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0. Introduction

We will show that for « small enough
exp(iarcos(30)—r"), for O0<y=l,

is the characteristic function of a probability law on R? We then show that
for 0 <y <1 this law is not stable even though all of its projections are stable of
index y. This provides a counterexample to Theorem 4 of [4].

Definitions. Let (r,6) be the polar coordinate system on R2. Fix ye(0,1]. Let n,
be the smallest integer satisfying n,y=4. Define functions on R? as follows:

P=P=cxp(iarcos3f—r’),

0=exp(~r)
mzl n"z"o (locrcos30)'"(—nr!‘/) )’
nen= g (P (- EET))

and
4 (iarcos 39)’”) ot

F:Faz (eiazrcos?:e__ Z

m=20

m!

So P=Q+G+H+F. The plan is to Fourier transform Q,G, H, and F. We
will show H and F are C* and use this to show their transforms are O(]|£] ~*).
The transform of each term of G is homogeneous of degree at most — 3. The
transform of Q is O(||¢]|~%~7) and no better. Then, by choosing o small, we can
show the Fourier transform of P is positive near infinity. Since Q is known to
be a characteristic function we will be able to choose « so that the transform of
P is close enough to that of Q to be positive away from infinity. Since G, H,



140 D.J. Marcus

and F are not integrable we will take their Fourier transforms as tempered
distributions. Section 1 presents the necessary information about Schwartz dis-
tributions and handles G. Section?2 handles Q, H, and F. Section3 finishes the
proof that P is a characteristic function for « small. Section4 shows the
projections are stable, but the law is not.

1. Schwartz Distributions

We present a crash course in distributions (generalized functions). Many of the
assertions made below have nontrivial proofs. See any book on the subject, for
example [13], [5], [15], or [3]. If we are in IR” then a multi-index B is an
ordered n-tuple of nonnegative integers:

B=B1,.., 5,)-

. 0 . . . .
We write D, for Fe Then the differential operator D? is defined by

D?=(Dy*1...(D ).
The order of D* is
Bl=B1+ ... + B,
If ||=0 then D*f=f.
If Q is an open subset of R* we define
C(Q)=C’(Q)={f: Q—C|f is continuous},
CHQ)={f|D?fe C(Q) for all B satisfying |B| <k},
C*(Q)={f|Df fe C(Q) for all B},
Co(Q)={fe C*(Q)|supp(f) is compact},
and
2(Q)=C3(Q).
If Q is clear from the context (usually IR") we write simply C° C*, &, etc. Here
supp(f)=support of f=closure in Q of {x|f(x)*+0}. We place a pseudo-

topology on 2(Q) by saying “¢,—0 in 2(Q)” if there is a compact subset K of
Q with supp(¢;) =K for all i and lim sup |D? ¢,|=0 for all f. We now define the

i-o0 K

dual space &'(2)=distributions in Q by

' Q)={T: 2(Q)—-C|T is linear over C and if {¢,} is any sequence
in 2(Q) and ¢,—0 in Z(Q) then T(¢p;,)—0}.

The space of rapidly decreasing functions is

FL={feC*°(RM|B(f)<w for N=0,1,2,...}
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where
B(f)= sup (1 +[x|*)" D’ f (x)].

xelRn
BN

We give % the topology generated by the seminorms B, for N=0,1,2,.... The
tempered distributions, &, are those distributions which may be extended to be
continuous on %, ie.

S'={T: & —C|T is continuous and linear over C}.

So &' =9'(R") by restriction. This inclusion is one-to-one. If f is a locally
integrable function then we define [ f]1e %’ by

[fUd)=[f¢ for e,

where all integrals are with respect to Lebesgue measure. If f doen’t grow too
fast near infinity then [ f] can be extended to be in &’ by

[f1)=(fo for ¢pe.

For example, if f is bounded by some polynomial near infinity and is locally
integrable then [ f]e%”. If f and g are in I} then [f] is in &' and

[f1=[g] = f=g ae

We define the distribution D? T by D’ T(¢)=T((— 1) D* $).
For feI!(R") we define the Fourier transform, f =% (f), by

J©@=[f(x)e > dx.

