Linear Boundary Value Problems for Systems
of Ordinary Differential Equations on non Compact Intervals (*).
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Summary. - 3¢ stabiliscono teoremi di esistenza per problemi ai limili lineari su intervalli aperti
a destra in caso di risonanza.

Introduction.

In this paper we shall prove some theorems which assure the existence of a bounded
solution defined on the right open interval [a, b), (— co << & < b< 4 o), for the BVP,
boundary value problem:

{ (1) — A a(t) = [, #(1))
() Te =7
where 7' is a linear operator.

A BVP on an infinite (right open) interval implies, beside some sort of initial
conditions, a certain condition at infinity (at b). Such a condition may be a bounded-
ness condition or the existence of the limit or some other kind of asymptotic behaviour.
It is important to note that most BVPs on infinite intervals have been suggested by
the study of problems in physies, as in the case of the famous Thomas-Fermi equa-
tion [23], or the Emden-Fowler equation [22].

The corresponding problem on a compact interval [a, b] has been deeply studied.
For a review of the methods of solution and for an ample bibliography see R. CoNTI [7].
Among the different methods used for solving this kind of BVPs we recall the alter-
native method of L. CeSARI[6], which has been applied to a number of problems
for differential equations, see the survey works of L. CmsAwi [4], [6]. Following
J. Mawhin’s method the problem (%) is reduced to the abstract equation

Lx = Nz

which is solved, in the case that L is a Fredholm operator, by the local degree theory
of Leray-Schauder. For the applications of this method and for an ample bibliography

(*) Entrata in Redazione il 24 novembre 1978.
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see J. MAWHIN - R. GAINES [13]. The problem () on a right open interval has been
studied by many authors. We recall the admissibility theory introduced by J. L. MAs-
SERA and J. J. SCHAPFER [20]; W. A, CorpEL [8], [9], PH. HARTMAN [14], C. CorDU-
NEANU [10], [11] and C. AVRAMESCU [1], [2] use a similar approach to solve many
BVPs. For a topological method see A. G. Karmsaros [156], [16], [17], [18], who
solves this problem under the hypothesis that the linear operator T restricted to the
kernel of d/di — A(t) is invertible. In this paper we shall omit this last hypothesis
and we shall not suppose that the linear operator associated with the system (%) is
Fredholm, because this last hypothesis does not occur in the problems we are con-
sidering.

The method we are going to use is to reduce the problem (%) to the search for
fixed points of an operator M that we shall eonstruet using a theorem of P. L.
Z®zza [26]. We pote that this operator may not be either completely continucus
or defined in the whele space. It will be then useful to impose appropriate condi-
tions to overcome this difficulties.

In the case that M is not completely continuous, using a method already employed
by G. VIiLLARI [24], and A. G. KArTsaros [15], we shall prove the existence of a
fixed point by means of a diagonal process. The nonlinear boundary value problem
is treated by the authors in [3].

§ 1. — Let O = ([[a, b), R*] be the locally convex space of continuous functions
from [a, b) into R, and let BO = {#(¢) € ¢ such that sup |2(#)| < + oo}; BC is a
Banach space with respect to the norm teta,)

1250 = sup Ja(t)| (—oco<a<b<A+ o).
tela,b)

Let us consider the eguation

(1.1) (1) — At)a(t) = f(t, 2(1))

with the boundary condition
(1.2) Te=v, reh”, m<n,

where A(i) is a # X » matrix, continuous for { €[a, b) and such that the linear system
associated to (1.1)

(1.3) g(t) — A@W)y(t) = 0

is stable: i.e., the space D of all BC-solutions of (1.3) has dimension =.
Let

f:[a, b) X R* — R»
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be a continuous function and

T:dom 7T c BC —R® (m<n)
be a linear continuous operator such that D c dom T and its restriction to D is onto

R», i.e. T(D)= R~

REMARK. — These conditions assure that the linear problem associated to () for
f(t, ) = 0 has a solution for every r € B™.
Let L be the linear operator

L:dom Lc BC -+ CXEm
defined by
w(t) — (&(t) — A(F) (1), Tx)
where
dom L = BC N C[[a, b), R*] N dom T';

and let N be the operator

N:dom N c BC - (OxXR»
defined by
w(t) — (f(- #(-)),7) .

