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0. Introduction 

We will show that  for c~ small enough 

exp(ic~rcos(30)-F), for 0<7_-<1, 

is the characterist ic  function of a probabi l i ty  law on IR 2. We then show that  
for 0 < 7 < 1 this law is not  stable even though all of  its project ions are stable of  
index 7. This provides a counterexample  to T h e o r e m  4 of [4]. 

Definitions. Let (r, 0) be the polar  coordinate  system on IR 2. Fix 7~(0, 1]. Let n o 
be the smallest  integer satisfying n o 7>4. Define functions on IR 2 as follows: 

P = P~ = exp(i c~ r cos 30 - r~), 

Q = exp( - r~), 

_- 1 
,.=1 ,=o m! n! / '  

H=H = ~=1~ ((ic~rcos30)"m! ( - , _ ~ o n . ~ ) )  ' e  r, ,o ( - r ' ) "  

and 

F=F~= ( ei~'~~176 (ic~r cos e-r'" 

So P = Q + G + H + F .  The plan is to Four ier  t ransform Q, G, H, and F. We 
will show H and F are C 4 and use this to show their t ransforms are O(ll~l/-~). 
The t ransform of each te rm of G is homogeneous  of degree at mos t  - 3 .  The  
t ransform of Q is o(ll~r1-2-~) and no better. Then, by choosing c~ small, we can 
show the Four ier  t ransform of P is posit ive near  infinity. Since Q is known  to 
be a characterist ic  function we will be able to choose c~ so that  the t ransform of 
P is close enough to that  of  Q to be posit ive away  f rom infinity. Since G, H, 
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and F are not integrable we will take their Fourier transforms as tempered 
distributions. Section 1 presents the necessary information about Schwartz dis- 
tributions and handles G. Section 2 handles (2, H, and F. Section 3 finishes the 
proof that P is a characteristic function for c~ small. Section4 shows the 
projections are stable, but the law is not, 

1. Schwartz Distributions 

We present a crash course in distributions (generalized functions). Many of the 
assertions made below have nontrivial proofs. See any book on the subject, for 
example [13], [53, [153, or [33. If we are in IR" then a multi-index ~ is an 
ordered n-tuple of nonnegative integers: 

/~=(#1 .... ,#,). 

0 
We write Dz for -~-. Then the differential operator D ~ is defined by 

cxi 

The order of D ~ is 

D ~ = (D y ~ . . .  (D.) ~". 

1#1=31+... +#, .  

If Ifil = 0  then D~f=f. 
If f2 is an open subset of IR" we define 

C((~) = C~ = {f: ~2 --, C I f  is continuous}, 

Ck(~?)={fID~feC((2) for all /3 satisfying Ifll<k}, 

C+(O) = {flD; f ~ C(O) for all fi}, 

Cko((2) = {f~ ck(f2)[supp(f) is compact}, 

and 

~(~) = c ; o ( • ) .  

If ~2 is clear from the context (usually IR") we write simply C ~ C ~, ~,  etc. Here 
supp(f)=support of f = c l o s u r e  in ~2 of {xlf(x)+O}. We place a pseudo- 
topology on @(~2) by saying "qS~o0 in @(Q)" if there is a compact subset K of 
f2 with supp(~bi)=K for all i and lira supLD~ ~bil=0 for all ft. We now define the 

i ~  K 

dual space @'(f~)=distributions in f~ by 

~ '(f2)= {T: ~ ( ~ 2 ) o C I T  is linear over ~2 and if {qS/} is any sequence 

in @(f2) and ~b~--*0 in ~(~2) then T(qSi)o0 }. 

The space of rapidly decreasing functions is 

5~,={f~C~(lR")lPN(f)<o~ for N = 0 , 1 , 2  . . . .  } 
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where 

PN(f) = sup (1 + Ilxll2) ~ ID~f(x)]. 
x ~ . n  

I/~I-<N 

We give 5~, the topology generated by the seminorms PN for N = 0 ,  1,2, .... The 
tempered distributions, 5~,', are those distributions which may be extended to be 
continuous on ~ i.e. 

~ ' =  {T: ~ r  T is continuous and linear over C}. 

So ~ ' c Y ( N " )  by restriction. This inclusion is one-to-one. If f is a locally 
integrable function then we define [ f ]  ~ '  by 

[f](~b)=~f~b for ~ b ~ ,  

where all integrals are with respect to Lebesgue measure. If f doen't grow too 
fast near infinity then [ f ]  can be extended to be in 5 p' by 

[ f ] (0 )=~fq~  for ~bEJ. 

For example, if f is bounded by some polynomial near infinity and is locally 
integrable then I f ] e 5  P'. I f f  and g are in L 1 then [ f ]  is in Y '  and 

[ f ] = [ g ]  ~ f = g  a.e. 

We define the distribution D r T by D ~ T(q~) = T( ( -1)  I~r D B q~). 
For f e L t ( R  ") we define the Fourier transform, f - ~ ( f ) ,  by 

f (O=~f(x)  e-iX'r 

(Many books use slightly different definitions.) f f  is a linear homeomorphism 
from 5 P onto ~. For T~5 P' we define the Fourier transform, T--if(T), by 

7"(~b) = r ( 6  ) for qSe~9 ~. 

