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1. Introduction 

In  this paper, the term 'branching process' will mean a Markov chain whose 
states are the nonnegative integers and whose transition probabilities are given by  

(1.1) P~f ---- coefficient of xJ in/(x)~,  
o o  

where [ (x)  = ~ , p k x  ~ is the generating funetion of a set of probabilities {p~}. 
k=O 

These basic probabilities can be interpreted as governing the number  of 'offspring' 
which an individual in a population will contribute to the following 'generation' .  
Thus (1.1) expresses the idea tha t  ff the n ' th  generation contains i individuals, 
the n -{- l ' s t  generation will consist of the sum of i independent random variables 
representing their immediate descendents, each variable having distribution {p~}. 
Background on these simple branching or 'Galton-Watson'  processes is given in 
chapter 1 of [4]. In  particular, we will repeatedly need the fact tha t  

(1.2) P~) = coefficient of x~ in ]n (x) ~ , 

where/n is the n ' th  functional iterate of the basic generating function ] (x) ~ / 1  (x). 
In  a previous paper  [6] the following situation was examined: Let  ( Z n }  denote 

the random variables of a branching process governed by  certain fixed pro- 
babilities {p~}. Let  us s u p p o s e  tha t  the processes 

(1.3) x~r) Zt~] -- ar br , where Zo ~ cr , 

converge as r - >  oo to a limiting random process {x t} .  Here the Cr are positive 
integers -+ 0% br > 0 and ar are normalizing constants, and 'converge' means 
tha t  the finite-dimensional joint distributions of {x} r)} converge to those of {x t}  

in the usual (weak) sense. The problem is to determine all the possible limit 
processes which can arise under various choices of {pk}, ar,  br, and Cr. I t  was 
shown in [6] tha t  in case there is no centering (ar ~ 0),  the limiting processes form, 
apar t  f rom scaling, only a one-parameter family. The most  familiar example oc. 
curs when {Pk} has mean one (always a necessary condition) and finite variance. 
The choices br ~ Cr ---- r then result in a limiting diffusion process on [0, c~) whose 
backward equation is of the form 

(1.4) Ou fix ~"u 
~t - -  2 ax2 ' fi > 0 "  

* This research was in part supported by the (U. S.) National Science Foundation. 
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This is the only diffusion in the family; the other limiting processes are also 
martingales but  do not have continuous paths. When nontrivial centering 
(ar/br '+ oo) is allowed, however, it was only shown that  any limiting process 
must have independent increments; the precise class which arises was not de- 
termined in this case. I f  the variance of {pk} is finite, the limit is the Brownian 
motion process. 

The above situation does not include all known examples of limits for branch- 
ing processes. I f  the set-up in (1.3) is generalized by allowing the basic prob- 
abilities {p~} to depend on r, essentially different cases arise. For example, in [2] 
W. FELLE~ considers a limit with scaling and without centering, where the 
distribution {Pk} has a fixed (finite) variance, but  its mean is of the form 
1 ~- o:/r. He then obtains a limiting diffusion corresponding to the (backward) 
equation 

6u ~x ~2u ~u 
(1.5) Ot --  2 ax2 - ~ x ~ - "  

(See also [7] for some related discussions.) Unless ~ ---- 0, processes satisfying 
(1.5) cannot occur as limits when (p~} is held fixed during the limiting process. 
Another relevant example, of a quite different sort involving centering but  no 
scaling, was discussed by STRATTON and TUCKE~ in [8]. (But see the remark at 
the end of section 3 below.) 

The purpose of the present paper is to study the possible limiting processes 
for a sequence {x(/)} under these more general conditions (that is, when {Pk} 
may depend on r), and we will succeed in obtaining a description of the class of 
limits {xt} which can occur. The limiting processes are of quite different sorts in 
the two cases ar = O, Cr-----br, and ar/br-->" 0% ar ~ Cr. (We will see that  no 
others need be considered.) In  the first case, {xt} retains essentially the character 
of a branching process but  has the nonnegative reals, rather than the integers, 
as its state-space. Such processes were introduced and studied in their own right 
by M. JI~I~A in [5]. In  the second case, with nontrivial centering, {x,} must be 
an additive process whose canonical (L~vy) measure is supported on [0, oo). (There 
is an exception to the last statement, in case br ~ oo.)Conversely, in each case 
we will see that  every process of the sort indicated does in fact arise as the limit 
of a suitable sequence of normalized branching processes {x([)}. 

The plan of the paper is as follows: In  section 2 we define and discuss the 
'continuous state branching processes' (C.B. processes) which form the class of 
limits in case one above. A deeper s tudy of this interesting class is planned for 
a future publication 1. Next, in section 3 we formulate all of the limit 
theorems, for both ease one and case two (that is, both without and with 
nontrivial centering). The proofs follow in sections 4 and 5 for the two situations 
respectively. 

One preliminary remark may as well be located here. I t  would apparently be 
possible to generalize (1.3) further by  using Z[d#] in place of Zirt ], where dr could 
be any sequence tending to ~- oo. However, it  will be quite clear from the proofs 
of Theorems 1 and 3 that  these results, which characterize the limiting processes, 

1 An announcement of some of the results will appear shortly in Bull. Amer. Math. Soc. 
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are still valid without change in this situation. Theorems 2 and 4, moreover, are 
formally stronger with the specific choice dr = r than  ff stated for arbi trary dr. 
Hence in order to simplify our already sufficiently cumbersome notation, and 
with no real loss, we will keep to the choice dr ~ r throughout. 

2. Continuous State Branching Processes 

We will consider a class of functions -Pt (x, E) as follows: 

(i) Pt (x, E) is defined for t _--> 0, x > 0, and E a Borcl subset of the half 
line [0, ~ ) .  

(ii) For fixed t and x, Pt(x, ") is a probabil i ty measure on the Borel sets of 
[0, cr and for fixed E, Pt(x, E) is jointly measurable in x and t. 