REMARK. — Because of the hypothesis of continuity on f dom ¥ = BC.
The system (1.1)-(1.2) is equivalent to

(1.4) ; Ly = Nw.

In general it iy not possible to decompose the operator L as done in J. Mawhin’s
theory because it is not a Fredholm operator.
In fact:

a) Im L Iriay not be a closed subspace of ¢ XR™.

ExAMPLE. — Liet A(t) =0, T =0, m =0, n =1, a =1, b = 4 oo, then the
operator L becomes:

d
Ly = c?tw(t) ;
if we choose ,(t) = — nt~Y», then
Lon(t) = & a,(t) = -0+ — 4. (1) e Tm I,

at
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butnljglmyn(t) = y(I) = 1/t, uniformly, and 1/¢¢Im L because

i i
fy(s)ds = fl/s ds = logt
1

1
in not bounded on [1, + oo).

b) The codimension of Im L may be infinity.

Examprn, —~ Under the hypotheses of the preceding example, let

Yo(t) =Y, y,¢éImL

because
[ 11

Za(t) = fyn(s)ds = fs*l/"ds = ({=¥"yp/(n — 1)

1 1

are not bounded and moreover y,(f) are linearly indipendent.
In the following we shall use this equivalence theorem for the equation (1.4)
(See P. L. Zuzza [25]).

THEOREM 1.1. — Let X, ¥ be linear spaces. Let

L:domLcX - Y

be a linear operator and

N:domNcX - Y

be an operator possibly non linear.
Then the equation (1.4) is equivalent to

{ x = Mz
(1.5)
re#k

A={xeX: NoeImL}=NImL),
M:2— Pz - K,No
and

P: X -KerlL
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is a projection onto Ker L and
K,= (L[doanIm(I—P)).—l' O
We shall furthermore use the following fixed point theorem. (See P. L. ZEzzA [25]).
THEOREM 1.2, — Suppose that:
X is a Banach space,
dim Ker' L is finite,
the operator M is completely continuous.
If Q is an open, bounded neighbourhood of 0 € X, 2 c dom M, such that

(1.6) zeol, Ae€(0.1)= Ly ANz

or
ze0R, Ae(0.1)=> a2+ iK,No

then the operator M has at least one fixed point in 2. O

For the Theorem 1.1 this means that the equation (1.4) has at least one solution
in 0.

§ 2. ~ In this section we shall construct the operators we need for defining the
operator M. TUnder our hypotheses k =dim Ker L=n—m (k#0 if m<n).
Let ¢y, ..., px be a basis of Ker L; let us extend it to obtain a basis of D:

Pry vy Pry Pitry ooy Pu; @€ BCOL

Letting X(f) = (@1, ..., pa) We get a fundamental matrix for equation (1.3). From
our hypotheses we have:

3H >0 such that |[X(t)|<H .
Let us congider the two operators:
(2.2) P,:BC D, P;:at)—~X(t)XYa)z(a)
(2.3) P,:D—>KerL, P,:y(t)= ﬁ:ll'li(pi — illz«pf ;
the following lemmata hold:

LEeMMA 2.1. — Under the hypotheses of section 1, P, and P, are topological projec-
tions (i.e. linear, continuous and idempotent).
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Proo¥. — Linearity follows immediately from definition.
For the idempotency:

Pi(w) = Py(Py(2)) = P[X (1) XHa)w(a)] = X(t) X-Y(a)2(a) = Py(@).

n k k
mwpzﬂaqmp;QQJEL%ﬁ:P4§a%}=zL%:Pmm for ze D.
i=1 f=1

i=1

For the continuity:

[ Py@)] = [X(5) X~(a)x(a) |30 = sup [X (1) X(a)w(a)| <H|X-Y(a)]]x]

tela,b)
then P, is continuous. The continuity of P, follows immediately from its linearity

becanse D is finite dimensional, O

Levma 2.2, - Let P, @ be two topologieal projections, P: X — X, @: X; - X,,
with X, X,, X, linear topological spaces, X DX, >X,, then also the operator
(QoP)(z) = Q(P(x)) is a topological projection.