Notice, ~beb cp implies q~eL 1. ~- is a linear bijection of 2~' onto 5~'. I f f~L  1 then 

U]=Ef]. 
If T~ ' (g2)  and f~'c~2 is open then the restriction of T to g2' is 

Z[~, = rl~(~,), 

and TI~,eY(O'). If Te~ ' (Q)and  qS~C| qST defined by 

(~ T)(O)= T(O0) for 0 e ~((2), 

is in Y((2). The support of T is the smallest closed (in (2) subset X satisfying 
Tin\ x =0. We write X = supp(T). The singular support of T (sing supp(T)) is the 
smallest closed subset X such that there is an f~  C~(Y2\X) satisfying 

Tl~\x = I-f]. 
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We say a function f is homogeneous of degree m if f( tx)=tmf(x) for t > 0  
and all x. If q~ is a function then we denote by qb(./2) the function defined by 
4)('/2)(x)=4(x/2), where 261R\{0}. If T~Y(IR") then let Tz~9'(IR" ) be defined 
by Tz(qb)=2-" T(dp(./Z)). We say T is homogeneous of degree m if 

T~=Z"T for 2>0 .  

If f is homogeneous of degree m then so is [ f ] .  We also have a converse. 

Lemma 1.1. Let T be in Y(IR") and homogeneous of degree m. Let f ~  C~ 
and suppose Tla,\{o} = I l l .  Then f is homogeneous of degree m. 

Proof. Choose ~ b ~ ,  qS>0, and ~ b =  1. Let 4)j(x)=j"(~(jx). The sequence {qSj} 
is called an approximate identity. Let ysN"\{0}  and 2>0 .  We want to show 
f ()L y)= Z"f  (y). Let Oi(x)= ~bj(x-y). Then for ga C~ we have 

lira ~ 0 jg=g(y) .  
j ~  oo 

(~ Ojg may not make sense for small j, but for j large enough supp OjclR'\{0}.)  

f()~ y) = lira ~f(Z z) tpj(z) dz 
j ~  oo 

= lira )~-" ~f(x) Oj(x/Z) dx 

= lim )~-" T(Oj('/,~)) 
j ~ c o  

= lira T;~(Oj) 
j ~ c o  

= lira 2 ~ r (0 j )  
j ~  

= l i r a  Z "  ~ [fOj 

=2"~f(y). 

For  m~lR we define S~(IR"), the symbols of degree m, by 

Sm(lR") = {f~ C~(IR')IV fl ? C(ID~f(x)l < C(1 + ]lxN)m-I~l)}. 

And set S~(IR")= U Sm(IR") �9 For a reference see any book on pseudo-differen- 
m 

tial operators, e.g. [3]. We now show that functions which are homogeneous 
near infinity are symbols. 

Lemma 1.2. Letf ~ C~ Let R and m satisfy 

f( tx)=tmf(x) for t>0 ,  IIX N>R. 

Then f eSm(~,,"). 

Proof. For I[xH > R  and t > 0  we have 

t(Dif)(t x)= fl-~-(f (t x))= ~ ( t m f  (x))= t m Dif (x). exi exi 
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So 

Dif( tx  ) = W-1Dif(x  ). 

Etc. 

I f f  and g are in S ~ then so is f + g .  Also, 5O is contained in S" for all m. 

Lemma 1.3. I f  f is a symbol then there is a T~SO' and a g6so satisfying 
a) supp(T) compact, 
b) sing supp(T) c {0}, and 
c) I f ]  = T +  [g]. 

Proof First note that xPf is a symbol for all ft. For T~SO' we have 

= (i & f 
and 

x-@'fT = (i D) p T. 

If g is a C j~l function then DP[g] = [D ~ g]. If g~ C ~ and x~g~L ~ for Ifil <k  then 
(by Lebesgue Dominated C o n v e r g e n c e ) ~  C k. 

Fix k. Since f is a symbol we may choose f i=(f i l ,0  . . . .  ,0) large enough so 
that 

x6Daf~L 1 for lc~l =<k. 

Then D ~ C  k so there is a g~Ck s.atisfying I-g] =(ir ~ r ~ ] .  Since~.k 
is arbitrary this implies sing supp [ f ]  c{~1 =0}:. Similarly we get sing s u p p [ f ]  
c {r = O} for j = 1 .. . .  , n. This implies sing supp i-f] {0}. Since x f is a symbol, 
if we choose 6 large enough we have 

D~(x~ f ) ~ L  ~. 

So, 

Hence, if ~b~@ 
satisfying 

(i ~)~(i D) p ~ = (D~(x~ f))^~L~ 

and equal to one on the unit ball we see there is a g~so 

A 

( i  - ~b) I f ]  = [g ] .  

Hence, we may take T =  q~ I f ] .  

Lemma 1.4. Let T~Y(IR n) be homogeneous of degree m with sing supp(T)c  {0}. 
Then Tmso', T is homogeneous of degree - m - n ,  and there is an fmC~(1R"\{0}), 
homogeneous of degree - m -  n, satisfying Tlan\(0} = [ f ] .  

