Multi-Dimensional Volumes and Moduli of Convexity
in Banach Spaces (*) (**).

RAYMOND GEREMIA - FrRANCIS SULLIVAN (Washington, D.C., USA)

Summary. — Let E be a Banach space. Using the definition for the k-dimensional volume enclosed
by k-+ 1 wectors due to Silverman [16], one can define the modulus of k-rotundity of K.
In [22] it was shown that k-uniformly rotund Banach spaces are isomorphic to uniformly
rotund spaces and, indeed, have some of the same isometric properties with respect to non-
expansive and nearest-point maps. The present paper examines the modulus of k-rotundity
more thoroughly. Included are a result on the asymplotic behavior of the moduli for 12;
a generalization of Dizmier’s Theorem on higher-duals of non-reflexive spaces; and an inequality
relating the moduli of E**|E and those of B. The modulus of 2-rotundity is shown to be equi-
valent to one of the moduli defined by V. D. Milman [13] and o necessary and sufficient
condition for an IP-product of spaces to be 2-umiformly rotund is given.

1. — Introduction.

A definition of the k-dimensional voume enclosed by k + 1 vectors in a Banach
space, F, has been given by E. SILVERMAN [16]. Using this definition and extend-
ing the usual notion of the modulus of rotundity, one can define the modulus of
k-rotundity of E. In [22] it was shown that k-uniformly rotund Banach spaces are
isomorphie to uniformly rotund spaces and, indeed, have some of the same isometric
properties with respect to non-expansive and nearest point maps. Our principal
. aim in the present paper is to examine the basic properties of the modulus of k-ro-
tundity more thoroughly.

The motivation for this work comes from two sources: the results of J. J. SCHAF-
FER concerning girth of spheres [18], [19] and the research of V.D. MILMAN on
multi-dimensional moduli. Central to Schiffer’s work is the definition of arc length
in Banach spaces. The obvious generalizations are to surface area, volume and
higher dimensional « hyper-volumes ». The idea of working with uniformities defined
over all sub-spaces of some fixed finite dimension, k, comes from the point of view
taken by V.D. MitMAN in his study of higher dimensional moduli of smoothness
and convexity.

(*) Entrata in redazione il 2 luglio 1980.
(**) Some of the results of this paper are contained in the Ph. D. dissertation of the first
author, written under the direction of the second author.
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In section 2 we give a geometrical result which is useful in studying %-dimensional
moduli. We also apply & method of J. BERNAL 0 obtain information on the behavior
of the k-dimensional modunli of Hilbert space for & increasing.

Section 3 is most closely related to the results of [22]. We show, first, the ex-
istence of non-trivial hypervolumes in the unit gphere of higher duals of non-
reflexive spaces. This generalizes the result of Dixmier on the existence of line
segments in the unit sphere of a fourth dual space [8]. A corollary of our Theorem
is that a Banach space F is reflexive whenever the second dual is locally k-UR. The
proof is based on the same sort of «local reflexivity » argnments as were used in [21].
Similar methods yield a connection between the moduli of E**/E and those of E.
The idea that k-dimensional subspaces of E**/E determine properties of 2k-dimen-
sional subspaces of E comes from the work in [3] on the « l(ln) problem ». (The
deeper connections between existence of maximal hypervolumes and existence of
subspaces almost isometric to I, remain to be examined.) Finally, results on duality
for the two dimensional convexity moduli and relations with the two dimensional
moduli defined by Milman are given.

Section 4 contains necessary and sufficient conditions for I* products of Banach
spaces 1o be 2-UR. These give a method for eonstructing a large class of non-trivial
examples of spaces which are 2-UR but not 1-UR.

The remainder of this section consists of definitions and notation which will
be used in the sequel.

A Banach space, B, is said to be 1-uniformly rotund (1-UR) if, for each ¢> 0,
there is a 6Q(e) > 0 such that if Jaf, |y]<1 and

>1—65(e)

4y
2

then

1 1

gyo) <9,

: g & B, ngn<1}<e-

sup {

Here, and throughout the sequel, the symbol |-| denotes the determinant. Hence,
1-UR is just the usual notion of uniform rotundity. To generalize this we define
the 2-dimensional « area» enclosed by vectors (z,y, z) as

1 1 1

Gy <y e
Alz, y,2)= : ) ] 1
@pa=se)| oy g VIS

This idea is taken from the work of E. SILVERMAN [16], [17]. The k-dimensional
volume enclosed by vectors (,, &, ..., #x,,) is defined in the obvious way, and the
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modulus of k-rotundity is given by

@y Byt oo By .
k -+ 1 “ . “ 1“’ ”m2”7 rery ”xk.;.1“<1,

A(@y, 2y o0y wk+1)>e} .

3%(g) = int {1 —

When no confusion is possible we shall omit the subscript « E». The space is said
to k-UR if for all ¢ > 0, 6W(e) > 0.

2. — Geometry of multi-dimensional volumes.

Our first resnlt shows that the definition of enclosed volume makes senge
geomefrically. Tt says that the volume is greater than or equal to the « height »
times the area of the «base». For vectors z,¥,,¥,, .., ¥, in a Banach space E,
dist (2, [y,, Yayyeery Yi)) denotes the distanee from z to the affine span of the y,.