(Many books use slightly different definitions.) & is a linear homeomorphism
from & onto & For Te¥” we define the Fourier transform, T=4%(T), by

T(p)=T($) for ¢
Notice, ¢pe& implies ¢pel'. Z is a linear bijection of &' onto & If fel! then
[f1=L/1.
If Te2'(Q2) and Q' =Q is open then the restriction of T to Q' is
TIQ' = Tlg(g');
and T|,e2'(Q). If TeZ'(Q) and ¢pe C*(RQ) then ¢ T defined by
(@TYW)=T(py) for yed(Q),

is in 2'(Q). The support of T is the smallest closed (in Q) subset X satislying
Tlpx=0. We write X =supp(T). The singular support of T (sing supp(T)) is the
smallest closed subset X such that there is an fe C*(Q\X) satisfying

Tlg\x =[f]
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We say a function f is homogeneous of degree m if f(tx)=t"f(x) for >0
and all x. If ¢ is a function then we denote by ¢(+/4) the function defined by
O (- /1) (x)=¢p(x/4), where 1eR\{0}. If Te Z'(R™) then let T,eP'(R") be defined
by T,(@)=A""T(¢(-/2). We say T is homogeneous of degree m if

T,="T for 1>0.

If f is homogeneous of degree m then so is [ f]. We also have a converse.

Lemma 1.1. Let T be in 9'(R") and homogeneous of degree m. Let fe C°(R"\{0})
and suppose Tlgm o, =Lf]. Then f is homogeneous of degree m.

Proof. Choose ¢e2, ¢=0, and [¢=1. Let ¢;(x)=J"¢(j x). The sequence {¢;}
is called an approximate identity. Let yeIRR"™\{0} and A>0. We want to show
FAy)=2"f(y). Let yr;(x)=¢;(x —y). Then for ge Co(R™\{0}) we have

lim {y;g=8(y).
j=oo
(v ;& may not make sense for small j, but for j large enough supp ;= R"\{0}.)
f@y)=lim [ f(12)Y(z)dz

j=eo

=lim 27" | f(x) ¥, (x/A) dx

joo

= lim 2" T (/)

=

= lim T; ()

Jj—w©

—lim A" T(¥))

jm®

= lim A" { f;
jow
=A"f. A
For melR we define S™(R"), the symbols of degree m, by
S™(R") ={ fe C*(RMIY 3 C(D? f ()| < C(L+ [lx ]y~ 1Py,
And set S®(R")=|JS™(IR"). For a reference see any book on pseudo-differen-

tial operators, e.g. [3]. We now show that functions which are homogeneous
near infinity are symbols.

Lemma 1.2. Letfe C*(IR"). Let R and m satisfy
fax)y=t"f(x) for t>0, |x|=R.
Then feS™(R").

Proof. For || x||ZR and t>0 we have

0
(D) X)=56—(f (£x)) = (" (x))=1" D, f (x).

X; X;
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So
Dif(tx)=t"""D,f(x).
Etc.
If fand g are in S* then so is f +g. Also, & is contained in S™ for all m.

Lemma 1.3. If { is a symbol then there is a Te S and a ge ¥ satisfying
a) supp(T) compact,
b) s/lrkg supp(T) = {0}, and
¢) [f1=T+[zgl
Proof. First note that x? f is a symbol for all B. For Te %’ we have
PPT=(iey T
and
TN -~
x*T=(iDyT.
If g is a C"¥ function then D’[g]=[Dfg]. If ge C* and x’ gel! for |B|<k then
(by Lebesgue Dominated Convergence) ge C~.

Fix k. Since f is a symbol we may choose f=(f,,0,...,0) large enough so
that

x*Dffell  for 16|k

Then ﬁ’?e C* so there is a geC* satisfying [g]=(i é)”[/j‘\jziﬁl &b [/ﬁ Since k
is arbitrary this implies sing supp [ f]={¢,=0}. Similarly we get singsupp[ /]
c{¢;=0} for j=1,...,n. This implies sing supp [ f]<{0}. Since xf f is a symbol,
if we choose ¢ large enough we have
Do(xf feLl.
So,
(&PEDY Lf 1=’ f)yel”.
Hence, if ¢€2 and equal to one on the unit ball we see there is a ge¥
satisfying
(1-9)[f1=[gl
Hence, we may take T=¢ [/f\] —

Lemma 1.4. Ler Te J'(R") be homogeneous of degree m with sing supp(T) = {0}.
Then Te S, T is homogeneous of degree —m—n, and there is an fe C*(R"\{0}),
homogeneous of degree —m—n, satisfying T|gu0;=L[S]

Remark. This lemma appears as an exercise in [3], Chap. 1, Sect. 10.2, page 64.