Remark. This lemma appears as an exercise in [3], Chap. 1, Sect. 10.2, page 64. 

Proof It is clear that T can be extended to be in 5 ~ since outside of the origin 
it is given by a function which is o(rlxlr m) as I lx [ I - - '~ .  Now for the homo- 
geneity of T. Let qSm5~. Then 

(4) ('/,~))~(~) = ~ ~ (:4;0 e -  '~ ~ d x = ~" S ~ (Y) e -~ ~'" ~ dy = ~" 0 (~ d ,  
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(%~(4,) =,~-" f(r ~-o T((4(-/2))3 
=)o-" T( 2" 6 ( ' / 2 -  ~)) = 2-"(2 ~ T(q~(./2- ~))) 

= 2-" 7~_~ (~) = 2 . . . .  T(6) = 2 . . . .  T(~o). 

This shows T is homogeneous of degree - m - n .  Now let qba~(lR") and equal 
to one on a neighborhood of the origin. We have 

T=(qb T)% ((1 -~b) T) ~. 

The Paley-Wiener Theorem (see [13], Chap. 7, Thin. 7.23, p. 183) implies that 
the Fourier transform of a distribution with compact support has empty 
singular support. Hence 

sing supp (q~"T) = r 

Since sing supp(r )c{0} there is an h~C~~ with Tl~.\~o}=[h]. Lem- 
mal .1  implies h is homogeneous of degree m. So, (1-qS)T=[(1-~,b)h], and 
(1 - q~) h is a symbol by Lemma 1.2. Now, Lemma 1.3 gives 

sing supp(((1 - ~b) T) ~) ~ {0}. 

So sing supp(T)~ {0}. Hence, there is an f e  C~176 with Tl~a~\~o~= I f ] ,  and 
Lemma 1,1 gives the desired homogeneity of f. -~ 

C>O there is an % > 0  such that I'~(~)1 <CI]~II-3 for 

4 G~=m~ = ~ i c~r c~ 30)m (-~r~)"~ 
=1.=o m! n! 1" 

Now, (ir cos 3 O) m( -  r~)" is homogeneous of degree m + y n so 
rain! 

[ !irc~ is also. 
m!n[ J 

Also, it is C ~ except at the origin. Hence, by Lemmal .4  there exists 
fro,, ~ C~ (~2\{0}), homogeneous of degree - 2 - m - ? n, satisfying 

(i g r cos 3 0)m( -- r~)" ]~ 
m ! n [ J 1~2\~ ~ = ~m [ fm, . ]"  

For I1~ II > 1 we have 

~mfm, n(() ~ E ( sup Ifm .(~)1)s llr 
. = o  1 n = o  I f r  ' 

Theorem l.5. For all 
H~II >1 and 0<_c~<%. 

Proof. Recall 
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Since - 2 - m - ? n < - 3  and m> 1 (so we can make cd ~ small), the lemma is 
proved. 

In the previous theorem we wrote "G"(()"~ . Now G~(~L 1 so we haven't 

defined G~. We have, however, defined [G~]. But this is a tempered distribution 

so even if there is a g with [g]=[G~], this g is only determined almost 

everywhere. However, we know that sing supp( [GJ)~  {0} so there is a canoni- 
cal C ~~ choice for g in IR2\{0}. To clarify what is happening, here is a lemma. 

Lemmal.6.  Let f ~ L  1. Let g and h satisfy f = g + h ,  singsupp[g]~{0}, and 

sing supp [ ~  c {0}. Let ~,, hE C~(IR"\{0}) satisfy 

[g/"] I~,,\~o} = [g] and ~ 1~\~o} = [/7]. 

Then fla,,\~o~ = ~ + B. 
Proof I f ]  = [g] + [h]. Since f e L  ~ we also have [ ~  = [ f ] .  So 

So fl~\{o}=ff+B almost everywhere. But J~ ~, and /~ are continuous so fl~-\{o~ 
=~+h.  
With the preceding as justification we will allow some confusion of functions 
and distributions. 

2. Bounds Near Infinity 

The main lemma is the following (cf. [1], Chap. IX, w 44.4, pp. 244-245). 

Lemma 2.1. Let f:  ]R 2 ~ (E. For j = 1, 2, [3 = O, 1, 2, 3, 4 suppose 

D~U6L 1 c~ C O and lim [D]f(x)l=O. 
Ilxll~oo 

Then [f(~)l<4max{LIDg fl{L ~, L[D4f[tL~} [[~[[-4. 

Proof The hypotheses allow us to integrate by parts four times, giving 

f ( ~) = ~ e-~"r  dx = ~ ( ~j)- ~ e-gx. r D~ f (x) dx. 