LEMMA 1. — For all vectors @y, %5, ..., %, in K
A(@yy By oy @) > AISE (01, [Bg vy T4]) A(@ay ey T5)

PRrOOF. — From the definition we have that

A(@yy Byy veny ) =
1 1 1
hy 2 {fuy @2 hy Ty

= sup : :

| <Focty 81> Lfrry @) oo fiory T Ifalls Mfelly ooy (el =1
= sup {M:{fp, 0> + Mfra, @) + oo + Mlfes, o}

Here M;, M,, ..., M, are the minors obtained by expanding along the last row of

the determinant.
Since the f,’s can be chosen independently of each other, we have that

Ay @y eeey 1) = sup {[Mas+ My 4 oo + Mame: [y [Folly ooy (el =1} -

If the last row is replaced by 1’s the determinant is zero; so that we must have
M+ My+ ...+ M, = 0. Als0, fi, f2y ..., frs can be chosen so that M, is elose to
A(@yy B3y ovey ). Hence, A(my, @y, oy B1)> [ @ + @005+ ..o + 00| A, ..., 7;) Where
%+ ... + ay= —1. Therefore,

A(@1y By ovy @) >AiSE (01, [F2y 0oy 32]) A(@ay o.vy T2)

as required. Q.E.D.
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Tt is not hard to see that this inequality is an equality in case F is a Hilbert
space. However, a simple reverse inequality of this form is, in a cerfain sense,
impossible for general spaces. The inequality of HADAMARD [10] says that if
1y Fay orry 7 aTe the rows of an nXn determinant with Euclidean norms |r|,,
[72les wvey [7a]ls then

det (r1y 7oy oy Pa) < [Palla [7ellasnn 70l -

It is known that equality can actually be atiained for certain values of n by taking
pairwise orthogonal rows of +1’s. It is easy to see that this is the volume of the
convex hull of the unit vectors in l<n) and is equal to (»)*2. Thus, one can’t have
an inequality of the form:

A2y oy ooey @) <M Aist (@4, [5, ...y 2,]) A2, ...y 24)

with M independent of n because it would say that (n)"2<27M",
However, in the case n = 3, we have the following easy Lemma which will be
needed later. ‘

LeMMA 2. — For all z,y,2€ &
A=, ¥, Z)<2Hx — ?/“ dist (29 [, ?/]) .
ProoF. — Using the same idea as in the previous lemma we can write, for all a

Aw, y, 2) = sup {|<f, e — >z + o —ody + fyy —a>z|: |f]| = 1}
< sup {[<fy e — o 4 o — Dy 4 <f, y — #> (az + (1 —a)y) |}
+ sup {[<fy y — > (¢ — (az 4 (1 — a)y)) |}
= sup {|<f, s —ar — (1 —a)y> (2 — )|}
+ sup {[<f,y —a> (2 — (e + L —a)y)) [} .

Hence, A(w, ¥, 2)<2|o—y| dist (2, [, ¥]). QE.D.

Asg has been mentioned, if H is Hilbert space one actually has the eguality
A@yy By ooy 3) = dist (1, [Bg, 00y 2]} A(@ay ooy )+

Using this fact, Javier Bernal has been able to compute the exact values of the
moduli 6% () for Hilbert space. The following result illustrates Bernal’s technigne
and is reported here with his kind permission.

THEOREM 3. — If E is a Hilbert space then for fixed ¢> 0

lim 0P(e) = 1.

k—>co
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PrOOF. — We shall need an equality which is a consequence of the fact that
the norm in F comes from an inner product.
It is immediate that for all », y € £ and positive integers k

lz/k + (k —Dy/k|>= ][k + & —1)|y[*/k — (b —1)[@ —y|*/k.

From this an induction argument shows that for any @, ;, ..., 5, E

5 |2 11 2 1 2
&t xz—; T =1 % (é l2p1— a2+ 3 J/'lc_-z*ﬁ (@r_1 1 24)
' 3 1 2
-+ 1 a'/'k_3_':9; (@2 + a4 @) -+ .. ‘
E—1 1 2

Agsume, now, that #,, @, ..., o, are norm-1 vectors and for each 4, 1<i<k
dy= dist (@, [@rpay -ony #1d) -

From the above we have that

2

<f(dk—17 dk—zy seey dl)

1{1 2 3 k—1
12 (5d2_1+ Bt St ot (T)d‘;‘) ().

Byt Byt e T
k

Il

Using again the fact that F is a Hilbert space, we have A(w, @y, ..., %) =
=1 dx_y ... dy-d;. What remains is to show that the maximum of the concave
function f(dx_, di_s, ..., &), sSubject to the constraint d,_-d,_, ... & = &, converges
to zero as k increases. This is done using the method of Lagrange multipliers.

Let
G(dk—U dk—l, [T d1, Z.) = f(dk_l, dk_g, ey dl) —I— A(dk_‘l e dl'_ 6) .

Setting the partial derivatives of @ to zero gives

2
Tk

2(2
—%(gdk_z) b Ay g =0,

1
(5 dk—l) —I_ }-dk_z 'dk_g esa d]_ == 0 ,

2{k—1
_E( % d1)+ My @y oo dy= 0.
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Simplifying we have

2{1 2 (2 2{k—1
7{;-(5 i—l) == ﬁ(gdi_z): e = E(—k di)———- }hE,

so that, at the maximum, f(d_, dp_s, ..., d:) =1 _(k ; 1) 2o,

Multiplying together the above equalities results in

g’

= -——————/(k )82/(70-1)
- kk 1

and hence
F—1

— g2/
Lk =D

f(dk—h d]c_g, ey d]) =1

which converges to zero as k increases. Q.E.D.

