]}+\widehat{[h]}$. Since $f \in L^{1}$ we also have $\widehat{[f]}=[\hat{f}]$. So

$$
\left.[\hat{f}]\right|_{\mathbb{R}^{n} \backslash\{0\}}=[\tilde{g}]+[\tilde{h}]=[\tilde{g}+\tilde{h}] .
$$

So $\left.\hat{f}\right|_{\mathbb{R}^{n} \backslash\{0\}}=\tilde{g}+\tilde{h}$ almost everywhere. But $\hat{f}, \tilde{g}$, and $\tilde{h}$ are continuous so $\left.\hat{f}\right|_{\mathbb{R}^{n} \backslash\{0\}}$ $=\tilde{g}+h . \quad \dashv$

With the preceding as justification we will allow some confusion of functions and distributions.

## 2. Bounds Near Infinity

The main lemma is the following (cf. [1], Chap. IX, §44.4, pp. 244-245).
Lemma 2.1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$. For $j=1,2, \beta=0,1,2,3,4$ suppose

$$
D_{j}^{\beta} f \in L^{1} \cap C^{0} \quad \text { and } \quad \lim _{\|x\| \rightarrow \infty}\left|D_{j}^{\beta} f(x)\right|=0 .
$$

Then $|\hat{f}(\xi)| \leqq 4 \max \left\{\left\|D_{1}^{4} f\right\|_{L^{1}},\left\|D_{2}^{4} f\right\|_{L^{1}}\right\}\|\xi\|^{-4}$.
Proof. The hypotheses allow us to integrate by parts four times, giving

$$
\hat{f}(\xi)=\int e^{-i x \cdot \xi} f(x) d x=\int\left(\xi_{j}\right)^{-4} e^{-i x \cdot \xi} D_{j}^{4} f(x) d x
$$

So $|\hat{f}(\xi)| \leqq \xi_{1}^{-4}\left\|D_{1}^{4} f\right\|_{L^{1}}$ and $|\widehat{f}(\xi)| \leqq \xi_{2}^{-4}\left\|D_{2}^{4} f\right\|_{L^{1}}$. If $\left|\xi_{1}\right| \leqq\left|\xi_{2}\right|$ then

$$
\|\xi\|^{-4}=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{-2} \geqq\left(2 \xi_{2}^{2}\right)^{-2}=(1 / 4) \xi_{2}^{-4}
$$

and $\xi_{2}^{-4} \leqq \xi_{1}^{-4}$ so $\min \left\{\xi_{2}^{-4}, \xi_{1}^{-4}\right\} \leqq 4\|\xi\|^{-4}$. If $\left|\xi_{2}\right| \leqq\left|\xi_{1}\right|$ we also get $\min \left\{\xi_{1}^{-4}\right.$, $\left.\xi_{2}^{-4}\right\} \leqq 4\|\xi\|^{-4}$. Hence

$$
\begin{aligned}
|\hat{f}(\xi)| & \leqq \min \left\{\xi_{1}^{-4}\left\|D_{1}^{4} f\right\|_{L^{1}}, \xi_{2}^{-4}\left\|D_{2}^{4} f\right\|_{L^{1}}\right\} \\
& \leqq \max \left\{\left\|D_{1}^{4} f\right\|_{L^{1}},\left\|D_{2}^{4} f\right\|_{L^{1}}\right\} \min \left\{\xi_{1}^{-4}, \xi_{2}^{-4}\right\} \\
& \leqq 4 \max \left\{\left\|D_{1}^{4} f\right\|_{L^{1}},\left\|D_{2}^{4} f\right\|_{L^{1}}\right\}\|\xi\|^{-4} . \quad \dashv-1
\end{aligned}
$$

If $f \in C_{0}^{4}$ then $f$ satisfies the hypotheses of the lemma. To show $H$ and $F$ are $C^{4}$ it seems best to use the following elementary calculus lemma.
Lemma 2.2. Let $B$ be open in $\mathbb{R}^{2}$. Let $f=\sum_{i=1}^{\infty} f_{i}$ where each $f_{i} \in C^{4}(B)$. Suppose $\sum_{i=1}^{\infty} \sup _{B}\left|D^{\beta} f_{i}\right|<\infty$ for $|\beta| \leqq 4$. Then $f \in C^{4}(B)$ and $D^{\beta} f=\sum_{i=1}^{\infty} D^{\beta} f_{i}$ for $|\beta| \leqq 4$.

For the essence of the proof cf. [14], Chap. 23, Corollary to Thm. 3, p. 472.
If we are going to show things are $C^{4}$ then we had better take some derivatives. Here goes. First note that for $r>0$ we have $D_{i} r=x_{i} / r, D_{1} \theta=$ $-x_{2} / r^{2}$, and $D_{2} \theta=x_{1} / r^{2}$.
Lemma 2.3. Let $\beta=\left(\beta_{1}, \beta_{2}\right)$ be a multi-index, Let $y \geqq 0$. Then for $r>0$ we may write

$$
D^{\beta}\left(r^{y}\right)=\sum_{j=1}^{2|\beta|} f_{j}(y) r^{y-|\beta|} \frac{x^{\mu_{j}}}{r^{\left|\mu^{\mu}\right|}}
$$

where $\mu_{j}$ is a multi-index, $\left|\mu_{j}\right| \leqq|\beta|$, and $f_{j}(y)$ is a polynomial in $y$ (for a given $\beta$, of course).
Proof. By induction on $|\beta|$. $\beta=0$ is clear. To simplify notation we take a generic case:

$$
\begin{aligned}
D_{1}\left(f(y) r^{y-|\beta|} \frac{x^{\mu}}{r^{|\mu|}}\right)= & f(y)(y-|\beta|-|\mu|) r^{y-|\beta|-1} \frac{x^{\mu} x_{1}}{r^{|\mu|+1}} \\
& +f(y) \mu_{1} r^{y-|\beta|-1} \frac{x_{1}^{\mu_{1}-1} x_{2}^{\mu_{2}}}{r^{|\mu|-1}} .
\end{aligned}
$$