So If(~)l_-<474 I[D4fl[L~ and [f(~)1=<42 4 ][D~fIIL1. If I~tl --<[42[ then 

-4 ~_2-~2~-2>(2~22)-2=(1/4) 2 

and ~s so min{4f4,4i-4}<4 IP4l1-4. If J~:l_<lr we also get min{4i -4, 
(24}..<4 H~II-4. Hence 

If(~)l <min{4T 4 IID~TIIL,, &;4 IID~NIIL~} 
<max{[lD4fllL~, ilD24fI[L,} min{~i-4, ~-4} 

_-<4max{lIDTfllL,, IlO~fllLa} I1~11-4. 
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If f e  Co 4 then f satisfies the hypotheses of the lemma. To show H and F are 
C 4 it seems best to use the following elementary calculus lemma, 

Lemma2.2. Let B be open in IR 2. Let f =  i fi where each fleCk(B). Suppose 
i=1  

suplDaf~l< oe for [fll_<_4. Then f~C4(B) and Dr f = ~ Dr f~ for 1/31<4. 
i = I  B i=1  

For the essence of the proof cf. [14], Chap. 23, Corollary to Thm. 3, p. 472. 
If we are going to show things are C 4 then we had better take some 

derivatives. Here goes. First note that for r > 0  we have D~r=x]r, D~O= 
- - x 2 / r  2, and D20=xl / r  2. 

Lemma 2.3. Let/3=(/31,/32) be a multi-index. Let y>O. 7hen for r>O we may write 

21DI Xl.tj 

D~(rY) = 2 f~(y) ry-I~1 rl"~-~ 
j = l  

where/zj is a multi-index, [#jl <[/31, and fj(y) is a polynomial in y (for a given/3, 
of course). 

Proof By induction on 1/31./3= 0 is clear. To simplify notation we take a generic 
case: 

D, f (y) rY-Ir rq ~ = f (y ) (y -  }fl} --1/21) r ' - I r  rlu[ + 

+f(Y)#1 ry- I/~1-1 X~ ' - 1  X~2 
rl,[_ 1 

Lemma 2.4. For fl a multi-index, r > O, we may write 

3 I/3I xttj  
D# e - w =  ~ hje-r~r - y j -  

j= I rlml 

where 0 ~ yj < 1/31, I~jl =< I/3L, and hj is a number (depending on fl, of course). 

Proof Induct ion. /3=0 is O.K. (Recall ?e(0, 1] is fixed). 

D 1  

+ h e-r'( - y  -I#1) r-Y-I~1-1 Xlx.  
r 

+he-,~'r-y-I~f#l x~l-1 x~2 

~- - -  ~ h e - r~  r - y - ( 1 - 7 )  X1 X~ 
rl,l+~ 

X 1 X tt 

+ ( -  y - l#1)he  -r~r-y-  I rill+ 1 

+t~1 h e - ~ r - Y - ~  x ~ -  1 x~ 
rlr i -q 
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L e m m a  2.5. For k a positive integer, fl a multi-index, r > O, we may write 

4.1#1 m X#d 
D"(cosk30)= ~, gj(k)sin"J30cos J 3 0 ~ r  -Ipl 

j = l  

where I~jl_<_[fll, nj+m~=k, nj>=O, mj>__0, n~ and mj are 
Igi(k)l _-<(3k(lfil + 1)) lfll, and we allow (nj,mj,#j)=(ni,mi,#i) for i 4:j. 

X # 

Proof D1 (gs inn3Ocosm30~r  -I~l) 

integers, and 

= g  n sin " - 1 3 0 c o s  " + 1 3 0 3 , - x 2 ~  ( "~ 
X # 

r 2 rlUl 
r-lpl 

- g m s i n  "+130cos  m - 1 3 0 3 ( - x 2 )  xu 
r 2 rlul 

r-IN 

+ g sin" 3 0 c o s ' -  13 0 /~  x] ~- ~ x~ ~ r-IBI- I~1 

+gsin"3Ocosm3Ox,(--lfi I - I# l )  r - la l - lg l -  1 x~ 
r 

X2 X# 8 = _ 3 g n s i n ~ - 1 3 0 c o s m + 1 3 0 _ _ r - I  I-~ 
rbl+l  

+ 3 g m s i n . + 1 3 0 c o s  m i q A  x2X~r-If l l -1 
~ r b l + l  

+gl~lsin. 3OCOSm30~l ~2 r_lt~l_ 1 r l~-  r 

oXtXU r -I~1-1. +g(-- I f l l - - I# l )  sin~ 30 c~ 3 

Notice, we don' t  really have any negative powers of sin or cos since if n = 0  (or 
m = 0 )  the term with n - 1  (or m - l )  has a factor of n (or m). The bound  on g is 
fairly obvious:  

I - 3 g n l < [ -  3 g k] < (3 k(I fil + 1)) 1r k < (3 k(]/3] + 2)) Ir 1, 

Ig~l--<lgl ~11 < [ g  I/~ll--<(3k(lfll + 1)) lal Ifll <(3 k(lfll +2)) lal + 1, 

and 

jg(-Ifll-lvl)l~lg21fill~(3k(lfll+ l))m~m21fll~(3k(lfll+ 2)) I~l+l. --4 

We want to use Lemma2.1  to b o u n d / t .  So we show H is C 4. 