(iii) The Chapman-Kolmogorov equation holds: 

(2.1) ~ Pt(u, E)Ps(x ,  du) = Pt+s(x, E).  
0 

(iv) For each x, y, t > O, Pt satisfies 

(2.2) Pt(x  + y, ") = Pt(x, ") * Pt(Y, "), 

where the symbol ' , '  denotes convolution. 

(v) There exist t > 0 and x > 0 such tha t  Pt (x, {0}) < 1. 

Definition. A function Pt satisfying (i) to (v) above will be called a 'C.B. 
function';  a Markov process with such a function for its transition probabilities 
will be a 'C.B. process'. 

R e m a r k  1. I t  is evident tha t  conditions (i) to (iii) are simply the definition 
of a Markov transition function on a certain state space. Postulate (iv) is a special 
condition representing the 'branching property ' .  Indeed, if  the states were the 
nonnegative integers instead of the whole of [0, co), then (2.2) would be the 
characteristic property of 'Markov branching processes' in the usual sense [4]. 
Condition (v) simply rules out an undesirable trivial case. 

R e m a r k  2. Continuous branching processes were introduced by  M. JI~INA in 
[5]. His definition was more general than  ours, in tha t  t ime homogeneity was not 
assumed and the dimension of the state space could exceed one. However, the 
analysis in [5], when dealing with the continuous parameter  case, was confined 
to processes of the 'purely discontinuous' type,  and we will not want such a 
restriction. 

I f  Pt (x, E) is a C.B. function, it is clear from (2.2) tha t  the distributions 
Pt(x, ") are infinitely divisible. I t  also follows, arguing in the usual way, tha t  
their Laplace transforms can be written in the form 

c o  

(2.3) ~e- ;~YPt (x  , dy) = e-x~(,~) (~ > 0). 
0 

Using (2.3) it  is easy to translate the Chapman-Kolmogorov equation (2.1) into 
the equivalent condition tha t  

(2.4) ~ + s  = ~t {~s (4)}. 
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This is analogous to the  funct ional  i terat ion p rope r ty  of  the  generat ing functions 
of a Ga l ton-Watson  process. 

We will now establish several  facts  of  a technical  na ture  for fu ture  use. The  
first of  these is an easy consequence of the definition and  we s ta te  it  wi thout  proof:  

L e m m a  2.1. A C.B. /unction satisfies 

(2.5) P t ( x , { O } ) < l  for all t , x > O ;  P t (O , {O} )=l .  

L e m m a  2.2. I / P t  is a C.B. ]unction, the operators 
c o  

(2.6) Tt / (x) -= f / (y) Pt (x, dy) 
o 

de/ine a contraction semigroup on the space Co o/all continuous/unctions on [0, r 
which vanish at r 

Proo/. I t  is only necessary to  show t h a t  Tt takes  Co into itself. For  finite x 
this is an  immedia te  consequence of  (2.3) (and so of (2.2)). Indeed,  the  r ight  
hand  side of  (2.3) is cer ta inly  cont inuous in x, and  b y  the  cont inui ty  theorem for 
Laplace-Stiel tges t ransforms this fact  - -  the cont inui ty  of  Tt / i n  the  special cases 
/ (x) --~ e -zx - -  implies cont inui ty  for any  / E Co. I t  remains  to see t h a t  Tt/(0o) = O. 
But  f rom L e m m a  2.1 i t  follows t h a t  ~t (~) > 0 for each 2 > 0, so t h a t  as x --> oo 
the Laplace t r ans fo rm of  Pt(x, ") tends to 0 for 2 > 0. This implies t h a t  the 
measure  Pt (x, .) tends to  have  its mass  ' a t  oo', and  hence Tt/(x) --> 0 and the  
p roof  is complete.  

L e m m a  2.3. A C.B. /unction is stochastically continuous. 

Proof. 'S tochast ic  cont inui ty '  means  tha t ,  for each x, the  measures  Pt (x, .) 
converge weakly  to a uni t  mass  a t  x when t --> 0 -]-. We begin wi th  the  r emark  
tha t ,  because of (ii), the  funct ion 

o o  o o  

g (t) = f (x) f / (y) Pt (x, dy) 
o o 

is measurable  in t > 0 for any  finite Borel signed measure  ~t on [0, r and  any  
] e Co. This is equivalent  to  the  assert ion t h a t  the  semigroup Tt is 'weakly  
measurable ' .  I t  is well known t h a t  weak  measurab i l i ty  implies t h a t  Tt is in fact  
s t rongly cont inuous for t > 0. (See, for  instance,  p. 35 of  [1].) 

Specializing to  the  case /(x) ~-- e -~x, 2 > 0, s t rong cont inui ty  of  Tt implies 
t h a t  the  funct ion ~vt (~) is continuous in t > 0 for each (fixed) 2. Using (2.4) this 
can be wri t ten  as 

lira ~va (~ot (~)) = ~ot (~) 
h-->0 § 

for each t > 0, 2 > 0. I n  o ther  words, 

l im ~a (u) = u 
h--~0+ 

for each number  u which can be represented as ~Pt (2) for some t, 2. Bu t  because 
of (2.3) and (2.5) the  set  of  such u cer ta iniy contains some in terva l  [0, a], a > 0. 
Thus for each x and  each ~ ~ [0, a], the  Laplace  t r ans fo rm of Ph(x ,  ") converges 
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as h - ~  O d- to e -x~, and that  is sufficient for the continuity theorem to apply 
and yield the desired conclusion. 