An interesting way to think about Theorem 1 is this: If (z,) is a norm-1 sequence
in Hilbert space then, by passing to a sub-sequence, we may assume that either
lillc;nA(wl, Ty ovey Ty = 0 OF

L1 Byt eee wk|

lim T l

k

Il:o.

Using this point of view one can obtain an unusual and simple proof of the
Banach-Saks property [13]. It is also possible to extract more information from
the proof of the Theorem. In particular, as has been mentioned, the exact values
of the moduli 6% (e) can be computed [1].

3. — Mulii-dimensional moduli.

Let (e,) denote the usual unit vector basis for I*. It is clear that for each %

R

=1
k

while A(e, €,, ..., &) > 1. In fact, for some values of % one can attain the maximum
A(eyy €5y ...y ) = EH2,

A consequence is that, for each &, 6(1) = 0. In [22] it was proved that if ¥ is any
Banach space which is not super-reflexive then for all k, 6(1) = 0. However, this



RAYMOND GEREMIA - FRANCIS SULLIVAN: Multi-dimensional, ete, 237

does not mean that there exist norm-1 vectors #,, «,, ..., ¥; such that

=1

”«701+ R
I k

while A(2y, #,, ..., @) > 0. The space E might be strictly convex, for example.
We shall show that if E is any non-reflexive space then for each positive
integer k there are norm-1 vectors 2y, &,, ..., & in the 25’th dual of & such that

it Bat o+ B
k

=1

and A(@, 5, ..., ;) > 0.

Before stating the Theorem we will need some notation. For a (non-reflexive)
Banach space E, let E‘™ denote the n'th dual of E. Elements of E™ will be writ-
ten . There is a sequence of natural imbeddings

E —> EF® - F - F6 > Fe
Qo Q2 [A Qe

where {Q,,,##™, gty — (pamid pem  The imbeddings for the odd numbered
duals are defined in the same way. Hence, for each 4, we have

* .
Q; Qi 41 = 10|gusn

and Q,.,QF is a norm-1 projection on E¢+» with range Q, L [HOTD],
Suppose, now, that Y is any non-reflexive Banach space and %® is a norm-1
vector in Y@\ Y. Then, according to the result of DixmIEr [8],

Qz?/(z)ly* — Q:*y(z)!y* so that sz(z)—Q:*y(Z)e Yo yWw

while [Q,y®— Q;*y® | > dist (y®, ¥). The idea is that @;*y®e YL but dist (@, Y)
is the supremuw of terms <(Q,y®, y*>.

It is immediate that ¥ cannot be strictly convex and, in fact, ¥* cannot be
very smooth [21]. The following ean be viewed as a generalization of Dixmier’s
Theorem :

THEOREM 1. — If F is not reflexive then there is & sequence of norm-1 vector
x®e B, gve B, ., g@me Fem, |, such that for all m

' _I_ @ + e _|_ p(2m)

m

and A(@®, 9, ..., x2m) > 0,

16 — Annali di Malematica
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Proor. — Choose z®c BN H and let

oW = @y 2@, 2© = @ x®, ..., # D = g a®m

The fact that the averages have norm-1 is clear from the previous discussion.
To show that the areas are non-zero note first that z®e E®\ ¥ and a@®We E+L while

7@ }E‘ — sz(z) ‘E* .

This implies that, in fact, ¥@e FO\ E® because E+tN E®= F. At the next level
the same reasoning gives z®c HON\ B? and, continuing, we get xmiag FemtaN Fem,
Hence, for each m

A(w(z), w(‘l)’ vy m(zm)’ m(2m+2))
2 1 2 2
> Az, 2@, ..., ) dist (m( mt2), [, 2W, ..., 2t m)])

> A(x®, g9, ..., x2m) dist (w2m+e, Fem)

A simple induction now completes the proof. Q.E.D.

A similar idea has been used by PERROTT [14] to study the relationship bet-
ween super-reflexivity and ergodic properties.

Recall that a Banach space, B, is locally uniformly rotund if for all jz| =1
and all norm-1 sequences (z.), | -+ @.| — 2 implies that |# —x,| — 0. General-
ising this we say that E is locally %#-UR if for each |z| =1 and &> 0 there is a
0 = d(w; &) > 0 such that for all norm-1 (@, &y, ..., &%), if

m+w1+m2++wk” 1—§
B 1 ks

then 4(x, 2, 2,, ..., %) < e. It is an immediate consequence of Goldstine’s Theorem
that if E** ig locally UR then F is reflexive. In [22] we showed that a locally 2-UR
second dual is reflexive. Using Theorem 1 and Goldstine’s Theorem we get the
following:

COROLLARY 2. — Ii, for any positive integer &, #** is locally #-UR then E is
reflexive.