PROOF. — Bee [12], part I, pg. 481. O

Recalling that Ker L c D, from the preceding lemmata we can immediately infer
that:

P = P,oP,: BC - Xer L

is a topological projection.
Therefore if # € BO, then Px is a solution of the system

{ym—Awmn=o
(2.4)

Ty =0
and, moreover, if w e BC is a solution of (2.4) then Pw = w.

THEOREM 2.1. — Under the hypotheses of section 1, if we fix (b(f), r) € Im L then
there exists one and only one solution z(¢) € dom L ¢ BC of the system

{a)an—Aman=mn
(2.5)

by Te=r
such that P(z) = 0.

PRrOOF. — The existence of a solution for (2.5) follows from the choice of (b(t), 7).
Let us now prove that there exists at least one solution w = w(f) of (2.5) such that
P(w) = 0. Let 2(¢) be a solution of (2.5), we know that P(2) is a solution of (2.4),
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hence also w = 2 — P(z) is a solution of (2.5) and for this we have
(2.6) Pw) = P(z— P(z)) = P(2) — P(2) = 0.
This solution is unique. Let 2, and 2z, be two solutions of (2.5) such that P(z,)

= 0 and let w, = 2 — #2,; w, is hence a solution of (2.4) and therefore P(w,)
but

P(z )

21— 2= Wy, = P(wy) = P&, — #,) = P(&)) — Pl2,) = 0. |

From now on we denote with w(t,t,, %), ¥, %, ¥o), 2(t, to, %), respectively, the solu-
tions of (1.1), (1.3) and of (2.5) a), where x,, ¥,, 2, are the values of the solutions for
t = t[) .

Put BC;_, = Im (I — P), and denote by K, the linear operator

K, ImL->domLcBC,_, K,:(bt),r) — (1)

where #(t) is the unique solution of (2.5) such that P(z) = 0. We determine now the
explicit form of K,. Let 2(f) = K,(b(?), r), by the variation of constants formula

we have:
t

@7)  olt) = X() XX(a)#(a) + [X()X(s)b(s) ds = (1) X~*a) 2(a) + olt, a, 0) ;

a

applying the operator P we get

P(z) = Py(Py(2)) = Py(X(t) X-Ya)2(a)) = 0.

5]

Putting ¢ = 6:2 = X~(a)z(a), the preceding formula can be written as
Can

(2.8) P,(X(t)e) = 0.

From the definition of P, and from (2.8) it follows

G=0C=..=¢=10
0
. 0 .
and so ¢ is of the form ¢ = . . The equation (2.7) hence becomes
k+1
Cn
(2.9) 2(t) = X(t)e + 2(t, a, 0) .

18 ~ Annali di Malematica
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REMARK. — In (2.9) 2(f) € dom T because it is a solution of (2.5), X(t)eedom T'
because we have supposed that D cdom 7 and then also z(¢, a,0)e dom 7.
From the second equnation in (2.5) we have
(2.10) TX({t)e =r— T2(t,a,0).
From our hypotheses and from the choice of ¢, it follows

(2.11) TX@) = (D@, .co; T, Toopay,y ooy, Tou) = (04 oy 0, Tprtay oovy Tp)

therefore if we call T, the m xXm matrix (Tgy4, ..., T,) recalling that T(D) = R~
we infer

(2.12) det Ty 70 .
Crtr

Calling €=§ : ], the linear system (2.10) is equivalent to
Cn

(2.13) TyC =1r— Te(t,a, 0).