Proof. 1t is clear that T can be extended to be in &’ since outside of the origin
it is given by a function which is O(f|x[™) as |x[| - co. Now for the homo-
geneity of T. Let ¢ Then

(@C/ONEQ)=fdp(x/D) e ™ dx=2"[ (e * Sdy=2"$(22),
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and so
(D))= 2""T(@ (/) =2""T($(-/2))
=A7"TE (/27N =27 T(G(-/21)
=27 T, (@) =A"" " T()=2A""""T(¢).

This shows T is homogeneous of degree —m—n. Now let ¢eP(IR”) and equal
to one on a neighborhood of the origin. We have

T=@T)+(1-¢)T)"

The Paley-Wiener Theorem (see [13], Chap.7, Thm.7.23, p.183) implies that
the Fourier transform of a distribution with compact support has empty
singular support. Hence
RS
sing supp(¢ T)=0.

Since sing supp(7)<={0} there is an he C*(R"™\{0}) with Tigme,=[h]. Lem-
mal.l implies # is homogeneous of degree m. So, (1—¢)T=[(1—¢)h], and
(1—¢)h is a symbol by Lemma 1.2. Now, Lemma 1.3 gives

sing supp(((1 —¢) T)) = {0}.

So sing supp(T) < {0}. Hence, there is an fe C*(IR"\{0}) with Tlmn\m}:[f]: and
Lemma 1.1 gives the desired homogeneity of .

Theorem 1.5. For all C>0 there is an a,>0 such that |G:(‘f)|§cﬂfll"3 for
JE121 and 0L x<aq.

Proof. Recall

G,= i Z ((larcos36)m(_ry)n)‘

m=1 n=0 n!

(ircos30y"(—r?)"
min!

is homogeneous of degree m+yn so

bl

[(i rcos 30y (—r')"

o ] is also.
m!n!

Also, it is C*® except at the origin. Hence, by Lemma 1.4 there exists
fn.n€ C*(R?\{0}), homogeneous of degree —2—m—7yn, satisfying

[(i or cos 30" (—r?) ]‘

m!n!

:“m[fm,n]'

R\{0}

For ||£]|=1 we have

Z Z( sup | S D ™ €] =277,

m=1 n=0

Y Y02

m=1 n=20
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Since —2—m—yn<—3 and m=1 (so we can make o™ small), the lemma is
proved. -

In the previous theorem we wrote “Z?:(é)”. Now G, ¢I' so we haven't
defined é: We have, however, defined [/Gj But this is a tempered distribution
so even if there is a g with [g]:[/G:], this g is only determined almost

everywhere. However, we know that sing supp(@)c{O} so there is a canoni-
cal C* choice for g in IR*\{0}. To clarify what is happening, here is a lemma.

Lemmal1.6. Let fell. Let g and h satisfy f=g-+h, sing supp@ < {0}, and
sing supp [/h\] < {0}. Let g, he C*(IR"\{0}) satisfy

Y . PN N

[g]Igm 0y =12] and  [h]lgmgop=Lh1.
Then f|Rn\{0} =g +h.

e PN N . S N
Proof. [ f1=[g] +[h]. Since fel! we also have [ f]=[f]. So
[ Ngeoy =LET+ [AT=[& +F].

So [ IR0 = g+h almost everywhere. But f, g, and h are continuous so f [
=g+h

With the preceding as justification we will allow some confusion of functions
and distributions.

2. Bounds Near Infinity

The main lemma is the following (cf. [1], Chap.IX, §44.4, pp. 244-245).