Lemma 2.4. For $\beta$ a multi-index, $r>0$, we may write

$$
D^{\beta} e^{-r^{\gamma}}=\sum_{j=1}^{3|\beta|} h_{j} e^{-r^{\gamma}} r^{-y_{j}} \frac{x^{\mu_{j}}}{r^{\left|\mu_{j}\right|}}
$$

where $0 \leqq y_{j} \leqq|\beta|,\left|\mu_{j}\right| \leqq|\beta|$, and $h_{j}$ is a number (depending on $\beta$, of course). Proof. Induction. $\beta=0$ is O.K. (Recall $\gamma \in(0,1]$ is fixed).

$$
\begin{aligned}
D_{1}\left(h e^{-r^{\gamma}} r^{-y} \frac{x^{\mu}}{r^{|\mu|}}\right)= & h e^{-r^{\nu}}\left(-\gamma r^{\nu-1} \frac{x_{1}}{r}\right) r^{-y} \frac{x^{\mu}}{r^{|\mu|}} \\
& +h e^{-r^{\gamma}}(-y-|\mu|) r^{-y-|\mu|-1} \frac{x_{1}}{r} x^{\mu} \\
& +h e^{-r^{\gamma}} r^{-y-|\mu|} \mu_{1} x_{1}^{\mu_{1}-1} x_{2}^{\mu_{2}} \\
= & -\gamma h e^{-r^{\gamma}} r^{-y-(1-\gamma)} \frac{x_{1} x^{\mu}}{r^{|\mu|+1}} \\
& +(-y-|\mu|) h e^{-r^{\gamma}} r^{-y-1} \frac{x_{1} x^{\mu}}{r^{|\mu|+1}} \\
& +\mu_{1} h e^{-r^{\gamma} r^{-y-1}} \frac{x_{1}^{\mu_{1}-1} x_{2}^{\mu_{2}}}{r^{|\mu|-1}} . \quad-1
\end{aligned}
$$

Lemma 2.5. For $k$ a positive integer, $\beta$ a multi-index, $r>0$, we may write

$$
D^{\beta}\left(\cos ^{k} 3 \theta\right)=\sum_{j=1}^{4|\beta|} g_{j}(k) \sin ^{n_{j}} 3 \theta \cos ^{m_{j}} 3 \theta \frac{x^{\mu_{j}}}{r^{\mu_{j} \mid}} r^{-|\beta|}
$$

where $\left|\mu_{j}\right| \leqq|\beta|, \quad n_{j}+m_{j}=k, \quad n_{j} \geqq 0, \quad m_{j} \geqq 0, \quad n_{j}$ and $m_{j}$ are integers, and $\left|g_{j}(k)\right| \leqq(3 k(|\beta|+1))^{|\beta|}$, and we allow $\left(n_{j}, m_{j}, \mu_{j}\right)=\left(n_{i}, m_{i}, \mu_{i}\right)$ for $i \neq j$.

Proof. $D_{1}\left(g \sin ^{n} 3 \theta \cos ^{m} 3 \theta \frac{x^{\mu}}{r^{|\mu|}} r^{-|\beta|}\right)$

$$
\begin{aligned}
= & g n \sin ^{n-1} 3 \theta \cos ^{m+1} 3 \theta \frac{3\left(-x_{2}\right)}{r^{2}} \frac{x^{\beta}}{r^{|\mu|}} r^{-|\beta|} \\
& -g m \sin ^{n+1} 3 \theta \cos ^{m-1} 3 \theta \frac{3\left(-x_{2}\right)}{r^{2}} \frac{x^{\mu}}{r^{|\mu|}} r^{-|\beta|} \\
& +g \sin ^{n} 3 \theta \cos ^{m-1} 3 \theta \mu_{1} x_{1}^{\mu_{1}-1} x_{2}^{\mu_{2}} r^{-|\beta|-|\mu|}
\end{aligned}
$$

$$
+g \sin ^{n} 3 \theta \cos ^{m} 3 \theta x^{\mu}(-|\beta|-|\mu|) r^{-|\beta|-|\mu|-1} \frac{x_{1}}{r}
$$

$$
=-3 g n \sin ^{n-1} 3 \theta \cos ^{m+1} 3 \theta \frac{x_{2} x^{\mu}}{r^{|\mu|+1}} r^{-|\beta|-1}
$$

$$
+3 g m \sin ^{n+1} 3 \theta \cos ^{m-1} 3 \theta \frac{x_{2} x^{\mu}}{r^{|\mu|+1}} r^{-|\beta|-1}
$$

$$
+g \mu_{1} \sin ^{n} 3 \theta \cos ^{m} 3 \theta \frac{x_{1}^{\mu_{1}-1} x_{2}^{\mu_{2}}}{r^{|\mu|-1}} r^{-|\beta|-1}
$$

$$
+g(-|\beta|-|\mu|) \sin ^{n} 3 \theta \cos ^{m} 3 \theta \frac{x_{1} x^{\mu}}{r^{|\mu|+1}} r^{-|\beta|-1} .
$$

Notice, we don't really have any negative powers of sin or cos since if $n=0$ (or $m=0$ ) the term with $n-1$ (or $m-1$ ) has a factor of $n$ (or $m$ ). The bound on $g$ is fairly obvious:

$$
\begin{aligned}
& |-3 g n| \leqq|-3 g k| \leqq(3 k(|\beta|+1))^{|\beta|} 3 k \leqq(3 k(|\beta|+2))^{|\beta|+1} \\
& \quad\left|g \mu_{1}\right| \leqq|g| \mu| | \leqq|g| \beta\left|\leqq(3 k(|\beta|+1))^{|\beta|}\right| \beta \mid \leqq(3 k(|\beta|+2))^{|\beta|+1},
\end{aligned}
$$

and

$$
|g(-|\beta|-|v|)| \leqq|g 2| \beta| | \leqq\left(\left.3 k(|\beta|+1)\right|^{|\beta|} 2|\beta| \leqq(3 k(|\beta|+2))^{|\beta|+1} . \quad-1\right.
$$