(irc~ m { -," ~ (-r~)n] C4.(]R2) form=O, 1,2,3,4. Lemma 2.6. m! \e - . ~ o  ~ !  ~ 

Proof. It is clearly in C~(IR2\{O}). We want to use Lemma2 .2  so write 

- -  n = n o + l  " ' 
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From Lemmas 2.3 and 2�9 we have (in IR;\{0}) 

D ~ ((i r cos 30)"(-r~)") 

= ( - 1 ) "  ~ Ca,,Da((icos30)~")D~(r ~+~) 

( 4>~ xUJ l =(--1)"ira a,Z~ Ca," k=,{JYgj(m)sin'30c~ 
J 

~+e=/} 

�9 n + m )  r TM + " -  I*1 rl_~l j~ 

In each bracket the gj, n~, rnj, #, etc�9 depend on 3 or e. We want to check that 
the limit exists as we approach the origin�9 Consider a typical term after 
multiplying out. As ( x , ) ) =  cos 0 and (x2/r) =sin 0, we see that 

X~j + #k 
gj(m) sin"~ 30 cos "~j 30 ~ f~(3, n + m) 

is bounded as r-+0. The remaining factor is r-lal+r"+m-lel---r 7"+m-lgl As 
n>n0,  m>0,  and }ill<4 imply y n + m - I f l [ > 0 ,  we have rrn+~n-I#l--+0 as r--+0�9 
Hence 

lim D#(i r cos 30)~( - rV) ~ = 0. 
r ~ O  

Using that the derivative of a continuous function cannot have a removable 
discontinuity (by L'H6pital's Rule), we may induct on Jill to conclude 

(i r cos 3 0 ) ' ( -  r~)" 
~C4(1R z) for m=0,1 ,2 ,3 ,4 ,  n>no�9 

re!n! 

Now fix fi with }ill ~4. Then the above formula shows there is a constant C so 
that 

sup IDP(i r cos 3 0)m(--rT')l  < C sup }L()' n +m)[. 
r<~ k 

But each f~ is just a polynomial so 

o,((ircos30r(-,v  
- - - - -  <co  for m=0,1,2 ,3 ,4 .  

. . . .  ~ +  I m! n! I 

So Lemma 2.2 applies�9 H 

Theorem 2.7, There exists a C satisfying 
/ . . .  

Ine(~)l__<C//~l1-4 for {{3{{>1 and 0ga_< l .  

There exists a C satisfying 

1( e - ~ ' - . = o  ~ (--r')'r(~) ] i= for ]1~,,>=1. 
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Remark. The second est imate will be used in Theorem2.10 .  

Proof Recall 

Let  

Hc~:m= ~1 (io~rcosBO)n e-rY-- ~ (--F)n~ 
�9 , = o  n !  /" 

fm:-(irc~ (e-"'-,"~_o: (-rT)"~m! ] for m = 0 ,  1,2,3,4.  

4- 

So H = =  ~ c~f,,. Choose  ~ ( I R  2)  and equal to one on a ne ighborhood  of 
r n = l  

zero. Then  L e m m a  2.6 implies q~f~E C4o(1R2). N o w  

( 1 - ~ b ) e - r ' e 5  P so (1-(~)(irc~ 
m! 

(irc~ by L e m m a  1.2. So, since the sum of sym- Also (1 - qb) m ! n ! 

bols is a symbol ,  (1-q~)fm is a symbol.  Now,  L e m m a  1.3 gives a Cm such that  

I((1-~b)fm) (q)l~Cmll~J1-4 for I1#11~1. 

L e m m a  2.1 gives C~ such that  

t 1(4,fm)^(~)l < Cm 11411-4. 
So, for II~ll~l ,  

4- A 

m=~l ~ l m  ^ IH~(~)I = ((qSfm) + (( - qS)fm) ̂) 

4 

2 ~ 
m = l  

4 

We m a y  take C =  ~ C, ,+C~,  for the first result and C = C  o + C  o for the 
second, d m=l 

We want  to get a similar bound  for F. Howeve r  we can ' t  factor out c~ so 
the a rgumen t  will be different. 

L e m m a 2 . 8 .  F~eC4(IR 2) and sup IDaF~I < oofor I/~1=4 
0_<e_<l 

r < 2  

Proof Recall 

F = (e i ..... 3 o  ~ (ic~rc~ m) -~ 
m = O  m !  e . 

S o  Fe(~ C~176 We want  to apply  L e m m a 2 . 2  (as usual). So we write 

F~ ~ (i~rc~ = e- rY. 
,,,=5 m! 
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We only consider /3  satisfying IN < 4  and m satisfying m > 5 .  Using L e m m a s  2.3, 

and  2.5 we see that  D a {(ic~r cos30)  m form2"4' \ m! e -~ ' ]  is a finite sum of terms of the 

C(i ~)m x u' x ~'' x"'" 
m! g(m)sin"' 3Ocos ~' 30r-i~r-la'lf(m)rm-la"l r[U,, I he-~~r-VrlU,,, I 

where f f+ f l "+ f f "= f l  and O<y<lfl'"l. Fac to r  out  r - la ' l+~-Ia ' ' l -y .  Wha t  is left 
is a bounded  function. Fo r  m > 5 we have - t f l ' ]  + m - [ / 3 " 1 - y > m - l f l [  >0 .  This 
shows 

limDa (!ic~rc~ m ) 
,.~o m! e -r~ =0.  