Lemma2.1. Let f: R*—C. For j=1,2, $=0,1,2,3,4 suppose
Difel!nC® and lim [Dff(x)=0.

llxl ~ oo

Then |f (&) <4max{|D$f ] s, IDES 13 1€ %
Proof. The hypotheses allow us to integrate by parts four times, giving
J@O=[fe ™ f(x)ydx=(&)* e ¢ DI f(x)dx.
So |f(OIZET* DS |1 and [F(OISET* DS - IF 1€, ]E,] then
Jel =@+ 22 2= (1465
and £7*<E7* so min{&54, T4 48 7% I |4,/ £[¢,] we also get min{7?,
{51 =4[¢|I* Hence
IOl Smin{&7* (DY f s E5*1D5S )
smax{|D}f |z I1D5S 1y} min{ér4, &5 %)
<4max{|D}f g, DS o} IEI7%
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If fe C¢ then f satisfies the hypotheses of the lemma. To show H and F are
C* it seems best to use the following elementary calculus lemma.

Lemma2.2. Let B be open in R% Let f= Z f, where each f,e C*(B). Suppose

o0

Y sup\D”f|<oofor |B|<4. Then feC*(B) and Dff= ZD”f for | B <4.

i=1 i=1

For the essence of the proof cf. [14], Chap.23, Corollary to Thm. 3, p. 472.

If we are going to show things are C* then we had better take some
derivatives. Here goes. First note that for »r>0 we have D;,r=x,/r, D, 0=
—x,/r? and D, 0=x,/r%.

Lemma 2.3. Let §=(f,, ,) be a multi-index. Let y = 0. Then for r >0 we may write

2181

DF(r") = Z fmr- 1 X

j=1

rlﬂ]l

where p; is a multi-index, || <|Bl, and f,(y) is a polynomial in y (for a given B,
of course).

Proof. By induction on [B|. §=0 is clear. To simplify notation we take a generic
case:

P £ ) = £ )~ By T

u1—1 yp2
X3

—1g-1%1
+ ) py P IW_T“- —

Lemma 2.4. For § a multi-index, r >0, we may write

3181
Die~"" = Zh e

j=1

l#JI

where 0=y, <I|pl, lu;| 2|8\, and h; is a number (depending on B, of course).
Proof. Induction. =0 is O.K. (Recall ye(0, 1] is fixed).

Xt x x*
= N _ho M [ —ypr— 1L y
D, (he r rlul)‘he ( pr ” )r ST

X
+he " (—y—|uhr—r =ty

=1 p—y—iu =1y
the " pmyluly, xpi— 1 e

X, x*
— ~ —y—(1~y) 1
=—yhe "r e
x, x*
-7 —y—1 1
+(=y—lphhe "r MRS
xmﬁlxuz
1 2

tp he vt —

plel=1
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Lemma 2.5. For k a positive integer, f a multi-index, >0, we may write

4181

B(cosk30)= Zg] )sin® 3 6 cos™

where |w|=<\Bl, n,+m;=k, n;20, m;z0, n, and m; are integers, and
Ig,(k)|<(3k(lﬁl+1))'”' and we allOW( ,,u,) (n;,my, ) for i=j.

Proof. D, (g sin"36 cos™ 39}%1*‘””)

3(—x,) x*

r2 r|ﬂ‘|

=gnsin" ! 360cos™ 30 2yl

3(=xy) x*
S
r r

—gmsin"* 130 cos™ 130
+gsin"30cos™ 1 30 py x4tz Pl

+gsin"30003”‘30x"(—|ﬁ|——]ul)r‘“”—“"—l%

. X, xH
= —3gnsin" '30cos™+ 130 Ly IAl-T
plul+1

+3gmsin™* ! 30 cos™ 130 1r —ipl-1
_lxﬁ
+gu, sin"30cos™ 30ﬁ_1_,-—|ﬁ|—1
xH
+g(—|B|—|unl)sin” 3 8 cos™ 3(9 —r ~1Bl-1

Notice, we don’t really have any negative powers of sin or cos since if n=0 (or
m=0) the term with n—1 (or m—1) has a factor of n (or m). The bound on g is
fairly obvious:

|—-3gn|<|—3gklSGk(BI+ 1) 3k (Bk(pI+2)P 1,
g 1yl lglpll <1 g 1B S B k(B + 1)1 B < (3k(IB1+2)F1+ 7,
and
lg(— 181~ 1vDI<Ig2BI = Bk(Bl+ Y 2IBI<GL(BI+2)¥I T

We want to use Lemma 2.1 to bound H. So we show H is C*.