The rest of this section will be devoted to some examples and further elemen- 
tary  facts concerning C.B. processes; what follows is not logically necessary for 
the sequel. We begin with the observation that  (2.3) and (2.4) can be used to 
compute moments of the process, ff they exist. For example, since ~st(0)= 0 
we have from (2.3) tha t  

c o  z 

(2.7) f y Pt  (x, dy) ---- x ~ft (O @ ), 
o 

where the prime means differentiation with respect to 2. But  differentiating (2.4) 
yields the functional equation 

~;+s(o + )  = ~ ( o  + ) ~ ( o + ) ,  

and so F~ (0 @), if finite, must be of the form e ~t for some constant ~. As a result, 
we have 

c o  

(2.8) f y Pt(x ,  dy) = xe  ~t . 
o 

The second moment can be evaluated similarly if it  exists. From (2.4) and the 
result above we obtain 

(2.9) ~;+.~(0-]-) = ~ ; ' ( O + ) e  TM @ y;]'(O-]-) e ~t. 

I f  ~ = 0 the functional equation (2.9) has only the solution ~ '  (0 + )  = fit. When 
=~ 0, we note tha t  interchanging s and t in (2.9) and subtracting yields 

~'  (0 +) (e~ - e2~) = ~:' (o + )  (e~ - e2at). 

Upon setting s = 1 this takes the form 

~flt" (O-~ ) = ~ -  (e 2~t - -  ea t ) ,  /~ = c o n s t a n t .  

In  view of the fact that  
o o  t z  

(2.10) ] y2 Pt(x ,  gy) = x2~p~ (O--k ) 2 -- x~t  (0+)  
o 

we finally obtain the formula 

oo {x  2 d - f i x t  i f  ~ = 0 ,  
(2.11) ] y2 Pt(x ,  dy) = 

0 X 2 e 2at -~ x ( e  2at - -  e at) if ~ # 0, 

where the constant ~ is that  appearing in (2.8). 
I f  both (2.8) and (2.11) hold, it is very easy to obtain 

c o  

(2.12) l i m  t -1 f (y - -  x) P t  (x, dy) = ~x ,  
t---~ 0 0 

c o  

(2.13) lim t -1 f (y -- x) 2 Pt (x, dy) = f ix .  
t-->0 0 

This strongly suggests tha t  if the C.B. function Pt is the transition probability 
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of a diffusion process, it  must be one with the backward equation (1.5). We will 
prove this in the future paper which was promised in the introduction. 

The transition probability function for the diffusion processes satisfying (1.5) 
was given explicitly in [2]. The Laplace transform (2.3) can be obtained from that  
formula, although it is simpler to get it directly by solving (1.5). In  any case the 
result is 

~ if ~ = 0 ,  
1 +  

(2.14) w,(2) = | z ~ ,  

if ~ : 0 .  

I t  is trivial to verify directly tha t  (2.4) is satisfied. From (2.14) it is easy to derive 
many facts about the process, such as the value of Pt (x, {0}) and that  ultimate 
absorption at x = 0 is certain ff and only if a G 0. 

As discussed in [6], when r162 = 0 there is a class of examples with infinite 
variance which are related to (2.14). Their transforms are 

(2.15) ~ft(~)= R ]1/~ , 0 < p ~ l .  
[1 + t ~ P  1 

There are also solutions of (2.4) which are similarly related to (2.14) when ~ ~: 0: 

e ~t/~ 
(2.16) ~pt(2)= [1 fliP(1 ]l/p,  0 < p g l .  

- Vd~ - e~t ) j  

An interpretation for the processes whose transition functions satisfy (2.16), ex- 
plaining their relation to stable laws, will be given in the forthcoming paper 
already mentioned. 

We conclude this section with a brief summary of the relevant results in [5]. 
Suppose that  in addition to being a C.B. function (i. e., to satisfying (i) to (v)), 
Pt also is the transition function of a purely discontinuous process. This is taken 
to mean the existence of the limits 

(2.17) l i m  Pt(x, E ) -  Xg(x) _ 7~(x, E )  
t---> 0 t 

for all x ~ 0 and Borel sets E c [0, oo) ; XE is the indicator function of E. Ji~n~A 
shows that  because of (iv) we have 

(2.18) ~(x, E) --~ xz(1 ,  E -- x -~ 1) 

and 

(2.19) 7~(x, [0, x)) = 0 for all x > 0.  

The first of these conditions implies that  the expected waiting time before jumping 
from x is inversely proportional to x and that  the magnitude of the jump, when 
it occurs, has a distribution not depending on x. The second condition implies 
tha t  the process cannot move to the left. 
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JI~IZqA also considers the converse question of constructing the most general 
C. B. process satisfying (2.17). I t  is easy to find the corresponding z ;  it must  
have the form 

(2.20) ~(x ,  E)  : a x / . t ( E  - -  x + 1) (a > 0),  

where tt is a set function determined by  combining any Borel probabili ty measure 
on (1, co) with a point mass of  value - -1  at x ---- 1. The minimal transition 
probabil i ty determined by  (2.20) and (2.17) then satisfies all the requirements for 

C. B. function except tha t  Pt  (x, [0, co)) ~ 1 can occur (the process may  'ex- 
plode'). These facts are analogous to those for the discrete state Markov branching 
process [4]. Setting 

co 

(2.21) ~ (4) = ~ e-~x d~ (x), 
0 

a necessary and sufficient condition tha t  Pt (x ,  [0, co)) = 1 for all t ~ 0 is 

0 

I t  is sufficient but  not necessary tha t  the probabili ty measure from which u is 
constructed have a finite mean. These results allow the construction of a great 
var iety of C. B. processes, and show decisively tha t  this class is far wider than 
the family of limiting processes found in [6] whose transforms were given in 
example (2.15) above. 

One final remark. Any C. B. process with the proper ty  tha t  absorption at  0 
is possible (i. e., such tha t  Pt  (x, {0}) > 0 for some t, x > 0) obviously is able to 
move to the left. Hence no such process can be of the purely discontinuous type. 
In  particular, the examples determined by  (2.14), (2.15) and (2.16) have this 
property,  as does any C. B. function such tha t  Pt  (x, �9 ) is a compound Poisson law. 