We shall need the combination of Goldstine’s Theorem and Helly’s Theorem
which LINDENSTRAUSS and ROSENTHAL called «local reflexivity » [23]. The form
we shall use is due to DEAN [7]: If A c E** and F c E* are finite dimensional sub-
spaces and 0 << § < 1 is arbitrary, then there is a linear map T: 4 —> E such that

(1) T(a)=a for all ac AN E; 7
(2) <, T(a)y = <a,f> for all ac A and feF;
@) A—9)fa]<[T(@)]<@ + d)|a] for all ac 4.
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Local reflexivity has been used by DAvis, JOENSON and LINDENSTRAUSS [3], [4]
to obtain information on the relation between geometrical properties of the quotient
R(F) = E**{F, and those of . Following their lead we have:

THEOREM 3. — For all positive integers & and for all & > 0, 6&¥V(*) < 8%y (e).

PROOF. — Suppose that &k and ¢ are given and that a > 6% (). We shall show
that a > 6&**V(:%). From the definition of the modnlus, there are norm-1 cosets
#;* + B, ..., %, + E e E**[E such that

N o e 4

E+1

while A(z," + B, ...,z + B) > e.

Without loss of generality, we may asswme that the vectors (#;*) have norm
arbitrarily close to 1. Recalling that (E**/E)* is linearly isometric to E<*, there
are norm-1 vectors %, ..., x+€ B+ such that

—{-EH>1-—a

1 1 1
¥k Kk * %
(&1, xy ) oy @y ) (@, Try1)
|D| = : >g.
E23 % k%
oy ) <L, w2*> o Ty @iy

Applying Diximier’s Theorem, we have that

e i W wie T ol R w L N e w28

2%+ 2 >1—a.

We need only show that A4 ()", ,", ..., Q) %;;,) > ¢ and an application of local
reflexivity will then give the result. To obtain the last inequality, notice that there
is a norm-1 yte B+ so that all (yt,«*) are close to 1 and norm-1 vectors
{w}, @5, ..., 7 } € E* s0 that for each i and j (a}*, #]) is close to <&}, ™. Finally,
recall that Q. [E**] = E*'. Now, estimate A(x}",a;, ..., Q% @,:,) by evaluating
the following determinant:

1 1 1 1
Rk Kk ok sk sk kk
{wyy @y ) <oty w100 et @y @y, > @1y Qo Trir)
%k e ok ke sk kg
Oy 1 ) v Ty Bpi1) &gy @y @7 ) e 5, Q@ Tp1)

hat™> o LoD GRATHY . Qv

dk % ok % ‘** ok * sk ki ok
Oy 80 o Byiny By Qo @1 3 @10 o Qg Tyyqs @y D

**- * £ % Rk kk ok gk dok *
oy 3 @) oor Bppqy T Qo @y 3 &> woo Qg Ty Xy
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It is not hard to check that affer evaluating and interchanging rows (and possibly
changing the sign) this has the form:

D 0

D D

Hence, A(@,", 23" ..., Qs #pr1)> D> % Q.E.D.

An interesting special case of this Theorem is when 5%%5)(8) = 0 for some &> 0.
For example, if E**/E is not 1-UR then there are norm-1 vectors @, ., ¢, &, in K
with A(x,, 2., 25, ;) > 0 while

P+ B+ T3+ @,y
4

is arbitrarily close to 1. Stated very informally this says that if the sphere of E**/E
almost containg a line segment, then the sphere of ¥ almost containg a tetrahedron.
Another easy consequence along the same line is that if every tetrahedron on the
unit sphere of ¥ has volume less than 4 (i.e. 63(4) > 0) then 65, (2) > 0 and so
E*=[F iy super-reflexive.

Let P, denote the cononical projection of E*** onto @,[E*] and P, the projec-
tion of E@ onto Q,[K**]. In [2] A. L. BRowN proved that |I — P,|| =1 iff for all
ke B ||Quudr— Q¥ ¥ | = dist (¢**, E). If |I — P,|| =1 then E*! is isometric
to E@W/E** and also [I —P,| = 1[20]. Combining these ideas with the Theorem
of KapEC [11] we get the following:

COROLLARY 4. — Let E be a Banach space such that |[I — P, = 1. If (2*) is a
sequence in E** such that Y,  converges unconditionally then

S8 (dist (z,%, B)?) < oo.

n

PROOF. — Since >u." converges unconditionally >(@,z," — @, #,*) does also

Using the fact that |[I —P,| =1 we have, for each n, dist(z,", ) = [(Q,2," —
— Qi) = |(Qurr — @y 2l") + E**|. Applying Kadec’s theorem in E®w/E**
gives

> 00 g (dist (", B)) < oo

and the result follows from Theorem 3. Q.E.D.

Notice that if for some a < 16, §%.(a) >0 then dist (2, F) — 0 for any un-
conditionally summable sequence (x,).

Duality for the multi-dimensional moduli appears to be a complicated and tech-
nical question. Intuitively, the dual of a triangle on the unit sphere of E should
be a three dimensional corner on the sphere of E*; just as the dual of a line segment
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is a two dimensional corner. This is the idea behind M. M. Day’s definition of a
wniformly flattened Banach space. The space I is uniformly flattened (UF) [6] iff
for all pairs of sequences (2,)(y,) if |z,— y.| — 0 then

12| 4 [9all = l#a+ wal

| Day proved that F is UR iff £* is UF. Generalizing Day’s definition we say that F
is 2-UF if for all sequences (x,), (¥.), (8.) if |z.—¥,| and |z,—=%,| converge to
zero then

(l2a] + 19n] + [2a] — 120+ yu + 2a])
A(wni :yny z?’b)

2
-0,

@y Yy 20) =

THEOREM 5. — If I* is 2-UF then F is 2-UR.