We want to use Lemma 2.1 to bound $\hat{H}$. So we show $H$ is $C^{4}$.
Lemma 2.6. $\frac{(i r \cos 3 \theta)^{m}}{m!}\left(e^{-r^{\gamma}}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{n!}\right) \in C^{4}\left(\mathbb{R}^{2}\right)$ for $m=0,1,2,3,4$.
Proof. It is clearly in $C^{\infty}\left(\mathbb{R}^{2} \backslash\{0\}\right)$. We want to use Lemma 2.2 so write

$$
\frac{(i r \cos 3 \theta)^{m}}{m!}\left(e^{-\mu \nu}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{n!}\right)=\sum_{n=n_{0}+1}^{\infty} \frac{(i r \cos 3 \theta)^{m}\left(-r^{\gamma}\right)^{n}}{m!n!} .
$$

From Lemmas 2.3 and 2.5 we have (in $\mathbb{R}^{2} \backslash\{0\}$ )

$$
\left.\begin{array}{rl}
D^{\beta}\left((i r \cos 3 \theta)^{m}\left(-r^{\gamma}\right)^{n}\right) \\
= & (-1)^{n} \sum_{\substack{\delta, \varepsilon \\
\delta+\varepsilon=\beta}} C_{\delta, \varepsilon} D^{\delta}\left((i \cos 3 \theta)^{m}\right) D^{\varepsilon}\left(r^{\nu n+m}\right) \\
= & (-1)^{n} i^{m i} \sum_{\delta, \varepsilon}^{\delta+\varepsilon=\beta} \\
C_{\delta, \varepsilon}\left\{\sum_{j=1}^{4|\theta|} g_{j}(m) \sin ^{n_{j}} 3 \theta \cos ^{m_{j}} 3 \theta \frac{x^{\mu_{j}}}{r^{\left|\mu_{j}\right|}} r^{-|\delta|}\right\} \\
& \cdot\left\{\sum_{k=1}^{2 \varepsilon_{k} \mid} f_{k}(y n+m) r^{\nu n+m-|\varepsilon|} \underset{r^{\tilde{\tilde{\mu}_{k}}}}{r^{\left|\tilde{\mu_{k}}\right|}}\right\}
\end{array}\right\} .
$$

In each bracket the $g_{j}, n_{j}, m_{j}, \mu$, etc. depend on $\delta$ or $\varepsilon$. We want to check that the limit exists as we approach the origin. Consider a typical term after multiplying out. As $\left(x_{1} / r\right)=\cos \theta$ and $\left(x_{2} / r\right)=\sin \theta$, we see that

$$
g_{j}(m) \sin ^{n_{j}} 3 \theta \cos ^{m_{j}} 3 \theta \frac{x^{\mu_{j}+\tilde{\mu}_{k}}}{r^{\left|\mu_{j}\right|+\left|\overline{\mu_{k}}\right|}} f_{k}(\gamma n+m)
$$

is bounded as $r \rightarrow 0$. The remaining factor is $r^{-|\delta|+\gamma n+m-|\varepsilon|}=r^{\geqslant n+m-|\beta|}$. As $n>n_{0}, m \geqq 0$, and $|\beta| \leqq 4$ imply $\gamma n+m-|\beta|>0$, we have $r^{2 n+m-|\beta|} \rightarrow 0$ as $r \rightarrow 0$. Hence

$$
\lim _{r \rightarrow 0} D^{\beta}(i r \cos 3 \theta)^{m}\left(-r^{\gamma}\right)^{n}=0
$$

Using that the derivative of a continuous function cannot have a removable discontinuity (by L'Hôpital's Rule), we may induct on $|\beta|$ to conclude

$$
\frac{(i r \cos 3 \theta)^{m}\left(-r^{2}\right)^{n}}{m!n!} \in C^{4}\left(\mathbb{R}^{2}\right) \quad \text { for } m=0,1,2,3,4, \quad n>n_{0}
$$

Now fix $\beta$ with $|\beta| \leqq 4$. Then the above formula shows there is a constant $C$ so that

$$
\sup _{r<1}\left\{D^{\beta}(i r \cos 3 \theta)^{m}\left(-r^{\gamma}\right)^{n}\right)\left|\leqq C \sup _{k}\right| f_{k}(\gamma n+m) \mid
$$

But each $f_{k}$ is just a polynomial so

$$
\sum_{n=n_{0}+1}^{\infty} \sup _{r<1}\left|\frac{D^{\beta}\left((i r \cos 3 \theta)^{m}\left(-r^{\gamma}\right)^{n}\right)}{m!n!}\right|<\infty \quad \text { for } m=0,1,2,3,4 .
$$

So Lemma 2.2 applies. -1
Theorem 2.7. There exists a $C$ satisfying

$$
\widehat{H_{\alpha}}(\xi) \mid \leqq C\|\xi\|^{-4} \text { for }\|\xi\| \geqq 1 \text { and } 0 \leqq \alpha \leqq 1
$$

There exists a $C$ satisfying

$$
\left|\left(e^{-r^{\gamma}}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{n!}\right)^{n}(\xi)\right| \leqq C\|\xi\|^{-4} \text { for }\|\xi\| \geqq 1
$$

Remark. The second estimate will be used in Theorem 2.10.
Proof. Recall

$$
H_{\alpha}=\sum_{m=1}^{4} \frac{(i \alpha r \cos 3 \theta)^{n}}{m!}\left(e^{-r^{\gamma}}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{n!}\right)
$$

Let

$$
f_{m}:=\frac{(i r \cos 3 \theta)^{m}}{m!}\left(e^{-r^{\gamma}}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{m!}\right) \quad \text { for } m=0,1,2,3,4
$$

So $H_{\alpha}=\sum_{m=1}^{4} \alpha^{m} f_{m}$. Choose $\phi \in \mathscr{D}\left(\mathbb{R}^{2}\right)$ and equal to one on a neighborhood of zero. Then Lemma 2.6 implies $\phi f_{m} \in C_{0}^{4}\left(\mathbb{R}^{2}\right)$. Now

$$
(1-\phi) e^{-r^{\gamma}} \in \mathscr{S} \text { so }(1-\phi) \frac{(i r \cos 3 \theta)^{m}}{m!} e^{-r^{\gamma}} \in \mathscr{S}
$$