3. Statement of Limit Theorems 

We consider a sequence of processes {x~ r)} defined as in (1.3); for each r, {Zn}  
is a branching process governed by  probabilities {p~}, with generating function 
] (x). These m a y  depend on r, but  this dependence will not be explicitly indicated 
in order to avoid complicating the notation. Our basic assumption is tha t  there 
exists a stochastic process {xt}, t >= O, which is the limit of {x} r)} as r -+ co in 
the sense tha t  the finite-dimensional joint distributions of {xt (r)} converge to 
those of {xt}. To be specific, this means tha t  for every finite set 0 ~- to < tl < ' "  < th, 

l im P (x~0 ~) ~ Y0 . . . .  , x~ ) ----< Yh) 
(3.1) r - ~  

= P (Xto <= Yo . . . . .  xa  ~ yh) 

in the usual sense of weak convergence of measures on R h+l. 
We first take up the ease ar -~ 0 for all r. I t  will be required tha t  Cr --+ co, for 

if this is not done any  continuous-time, discrete-state Markov branching process 
(zt} can be trivially obtained as a limit by  setting br ---- Cr = 1 and Zn = Zn/r. 
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Theorem 1. Suppose that (3.1) holds with ar = O, cr --> c~, and P(x t  = O) ~ 1 
/or some t ~ O. Then {xt} is a C. B.  process in the sense o/ section 2. 

R e m a r k .  I t  would actually be possible to state the result under the weaker 
assumptions tha t  the limiting distribution functions 

(3.2) lim P (x~ ~) g y) = Gt (y) 
r - - >  o o  

exist for each t ~ 0, with Gt(0 q-) ~ 1 for some t ~ 0. Then, as the proof will 
show, cr/br tends to a finite, positive limit c, and there is a C. B. process (xt} with 
x0 ---- c such tha t  P ( x t  ~ y) ~- Gt(y). The stronger convergence (3.1) must  then 
hold as well. A similar formal generalization applies to Theorem 3 below, but  
we shall not  bother to state it  in detail. 

The converse is perhaps more surprising than the result above. 

Theorem 2. Let (xt} be any C. B.  process with xo = c ~ O. Then there exists a 
sequence o/branching proceses (Zn)  and o/posi t ive  integers Cr '+ oo such that (3.1) 
holds when {x~ r)) is de/ined by (1.3) using ar = 0  and br ~-- cr/c. 

Next  we remove the assumption tha t  ar = O. I t  is evident, looking at  (1.3), 
tha t  if ar/br tends to a finite limit we are really still in the above situation, and the 
limit process will be simply a translate of a C. B. process. I f  even a subse- 
quence of ar/br has a limit the same conclusion holds. (Recall the remark a t  
the end of section 1.) Hence these cases must  be avoided if we are to obtain 
anything new. 

Theorem 3. Suppose again that (3.1) holds, where now it is assumed that ar/br --> 
~- c~. Then {xt} is a process with (stationary) independent increments. I f  br ---> c~, 
the canonical measure governing the distribution el the increments o / ( x t )  has support 
contained in [0, ~ ) .  I / b r  - - ~  oo, however, the canonical measure is supported on the 
set {n/b: n ----- - -  1, 1, 2, 3 . . . .  ) ]or some positive b, and so the law of xt is o/ the 
compound-Poisson type. There is no translation term in this case. 

Theorem 4. Let (xt} be any additive process with xo -~ 0 and with distributions 
o] either /orm described in Theorem 3. Then there exists a sequence o/ branching 
processes (Zn}, o/ integers cr --> co, and o/ constants br > 0 such that (3.1) holds 
when (xl r)} is de/ined by (1.3) using ar ---- Cr. 

R e m a r k .  The example of  SW~AT~O~ ~nd TUCKER mentioned in the intro- 
duction does not quite fit into our scheme as it stands, for they  assume a continuous 
parameter  for (Zn} and do not contract the time scale while passing to the limit. 
Also, they consider processes which do not necessarily have stat ionary transition 
probabilities. However, in the stat ionary case it is easy to recast their limiting 
set-up into our form by  first expanding the t ime axis, and so it is no accident 
tha t  their limiting processes are of the sort described in Theorem 3 (the last case). 

4. Proof of Theorems 1 and 2 

In  particular, the assumptions of Theorem 1 imply the existence of the limiting 
(one-dimensional) distributions 

(4.1) lira P(Z[~t] ~ ybr  ]Z0 = Cr) : Gt(y) 
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for all t ~ 0, where for some t > O, Gt(y) -~ P ( x t  <= y) does no t  have all its mass 
at  the origin. We will first show t h a t  a limit like (4.1) mus t  still hold when Cr 
is replaced b y  [XCr], x ~ O. I n  fact,  (4.1) is equivalent  to  

(4.2) l imE(e-~'z '~/b' lZo = Cr) = q~t(2) , 

where ~t is the Laplace-Stieltjes t ransform of Gt. (From now on we will always 
write Zrt in  place of  Z[rt]. ) But  because {Zn}  is a branching process (specifically, 
because of  (1.2)), we know t h a t  

(4.3) E (e-xz't/b" [ Zo --~- Cr) =/[rt] (e-21b') c~ . 

I t  is clear f rom (4.2) and (4.3) t ha t  

(4.4) ]im E (e-] ~z,~/b,] Z0 = Ix Cr]) = ~t ()~)z 
r ---> r  

for each x > 0; the distr ibution Gt is of course infinitely divisible. I t  is obvious 
t h a t  the convergence holds for x ---= 0 as well, and t h a t  it is uniform in x for each 
fixed 4. 

Nex t  we consider the  relation between br and Cr. From (4.1) with t = 0 it is 
immediate  t ha t  

(4.5) lira cr/br --~ c exists, 0 G c < r  
r - - - > ~  

We will show t h a t  c > 0 unless, cont ra ry  to  assumption,  Gt(O q-) ~-- 1 for every 
t > 0 .  

