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Summary. - Consider the Dir@hlet problem ]or an elliptic equation in a domain 9 ,  with eoe]]ieients 
having discontinuity on a sur]ace 1". Suppose I ~ divides 9 into 91 w 92 (92 the inner core), 
the thickness o] 91 is o] order o] magnitude s, and the modulus o] ellipticity in 91 is o] order 
magnitude 21. The asymptotic behavior o] the solution is studied as e -> O, 21 ~ O, provided 
lira (slY1) exists. Other questions o] this type are studied both ]or elliptic equations and ]or 
elliptic variational inequalities. 

Introduction. 

In  this paper  we consider elliptic equations, and also elliptic variat ional  inequali- 
ties, with piecewise continuous coefficients. The coefficients have jumps along certain 
hypersurfaces.  Thus we can write the domain ~9, where the solution is considered, 
as a disjoint union of regions ~ i  such tha t  the coefficients of the operator  are smooth 
in each ~ ,  bu t  have a jump across the boundary  ~f2~. 

More specifically we assume tha t  the coefficients of the operator,  in one specific 
region tgto, have an order of magni tude ~io, and consider the situation when A,o -~ 0 
whereas the (~ thickness ~> of ~9,o may  shrink to zero at  the same time. The region f2,o 
may  be considered as a (< reinforcement  ~> of f2Ntg~o. The smallness of ~o has the inter- 
pretat ion,  at  l eas t  in problems of elasticity, tha t  the reinforcement  is made up of 
an (( ex t remely  hard  )> material .  

Such problems of reinforcement  for 2-dimensional elliptic equations and varia- 
t ional inequalities have been studied by  Caffarelli and Fr iedman in the dam problem [1] 
and in elastoplastic problems [2]. In  these papers the limiting solutions (as 2,o -> 0) 
have been identified and uniform estimates on the convergence have been obtained. 

In  this paper  we derive L 2 estimates for the rate  of convergence. Unlike [1], [2], 
the present  approach applies for any number  of dimensions. 

(*) Entrata in l~edazione il 23 ottobre 1978. 
(**) The second author is partially supported by National Science Foundation 

Grant 74 06375 A01. The third author is partially supported by National Science Foundation 
Grant MC575-21416 A01. 
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I n  P a r t  I we consider a boundary  reinforcement  for elliptic equations. Tha t  
means tha t  K2~. is a layer  whose boundary  contains the boundary  of ~ .  For  simplicity 
we take  the coefficients in Y2\Qi~ to be continuous. The limiting problem depends 
on the thickness e of f2~~ or, more precise]y, on lira (s/)~o). There are actual ly three 
types of possible limit problems, and they  are dealt  with in Sections 2-4; some auxil iary 
estimates are derived in Section 1. 

In  P a r t  I I  we deal with interior reinforcement,  tha t  is, t~o lies in K2. Here  again 
there  are several possible limiting solutions, depending on lirn (e/~0). 

In  Pa r t  I I I  we establish results analogous to those of Par t s  I,  I I  for variat ional  
inequalities. 

SA~Cm~z-PAnE~CIA [8] has studied the case of interior re inforcement  in the 
special case where the reinforcing mater ia l  occupies a lense-shaped region K2~~ around 
a smooth sm'face S; f2~. shrinks to S as ~o -> 0. l~is l imit problems are similar to 
those obtained in Par t .  I I .  He  works with H ~ a priori estimates (resulting f rom the 
(~ var ia t ional  ~> approach) whereas our approach is based on deriving H ~ a priori esti- 
mates ;  the la t te r  approach can be used to obtain be t te r  estimates on the rate  of con- 
vergence to the limit problem of the corresponding solutions. 

In  case tg~. is a fixed domain interior to f2 und f2~t~,,  is connected, the (~ varia- 
t ional  >> approach of S A ~ - c m ~ z - P ~ c i ~  [8] was extended by  L io n s  [4] to yield an 
asymptot ic  series (in 2o, as 20 -+ 0) for the solution. 

We finally ment ion tha.t the  methods of this paper  apply also to in ter ior-boundary 
re inforcement  problems; such problems are studied in [1] where another  method  
is used for deriving the necessary a priori  estimates. Our methods (like those of [8]) 
apply  also to parabolic equations. 