Proor. — If F is not 2-UR then for some &> 0 there are norm-1 sequences
(®2), (¥n)y (2,) such that

€
[0t 9t 2] >3 —

while A(w,, ¥n, 2,)>e. Using Lemma 1.2 we get that for all n |y,— .|| >¢/4,

|2n—@,]| >¢e/4 and |ly,— 2,] >¢/4. Hence, there exist norm-1 sequences (f.), (¢.),
(h,) such that for all m,

oy nt Yot 2>>3 —

and {gn; Yn— 0n, oy Bn— 20 >4
Congider now the sequences (f,- (1/n)g,), (fa=+ (1/n)k,) and (f,— (1/n)g,— (1[n)h,).
All three differences converge to zero but

1 1 1 1

&
= <fn7 T+ Yn+ %y — 3 "I";&<gn’ Yu— Ty +;b<hn’ Bp— L) > 1—1?: .

On the other hand, for all n

1 1 1 1
A(fn‘f" ;Lgna fn“Jf‘ ;L‘{/hm fn_&gn‘;bhn)

1 : t, 1 = !
<2.;L ”gn_hnn dlSt(fn——/'—lgn—/;‘lhn, {:fn‘l“/ﬁgm fn"l‘ﬁhn])

1 1 4
\2'_ n_hn : n‘—hn A
S e S M
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Thus,

1 1 1 1
Q(fn_}',ﬁgm fn"}"/'_,bhm fn“‘;bgn“ﬁhn)>82/64

and ¥* is not 2-UF. Q.E.D.

A duality theory for multi-dimensional moduli of rotundity has been developed
by MitMAN [12], [13]. These moduli are defined using subspaces Y as follows:

A®(g) = inf inf sup {|z + ey| —1}.
=t e
The space, F, is said to be k-uniformly convex if for all ¢ > 0, A%®(g) > 0. A Banach
space is 1-uniformly convex iff it is 1-UR. A proof of this can be found in the paper
of FicieL [9]. We extend Figiel's technique to the case & = 2. Again, the general
L-dimensional result appears to be complicated and techniecal.
We shall need several preliminary results. In order to simplify the proofs we
assume that dim (E) < co. This is possible because for each ¢

8(e) = inf {§@(s): B'c B, dim F'< oo}
and

AP (e) = int {A%)(e): B'c B, dim E' < oo} .

LeMMA 6. — If dim (E)>2 then for each ¢ > 0 there are vectors v, v, and v; such
that o, = [v.] = |vs] = ¢ and v, + v, + v,= 0.

PRrROOF. — Choose |v,| == ¢ arbitrarily and consider the continuous function on
the e-sphere given by
P(x) = Migiﬂ )

Obviously F(v,) = 2¢/3 and F(— v,) = 0. The e-sphere of F is connected so that
for some |v,| = ¢

e/3 = F(v,) = [0+ 24 .
3
To complete the proof simply let v = —2v,—v,. Q.E.D.

LemMA 7. — Let vy, ,, v, be as in the previous Lemma. Then dist (v,, [0,]) >¢/3.

ProoF. — Notice first that

[oat 2 = [—ws] =& and fo—0] = [o.— (— v~ w) | >2][m] — ] =e.
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We need only show that there is an fe E*|f| <1 such that {f, v,)>¢/3 and

{f, 95y = 0 for then we have |v;— av,| > {f, v;>>¢/3 for all real a. If for all |f] <1
{f, v,y = 0 implies {f, v,> < ¢/3 then from the Lemma of PHELPS [15] either
oy + v5] <263 or o,— | <2¢3. QE.D.

LemMMA 8. —~ For all e>0

o 4(e)
09(s) < 1+ A@(e)
where
5= @+ A‘2>(s))2'

Proo¥. — Reecall first that

AP(e)= inf inf sup {|o 4+ ey] —1}.

el =1 dim ¥=2 |lo]=1

By the remarks made earlier we may assume that there is & norm-1 vector 4, and a
two dimensional subspace ¥ C K such that

A®(e) = Ufn@l [w -+ ey —1.

Choose v,€ Y, |[v;] = ¢ so that 1Ja=1 4 A®(¢) = |Ju I v,], and select ||v,] =
= |lo3]] = & with v, 4 v,-+ v,= 0. Let ©;,= a(u 4 v;), #,= a(u + v,) and z,= a(u -+ vs)
and note that [z ], |, o] <1.