(ircos30)" ( B % —ry)”>

Lemma 2.6.
m!

CH*IR?) for m=0,1,2,3,4.

Proof. It is clearly in C*(R?*\{0}). We want to use Lemma 2.2 so write

2 )

!
m! -0 n: n=ng+1

m!in!

(ircos30)" (e‘”— o (—rV)"): @ (ircos3(9)”‘(—ry)”.
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From Lemmas 2.3 and 2.5 we have (in R*\{0})
D((ir cos 30Y"(—~r?Y")
=(—1)" z Cs.. D‘s((i cos 36)") DE(r?" )
8,8 :
d+e=§

416t

1y
=(—1yi Y Gy, { Y, g;(m)sin® 36 cos™ 36% r“w}
5 j=1

L, &
d+e=f
2lel fr
S filyntmyprmtmetel x
k y rlﬁki :

k=1
In each bracket the g;, n;, m,, i, etc. depend on ¢ or & We want to check that
the limit exists as we approach the origin. Consider a typical term after
multiplying out. As {x,/¥)=cos 0 and (x,/r)=sin §, we see that

#y+ ik

3 ; H1j x
g;(m)sin® 36 cos™ 3 BWfk(y n-+m)

is bounded as r—0. The remaining factor is y—lol¥vnem=lel—prnem—ifl  Aq
n>ny, mz0, and |p|<£4 imply yn+m—|f{>0, we have prorm=1Bl .0 as r— 0.
Hence

lim D#(ircos 30)"(~#")"=0.

r=0

Using that the derivative of a continuous function cannot have a removable
discontinuity (by L’Hopital’s Rule), we may induct on |f] to conclude

(ircos 3y (—ry
min!

eC*R? for m=0,1,2,3,4, n>n,.
Now fix § with |8} <4. Then the above formula shows there is a constant C so
that

sup (D(ircos 30y (—r ) < Csup|fefy n+m)l.

r<l k

But each f, is just a polynomial so

0 By N —y\¢
S sup | Preos IO o for m=0,1,2,3,4
u=np+1 v<1l min!

So Lemma 2.2 applies. -

Theorem 2.7, There exists a C satisfying
HI=ClEl* for (2121 and 021,

There exists a C satisfying

i(e”hi (7ry)n>A<£>iécncu“4 for )zt

~ n!
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Remark. The second estimate will be used in Theorem 2.10.

Proof. Recall

zocrcos39)"( P (—rV)")
Y (e

o n!

Let

(ircos36)™ (e""v— L (=)

) for m=0,1,2,3,4.
m!

fui=

4
So H,= > o™f,. Choose ¢cZ(R? and equal to one on a neighborhood of
m=1

zero. Then Lemma 2.6 implies ¢ f, e C4(R?). Now

(ircos 3 ay"

(1-d)e e so (1—¢) e e

(ircos3G)y" (—v¢")"
m! n!
bols is a symbol, (1--¢)f,, is a symbol. Now, Lemma 1.3 gives a C,, such that

(1= L OISCulEl~F for [EI=1.

Also (1—9¢) eS"*" by Lemma 1.2. So, since the sum of sym-

Lemma 2.1 gives C,, such that
(LS (EN=C 1€

So, for £l =1,

=| T M (@L+ (=)
=L

(Cut ClEI*

We may take C= Z C,+C, for the first result and C=C,+ C}, for the
second. m=1

We want to get a similar bound for F. However we can’t factor out o so
the argument will be different.
Lemma 2.8. F,e C*(R?) and sup |D’F,|<cofor |f|=
<t

Sas
r<2

Proof. Recall
4 (iarcos 30)'") -

_ igrcos36
F, = (e >

m=0

m!