Also $(1-\phi) \frac{(i r \cos 3 \theta)^{m}}{m!} \frac{\left(-r^{\gamma}\right)^{n}}{n!} \in S^{m+n \gamma}$ by Lemma 1.2. So, since the sum of symbols is a symbol, $(1-\phi) f_{m}$ is a symbol. Now, Lemma 1.3 gives a $C_{m}$ such that

$$
\left|\left((1-\phi) f_{m}\right)(\xi)\right| \leqq C_{m}\|\xi\|^{-4} \text { for }\|\xi\| \geqq 1
$$

Lemma 2.1 gives $C_{m}^{\prime}$ such that

$$
\left|\left(\phi f_{m}\right)^{\wedge}(\xi)\right| \leqq C_{m}^{\prime}\|\xi\|^{-4}
$$

So, for $\|\xi\| \geqq 1$,

$$
\begin{aligned}
\left|\widehat{H_{\alpha}}(\xi)\right| & =\left|\sum_{m=1}^{4} \alpha^{m}\left(\left(\phi f_{m}\right)^{\wedge}+\left((1-\phi) f_{m}\right)^{\wedge}\right)\right| \\
& \leqq \sum_{m=1}^{4} \alpha^{m}\left(C_{m}+C_{m}^{\prime}\right)\|\xi\|^{-4} .
\end{aligned}
$$

We may take $C=\sum_{m=1}^{4} C_{m}+C_{m}^{\prime}$ for the first result and $C=C_{0}+C_{0}^{\prime}$ for the
second. $\dashv$
We want to get a similar bound for $\hat{F}$. However we can't factor out $\alpha$ so the argument will be different.
Lemma 2.8. $F_{\alpha} \in C^{4}\left(\mathbb{R}^{2}\right)$ and $\sup _{\substack{0 \leq x \leq 1 \\ r<2}}\left|D^{\beta} F_{\alpha}\right|<\infty$ for $|\beta|=4$.
Proof. Recall

$$
F_{\alpha}=\left(e^{i \alpha r \cos 3 \theta}-\sum_{m=0}^{4} \frac{(i \alpha r \cos 3 \theta)^{m}}{m!}\right) e^{-r^{\gamma}}
$$

So $F_{\alpha} \in C^{\infty}\left(\mathbb{R}^{2} \backslash\{0\}\right)$. We want to apply Lemma 2.2 (as usual). So we write

$$
F_{\alpha}=\sum_{m=5}^{\infty} \frac{(i \alpha r \cos 3 \theta)^{m}}{m!} e^{-r^{\gamma}}
$$

We only consider $\beta$ satisfying $|\beta| \leqq 4$ and $m$ satisfying $m \geqq 5$. Using Lemmas 2.3, 2.4, and 2.5 we see that $D^{\beta}\left(\frac{(i \alpha r \cos 3 \theta)^{m}}{m!} e^{-r^{\gamma}}\right)$ is a finite sum of terms of the form

$$
\frac{C(i \alpha)^{m}}{m!} g(m) \sin ^{n^{\prime}} 3 \theta \cos ^{m^{\prime}} 3 \theta \frac{x^{\mu^{\prime}}}{r^{\left|\mu^{\prime}\right|}} r^{-\left|\beta^{\prime}\right|} f(m) r^{m-\left|\beta^{\prime \prime}\right|} \frac{x^{u^{\prime \prime}}}{r^{\left|\mu^{\prime \prime}\right|}} h e^{-r^{\gamma}} r^{-y} \frac{x^{\mu^{\mu^{\prime \prime}}}}{r^{\left|\mu^{\prime \prime \prime}\right|}}
$$

where $\beta^{\prime}+\beta^{\prime \prime}+\beta^{\prime \prime \prime}=\beta$ and $0 \leqq y \leqq\left|\beta^{\prime \prime \prime}\right|$. Factor out $r^{-\left|\beta^{\prime}\right|+m-\left|\beta^{\prime \prime}\right|-y}$. What is left is a bounded function. For $m \geqq 5$ we have $-\left|\beta^{\prime}\right|+m-\left|\beta^{\prime \prime}\right|-y \geqq m-|\beta|>0$. This shows

$$
\lim _{r \rightarrow 0} D^{\beta}\left(\frac{(i \alpha r \cos 3 \theta)^{m}}{m!} e^{-r^{\gamma}}\right)=0
$$

Hence (as in the proof of Lemma 2.6) we conclude ( $i \alpha r \cos 3 \theta)^{m} e^{-r \gamma} \in C^{4}$. Now, since $f$ is a polynomial and $|g(m)| \leqq(15 m)^{4}$ we see there is a $C_{0}$ and a $k$ s.t.

$$
\sum_{m=5}^{\infty} \sup _{\substack{r<2 \\ 0 \leqq \alpha \leqq 1}}\left|D^{\beta} \frac{\left((i \alpha r \cos 3 \theta)^{m} e^{-r^{\gamma}}\right)}{m!}\right| \leqq \sum_{m=5}^{\infty} \frac{C_{0} m^{k} 2^{m}}{m!}<\infty
$$

So we may apply Lemma 2.2 to get $F_{\alpha} \in C^{4}$ and for $r<2$

$$
D^{\beta} F_{\alpha}=\sum_{m=5}^{\infty} D^{\beta} \frac{\left((i \alpha r \cos 3 \theta)^{m} e^{-r \nu}\right)}{m!}
$$

Therefore

$$
\sup _{\substack{0 \leqq \alpha \leq 1 \\ r<2}}\left|D^{\beta} F_{\alpha}\right| \leqq \sum_{m=5}^{\infty} \sup _{\substack{r<2 \\ 0 \leqq x \leqq 1}}\left|D^{\beta} \frac{\left((i \alpha r \cos 3 \theta)^{m} e^{-r^{\gamma}}\right)}{m!}\right|<\infty .
$$