We have dist (v;, [0,]) >¢/3 by the previous lemma; so there is an f,& E* such

that ”fOH =1, fo(v5) = 0 and fy(v,) >¢/3.
Now consider

A(@yy B3y T3) = aPA(U 4 v1, U + v, u + ;) = a4 (vq, Vs, V5)
= a? sfup “f(@s_ V) 01+ f(v— ”3)”2 + flw,— ’Ul)%u
= a? S}lp [1(— 8v2) 01 f(301) 02| > B2 [ fo(v1) Va— fo(V2) ¥:
= 3a?|f,(m,)] " |05 > ¢

Hence,

00(s) <1 — 3 a4 @+ @] = 1 — 5 [3au

- 1 _ AB(e)
=17 em =T Aee  OED:
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LEMMA 9. — For all e >0

82(¢)

(2) R A
A2 (s) < T— 50(s)

where

. &
P A = 50)

PROOF. — Given ¢ > 0, choose norm-1 vectors «, y, 2 € / such that
Iz +y + 2] = 3(1 — 67())

and f, g norm-1 in E* such that

1 1 1 |
ray Lfyyy L&
¢ = Ax,y,7) =
gy Lg,9> <9,2
Let u = w and evaluate the determinant to obtain vectors
lz +y 4+ 2|
e — ye—wpa 42—y +{f,y — )2
' 4z +y 2|
and

oo G Y =BT+ LG 2=y + g 1 —y)2
: 4o 4y + 2| '

Notice that s = [v,] = {g, v:> = [v.] = {f, v2> and {f, v)> = 0 = {g, v;> so that v,
and v, are linearly independent. We shall show that if |av, + bv,| = s then

1
Hu —l-‘ a/U]_"{'— b’vz” < 1—__**5‘(;)“(:) .
Hence,
1 8(e)
@) _ e ] = ———
A < T 5em T T 1500

as required.
If ¢ = |av, - bv,|| then s> |alyg, v;>| and s> |b<{f, v,>| and |a|, |b|<1. Define now
e=1+ f<af —bg, 2 — 4>
6= 14 ;<af — by, ® — =)
eg=1 -+ }af —bg,y — )
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and notice that ¢, 6,, ¢;>>0 while ¢, ¢, ;= 3. Hence

lewr + o3y + €2 - 3 - 1
lz+y+2l  Tletyte]  1—09)°

lw + av,+ bo,|| = Q.E.D.

THEOREM 10. — A Banach space, B, is 2-UR iff it is 2-uniformly convex.

ProoF. — Combine Lemmas 8 and 9. Q.E.D.

4. — Products of uniformly rotund spaces.

In this section we give a necessary and sufficient condition for the 1# product
of spaces to be 2-UR. Recall that for a sequence of Banach spaces {#,), and
1<p < oo the I» product, (Z® ¥,),, is the space of all sequences (x,), where for
each n, v,€ E, and X|z,[|*< co. The norm is given by

1@y @y erey Bay ) | = (Z]|wa]2) 02

For, £> 0, let 5"(¢) denote the 1-modulus of the space H,* The sequence of
spaces (E,) is said to have a common modulus of convexity if for each &> 0,

inf 60(e) > 0.

n

The following is due to M. M. DAY [6].

THEOREM 1. — If (E,) is a sequence of Banach spaces, then (X® H,),, 1 < p < oo,
is uniformly rotund if and only if the sequence (Z,) has a common modulus of
convexity.

Our result for 2-UR spaces iy based on Day’s; viz:

THEOREM 2. — If (E,) is a sequence of Banach spaces, then (2@ E.),, 1 < p <oo
is 2-UR if and only if all but one of the K, are 1-UR with a common modulus of
convexity and the remaining space is (2-UR).

The proof requireg several preliminary lemmas.

Lemma 3, — If E and F are Banach spaces such that (E® F),, 1 <p <<oo is
2-UR then at least one of E or F is 1-UR.

PrOOF. — If neither E nor F is 1-UR then there are norm-1 sequences (#V), (z(?)
CH, (y), (#)?)C F sneh that |z 4 2@ — 2 while for all n,

lo — a2 > ;>0

and |y 4 y@| — 2 while for all n, [yP—yP| > &,> 0.
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Let ¢ = min (g, ¢,). By passing to a subsequence we may assume that

1 0, 2 o 1
= z 1—C
3% +3mn >1—
and
1 1 1
”51/2)-1“5%3) >1—-%-
Let

(3) ___ %w:bl) + %wf)
n T 1) (2 ’
3o + &

1,,(1) 1,,(2)
(3) __ 2Yn + 2Yn

Yn TiAD 1.

1490+ 3y

and define sequences in (E® F), by u,= (&0, 9V}, v,= (@2, 42 and w,= (#, D).

Clearly |, = |v,] = |w,] = 2¥». Using the fact that |#V 1 2’ 4 2| -3
and [[y® 4 y@ + y®| — 3 we have that |u, -+ v, w,| —3-2¥2. To complete the
proof we need only show that A(u,,v,,w,) remains bounded away from zero.

To show this we use the faet that for each n,

AUy Oy w,) > |1, — v, dist (wy, [, v4]) .
Clearly, |w,— v,]|>¢-2"#; and from the triangle inequality

dist (w,y [Un, v.])
> inf {[a@ — (el + (1 — a)2?)|" + |92 — (agst + 1 — a)y) |7}

>ef(i=ele =)+ (5=l

-—a g — &
which is bounded away from zero. Q.E.D.

LeEMMA 4. — If E is a Banach space and #,y, 2 c E, then at least one of the
altitudes of the triangle formed by the three points lies inside the friangle.