If we denote with J the immersion of B» in B»

0
Y1 O
J:R" —> R», -
ﬁlc+1
/y’m .
B
where Sy, =y, ¢ =1,2,..,m, We have
(2.14) ¢ = JT7(r — Te(t, a, 0))

and from (2.9) and (2.14) we conclude
(2.15)  2(t) = K,(b(t),r) = X(&)J Ty (r — Ta(t, a,0)) + 2(t, a, 0) =

[ i
= X(0) T r — T X () X2(s)b(s)ds) + | X(£) X(s)b(s)ds .
o (

REMARK. — The operator K, defined in (2.15) depends on P, because the choice
of the fundamental matrix X(?) is related to the form of P.

REMARK. — If m = # this construction can be semplified: in fact in this case P, = 0
and the matrix 7X(¢) is invertible; hence:

1 t
2.16) K, (b(t),7) = X(t)(TX(t))—l(r- T fX(t)X—l(s)b(s)ds) + f X(£) X-3(s) b(s) ds .
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In this case A. G. KARTSATOS in [15], [16], [17], [18], has obtained some existence
theorems that can be deduced from the results we shall state in section 4.

§3. — The equation (1.4), or the system (1.1)-(1.2), are equivalent, as it is stated
in Theorem 1.1, to

x= Mx
(.1) rve f
where
M:dom M = Ac BC - BC
M:2—>Pr+ K,Nx

# = {xeBC: NmeImL} = N-{Im1L).

Let, in addition to the hypotheses of section 1, the following hold:

there are two functions p(t), ¢(t)€ C[[a,b), R], non-negative integrable on
[a, b) and sueh that

b b
i) fp(t)dt=1’<+oo, fq(t)dt=A<+oo
i) X2 f( w) | <p)|u] + qt) -

REMARK. — From (2.15) we can easily see that the operator M is defined on
11
A = {g e BO: fX(t)X—l(s)f(s, g(s)) ds = (2, a, 0) € dom T} .

Recalling that dom 7 ¢ B(O, and that T(D) = R, the following lemmata hold:

LEMMA 3.1. - Under these hypotheses, if dom 7' = B(, the operator M is defined
on BC and it is continuous.

ProOF. — From the preceding remark if g€ BC then

Ng = (f(-;9(-);7) eIm L

if and only if
£
fX-l(s) f(s, g(s)) ds e BC = dom T'.

a
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From i) and ii) we have

| f X1(s) (5, 9(9)) ds|| <T'[g]| + 4

hence NgeIm L.

Let us now prove the continuity of M = P 4 K ,N. We have already proved
that the projection P is continuous.

Let {xn}, n & N, be a sequence in BC converging to € BC; we have to prove that
{K,Nw,} converges to K,Nx; for (2.15) it is sufficient to show that the sequence

§
(3.2) [T [1(5, @(5) — (s, 0()]ds me N

converges to zero.
Because of the continuity of f the sequence

(3.3) X0 [1(ty 2a(t) — (G 2())] nelN
converges to zero, and moreover
| X2 @ [t #a0) — 1 2@ ] < [ X1t 2.0) | + | X201 2() [ <
<|@allpt) + =] o) 4 290 < (2]@] + &) p(t) -+ 24(2)

for n>n,. Hence the sequence (3.2) converges to zero for the Lebesgue dominated
convergence theorem. 0O

LEMMA 3.2. — The operator M transforms bounded sets into sets of equibounded
and equicontinuous funetions.

Proor. — Sinee P is a linear operator and its image is finite dimensional (hence
compact) it is sufficient to prove the statement for the operator K,N.
Let Q2 be a bounded set, O c #4; then

refd = o] <p

then

|E, Na| < | X(0)IT5(r — Tatt, a, 0))| + att, a, 0)] < |
<\ T — Talt, a, 0)] + 1X@]] [X06) 15, o(6)) s <
<H|JT (7] + | I ET + A)) + BT+ 4)

the equiboundedness is proved.
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Let us now prove the equicontinuity. Let ¢, #,€[a, b) and if we put