This proves the lemma. -1
Theorem 2.9. There is a $C$ satisfying

$$
\left|\widehat{F_{\alpha}}(\xi)\right| \leqq C\|\xi\|^{-4} \quad \text { for } 0 \leqq \alpha \leqq 1 \text { and all } \xi
$$

Proof. Choose $\phi \in \mathscr{D}$ with supp $\phi \subset\{r \leqq 3 / 2\}$ and $\left.\phi\right|_{\{r \leqq 5 / 4\}}=1$. Then Lemma 2.8 and the product rule for differentiation give

$$
\sup _{0 \leqq \alpha \leqq 1}\left\|D^{\beta}\left(\phi F_{\alpha}\right)\right\|_{L^{1}}<\infty \quad \text { for }|\beta|=4
$$

So Lemma 2.1 gives a $C$ such that $\sup _{0 \leqq \alpha \leqq 1}\left|\widehat{\phi F_{\alpha}}(\xi)\right| \leqq C\|\xi\|^{-4}$. For $m=0,1,2,3,4$

$$
\frac{(i r \cos 3 \theta)^{m}}{m!} e^{-r^{\gamma}}(1-\phi) \in \mathscr{P}
$$

so its Fourier transform is in $\mathscr{S}$. Hence, there are constants $C_{m}$ satisfying

$$
\left|\left(\frac{(i r \cos 3 \theta)^{m}}{m!} e^{-r^{\nu}}(1-\phi)\right)^{\wedge}(\xi)\right| \leqq C_{m}\|\xi\|^{-4}
$$

Hence,

$$
\begin{aligned}
& \sup _{0 \leqq \alpha \leqq 1}\left|\left(-\sum_{m=0}^{4} \frac{(i \alpha r \cos 3 \theta)^{m}}{m!} e^{-r^{\gamma}}(1-\phi)\right)^{\wedge}(\xi)\right| \\
& \quad \leqq \sup _{0 \leqq \alpha \leqq 1} \sum_{m=0}^{4} \alpha^{m}\left|\left(\frac{(i r \cos 3 \theta)^{m}}{m!} e^{-r^{\gamma}}(1-\phi)\right)^{\hat{1}}(\xi)\right| \\
& \quad \leqq \sup _{0 \leqq \alpha \leqq 1} \sum_{m=0}^{4} \alpha^{m} C_{m}\|\xi\|^{-4} \\
& \\
& \leqq\left(\sum_{m=0}^{4} C_{m}\right)\|\xi\|^{-4} .
\end{aligned}
$$

The remaining term is $e^{i a r \cos 3 \theta} e^{-r^{\gamma}}(1-\phi)$. This is in $\mathscr{S}$. So, its transform is in $\mathscr{S}$. However we want a bound that is uniform in $\alpha$. So suppose $f$ is a smooth function. Then
$D_{1} e^{f}=e^{f} D_{1} f$,
$D_{1}^{2} e^{f}=e^{f}\left(\left(D_{1} f\right)^{2}+D_{1}^{2} f\right)$,
$D_{1}^{3} e^{f}=e^{f}\left(\left(D_{1} f\right)^{3}+3 D_{1} f D_{1}^{2} f+D_{1}^{3} f\right)$,
and
$D_{1}^{4} e^{f}=e^{f}\left(\left(D_{1} f\right)^{4}+6\left(D_{1} f\right)^{2} D_{1}^{2} f+4 D_{1} f D_{1}^{3} f+3\left(D_{1}^{2} f\right)^{2}+D_{1}^{4} f\right)$.
And the same with " 1 " replaced by " 2 ". Now let $g:=i r \cos 3 \theta$. Let $f:=\alpha g$. Since $g$ is homogeneous, for each $\beta$ there is a constant $C_{\beta}$ such that (cf. pf. of Lemma 1.2)

$$
\left|D^{\beta} g\right| \leqq C_{\beta} r^{1-|\beta|} \quad \text { for } r \geqq 1 .
$$

So we have $\sup _{0 \leqq x \leqq 1}\left|D^{\beta} f\right| \leqq C_{\beta} r^{1-|\beta|}$ for $r \geqq 1$. Since $\left|e^{f}\right|=1$, the above expressions imply there is a constant $C$ such that

$$
\sup _{\substack{0 \leqq \alpha \leqq 1 \\ j=1,2 \\ n=0,1,2,3,4}}\left|D_{j}^{n} e^{f}\right| \leqq C \quad \text { for } r \geqq 1
$$

The point is that $C$ doesn't depend on $\alpha$. Lemma 2.4 gives constants $\tilde{C}_{\beta}$ such that

$$
\left|D^{\beta} e^{-r^{\gamma}}\right| \leqq \tilde{C}_{\beta} e^{-r^{\gamma}} \quad \text { for } r \geqq 1 .
$$

So, we see that for $n \leqq 4, j=1,2$ there is a constant $K$ such that

$$
\sup _{0 \leqq \alpha \leqq 1} \mid D_{j}^{n}\left(e^{i \alpha r \cos 3 \theta} e^{-r^{\gamma}}(1-\phi) \mid \leqq K e^{-r^{\gamma}}\right.
$$

Since $e^{-r^{\gamma}} \in L^{1}$ and goes to zero as $r \rightarrow \infty$, we may apply Lemma 2.1 to get a bound on $\left(e^{i \alpha r \cos 3 \theta-r^{\nu}}(1-\phi)\right)^{\wedge}$ which is uniform in $\alpha$. Combining our bounds on $\widehat{\phi F_{\alpha}}$,

$$
\left(-\sum_{m=0}^{4} \frac{(i \alpha r \cos 3 \theta)^{m}}{m!} e^{-r^{\nu}}(1-\phi)\right)^{\wedge}, \quad \text { and } \quad\left(e^{i \alpha r \cos 3 \theta-r^{\nu}}(1-\phi)\right)^{\wedge}
$$

gives the theorem. $\dashv$
We want an estimate on $\hat{Q}$. Recall $Q=e^{-r^{\gamma}}$.
Theorem 2.10. There exists $a C>0$ and an $R$ satisfying

$$
|\hat{Q}(\xi)| \geqq C\|\xi\|^{-2-\gamma} \quad \text { for }\|\xi\| \geqq R
$$