Choose a t > 0 such tha t  Gt(O q-) < 1; accordingly q~t(~) < 1 for all 2 > 0. 
By  (4.2) and the Marke r  p roper ty  of  {Zn} we can write 

~2t ( ,~ ) = lira E ( c -a z~"/br ] Zo = cr) 

(4.6) r - ~  c o  

= l i m  SE( - zr lbrl Zo = Cry) dP(Sr  <= cry lZo = Cr). 
r . - o . c o  0 

But  the in tegrand converges to ~t (~)Y uniformly in y, and  this passage to the 
limit can be interchanged with the integrat ion:  

(4.7) 

r  

cf2t(,~) = lira f cft(),)Y d P  (Zrt <= Cr y [ Zo = cr) 
r - ->  c o  0 

= lim E (exp [log ~t (2) Zrt/Cr] [ Zo = Cr). 
~ - - - >  c o  

I n  other  words, the  Laplace t ransform of the distr ibution ofZrt/Cr, given Zo ~-- Cr, 
has a limit for each number  ~ of  the form ~ = - -  log ~t (2). Because these values 
fill up  an interval  [0, el (we use here the nondegeneracy of  Gt), the distr ibution 
of  Zr t /C  r must  be convergent  by  the cont inui ty  theorem. The limiting t ransform 
is continuous as (~ --> 0 q-, so the limiting distr ibution has total  var ia t ion 1. Bu t  
Zrt/br also has a limiting distr ibution - -  one which is no t  concentra ted at  the 
origin - -  and these facts combined show tha t  cr/b r --> 0 is impossible. 
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I t  is now clear tha t  we can assume Cr ~ c br without any change in the limiting 
distributions, and so we can set 

(4.s) lim P (Zrt < y br I Zo = [x br]) ----- P t  (x, [0, y]).  
j.---> ~ 

We will show tha t  Pt  (more accurately, the extension of P t  to a measure) is a 
C. B. function, and tha t  the joint distributions which it  generates, taking e as 
the initial state, are those of the limiting process {xt}. Properties (i), (fi), and (v) 
of the definition are already evident. As we have seen, (4.8) is equivalent to 

(4.9) lim E (e-xz~/b~ I Z0 = [x br]) = eft ()~)~/~ = e -x  ~(~) 

(this expression defines ~v~(~)), and proper ty  (iv) is apparent  from the fact tha t  
x appears as an exponent. 

To complete the proof, we ~ show tha t  P t  satisfies the Chapman-Kolmogorov 
equation and tha t  the two-dimensional laws of {xt} are those generated by  P t .  
(The verification for dimensions exceeding two is easy and will be omitted.) We 
at tack the latter in its Laplace transformed version; it  is required to prove tha t  

o o r  

E (e -~x~-~*~+:) -= .~ f P t  (c, du) e -,~u Ps  (u, dv) e -or . 
O 0  

(4.10) 

But  since 

(4.11) 

we easily obtain 

(4.12) 

f P t ( x ,  dy) e -'~y = e -xw(a) , 
0 

o o r  

[. S P t  (c, du) e -~u Ps  (u, dv) e -'~v = e -~w(~+~'(~)) . 
O 0  

I f  (4.10) holds, then, putt ing ~ ---- 0 and using (4.12) yields 

(4.13) e -w§ ---- e -~(w@) , 

which, as we have remarked in section 2, is the transform of the Chapman-Kol- 
mogorov equation in this case. 

I t  remains to prove (4.10). By definition and (4.5) the left side is 

(4.14) l imE(exp  [--  (~Zr~ ~ (SZr(~+s))/br] l Zo -~ cbr) , 

and the expectation in question can be written as 
c o  

(4.15) .[ E (e ~z~Jb~ l Zo = x br) e -~x d P  (Zr~ < x br l Zo ----- c br) . 
o 

Arguing as before we can replace the integrand by  its limit, namely 

exp[ - -  X~Vs(($) - -  )~x], 

and then use (4.9) to obtain finally 

(4.16) E ( e -~x~-~x~§ = e -c~(~(~) + ~) . 

Because of (4.12) this is the same as (4.10) and so completes the proof. The joint 
laws of more than two variables can be handled in a very similar way. 
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We turn now to the converse, Theorem 2, in which it is required to construct 
a branching process such tha t  {x~ r)} converges to a given C.B.  process {xt}. 
We begin with 

Lemma 4.1. A n y  in/initely divisible distribution on [0, c~) is the weak limit 
o] a sequence o] distributions o] the/orm 

(4.17) ~'a (x) = G(d d) (x d) , 

where d is a positive integer, Ga is a distribution concentrated on the nonnegative 
integers, and the 'exponent' means convolution. 

Proo/. I t  is well known tha t  any infinitely divisible law can be approximated 
by  componnd-Poisson distributions; tha t  is, by  distributions of the form 

(4 .18)  H ( x )  = P < x , 
J 

where N, X1, X2 . . . .  are independent, the Xj have a common distribution and N 
is a Poisson random variable. Perhaps the simplest way to actually construct 
sttch an approximation is to let the law of Xj be the n ' th  root of the original law, 
and to choose E (N) = n; then it is easy to see using characteristic functions that  
H tends to the given law as n ~ ~ .  (See [3], chapter XVII ,  for a particularly 
nice discussion.) This method has the advantage tha t  Xj is supported in [0, ~ )  
if the given law has the same property.  

Now let d be a positive integer, and define the 'diseretized' random variables 
and the distribution function 

l: / (4.19) X~ a ) = m a x  : ~ X j  ; F a ( x ) = P  x d ) ~ x  . �9 
i 

I t  is easy to see tha t  as d -+ c~ the distribution Fa  (x) tends to H, and so/va can 
also be made an arbitrari ly good approximation to the original i. d. law. Moreover, 
Fa  is of the form (4.17). To see this, note tha t  Ha has a 'd ' th root '  given by  

( i )  (4 .20)  F~Ie~ (x) = p x l .  e> < x , 
J 

where 21//is a Poisson variable independent of the Xj with mean equal to E (N)/d. 
But since the sum of any number  of X~. a) is still supported on the set {!c/d}, the 
distribntion F(d l[a)(x/d) is concentrated on the nonnegative integers and so can 
serve as ae in (4.17). This completes the proof. 