8(ty 2(0) = [X-1(5)1(s, 2(s)) ds
and
V=dJdT;[r— TX() (1, =())]
we have
[ (B, Na)(t,) — (K, No)(t) ]| = [X(t) V + X (1) 8t 2(8:)) — X(0) V — X(t) 8(ta, #(t)) ]| <
<[ X(t) — X |V] 4 1 (%) 6(ta, #(t) — X(8) 6(fa, 2(t2)) +
— X(1) [XH5)1(s, o(s)) ds] <
ta ty
<X ) — XV + [ X6) — X)) | [X46) 15, a(s) ds] +

n HIX(tl)X—l(s)f(s, #(s)) ds]| <

<X~ XU (] + 2T+ A) + Tk A+
+ H(p[pls)ds + [a(s) ds)

from which the statement follows. O

§ 4. — In this section we are going to state some existence theorems for the solu-
tions of the system (1.1)-(1.2); this problem, as we have seen, is equivalent to the
one of finding the solutions of the equation

*= My = Px -+ K,No
x € A.

(4.1)

We start from a special case: the existence of solutions of (4.1) in the space BC,c BC
BC, = {xeBO: lim #(t) = 1.} (JI.] < + oo) .
i—b
The following lemma holds:

LeEMmA 4.1, - Suppose that, for the system (1.1)-(1.2) the following hypotheses
hold:

(4.2) A(t) is a real valued nXn matrix, defined and continuous on [a, b) (— co<C
< 6 << b<{+ o0) and such that if X(¢) is a fundamental matrix of (1.3), defined
as in section two, we have |X(t)| <H.
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(4.3) Hm X(¢) =W, ie. DcBC,

b

(4.4) feO[[a,b)x R~ R"] and such that
|X=2(8) f(ty ) | <p(®) ] + a(2)

where p(t), q(¢) € O[[a, b), R] are non negative, integrable, functions such that

b
~

b
fptydt = I' < + oo, gt)dt = A< + oo
(4.8) T is a bounded, linear operator from dom 7 = BC, onto RB™ and the matrix
TX(t) has rank m. ‘

Then the operator M is defined on BC, its image is contained in BC, and it is
completely continuous.

PrOOF. — Let us observe that in Lemma 3.1. we have proved that
b
f X-1(s) f(s, #(s)) ds € BO
a

but, moreover, thiz integral for (4.4) is absolutely convergent and it is convergent
on [a,b), ie.

#A = dom M = BC.

Moreover, recalling that Im P = D c BC,, we have from (4.2) and (4.5)

Im M c BC,.

Furthermore, still from Lemma 3.1, it follows that M is a continuous operator; hence
it is sufficient to show that K,N transforms bounded sets into relatively compact
sets. .
It is known that a subset @ of BC, is relatively compact if and only if it is ([1]):

1) equibounded;
2) equicontinuous;

3) uniformly convergent, in the following sense:
Ve>0 36(e) >0  such that Vi> (), Yge @ = lg(t) — 1] <e.

The equicontinuity and the equiboundedness of K,N(£2) has been already proved
(Lemma 3.2). Let us now prove the uniform convergence.
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Let Qc dom M be bounded, i.e.
reQ = |of<u;
from (2.15) and from our hypoteses we have

(2, ¥a) () — {lim (£, ¥a)(0} | < | W — XON{1723*] [ir] + | 7LETg + AT} +

’.

b t
+ ”W f X-1(s) {(s, @(s)) ds — X(3) f X-1(s) (s, u(s)) ds

but

HWfX‘l(s) 1(s, #(s)) ds — X(t)fX*l(s) 1(s, #(s)) ds” =
“ p .

b b
= || W[ X-205)1(5, 2(6) ds — X(0) [ X4(5) (5, 2(9) ds + X () [ X35 (s, (o)) s
a 1

[

| <
b

b
<|W — X + 4) + 7 [p05)ds + [qs)ds)
t t
and then

[(K,Nx)(t) — {g{} {(K,Na)(®)} ]| <
<|W =X {IIT5*|(Jr| + | TIHETp + A) + T + 4} +
b b

+ H(ufp(S)ds + fQ(S)dS) ;
¢ i

the uniform convergence is proved. - o

To get theorems which assure the existence of solutions of (1.1)-(1.2), that is of
fixed points for the operator M in B(,, it is sufficient to add to the conditions of
Lemma 4.1. an a-priori bound and to use some fixed point theorems.