Proof. Write

$$
Q=\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{n!}+\left\{e^{-r^{\nu}}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{y}\right)^{n}}{n!}\right\}
$$

So

$$
\widehat{[Q]}=\sum_{n=0}^{n_{0}} \frac{(-1)^{n}}{n!}\left[r^{\nu n}\right]^{\wedge}+\left[e^{-r^{\gamma}}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{n!}\right]^{\wedge}
$$

$r^{\gamma n}$ is rotationally invariant so $\left[r^{\gamma n}\right]^{\wedge}$ will be also (see [5], Chap. II, § 3.1, p. 191). Lemma 1.1 remains true if we replace "homogeneous of degree $m$ " by "rotationally invariant" using the same method of proof. This and Lemma 1.4 imply there are constants $K_{n}$ satisfying

$$
\left.\left[r^{\nu n}\right]^{\wedge}\right|_{\mathbb{R}^{2}\{\{0\}}=K_{n}\left[\mid \xi \|^{-2-\gamma n}\right] .
$$

When $n=0$ we have $\widehat{11]}=(2 \pi)^{-2} \delta$ so $K_{0}=0$. However, $K_{1} \neq 0$ as we now show. Suppose $K_{1}=0$. Then $\left.\widehat{\left[r^{\gamma}\right]}\right|_{\mathbb{R}^{2} \backslash\{0\}}=0$ so supp $\widehat{\left[r^{\gamma}\right]}$ is compact. So by the Paley-Wiener Theorem $\left[r^{\gamma}\right]^{\wedge \wedge}$ is a $C^{\infty}$ function (i.e. sing supp $\left[r^{\gamma}\right]^{\wedge}=\emptyset$ ). But the Fourier Inversion Theorem gives $\left[r^{\imath}\right]^{\wedge \wedge}=(2 \pi)^{-2}\left[r^{\imath}\right]$ which is definitely not $C^{\infty}$. Therefore $K_{i} \neq 0$.

For $n \geqq 2$ we have $-2-\gamma n<-2-\gamma<0$, so there is an $R_{0}>0$ satisfying

$$
\left|K_{1} / 2\right|\|\xi\|^{-2-\gamma} \leqq\left|\sum_{n=0}^{n_{0}} K_{n}\|\xi\|^{-2-\gamma n}\right| \quad \text { for }\|\xi\| \geqq R_{0}
$$

Theorem 2.7 gives a $C_{1}$ satisfying

$$
\left|\left(e^{-r^{\gamma}}-\sum_{n=0}^{n_{0}} \frac{\left(-r^{\gamma}\right)^{n}}{n!}\right)^{\wedge}(\xi)\right| \leqq C_{1} \| \xi^{-4} \text { for }\|\xi\| \geqq 1
$$

Choose $R>R_{0}$ and large enough so that $C_{1}\|\xi\|^{-4}<\left|K_{1} / 4\right|\|\xi\|^{-2-\gamma}$ for $\|\xi\| \geqq R$. Let $C=\left|K_{1} / 4\right|$. The theorem is proved. $\dashv$

More explicit results are known: see [6], Chap. 34, §4, p. 15 and [8], Lemma 1.1.

## 3. The Main Result

The proof of the next theorem is mostly from [9].
Theorem 3.1. $\hat{Q}$ is strictly greater than zero.

Proof. Let $p(\xi ; N):=\int_{\mathbb{R}^{N}} e^{-i \xi \cdot x-\|x\|^{\gamma}} d x$. It is known that $e^{-\|x\|^{\gamma}}$ is the characteristic function of a stable probability law (see [10], Chap. VII, §63, pp. 221-224; for a different proof see [7], pp. 222-224). The Fourier Inversion Theorem implies that the density of this law is $(2 \pi)^{-N} p(\xi ; N)$. Hence $p(\xi ; N) \geqq 0$ for all $\xi$ and all $N=1,2,3, \ldots$. From [2], Chap.II, $\S 7$. Thm. 40, p. 69 we get for $N$ $=2,4,6, \ldots$

$$
p(\xi ; N)=2 \pi(-4 \pi)^{\frac{N}{-1}}\left(\frac{d}{d\left(|\xi|^{2}\right)}\right)^{\frac{N}{2}-1} \int_{0}^{\infty} e^{-R^{y}} R J_{0}(|\xi| R) d R,
$$

where $J_{0}$ is the Bessel function, of the first kind, of order zero. Now, for $|\xi|>0$

$$
\begin{aligned}
\frac{d}{d|\xi|} p(\xi ; 2) & =2|\xi| \frac{d}{d\left(|\xi|^{2}\right)} p(\xi ; 2) \\
& =2|\xi| 2 \pi \frac{d}{d\left(|\xi|^{2}\right)} \int_{0}^{\infty} e^{-R^{y}} R J_{0}(|\xi| R) d R \\
& =2|\xi|(-4 \pi)^{-1} p(\xi ; 4) \\
& =-|\xi|(2 \pi)^{-1} p(\xi ; 4) \\
& \leqq 0 .
\end{aligned}
$$

Since $e^{-\|x\| y} \in L^{1}$, we see that $p$ is continuous (cf. Lemma 3.3). Let $f:[0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
f(|\xi|)=p(\xi ; 2):=\hat{Q}(\xi) .
$$

Then $f$ is continuous and $f^{\prime} \leqq 0$ on $(0, \infty)$. Hence $f$ is nonincreasing. But, Theorem 2.10 implies $f(y) \neq 0$ for $y$ sufficiently large. We also know $f \geqq 0$. Therefore $f>0$. $\quad-1$