So F,e C*(R*\{0}). We want to apply Lemma 2.2 (as usual). So we write

Z

(farcos3oy _
— ¢
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We only consider f satisfying |} =4 and m satisfying m = 5. Using Lemmas 2.3,

2.4, and 2.5 we see that D? (M e "

- ) is a finite sum of terms of the
form :

C{i )™
m!

XM”

o X x*
in® m =1 m—|B"| oY =
g(m)sin” 36 cos 39r|”,|r flmyr rm,,!he r yrlu”’l
where '+ f"+ "= and 0<y<|B”'|. Factor out r—¥I+m=I8"I=r What is left
is a bounded function. For m=5 we have —|f|+m—|p’|—y=m—|p|>0. This
shows

lim D# (_(’ ar i:f 39) e‘”) -0,

¥—0

Hence (as in the proof of Lemma 2.6) we conclude (iarcos36)"e~"eC* Now,
since f is a polynomial and |g(m)| <(15m)* we see there is a C, and a k s.t.

e}

Y. sup

m=5 r<2
0=ax1

(farcos36)"e™")

m! |

C,mk2m
s m!

18

Dﬁ( < < 0.

m

So we may apply Lemma 2.2 to get F,e C* and for r<2

DﬂF(;z i Dﬂ ((iOCl’ 00539)'"@‘?7).
m=5 m!
Therefore
o . OS30m Y
sup IDPEJ< Y sup Dﬂ((locrc Y e )<OO.
0r§g§1 m=>3 0r<<i1 m! |

This proves the lemma. —
Theorem 2.9. There is a C satisfying
E@l<ciel=* for 0<a<1 and all &

Proof. Choose ¢pe% with suppp={r<3/2} and ¢l <s4p=1. Then Lemma 2.8
and the product rule for differentiation give

sup [[D!(@F)lipi<co for |Bl=4.

0sa=x1
So Lemma 2.1 gives a C such that sup |$E(O|<C |&]~* For m=0,1,2,3,4
0<«a<t

(ircos3oy™

-1
i e"(1—¢)es
so its Fourier transform is in % Hence, there are constants C,, satisfying

‘(we—m —cf)))A (é)lé Collél=*.
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Hence,
& (iarcos3Om _, e
sup |(= 3 B i) 0
0gas1 m=0 m:
4 ] m A
= swp ¥ o | (22—
0<as1 m—0 m!

4
< sup Yo" C, et

< (mz c,,,v) len*.

The remaining term is ¢/*"°*3%¢~""(1 —¢). This is in & So, its transform is in
&. However we want a bound that is uniform in «. So suppose f is a smooth
function. Then

D,el=e'Df,

Die/=e/((D,f)* +Dif),

D}/ =e/(D,f)*+3D, fDAf +D3),

and
Del=e/ (D, f)*+6(D,f)? Dif+4D,fD}f+3(D}f)*+D1f).

And the same with “1” replaced by “2”. Now let g:=ircos30. Let fi=ag.
Since g is homogeneous, for each § there is a constant C, such that (cf. pf. of
Lemma 1.2)

IDFg|<Cpr' =1 for rz 1.
So we have sup [DPf|<C,r'=# for r=1. Since |e/|=1, the above ex-

0gas1
pressions imply there is a constant C such that

»
o

u ID7e/|<C  for rz1.

iIA

0.
J

1A

a=<1
1,2

=]
=
b
ke
IS

n=

The point is that C doesn’t depend on o Lemma?24 gives constants Cl, such
that

IDPe="|<Che™  for r=1. .
So, we see that for n<4, j=1,2 there is a constant K such that

sup |D;5(eiarcos 399*W(1 __¢)| éKe—rV.

0gag1

Since e”"eL' and goes to zero as r— oo, we may apply Lemma2.1 to get a
bound on (¢ 39~ (1 — ¢))" which is uniform in «. Combining our bounds on

N
¢,
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( i lOCrCOS?’Q) rv(1_¢)): and (eiarcos36_ry(1_¢))/\

gives the theorem. —
—

We want an estimate on 0. Recall Q=e

Theorem 2.10. There exists a C>0 and an R satisfying

10@I=CE)-2-" for |¢]|=R
o (=1 -y
0-§ Cfer§ LI

oy [on- § T

n=10 n!