Hence  (as in the p roof  of  L e m m a  2.6) we conclude ( i a r c o s  30) ~ e-~V~C 4. Now, 
since f is a po lynomia l  and  [g(m)[ < (15m)  4 we see there is a C o and a k s.t. 

Da cos30)  me- r ' )  ~, Co mk2m sup ((ier < m! 
m=5 ~<2 m m=5 

0_<~_<I 

So we m a y  apply  L e m m a  2.2 to get F ~  C 4 and for r < 2 

DaF~ = ~ D a((i~rc~ 
m=5 m!  

Therefore  

sup ID a f=l < ~ sup 
0 -<~-<1 m = 5  r < 2  

r < 2  0~<~_<i 

This proves  the lemma.  -t 

Theorem 2.9. There is a C satisfying 

< 0 9 .  

Da ((i e r cos 30) m e - r , )  
m < o o .  

!i e (1 -- ~b)) (~) < C~ j[ ~ I[ 
r c o s  3 O) ~ yY 4 1 

m! ! 

for 0 <_ c~ <_ 1 and all ~. 

Proof. Choose  q~E~ with supp~bc{r__<3/2} and  q~l(r_<_5/4~=l. Then  L e m m a 2 . 8  
and the p roduc t  rule for differentiation give 

sup liOa(q~F~)liLl<oo for [fl[=4. 
0_<~_<1 

So L e m m a 2 . 1  gives a C such that  sup 14,~(~)1< c IIr For  m - - 0 , 1 , 2 , 3 , 4  
0_<~_<1 

(ir c~ 3 0)me-r, (1 _~ )~ ,~  
m! 

so its Four ie r  t rans form is in ~.  Hence,  there are constants  Cm satisfying 
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Hence, 

sup - o m ! 0_<a_<l = 

--< sup ~ a m ((irc~ 
- - 0 ~ a _ < l  m = 0  \ m [  

4 

0 -<e<-I m = 0  

(m~=O Cm I]~H - 4 .  

The remaining term is e i . . . . .  3~ This is in ~. So, its t ransform is in 
~. However  we want a bound  that is uniform in e. So suppose f is a smooth  
function. Then 

D 1 e f = e f D l f ,  

D~ e f = eY ((D i f )  2 + D21f), 

D31 e f = eZ((Dlf) 3 + 3 D l f D i i f  +D~f), 

and 

D~ e f = ef ((D ~f)a + 6(D l f )2  D2 f + 4D 1fD31f + 3 (D2f)  2 + D4 f) .  

And the same with "1" replaced by "2".  N o w  let g:=ircos30.  Let f :=ag.  
Since g is homogeneous ,  for each fl there is a constant  Cp such that  (cf. pf. of 
L e m m a  1.2) 

]D~gI<C~r 1-1~1 for r > l .  

So we have sup [DBfl<C~r ~-IBI for r > l .  Since ] e I l = l ,  the above ex- 
0_<a_<l 

pressions imply there is a constant  C such that  

sup lD~eYl<C for r > l .  
0__<co< 1 
j = 1 , 2  

n= 0 , 1 , 2 , 3 , 4  

The point  is that  C doesn' t  depend on c~. L e m m a 2 . 4  gives constants Cp such 
that 

ID~e-'~lGC~e -r~ for r > l .  

So, we see that for nG4,  j = l , 2  there is a constant  K such that  

[Dj(e e-r~(1-~)l<=Ke -~. sup , iarcos30 
0<c~< 1 

Since e-r ' eL  1 and goes to zero as r ~ o o ,  we may  apply Lemma2.1  to get a 
bound  on (e i . . . . .  3 ~  ~b)) ~ which is uniform in e. Combining our  bounds  on 
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4))" (i~rc~ , and 
m = 0  m !  

gives the theorem. -~ 

We want an estimate on (~. Recall (2 = e -~'- 

T h e o r e m  2.10. There exists a C > 0 and an R satisfying 

Proof Write 

So 

(e i . . . . .  30-rY(1 _ q ~ ) )  ^ 

IQ(~)l~Cll~l1-2-~ for [l~[l~e. 

Q :  ~ (-r')" t-{e -~ ' -  (-r ' )";  
,=o n! ,=o ~ n! J 

~ -  - 1 "  ^ [ ,o (_r , ) , ]^  

. = o  �9 L n=0 n! J 

r ~" is rotationally invariant so [rY"] ~ will be also (see [5], Chap. II, w 3.1, p. 191). 
Lemmal .1  remains true if we replace "homogeneous of degree m" by "ro- 
tationally invariant" using the same method of proof. This and Lemma 1.4 
imply there are constants K, satisfying 

[ r~ " ] ^ Im= \~o }  = K. [ I1 ~ I1 - 2 -  ~ . ] .  

When n = 0  we have [1]=(27c)-2b so Ko=0 .  However, K I + 0  as we now 

show. Suppose K I = 0 .  Then [rY][a2\m}=0 so supp[r  7] is compact. So by the 
Paley-Wiener Theorem [r ~]^^ is a C a function (i.e. sing supp[r ~]A^=0). But 
the Fourier Inversion Theorem gives [rY]^~=(2~)-Z[r y] which is definitely 
not C a. Therefore K1 :t=0. 