Minor modification of the above arguments gives

$$
\frac{d}{d|\xi|} p(\xi ; N)=-\frac{|\xi|}{2 \pi} p(\xi ; N+2) \quad \text { and } \quad p(\xi ; N)>0
$$

for all $\xi$ and $N$. Therefore

$$
\frac{d}{d|\xi|} p(\xi ; N)<0 \quad \text { for }|\xi|>0
$$

Hence, $(2 \pi)^{-N} p(\xi ; N)$ is a unimodal probability law for $N=1,2,3, \ldots$.
Corollary 3.2. There is $a>0$ and an $R$ satisfying

$$
\hat{Q}(\xi) \geqq C\|\xi\|^{-2-\gamma} \quad \text { for } \quad\|\xi\| \geqq R .
$$

Proof. Theorem 3.1 allows us to drop the absolute value bars from Theorem 2.10. -1

Lemma 3.3. Let $S(\alpha, \xi):=\hat{P}_{\alpha}(\xi)$. Then $S$ is jointly continuous on $\mathbb{R} \times \mathbb{R}^{2}$.
Proof. Immediate by Lebesgue Dominated Convergence. $\dashv$
Theorem 3.4. There is an $\alpha_{1}>0$ such that for $0 \leqq \alpha \leqq \alpha_{1} e^{i \alpha r \cos 3 \theta-r^{\gamma}}$ is the characteristic function of a probability law.
Proof. Recall $P_{\alpha}=e^{i \alpha r \cos 3 \theta-r}$. Now, $P_{\alpha} \in L^{1}$ and $P_{\alpha}(x)=\overline{P_{\alpha}(-x)}$ so $\hat{P_{\alpha}}$ is real (the bar denotes complex conjugation). Recall $P=Q+G+H+F$. Let $C_{0}, C_{1}$, and $C_{2}$ be the $C$ 's that exist by Theorems 2.7, 2.9, and Corollary 3.2 respectively. Let $R_{0}$ be the $R$ that exists by Corollary 3.2. In Theorem 1.5 take $C=C_{2} / 3$. So, there is an $\alpha_{0}>0$ satisfying the conclusion of Theorem 1.5. We may suppose $\alpha_{0} \leqq 1$. Now choose $R$ so that $R>R_{0}, R>1$, and

$$
\left(C_{0}+C_{1}\right)\|\xi\|^{-4} \leqq\left(C_{2} / 3\right)\|\xi\|^{-2-\gamma} \text { for }\|\xi\| \geqq R
$$

So,

$$
\hat{P}_{\alpha}(\xi) \geqq\left(C_{2} / 3\right)\|\xi\|^{-2-\gamma}>0 \quad \text { for }\|\xi\| \geqq R \text { and } 0 \leqq \alpha \leqq \alpha_{0} .
$$

Since $\hat{P}_{0}>0$ (by Theorem 3.1) and $\hat{P}_{\alpha}(\xi)$ is jointly continuous (by Lemma 3.3), we may choose $\alpha_{1}$ satisfying $0<\alpha_{1}<\alpha_{0}$ and

$$
\hat{P}_{\alpha}(\xi)>0 \text { for }\|\xi\| \leqq R \text { and } 0 \leqq \alpha \leqq \alpha_{1} .
$$

Hence,

$$
\hat{P}_{\alpha}>0 \quad \text { for } 0 \leqq \alpha \leqq \alpha_{1}
$$

Since $P_{\alpha} \in L^{1}, P_{\alpha}$ is continuous at zero, and $\hat{P}_{\alpha}>0$, we have (see [15], Chap. I, §1, Cor. 1.26, p. 15)

$$
\int(2 \pi)^{-2} \hat{P}_{\alpha}(\xi) e^{i x \cdot \xi} d \xi=P_{\alpha}(x) \quad \text { for } 0 \leqq \alpha \leqq \alpha_{1}
$$

and

$$
\int(2 \pi)^{-2} \hat{P}_{\alpha}(\xi) d \xi=P_{\alpha}(0)=1 \quad \text { for } 0 \leqq \alpha \leqq \alpha_{1}
$$

Therefore, for $0 \leqq \alpha \leqq \alpha_{1}(2 \pi)^{-2} \hat{P}_{\alpha}$ is the density of a probability law which has characteristic function $P_{\alpha}$. $\quad-$

## 4. Stability

For this section we require $0<\gamma<1$. By Theorem 3.4 choose $\alpha>0$ so that

$$
P=\exp \left(i \alpha r \cos 3 \theta-r^{y}\right)
$$

is a characteristic function. Let $\mu$ be the probability measure on $\mathbb{R}^{2}$ with characteristic function $P$. We show $\mu$ is not stable even though all of its onedimensional projections are stable.
Definitions. A probability measure, $v$, on $\mathbb{R}^{n}$ is stable if for all $A, B>0$ there is a $C>0$ and an $s \in \mathbb{R}^{n}$ satisfying $\mathscr{L}(C(A X+B Y)+s)=v$ where $X$ and $Y$ are independent random variables with $\mathscr{L}(X)=\mathscr{L}(Y)=v$. (Here $\mathscr{L}$ stands for "law of").

The one-dimensional projections of $v$ are the probability measures on $\mathbb{R}$ of the form $v \circ f^{-1}$ where $f$ is a linear function from $\mathbb{R}^{n} \rightarrow \mathbb{R}$.