For example the following theorems hold:

THEOREM 4.1. — If the conditions (4.2), (4.3), (4.4), (4.5) are verified and if
(4.6) , B IT T exp (HTM) < 1
then the operator M has at least one fixed point in B(,.

Proow. — The operator M : BC, — B(, is completely continuous because of Lem-
ma 4.1. For Theorem 1.2 we have to show that there exists Q¢ BQC, open, bounded
neighbourhood of 0 such that

= AK,Nr 2e0f Ae(0,1).
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Let Q = {w e BC,: ||« <p}, if there exists Z € 042 such that
Z = AK,NZ for some A€ (0,1)

then V¢ €[4, b) we have
)| < 5 13| = (G NB) 0] <

<|xwyrrefr -z f () X165 106, 36) 5] | + | ft X0 X(6) (s, 25) (35| <
4 a i

<HITF|[Ir] + |TIEEE] + 4] + HA + H|p(6) [7(s)|ds
and applying Gromwall’s Lemma

|z < (E|IT5 | r] + 1TIET|Z| + 4]+ HA} exp (HT)
then
|z <[H|TTG 7] + B2|I T | T| D)@ 4 BT Lo || 7] A 4 HA] exp (HI')
namely
(L — B I3 | T exp (HD)) 2] <

<[H|IT; ||| + E|I TG T]|A + HA] exp (HI')

but, recalling (4.6), this is a contraddietion for ¢ sufficiently large. The theorem. is
hence proved. O

THEOREM 4.2, — If the conditions (4.2), (4.3), (4.4), (4.5) are verified and if
(4.7) mJrs T+ HIM < 1
then the operator M has at least one fixed point in BC;.

PrROOF. — As in Theorem 4.1. Let Q = {#e BC;: |#|<pg}, and suppose that
there exists Z € 02 such that

%= AK,N% for some A& (0,1);
we have

7] = |AK, ¥z < | K, ¥2| <E|15| [|r] + |ZTIE@|z] + 4)] + HA+ HD|3] -
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From this

A — I TN+ ED)a) <H|TT ] + HEI TS| | 714 + HA

but, recalling (4.7), this is a contraddiction for ¢ sufficiently large. The theorem is
hence proved. O

We can now consider a more general case: the existence of solutions of equation (4.1)
in BC (omitting the hypothesis (4.3)). Let us suppose that dom 7 = BC. From
Lemma 4.1. we can affirm that M : BC — BC, butit is not possible to repeat in B( the
same reasoning used in B(;, because the compactness theorem is not true anymore.

The existenee of fixed points for the operator M shall be proved via Theorem 4.1
together with a diagonal process.

Let {a;}, i€ N, an increasing sequence of real numbers such that

a=a, limae,=D>b;

i—>+ co

let I, = [a, a,], if g(t) € C[1,, R"] call E, the set of every function §(f) defined in this
way:
' gy it tel,
gla;) if tefa;, b);

B, is a Banach space with respect to the norm

|7]l = sup [g(0)] 5
tely

moreover F; is isomorphic to C[1,, R*]:
The following lemma holds:

LeEmMA 4.2. — Suppose that, for the system (1.1)-(1.2) the following hypotheses
hold:

(4.8) A(?) is a real valued » X » matrix, defined and continuous on [a, b) (— co < a <
< b<+ oo) and such that if X(¢) is a fundamental matrix of (1.3), defined
as in the second section, we have || X(t)| <H.

(4.9) feO[[a, b) X R*, R*] and such that
| X 1t w) [ <p@ ] + g()

where p(f) and ¢() are non negative, integrable, real-valued functions such that
b

b
[pat=r<+o [anyar=a<+ .

a
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(4.10) T is a bounded, linear operator from dom T = BC onto R" and the
matrix TX(t) has characteristic m.