Suppose the i.d. distribution of Lemma 4.1 has Laplace transform e-~(z), and 
t ha t  the distribntion Ga has generating function g (x) (depending on d, of course). 
Then the eonehision of the lemma is eqmvalent,  by  the continuity theorem, to 

(4.21) limg(e-Zla) a = e-~~ a~ , 2 ~ 0.  

Lemma 4.2. I] (4.21) holds, so does 

(4.22) lim g (g (e-~[a)) a = e-~(~(~)), 
d--->oo 
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as well as the corresponding statements/or more than two iterations o/ the /unctions 
g and ~o. 

Proo/. From (4.21) we have 
[ - ~(;,)+ o(1)] 

(4.23) g (e -~/~) : exp -- , 

and so 

(4.24) g2(e-~/~)~ ----- g (exp [ -  Y'(~) + ~ ]) 

But the convergence in (4.21) is necessarily uniform in 2, and so applying (4.21) 
to (4.24) we obtain (4.22). The extension to more than two iterations by means 
of mathematical induction is routine. 

We are ready to prove Theorem 2. Let Pt  denote the (C. B.) transition function 
of {xt), and fix an integer r. The distribution Pltr(1,  �9 ) is infinitely divisible, and 
so can be approximated by a sequence of laws of the form (4.17). By Lemma 4.2 
and the continuity theorem, the laws obtained as in (4.22) upon iterating the 
generating function of Gg k times converge to Pklr(1," ). For any fixed number, 
say r2 we can choose G~ to make the approximation hold to within the distance 
e = 1/r in the L6vy metric 2 for each/c ~ r 2. 

Let  {p~} be probabilities corresponding to the distribution G~ on the non- 
negative integers chosen as above, and let {Zn} denote the branching process 
having (pg} for its basic distribution. Let  br be the number d of (4.17) for the 
approximating distribution we have taken. Then our construction yields 

(4.25) -~e{P(Zr~ ~ xbr ]Z0 = br); Pt(1, [0, x)]} ~ 1/r 

for t = 0, 1It, 2/r . . . . .  r~/r, where ' ~ '  denotes the L6vy distance between distri- 
bution functions. We can construct such a {Zn} for each r, and it only remains 
to see that  (4.25) does imply the desired convergence (3.1). 

The last step is easy. Fix t, and let j be the largest integer such that  ]/r ~ t. 
Since Zrt is constant in the time interval (]/r, t) we have for all large r 

(4.26) ~f  ( P  (Zr~ ~ x br [ Zo -~ br); Pt(1, [0, x])} --< 

1/r q- -~q~{Pj/r(1, [0, x]); Pt(1, [0, x])}, 

using (4.25) and the triangle inequality for ~ .  But  for each t the last term tends 
to 0 with r because ]/r--~ t and Pt is stochastically continuous by Lemma 2.3. 
This proves (4.1) with Or(y) = Pt(1, [0, y]) and Cr : br. As we have seen in the 
proof of Theorem 1, the extension to Cr ---- cbr and the convergence of the joint 
distributions now follow automatically. This completes the proof of Theorem 2. 

5. Proof of Theorems 3 and 4 

From the hypotheses of Theorem 3 we have in particular that  the weak limits 

(5.1) lim P (Zrt --  ar ~ ybr [Z0 ---- Cr) -~ Ht  (y) 
T---> c o  

The argument to follow uses only the fact that the topology of weak convergence for 
distribution functions can be metrized; it does not matter how it is done. 
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exist for each t >--0 with H t ( y ) ~ - P ( x t  =< y) a probability distribution, and 
ar/br --> -t- co. Setting t ----- 0 we see at once that  

(5.2) lim cr - ar __ c 
r---, r br 

exists, and that  c ---= x0. Clearly, adding o (br) to ar has no effect on the limits, 
while adding a multiple of br simply represents a translation of the limiting 
process. I t  follows that  there is no loss of generality in assuming ar --= Cr and 
we will do so below; consequently, of course, we always have x0 = 0. 

The proof that  {x t}  has independent increments is very similar to that  of 
Theorem 5.1 in [6]; the assumption made throughout that  paper tha t  {p~} is 
independent of r played no role in the case of that  theorem. However, both be- 
cause one point in tha t  proof was treated with insufficient care and because we 
wish to go further, a complete discussion here seems in order. Expressing (5.1) in 
terms of characteristic functions, and writing the characteristic function of Zn in 
terms of / (x) ,  we obtain 

(5.3) ~ot (4) = E ( e i~z') = l ime -i~cdbr /[~t] ( ei)'/b') or. 

This can at once be recast in the form 

(5.4) /[rt] (ei~lb') = eia/b" [~t (4) -~ o (1)]lie'; 

since Ft is an infinitely divisible characteristic function the meaning of 

logier(2) + o(1)] 

is uniquely determined for large r in the usual way. 
We will need (as in [6]) a simple extension of (5.4), namely 

( [ i2  6r]) [iA c~ + log q~t (2) ~- o(1) ], 
(5.5) [[rt] e x P  [ or + ~ -  r exp + -b r  cr 

where ~r is any sequence of complex numbers with nonpositive real parts 3 which 
tend to a limit (~. Assuming this for the moment, we will verify tha t  

(5.6) r~lim E \[exp [[ i A(Zrtbr-- Cr) jr_ i a(Zr(t+S)br --  Zrt) ] I Zo  = Cr/) = q~t(2) qJs(a) . 

A corresponding formula is similarly derived for the joint distributions of more 
than two variables, and the result shows that  the limiting process xt  is indeed an 
additive one. To obtain (5.6) we express the left side in terms of the generating 
function ] using the fact, readily obtained from (1.2), tha t  

(5.7) E (x z - y z - + ~ l z  ~ = j) = f .  ( x l~  (y))J. 