PROOF. — By translating and re-labeling the points we may assume that z = 0
and y|> |y — 2| |e|. Choose feB* with |f| =1 and f(z) = [2].
If f(y)>0, then for any ¢ < 0 we have
lz—ty| > f(z—1ty)
= [z —#(y)

> |7
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and for ¢>1 we have |z —ty|>|2| since |y —2|>|¢]|. Hence the best approxi-
mation to 2 on [0, y] must be in the form ty where 0 <i<1.
If f(y) < 0, then for {>1 we have

Itz + (1 —t)y] > f(tz + 1 —1)y)
=tz] + X —)f(y)
> el

and for 1< 0 we must have [tz + (1 —1%)y]|>|2] since |y|>]#]. Hence the best
approximation to 0 an [y, 2] is a convex combination of ¥ and z. Q.E.D.

LEMMA 5. ~ If E and F' are Banach spaces such that F is 2-UR and F is 1-UR,
then (E® F),, 1 < p <co, is 2-UR.

ProoF. — Set £>> 0 and let @ = (@,, @,), ¥y = (¥, ¥2), and 2 = (21, 2,) be norme-1
elements of (E® F), with A(z,y,2)>¢. We first consider the proof for the case
when [, = [y, = |a for i =1, 2.

By Lemma II.2 we have

le —y| dist (2, [, y)> 1Az, y,2)>e2 =¢t,

and since |2 —y|<2 and dist (2, [2, y]) <o —2] <2 we have | —y|>¢'/2 and
dist (2, [#, y]) >&'/2.  Similar reasoning shows |o —z|, |y — 2|, dist (y, [#, 2]), and
dist (z, [y, 2]) > /2.
We consider the following two cases:
Cage (i):

ma‘x{”%_ Yoly llwa— 25, “yz"*zz”}>81/4 .

We may assume that |z,—y,|>e'/4. Set § = |#,] = |v.| and note that f<1
since x| =1 and f>¢'/8, since |x,— y,|>¢'/4. Since F is 1-UR and

S
- pop
there is a 00(e?/4) > 0 such that [z, + .| <28(1 — ™). Hence we have

>elfd

Iz + 9l = (los+ nal2+ |22+ 3a]7) 2
< (21: “xl “:o + 2787(1 — 3(1))1»)1/1:
= (291 — fr) + 22(1 — 3)7)vs

< (2D— 217‘;—1: r—@1— 6<1’)”))1/p
= 2 — J*(e) .
Thus |2 + y 4 2] <2 — 6%(e).
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Case (ii):

(22— Y2y B2 2ally |y2— 2| < e'/4.

By Lemmasa 4 we may assume that
dist (21’ [#1, ?/1]) = |l&s— (“lml + (1 0/)91) i
for some @, with 0<a,<1. From above we have

Y2 < dist (2, [, y])
<(la— (@o+ 1 — a)p) |7+ o (@22 + @ —a)zs) |2)
< dist (21, [#1, y1]) 3 @1]za— 2| + (1 — @) ]|2e— 9]
< dist (2, [#:, 11]) + €'/4

so that dist (2, [2,, 4:]) >¢*/4. Since we also have
gf2< e —y|<|ei— 1] + [B— gl <|m—u:l + &4,

then by setting f = ||#,] = |w] = |z <1 and applying Lemma II.1 we get

> Bl— s — s] dist (o1, [, 9])

> (¢9)?/16 .

Since E is 2-UR there is a 6®((eV’)3/16) > 0 such that [o;+ yi+ 2] <3p(1—0®).
Using the fact that f>¢!/8 we have

|+ + 2] = (les+ g+ 27+ [+ got 2[7)
< (317/310(1 — §@)r L 3 sz”z’)”p
= (31:'312(1 — &@)r | 37(1 — ﬁp)) 1/p
< (3r- 39%; (1—@1— am)p))”"
=3 — d(e) .

Set 8,(e) = min {161(¢), §0%(2)} so that if A(x,y,2)>e and |o;]| = [y:] = 2]
for i =1, 2, then [o 1 y + 2| <3(1 — d(e)).
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For the general case, let ¢ > 0 and choose o << ¢/16 and k < £ such that
kO (@) + For < So(e/4)

where () is the modulus of uniform convexity for I, and 8, is as above.
If @, y, 2 € (B® F), are norm-1 vectors with |& 4 ¥ - z|| > 3(1 — k6{P(«)), then

3(1 — k6P(@)) < (o + 9+ 27+ |2+ 9o+ 2])7Y»

<
< ((lell + H?h”)“’—l— (I|w2|| -+ “?/2”)1")1/”4— 1

which implies that

((loa] — loal)> + (] — Jaal)?) 7 <ac.

Similarly we can show

(3 =1}, ( 2 (1l = Ledy) <o

i=1

Define w,ve (E® F), by
A LA

T if ,;"71—1‘ 0
we=1 1wl Y

for ¢ =1, 2 and with a similar definition for v with 2, replacing y,. Then |u,| =
= |v;|| = ||#;] for ¢ =1, 2, and

2

!
=gk = 3 (o — lal)?) " <a.
i=1 .

Similarly [jv — 2| <e. Now we consider
|z 4w+ vl>lo+y+ 2] — |lu—y]—[v—2]
>3(1 — k6P(2) — %)
>3(1 — 4(s/4))

which implies from above that A(z, u, v) < /4.
Finally, we note that

A, y,2) = I[illll’—Pl Ifz —y)o + flo —2)y + fly — »)2|

< sup (If(e —w)e + fe —v)y + flu—2)2] + [f(z — )| + [f(u —y)a]
+ Iflo —2)yl + 1y — w)=f)
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< Sup ([f{(v —w)w + flo —v)u + flu —@)v| + |fle—o)y —w)] +
+ [{(w—2)e—2)| + 2|z —v| + 2|u—y])
< Ay uy v) + 4|lu—y| + 4z — |
< g/4 4 8
<e

which completes the proof. Q.E.D.
We now have all the results necessary for the proof of Theorem 2.