Proof. Write

So

[01= Z

r¥ is rotationally invariant so [#**]" will be also (see [5], Chap.1l, §3.1, p. 191).
Lemma 1.1 remains true if we replace “homogeneous of degree m” by “ro
tationally invariant” using the same method of proof. This and Lemma 1.4
imply there are constants K, satisfying

[T a0y = K, LI 2=
When n=0 we have [/1\]=(2n)‘25 so K,=0. However, K;+0 as we now
show. Suppose K, =0. Then [r/y\]’lmz\{o}=0 SO supp[/ry\] is compact. So by the
Paley-Wiener Theorem [r7]"" is a C*® function (i.e. singsupp[r']""=0). But
the Fourier Inversion Theorem gives [r]""=(2n) 2[r"] which is definitely

not C*. Therefore K #0.
For n=2 we have —2—-yn< —2—7y<0, so there is an R, >0 satisfying

3K, ]2

n=0

Ky 210e172 7= for €]}z R,.

Theorem 2.7 gives a C, satisfying

1(6’“”1:{ ( ,fy)“(c)\% lEI=* for ¢l = 1.

=0

Choose R>R, and large enough so that C,||&]~*<|K /4| &>~ for
€= R. Let C=|K,/4|. The theorem is proved.

More explicit results are known: see [6], Chap.34, §4, p.15 and [&],
Lemma 1.1.

3. The Main Result
The proof of the next theorem is mostly from [9].

Theorem 3.1. O is strictly greater than zero.
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Proof. Let p(¢&; N):= | e~ *=I=I"gx Tt is known that e~ ¥ is the character-
RN

istic function of a stable probability law (see [10], Chap. VII, § 63, pp.221-224;
for a different proof see [7], pp.222-224). The Fourier Inversion Theorem
implies that the density of this law is (27) =" p(¢; N). Hence p(£; N)=0 for all ¢
and all N=1,2,3,.... From [2], Chap.Il, §7. Thm.40, p.69 we get for N
=2,4,6,...

d
(<

p(é;m:zn(—ztn)?‘( ) 'R RIL(EIR) AR

where J,, is the Bessel function, of the first kind, of order zero. Now, for [£[>0

d
(€ =21e) e plEi2)
d _Rv
=227 5 e RIS RIAR

=21¢[(~4m)~ 1I)(C,"r)
=—|£|2n)~ " p(;4)
0.

IIA

Since e~ *II"c I}, we see that p is continuous (cf. Lemma 3.3). Let f: [0, c0) - R
be defined by

S1EN=p(&;2):=0(9).

Then f is continuous and f'<£0 on (0,0). Hence f is nonincreasing. But,
Theorem 2.10 implies f(y)+0 for y sufficiently large. We also know f=0.
Therefore f >0. —

Minor modification of the above arguments gives

dlCl p(&; N )——ﬁp(f N+2) and p(SN)>0

for all £ and N. Therefore

dmp(g ;N)<0 for |¢]>0.

Hence, (27)~ ¥ p(&; N) is a unimodal probability law for N=1,2,3,....
Corollary 3.2. There is a C>0 and an R satisfying
oz ClE|=>77 for |EIZR.

Proof. Theorem 3.1 allows us to drop the absolute value bars from Theo-
rem2.10. H
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Lemma 3.3. Let S(o, £): = P(&). Then S is jointly continuous on R x R>.
Proof. Immediate by Lebesgue Dominated Convergence.

Theorem 3.4. There is an o, >0 such that for 0<a <o, @730~ is the charac-
teristic function of a probability law.

o~

Proof. Recall B=¢***3~y* Now, PeL' and B(x)=P(—x) so P is real (the
bar denotes complex conjugation). Recall P=Q+G+H+F. Let C,, C,, and
C, be the C’s that exist by Theorems 2.7, 2.9, and Corollary 3.2 respectively.
Let R, be the R that exists by Corollary 3.2. In Theorem 1.5 take C=C,/3. So,
there is an o,>0 satisfying the conclusion of Theorem 1.5. We may suppose
2y =1. Now choose R so that R>R,, R>1, and

(Co+CYIEI*=(Cy/3) 1277 for [EI=R
So,
BOZ(Cy/3E1=277>0 for [¢]ZR and 0SaSay.
Since P,>0 (by Theorem 3.1) and B(¢) is jointly continuous (by Lemma 3.3), we
may choose «, satisfying O0<a, <o, and
B(&>0 for [£| <R and 0<u<a,.
Hence,

P;>0 for 0Za=a,.