Theorem 4.1. $\mu$ is not stable.
Proof. Let $X$ and $Y$ be independent with law $\mu$. Take $A=B=1$. Supposing $\mu$ is stable, there is a $C>0$ and an $s \in \mathbb{R}^{2}$ satisfying

$$
\mu=\mathscr{L}(C(X+Y)+s) .
$$

Taking characteristic functions we have

$$
\begin{aligned}
e^{i a r \cos 3 \theta-r \gamma} & =\left(e^{i \alpha C r \cos 3 \theta-(C r)^{\nu}}\right)^{2} e^{i x \cdot s} \\
& =e^{i \alpha 2 C r \cos 3 \theta-2(C r)^{\gamma}+i x \cdot s} .
\end{aligned}
$$

So, we must have $C=2^{-1 / y}$. So

$$
\alpha r \cos 3 \theta-\alpha 2^{1-1 / \gamma} r \cos 3 \theta-x \cdot s \equiv 0 \bmod 2 \pi .
$$

Since it is continuous, there exists $k$ satisfying

$$
\left(1-2^{1-(1 / \gamma)}\right) \alpha r \cos 3 \theta-x \cdot s=2 \pi k .
$$

Notice $1-2^{1-1 / \gamma} \neq 0$ since $0<\gamma<1$. Choose $\theta$ so that $e^{i \theta}$ is orthogonal to $s$. Then for $x=r e^{i \theta}$ we find $\left(1-2^{1-(1 / \gamma)}\right) \propto r \cos 3 \theta=2 \pi k$ for all $r>0$. Therefore we must have $\cos 3 \theta=0=k$. Now try $x=(0,1)$ so $x=e^{i \pi / 2}$. This gives

$$
s_{2}=x \cdot s=\left(1-2^{1-(1 / \gamma)}\right) \alpha \cos (3 \pi / 2)=0 .
$$

Now try $x=e^{i \pi / 6}$ so

$$
\left(s_{1} / \sqrt{3}\right)=x \cdot s=\left(1-2^{1-(1 / \gamma)}\right) \alpha \cos (\pi / 2)=0 .
$$

This leaves

$$
\left(1-2^{1-(1 / \gamma)}\right) \alpha r \cos 3 \theta=0
$$

which isn't true, so $\mu$ is not stable. -1
Theorem 4.2. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is linear then $\mu \circ f^{-1}$ is stable.
Proof. It is well known that functions of the form $e^{\phi(u)}$ where $\phi: \mathbb{R} \rightarrow \mathbb{C}$ is of the form

$$
\begin{gathered}
\phi(u)=i a u-b|u|^{\gamma}\{1+i c(\operatorname{sgn} u) \tan (\pi \gamma / 2)\}, \\
a \in \mathbb{R}, \quad b>0, \quad c \in[-1,1], \quad 0<\gamma<1
\end{gathered}
$$

are the characteristic functions of the non-degenerate stable laws of index $\gamma$ (see [11], §24.4, p.339). Since $f$ is linear, there is $y \in \mathbb{R}^{2}$ satisfying $f(x)=x \cdot y$. Then we have

$$
\begin{aligned}
\left(\mathrm{ch} . \mathrm{f} .\left(\mu \circ f^{-1}\right)\right)(u) & =(\mathrm{ch} . \mathrm{f} .(\mu))(u y) \\
& =P(u y)
\end{aligned}
$$

If $y=0$ then $P(u y)=P(0)=1$ so $\mu \circ f^{-1}=\delta$ which is stable of index $\gamma$. Suppose $y$ $\neq 0$. Let $\theta$ satisfy $e^{i \theta}=y /\|y\|$. Then

$$
P(u y)=e^{i \alpha u\|y\| \cos 3 \theta-\|u y\|^{\gamma}} .
$$

This is in the above form if we set $a=\alpha\|y\| \cos 3 \theta, b=\|y\|^{\nu}$, and $c=0$. So $\mu \circ f^{-1}$ is stable of index $\gamma . \quad \dashv$

This provides a counterexample to Theorem 4 (and Theorem 5) of "ZeroOne Laws For Stable Measures" [4]. In the notation of that paper we take $S$ $=\mathbb{R}^{2}$ and $F=$ the vector space of linear forms on $\mathbb{R}^{2}$ (i.e. linear maps of $\mathbb{R}^{2}$ into $\mathbb{R}$ ). Then $\delta(F)=$ Borel sets. We use the above $\mu$. It is elementary that $\left(\mathbb{R}^{2}, F\right)$ is a full pair. Our Theorem 4.2 now shows the hypotheses of Theorems 4 and 5 are fulfilled, but the conclusion is contradicted by our Theorem 4.1. However, Theorems 4 and 5 are true for $\gamma>1$, while the behavior for $\gamma=1$ is not known.

Acknowledgment. I thank Richard Dudley for his suggestion of the problem and his help during the researching and writing of this paper.

## References

1. Bochner, S.: Lectures on Fourier Integrals. Translated by M. Tenenbaum and H. Pollard. Princeton: Princeton University Press 1959
2. Bochner, S., Chandrasekharan, K.: Fourier Transforms, Princeton: Princeton University Press 1949
3. Chazarain, J., Piriou, A.: Introduction à la théorie des équations aux dérivées partielles linéaires. Paris: Gauthier-Villars 1981
4. Dudley, R.M., Kanter, M.: Zero-One Laws For Stable Measures. Proc. Amer. Math. Soc. 45, 245-252 (1974)
5. Gel'fand, I.M., Shilov, G.E.: Generalized Functions, Vol. 1, Properties and Operations. Translated by E. Saletan. New York: Academic Press 1964
6. Johnson, N., Kotz, S.: Distributions in Statistics: Continuous Multivariate Distributions. New York: J. Wiley 1972
7. Golubov, B.I.: On the Summability Method of Abel-Poisson Type For Multiple Fourier Integrals. Math. USSR Sbornik 36, 213-229 (1980)
8. Golubov, B.I: On the Rate of Convergence of Integrals of Gauss-Weierstrass Type For Functions of Several Variables. Math. USSR Izvestija 17, 455-475 (1981)
9. Landkof, N.S.: Some Remarks on Stable Stochastic Processes and $\alpha$-Superharmonic Functions. Mathematical Notes of the Acad. of Sciences of the USSR 14, 1078-1084 (1973)
10. Lévy, P.: Théorie de l'Addition des Variables Aléatoires, 2nd ed. Paris: Gauthier-Villars 1954
11. Loève, M.: Probability Theory I. 4th ed. Berlin Heidelberg New York: Springer 1977
12. Paulauskas, V.J.: Some Remarks on Multivariate Stable Distributions. J. of Multivariate Anal. 6, 356-368 (1976)
13. Rudin, W.: Functional Analysis. New York: McGraw-Hill 1973
14. Spivak, M.: Calculus. 2nd ed. Berkeley: Publish or Perish 1980
15. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton University Press 1971