For n > 2  we have - 2 - 7 n < - 2 - 7 < 0 ,  so there is an R 0 > 0  satisfying 

n o  - -  2 - -  7 n  

IK1/2111411-2-~_-< .~oK" II~[I for [I~IL > g o .  

Theorem2.7 gives a C1 satisfying 

( ~0 ( - r ' ) " y ( 4 )  <_- C1 ]1(11-4 for LI~IL > l -  e - ~  --n n! ] = 

Choose R > R  o and large enough so that C~ll~ll-4<lKl/41ll~l1-2-~ for 
II~ll > e .  Let C=[K1/4I. The theorem is proved. 

More explicit results are known: see [6], Chap. 34, w p. 15 and [8], 
Lemma 1.1. 

3. T h e  M a i n  Resu l t  

The proof of the next theorem is mostly from [9]. 

T h e o r e m  3.1. (~ is strictly greater than zero. 
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Proof Let p(~; N):= ~ e - i r  Ilxll~dx. It is known that e-Ilxll~ is the character- 
IR ~ 

istic function of a stable probability law (see [10], Chap. VII, w 63, pp. 221-224; 
for a different proof see [7], pp. 222-224). The Fourier Inversion Theorem 
implies that the density of this law is (27z)-Np(~; N). Hence p(~; N ) > 0  for all 
and all N = 1 , 2 , 3 , . . . .  From [2], Chap. II, w Thm. 40, p. 69 we get for N 
=2,4 ,6  .. . .  

oo 

p((;N)=27z(_4zc)2N_l \~][ d ~ - ,  !e_R, RJo(I~IR)dR ' 

where J0 is the Bessel function, of the first kind, of order zero. Now, for I~l > 0 

d d 2 dI~P(~;R)=R]~I~P(~;  ) 

d oo 
= 2 1 ~ ] 2 ~  ! e-g" edo(l~le)dR 

=2  ]~[(-47z)- t p(~; 4) 

= -1#1(2 re)- 1 p(~; 4) 

_<0. 

Since e-IlxllV~gl, we see that p is continuous (cf. Lemma 3.3). Let f:  [0, oe)~lR 
be defined by 

f(]~l) =P(~; 2): = (~(~). 

Then f is continuous and f ' < 0  on (0, o c). Hence f is nonincreasing. But, 
Theorem2.10 implies f(y)+O for y sufficiently large. We also know f>=0. 
Therefore f > 0. 

Minor modification of the above arguments gives 

d 
d]~p(~;N)=- p(~;N+2)  and p(~ ;N)>0  

for all ~ and N. Therefore 

d 
dl~lp(~;N)<O for ]~1>0. 

Hence, (27z) -N p(~; N) is a unimodal probability law for N = 1, 2, 3 . . . . .  

Corollary 3.2. There is a C > 0 and an R satisfying 

~(~)>C/lr  for tl~ll>e. 

Proof Theorem3.1 allows us to drop the absolute value bars from Theo- 
rem 2.10. -~ 
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Lemma  3.3. Let S(e, ~): = ~(~). Then S is jointly continuous on IR x N 2. 

Proof Immediate  by Lebesgue Dominated  Convergence. -t 

Theorem3.4. There is an ~1 > 0  such that for O<e<cq e ~ . . . . .  30-r, is the charac- 
teristic function of a probability law. 

Proof Recall P~=e i . . . . .  3~ Now, P ~ L  1 and P~(x)=P~(-x) so /~ is real (the 
bar denotes complex conjugation). Recall P = Q + G + H + F .  Let Co, C~, and 
C 2 be the C's that exist by Theorems 2.7, 2.9, and Corollary 3.2 respectively. 
Let R o be the R that exists by Corollary 3.2. In Theorem 1.5 take C = C2/3. So, 
there is an % > 0  satisfying the conclusion of Theorem 1.5. We may suppose 
% < 1. Now choose R so that R > R o, R > 1, and 

(Co+C 0 H~1]-4<(C2/3)II~H - 2 - /  for ll~ll>e. 

So, 

~(~)__>(cj3)ll~l[-2-'>0 for I]~l]>e and 0_<a_<%. 

Since/~ > 0  (by Theorem 3.1) and/~(~) is jointly continuous (by Lemma 3.3), we 
may choose ~ satisfying 0 < a a  < e  o and 

/~(~)>0 for II~ll <e  and 0_<~_<e t. 

Hence, 

/~>0  for 0<a_<e~. 

Since P~sL 1, P~ is continuous at zero, a n d / ~ > 0 ,  we have (see [15], Chap. I, w 
Cor. 1.26, p. 15) 

~(2~)-2P~(~)e'~ed~=P~(x) for O < ~ < c q ,  

and 

~(2~z)-z/~(~)d~=P~(0)=l for 0 < e < e  1. 

Therefore, for 0 _  e < cq (2 re)-2/~ is the density of a probabili ty law which has 
characteristic function P~. 