Since Pel!, P, is continuous at zero, and P;>O, we have (see [15], Chap. 1, §1,
Cor. 1.26, p. 15)

fem)2B(¢)e*dé=R(x) for 0=SaZa,
and .

fem 2B dé=PR(0)=1 for 0<a=<a,.

Therefore, for 0<a<a, 27)~ 2B is the den51ty of a probability law which has
characteristic function .

4. Stability

For this section we require 0 <y <1. By Theorem 3.4 choose o> 0 so that
P=exp(iarcos3f—r)

is a characteristic function. Let u be the probability measure on IR?* with
characteristic function P. We show u is not stable even though all of its one-
dimensional projections are stable.

Definitions. A probability measure, v, on R" is stable if for all A, B>0 there is a
C>0 and an seR”" satisfying Z(C(AX +BY)+s)=v where X and Y are inde-
pendent random variables with £ (X)=2(Y)=v. (Here .# stands for “law of”).
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The one-dimensional projections of v are the probability measures on R of the
form vof~1! where f is a linear function from R* - IR.

Theorem 4.1. 1 is not stable.

Proof. Let X and Y be independent with law pu. Take A=B=1. Supposing u is
stable, there is a C>0 and an selR? satisfying

u=Z(C(X+Y)+5s).
Taking characteristic functions we have
eiocr cos30—rY _ (eiozCr cos 36— (Cr)V)Z eix-s
— eiaZCr cos30 —2(Cr)Y +ix-s
So, we must have C=2"17. So
arcos30—a2!~Yrcos30—x-s=0mod2m.
Since it is continuous, there exists k satisfying

(1=2"-3Mgrcos30—x-s=2mnk.

Notice 1—2'""7%0 since 0<y<1. Choose 8 so that ¢ is orthogonal to s.

Then for x=re'® we find (1 —21~"")orcos30=2nk for all ¥>0. Therefore we

must have cos 30=0=k. Now try x=(0, 1) so x=e™?. This gives
s,=x-s=(1-2' "M g cos(3n/2)=

in/6 SO

Now try x=e¢

(s1/1/3)=x-s=(1—2""") a cos(r/2) =0.
This leaves
(1-2"-")grcos30=0
which isn’t true, so g is not stable.
Theorem4.2. If f: RZ—1R is linear then yof ~* is stable.

Proof. 1t is well known that functions of the form e*® where ¢: R »C is of
the form
dw)=iau—~blu|"{1+ic(sgnu)tan(xy/2)},
aeR, b>0, ce[—-1,1], O<y<l
are the characteristic functions of the non-degenerate stable laws of index vy
(see [11], §24.4, p.339). Since f is linear, there is yeR? satisfying f(x)=x-y.
Then we have
(ch. f. (uof = ))w)=(ch. f. () (u y)
=P(uy).
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If y=0 then P(uy)=P(0)=1 so pof ~'=4 which is stable of index 7. Suppose y
#+0. Let 0 satisfy e®®=y/||ly|. Then

P(uy)=ei=l»leos30—lluyll”

This is in the above form if we set a=a |yl cos36, b=|y|’, and ¢=0. So
pof ~1is stable of index y.

This provides a counterexample to Theorem4 (and Theorem S) of “Zero-
One Laws For Stable Measures” [4]. In the notation of that paper we take S
=R? and F=the vector space of linear forms on IR? (i.c. linear maps of R?
into R). Then § (F)=Borel sets. We use the above p. It is elementary that
(R?,F) is a full pair. Our Theorem 4.2 now shows the hypotheses of Theorems
4 and 5 are fulfilled, but the conclusion is contradicted by our Theorem 4.1.
However, Theorems 4 and 5 are true for y>1, while the behavior for y=1 is
not known.

Acknowledgment. 1 thank Richard Dudley for his suggestion of the problem and his help during
the researching and writing of this paper.
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