If, moreover, the condition (4.6) is satisfied, then the operator
M;:dom M,CE, > 1,
defined by
M2 g(t) —2(1)
where
o(t) = (Mg)(t) g() e C[L, B"], tel;
hag at least one fixed point in H,.

PROOF. — The complete continuity of the operator M, can be proved via the Ascoli-
Arzeld theorem whose hypotheses are easily verified from the Lemmata 3.1 and 3.2.
The statement follows from (4.6) as in Theorem 4.1.

We can now show that a solution of system (1.1)-(1.2) exists in BC.

THEOREM 4.3. — If the conditions (4.6), (4.8), (4.9), (4.10) are satisfied, then the
system (1.1)-(1.2) has at least one solution in BC.

PROOF. — Because of Lemma 4.2. there exists a sequence {#,}, %, € B, such that
Z, = Mz, .
from the definition of M; we have
{(4.11) 2,(t) = (M;Z,)()) = Mz,(t) tel,.

The sequence {,} is equibounded and equicontinuous in C[i;, E"]: the equiboundedness
follows from the proof of Theorem 4.1 and the equicontinuity as in Lemma 3.2. Hence,
for the Ascoli-Arzeld Theorem, there exists a subsequence {«;(#)} that converges uni-
formly to 2 (t) e O[I,, R"], i.e.

limz}(#) = #(¢t) uniformly Viel,.

G of 00

Analogously there exists a subsequence {x(f)} of {x;(t)} that converges uniformly
t0 2,(1) on I, such that z,(1) = 2,(¢) Yt I, We can repeat this reasoning Yie N¥. In
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this way we obtain a family of subsequences of #;:

@, a, a3, .. unif. conv. on I,
a3, @, «2, .. unif. conv. on I,
«y, a3, a3, .. unif. conv. on I,

Let {#i(t)} the subsequence of {x,(i)} obtained with a diagonal process: the sequence
{ﬁ:} converges uniformly in each compact of [a, b); then there exists 2(t) € C[[a, b), R"]
such that

(4.12) lim |Zi(3) — 2(8)] =0

>+ 0

uniformly on each compact of [a, b).

Moreover #(t) is bounded on [a, b) because {Z,(f)} is equibounded. It remains to
prove that z(#) is a solution of our problem.

Let

y(t) = Mz(t) = Pz(t) + K, Nz(1) .
For fixed ¢ e[a, b), Yt €[a, ¢] and for i sufficiently large from (4.11) we have

1Zi(0) — )] = | Mz.(0) — y ()] <
<[ Pli@ — 2] + [ £, NZ(1) — K, Na(t)] <

) b
<[Pl — 20 + HE|JT||T] + 1) f | X—2(s)[f (s, Tis)) — (s, 2(5))]] s .
From (4.12) and @pplying the Lebesgue dominated convergence theorem, we can
infer:

(4.13) lim [|Z(#) — y(@)]| =0 tela,c].

i—>+ o0
Comparing (4.12) and (4.13) we can conclude

y(t) = 2(t) = Mz(t) tefa,c]
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Since ¢ is arbitrary then
2(t) = Me(t) tela,b).
The theorem is hence proved. O
Likewise, we can state a theorem similar to Theorem 4.2.

THEOREM 4.4. — If the conditions (4.7), (4.8), (4.9), (4.10) are satisfied, then the
system (1.1)-(1.2) has at least one solution in BC.
The proef is similar to the one of the preceding theorem.

REMARK. — In the Lemmata 3.1, 3.2, 4.1 the condition

| X=20) £ty w) | <p(t) ] + (1),

with p, g € O[[a, b), R*] such that
4 b
fp(t)dzzr<+oo fq(t)dt=A<+oo

can be replaced with the less restrictive one
| X2 ity W) <g(t, [u]) + a(t)

with g € C[[a, b) x B*, R*], ¢ € O[[a, b), R*] such that

b
Jott julyar < + 0o, weBC
b

jq(t)dt:/l< + oo.

a
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