Proor. — Suppose that all but one of the H,’s are (1-UR) with a common
modulus of convexity and the remaining H, is (2-UR). We may assume that #,
is 2-UR and that E,, B, ... are 1-UR and have a common modulus. By Theorem 1,

o0

(S on)

n=2

is 1-UR and by Lemma 5

is 2-UR.
Conversely, suppose that

(é ® I.),

is 2-UR. By Lemma 3 at most one of the F,’s can fail to be 1-UR so we may assume

that H,, Es, ... are all 1-UR.
If B,, E;, ... do not have a common modulus of convexity, then there is an

&> 0 and norm-1 sequences (#,) and (¥,,) with #,,, ¥, € BE;_such that |, —+ ynll -2
while |Z,— Yn| > & Ym. I we define the sequences (i), (vn), and (w,) in

(Ze2).
n=1
by
U == (0, o0y 0, Bypo1, 0, .0ey 0, By, 0, ..0)
VU = (0, eeey Oy Yamm—1y 0y ovvy 0y Yoy 0, .00)

Lom—. + 2?sz_1 wzm + y2m )
Wy = {0, ..., 0, —2~1 ey 0y 2 LIER_ 0, ..
( P ”-”Zm_l"" 2Yam_1 “ T “wzm + Yom ” T

and proceed as in the proof of Lemma 3, then we obtain a contradiction to
(Z o)
n=1

being 2-UR. Hence E,, Fs, ... must have a common modulus of convexity. Q.E.D.



RAYMOND GEREMIA - FRANCIS SULLIVAN: Multi-dimensional, etc. 251

1]
(2]

[3]
[4]
[5]
[6]
7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]

[22]

(23]

REFERENCES

J. BERNAL, to appear.

A. L. BrRowN, On the canonical projection of the third dual of o Banach space onto the
first dual, preprint.

W.Davis - W. JorxsoN - J. LINDENSTRAUSS, The I, problem and degrees of non-
reflexivity, Studia Math., 55 (1976), pp. 123-139.

W.Davis - J. LINDENSTRAUSS, The If, proglem and degrees of mon-reflewivity, Studia
Math., 58 (1977), pp. 179-196.

M. M. DAY, Some more uniformly convex spaces, Bull. Amar. Math. Soc., 47 (1941),
pp. 504-507.

M. M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math., 45, 2 (1944),
pp. 375-385.

D. W.DraN, The equation L(H, X**)= L(E, X)** and the principle of local reflexivily,
Proc. Amer. Math. Soc., 40 (1973), pp. 146-148.

J. DixmiER, Sur un theoreme de Banach, Duke Math. J., 15 (1948), pp. 1057-1071.

T. Fi6IEL, On the moduli of convexity and smoothness, Studia Math., 56 (1976), pp. 121-155.
J. HaDpAMARD, Resolulion d’une question relative aux determimants, Bull. Sci. Math.,
(2) 17 (1993), pp. 24-246.

M. I. Kapec, Unconditionally convergent series in a wuniformly convem space, Vspehi
Mat. Nauk, 11 (1956), pp. 185-190.

V. D. M1LMAN, Geometric theory of Banach spaces I, Vspehi Mat. Nauk, 25 (1970),
pp. 111-170. Translated in Russian Math. Surveys.

V. D. M1LMAN, Geometric theory of Banach spaces II, Vspehi Mat. Nauk, 26 (1971),
pp. 79-163. Translated in Rissian Math. Surveys.

J. C. B. Perrotr, Transfinite duals of Banach spaces and ergodic super-properties equi-
valent to super-reflexivity, Quart. J. Math., (2) 30 (1979), pp. 99-111.

R. R. PuELPS, A representation theorem for bounded convex sets, Proc. Amer. Math. Soe.,
11 (1960), pp. 976-983.

E. SiLvErMAN, Definitions of area for surfaces in metric spaces, Revista Mat. Univ.
Parma, 2 (1951), pp. 47-76.

E. SiLverMAN, Set functions associated with Lebesque area, Pacific J. Math., 2 (1952),
pp. 243-250.

J. J. ScHAFFER, Inner diameler, perimeter and girth of spheres, Math. Annalen, 173
(1967), pp. 59-79.

J. J. BcHAFFER - K. SUNDARESAN, Reflexivity and the girth of spheres, Math. Annalen,
184 (1970), pp. 169-161.

M. SyirH - F. SvuLLIvAN, Extremely smooth Banach spaces, Springer Lecture Notes in
Mathematics, 604 (1977), pp. 125-138.

F. Svriivaw, Geomeiric properties determined by the higher duals of a Bamnach space,
Illinois J. of Math., 21 (1977), pp. 315-331.

F. Surrivaw, 4 generalization of uwniformly rotund Banach spaces, Canadian J. of Ma-
thematics, 31 (1979), pp. 628-636,

J. LinpENsTRAUSS - H. P. RoseENTHAL: The L, spaces, Israel J. Math.,, 7 (1969),
pp. 241-252.