4. Stability 

For  this section we require 0 < 7 < 1. By Theorem 3.4 choose c~ > 0 so that 

P = exp(i c~ r cos 3 0 - r ~) 

is a characteristic function. Let # be the probabili ty measure on IR 2 with 
characteristic function P. We show # is not stable even though all of its one- 
dimensional projections are stable. 

Definitions. A probabili ty measure, v, on ~n is stable if for all A, B > 0 there is a 
C > 0  and an s ~ N  n satisfying GO(C(AX+BY)+s)=v where X and Y are inde- 
pendent random variables with G~ v. (Here GO stands for "law of"). 
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The  one-dimensional projections of v are  the  p r o b a b i l i t y  measu re s  on  IR of  the  
form v o f -  1 where  f is a l inear  f u n c t i o n  f rom IR n ~ IR. 

T h e o r e m  4.1. p is not stable. 

Proof Let  X a n d  Y be i n d e p e n d e n t  wi th  law #. T a k e  A = B  = 1. S u p p o s i n g  # is 
s table,  there  is a C > 0  a n d  a n  sMR 2 sat isfying 

# =  2 ; ( C ( X  + Y ) + s ) .  

T a k i n g  charac te r i s t ic  func t ions  we have  

eiC~ . . . .  30- r~ = (ei~C . . . .  30- (Cv)v)2 eix.s 

~dia2Cveos30 2(Cr)V+ix's 

So, we m u s t  have  C=2-1/L  So 

c~ r cos 3 0-c~21-1/r r cos 3 0 -  x .  s=_Omod2rc. 

Since  it is c o n t i n u o u s ,  there  exists k sat isfying 

(1 - 21-(l/y)) a r cos 3 0 - x -  s = 2 ~  k. 

No t i ce  1 - 2 ' - 1 / 7 q = 0  since 0 < y < l .  Choose  0 so tha t  e ~~ is o r t h o g o n a l  to s. 
T h e n  for x = r e  i~ we find (1-21-(1/~))c~rcos30=2~k for all  r > 0 .  There fore  we 
m u s t  have  cos 3 0 = 0 = k .  N o w  t ry  x = ( 0 ,  1) so x = e  ~=/2. This  gives 

s 2 = x .  s = (1 - 21 - ( t /~)  c~ cos(37r/2) = 0. 

N o w  try x = e i~/6 so 

( s l / ~ )  = x . s  = (1 - 21 -(1/,)) e cos(re/2) = 0. 

This  leaves 

(1 - 21 -(1/7)) c~ r cos 3 0 = 0 

wh ich  i sn ' t  t rue,  so # is n o t  stable.  -q 

T h e o r e m 4 . 2 .  I f  f :  IRZ--+IR is linear then # o f  -1 is stable. 

Proof I t  is well  k n o w n  tha t  func t ions  of  the fo rm e 6(") where  qS: N ~ C  is of  
the  fo rm 

q5 (u) = i a u - b l uV { 1 + i c (sgn u) t an  (Tr 7/2)}, 

a~lR,  b > 0 ,  c E [ - 1 , 1 ] ,  0 < ~ < 1  

are the  charac te r i s t i c  func t ions  of the n o n - d e g e n e r a t e  s table  laws of  index  y 
(see [11],  w p. 339). Since f is l inear ,  there  is yEIR 2 sat isfying f ( x ) = x . y .  
T h e n  we have  

(ch. f. (go f -  1))(u) = (ch. f. (#))(u y) 

=n(uy) .  
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I f  y = 0 t h e n  P(u  y) = P(0)  = 1 so /~  o f -  1 = c5 w h i c h  is s tab le  of  index  Y. S u p p o s e  y 
+ 0 .  L e t  0 sat isfy e i~  n. T h e n  

P(N y) = e i~u II r [I cos 30- II uy II ~ 

Th i s  is in the  a b o v e  f o r m  if we  set a = ~ H y [ I c o s 3 0 ,  b=l[yH ~, a n d  c = 0 .  So 

/ ~ o f -  t is s t ab le  o f  index  7. 

Th i s  p r o v i d e s  a c o u n t e r e x a m p l e  to T h e o r e m 4  (and T h e o r e m 5 )  of  " Z e r o -  

O n e  L a w s  F o r  S t a b l e  M e a s u r e s "  [4-1. In  the  n o t a t i o n  of  t ha t  p a p e r  we t ake  S 
= I R 2  a n d  F = t h e  v e c t o r  space  o f  l inea r  f o rms  on  IR a (i.e. l i nea r  m a p s  of  IR2 

in to  N) .  T h e n  g ( F ) = B o r e l  sets. W e  use  the  a b o v e  #. It  is e l e m e n t a r y  tha t  

(IR a, F)  is a full  pair .  O u r  T h e o r e m  4.2 n o w  shows  the  h y p o t h e s e s  o f  T h e o r e m s  

4 a n d  5 a re  fulfi l led, b u t  the  c o n c l u s i o n  is c o n t r a d i c t e d  by  o u r  T h e o r e m 4 . 1 .  

H o w e v e r ,  T h e o r e m s  4 a n d  5 a re  t r u e  for y >  1, whi le  the  b e h a v i o r  for y =  1 is 

n o t  k n o w n .  
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