The result is 

(5.8) E ( e x p [ i  g x t  + i(~(xt+s - -  xt)]) = l im e-i~e'lb'l[rt](ei(~-~)/b'l[rs](eic~lb') )c'. 
T----> o o  

The condition Re(6r) =< 0 was inadvertently omitted from the discussion in [6], and 
the proof there of the analogue of (5.5) was incomplete. 
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But replacing/[,~1 by its expression in (5.4), letting 

dr -- log (r) E ( e x p [ i i x  t ]) = log[~t(1) -~- o(1)] 

and using (5.5), the limit is easily seen to be just the right hand side of (5.6). 
We omit details of the extension to the higher dimensional distributions. 

We will obtain formula (5.5), among other things, using the following lemma, 
whose straightforward proof is omitted. 

Lemma 5.1. Suppose that , /or each n, a pair (An,  Bn) o/ (possibly dependent) 
random variables is defined on some wobabili ty space. Suppose too that A n  is real, 
that /or  each real 2 

(5.9) lim E (e i~A") = ~o (,~) 
n---> OO 

exists, ~ a characteristic/unction, that Re (Bn) ~ M a. s. /or all n, and that Bn ~ 0 
in distribution. Then 

(5.10) tim E (e i~"  + B.) = q~ (;0 . 
~---> oo 

To derive (5.5) from Lemma 5.1, set 

(5.11) Ar = Zrt -- cr br ' B r  = Or Z r t c r  Cr , 

where Zn is the r ' th  branching process with Zo = Cr. The convergence (5.1) (with 
ar ----- Cr) then yields (5.9), as well as the fact tha t  Br --> 0 in distribution. (We 
use here the assumption that  cr/br--> ~ . )  Finally, Zrt ~ 0 and dr--> 0 with 
Re(0r) ~ 0 mean that  Re(Br) is bounded above uniformly in r. I t  follows, then, 
that  (5.10) holds for the choices (5.11) with ~t(2) in the role of ~(2), and this 
almost immediately implies that  

(5.12) l i m E  exp i t  ~ -k O r - -  = cr . 
~" --~ oO Cr J 

Expressing the expectation in terms of the generating function [, (5.12) can be 
transformed into (5.5) in the same way tha t  (5.3) became (5.4). This completes 
the proof tha t  {xt} is an additive process; as yet  the question of whether or not 
br -+ oo has played no role. 

Supose next  that  b r --~ oo does hold. To study the laws of the process {xt} it 
is only necessary to consider one value of t, say t = 1. We know that  

(5.13) P ( x l  ~ y) = lim P ( Z  r - -  er ~ ybrlZo = Cr) 
~'--> o o  

r-->oo \ i =  1 br = y ' 

where the Xj are independent variables representing the number of individuals 
in the r ' th  generation of the process {Zn} who are 'descended' from each of the 
Cr original 'ancestors'. From the theory of limit laws for triangular arrays of 
random variables (for which now the most convenient source is [3]), a necessary 
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condition for (5.13) is the 'proper '  convergence 

(5.14) l im cr x 2 Gr (dx) = M (dx) , 

where Gr is the  common distr ibution of  (Xj  - -  1)/br and M is Feller's form of 
canonical measure for the limit law. Bu t  CrX2Gr (dx) has no mass whatever  to the 
left of  1/br, and so if br -+ oo it  is obvious tha t  M must  vanish on ( - -  c~, 0). 
(Although M is no t  the same as Khin tch ine ' s  or L6vy 's  canonical measure, the 
fact  of  vanishing on the negative axis is equivalent  for the three forms.) 

Finally,  suppose t h a t  br --]-* 0% and  select a subsequence converging to  b. 
Clearly b = 0 is impossible if the limit in (5.13) is a probabil i ty distributioD except 
in the degenerate case, which we now exclude. Bu t  then the measures CrX2Gr(dx) 
have support  { - -1 /br ,  1/br, 2/br, . . .} and so the limit M must  have support  
{k/b : k = - -  1, 1, 2, 3 . . . .  } ; the limit law must,  accordingly, be of  the compound 
Poisson type.  I t  is also clear, looking a t  the subsequence such t h a t  br --+ b, t h a t  
the limit laws P ( x t  <= y) have support  on {k/b: k ~ 0,-4-1, •  . . . .  } for all t, 
so there can be no s teady drift  term. This completes the proof  of  Theorem 3. 

We tu rn  to  the  converse, Theorem 4; the pa t te rn  of  the proof  will resemble 
t h a t  for Theorem 2. We begin with two lemmas which joint ly will p lay  a role 
analogous to t ha t  of  L e m m a  4.1. 

Lemma 5.2. Let F be any in/initely divisible law with its canonical measure sup- 
ported on [0, c~). Then JF is the weak limit o / a  sequence o / laws  o / t h e / o r m  

(5.15) F~(x)  : G(dd)(b~x -4- d),  

where b~ > 0, d is a positive integer, d/b~ --> r and G~ is a distribution concentrated 
on the nonnegative integers. 

Proo/. The characteristic funct ion of F can be wri t ten in the form 

c o  

(~2 ~2 f e i~.x -- 1 -- i 2 sin x d M  (x), (5.16) log ~0(~) ----- i a  ~ - -  ~ -4- x~ 

0 +  

where the measure M is finite on finite intervals, and satisfies f x - 2 d M <  r [3]. 
1 

The r ight  side of  (5.16) can be approximated  arbitrari ly well by  extending the  
integral only f rom e > 0 to  c~. I n  t ha t  case, the approximat ing  characteristic 
funct ion is the p roduc t  of  a normal  par t  (having variance a 2 and mean  ~t ---- 

a --  S x-2 sin x dM) with a compound  Poisson part .  Therefore F is the limit of  

distributions of  the form 

(5.17) K ( x )  = P < x * q~,.o(x), 
\ j=  1 

where ' . '  means convolution, Xj and N are as in (4.18), and ~ b  is the normal  
distr ibution function. 

Choose a ' large'  constant  b > 0. The first factor  in (5.17) - -  the compound  
Poisson par t  - -  can be 'discretized'  just  as in the proof  of  L e m m a  4.1. We write 



2 8 6  J .  L A M P E R T I  : 

the result 

(5.18) Hb(x) = P X b) < x , 
g 

and note that  Hb is supported on the set {k/b: k >= 0} and that  Hb has a d ' th 
root of the same form as itself for any d. Hence tt(bl/e)(x/b) = G1 (x) is a dis- 
tribution on the nonnegative integers with the property that  G(le)(bx) is a good 
approximation to the first factor of K (x). 

Next we approximate ~ by a binomial distribution. We choose one which 
can be thought of as the law of the sum of d independent random variables taking 
the values -~-1lb. The number d and the probabilities with which each variable 
chooses ~- or - -  are then taken in such a way that  the mean and variance of the 
sum tend to tt and o 2 respectively; this can always be done and entails d/b --> oo 
as b --> oo. We denote by G2 (x) the distribution function of one of the summands 
multiplied by b and ~ranslated so that  its range becomes (0, 2}. The binomial 
which approximates ~5 can then be written as G(~d)(bx --I- d). 

Finally we set G1 $ G~. ~ G~; since both G1 and G2 are supported on the non- 
negative integers, Ga has the same property. But  

(5.19) G(~ ~) (b x -[- d) ---- G (d) (b x ) .  G(~ g) (b x + d) , 

and the two factors approximate respectively the factors of K in (5.17). Since 
convolution is continuous, Fa(x) ~-- G(dd)(bx Jr d) approximates K which in turn 
is close to F ;  this proves the lemma. 

Lemma 5.3. Let ~' be a compound Polsson law o/ the /orm (4.18), where the 
variables X 1 take values ( - -  1, 1, 2, 3 . . . .  }. Then F is the weak limit o / a  sequence 
o/ laws o / t he /o rm  

(5.20) Fa(x) : G(~g)(x -~ d),  

where Ga is concentrated on the nonnegative integers and d --> r 

Proo]. The characteristic function of F is of the form 

(5.21) log~(4) = / ~  [ ,ffi~-lein~an--l] ' 

where /~ ~ E (N) and an are probabilities with a0 --~ 0. On the other hand, the 
characteristic function of a law of the form F~ must satisfy 

(5.22) log ~ (4) = d log ~ (4), 

o o  

where y~a (4) ----- ~. e~n~n is the characteristic function of G~ (x ~- 1). Let  us choose 

~n -~ lu an/d for n =~ 0; a0 ---- 1 -- ~ ~n. (When d is large ~0 > 0, so YJa is a charae- 
n ~ 0  

teristie function of the desired form.) We then have 

d[~p~(4)-- l]---- /~[ ,=_l  ~ e ~ n ~ a ' - - l ]  ' 
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and because log ~d(2) is asymptotic  to ~0~(2)- 1 as d ->oo  it follows tha t  (5.22) 
converges to (5.21). This proves the ]emma. 

The next  step is to obtain a suitable replacement for Lemma 4.2. 

Lemma 5.4. Suppose that,/or each r, X j  are independent random variables taking 
integer values ~ 0 and having a common generating/unction /(x). Suppose also that 
/or some sequences br ~ O, Cr --> oo with cr/br "-> 0% 

2 (x~ - 11 
(5.23) lim E exp i 2 ~= 1 5~ = ~ (2) 

exists, ~ a characteristic/unction. Let ]7t be independent variables with generating 
/unction/~ (x) /or any I~ ~ 1. Then 

Proo/. We will consider the case k ----- 2; the extension by  induction is easy. 
Suppose tha t  ~ r -~  ~, where Re(c~r) ~ 0. Then using Lemma 5.1 and arguing 
exactly as in the proof of (5.5) we can extend (5.23) to 

(5.25) r-~colimE exp i2  ~'=1 br -~ (~r ~ - r  -~ e~ 

This result can be written in terms of / as 

(5.2o) = e  Jbr exp [ + log + o (1) ]. 
But  in terms o f / t h e  expectation on the left in (5.24) (with lc -~ 2) becomes 

(5.27) e-i~cr/b, / ( / ( ei~lb,) )or, 

and expressing first the inner function and then the outer by means of (5.26), 
with (~r : 0 and ~r : log ~(~) -~ o(1) in the two cases respectively, it is very 
easy to see tha t  the limit (5.24) is ~ (2) 2. 

Finally we come to Theorem 4 itself. The rest of the argument  is entirely 
similar to the proof of Theorem 2, and will only be sketched. Let  Ht (x) be the 
law of the position at  t ime t of any additive process (xt} which has x0 ~ 0 and 
satisfies either of the two conditions on its canonical measure which were specified 
in Theorem 3. (In the second case let b : 1.) Fix a ' large' integer r, and up. 
proximate H1/r by the sort of distribution provided in either Lemma 5.2 or 5.3, 
whichever is applicable. Then use the distribution G~ of the lemma as the basic 
distribution in constructing a branching process {Zn}. By Lemma 5.4 the branch- 
ing approximation,  if made good enough at  t ~-- 1/r, will be good at  2/r . . . . .  r2/r 
as well. Since an additive process is stochastically continuous, the convergence 

(5.28) lim P ( Z r t  - -  er ~_ ybr [Z0 ---- Cr) : Ht (y) 
T ---> O O  

20 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 7 
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follows for all t by  the same reasoning as before. Final ly we only need remark  
that ,  by  the proof  of  Theorem 3, (5.28) is enough to establish automat ica l ly  t h a t  
the joint distributions of  (xl ~)} converge to those of  {xt}. This completes the proof  
of  the theorem. 
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