P A ~  I. B O U N D A R Y  REIN'FOI~CEMENT FOI~ E L L I P T I C  EQUATIONS 

1.  - A priori  e s t i m a t e s .  

Let  / ' ,  S be C 1'1 connected hypersurfaees in R ~, such tha t  /~ lies in the interior 
of S. Le t  92 be the bounded domain with boundary  F, and denote by  t )  the bounded 
domain with boundary  S. The boundary  of the domain D1 ~ D ~  is the /" W S. 

Le t  (a~(x)) (k = 1, 2) be a positive definite mat r ix  with elements in C~+~(f2) for 
some g > 0, and define the conormal derivat ive 8u/8~ ~ on ]7 b y  

~u ~ ~u 
~--; = ~ a~j(x) cos (x,, ~) ~x,- 

~,,J= 1 

is called the conormal vector.  
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Le t  ]~ (k = i, 2) be  given functions in C~+~(~2) and  let  ~ be posi t ive numbers .  

Consider the problem:  :Find u -~ (u ~, u ~) satisfying: 

~ [ ~ ~u~\ 
(1.1) ~ ~_, ~ ~a~(x) ~ x ~  ---- ]~ in tg~ (k ----- 1, 2), 

(1.2) u 1 -= u ~ on /I, 

(1.3) " ~ul ~U~ 

(1.4) U l =  0 on S. 

According to [3], this problem has a unique classical solution, t ha t  is, u ~ is in 
C~(~)  ~ C~(t97r and  (1.1)-(1.4) are satisfied in the  usual  sense. 

A weaker  formulat ion of (1.1)-(1.4) is given b y  the  var ia t ional  principle:  F ind  
u ~ (u 1, u ~) in H~(t)) which minimizes 

) (1.5) ~ ~a~ ~u~ ~u~ 

or, equivalently,  find u---- (u 1, u ~) in H~(Y2) such t ha t  

) (1.6) ~a~j - -  -- § ]~v dx ---- 0 for any  v ~ H~(~).  
k=l j \~,.c=1 ~x~ ~x~- 

]k a n d / ' ,  A unique solution for this p rob lem exists under  weaker  conditions on a~, 
S t han  those s ta ted  above (see [3] [7]). 

I n  this pa r t  I we shall consider the a sympto t i c  behavior  of the solution as ~1 -~ 0. 
We shall first deal wi th  the case where the  thickness of s shrinks to zero as ~%1 -+ 0. 

Let  h(x) be a posi t ive funct ion defined on F and let # .(x s F)  denote the  ray  ini- 
t ia t ing a t  x in the  conormal  direction ~(x).  Denote  b y  x~ (s > 0) the  point  on /ta 

such t ha t  x x = sh(~)/Uv~(x)l 1. I f  s is sufficiently sman  then  the  set of points x~, 
when x varies over  F ,  fo rm a manifo ld ,  designated b y  _F~. We sh~ll now assume tha t  

(1.7) S = F~, 

and  p rove  the following lemma.  

LE~V~A 1.1. -- There exists a positive,constant C such that, /or all e, ~1 su]]iciently 
small, 
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2 §  C ,  

Here  D ~ u  is the vector  with components  3i~lu/~x~. �9 �9 ~x~', where I~] = a~ ~ . . .  
+ ~ = ] .  

PROOF. -- In  what  follows C will denote a generic positive constant  independent  
of ~, 2~. Le t  x ~ be ~ny point  of F and let V be ~ small neighborhood of x ~ Recall 
t ha t  in V we can represent  F and S in the form 

_NV~ V:  x~ = g~(s) , s = (sl, ..., s~-~) ( l < i < n )  

S n V :  x ,  = g~(s) + ev~h(s)/llvllI ~ (1 <~i<~n) 

where v l =  (v~, ..., v~). Assume, for definiteness, t ha t  

~(x~, ..., x~_~) 
O(sl, ..., s~_l) 

: / :0  on F n V .  

Then we can represent  P (~ V (with perhaps a smaller neighborhood V) in the form 

x .  = g ( x ~ ,  . . . ,  x,~_~) , 

and 2 n V in the form 

z ~  = g ( x ~ ,  . . . ,  x . - -~)  - e k ( x ~ ,  . .o,  x~_~ ,  ~) 

where ID~gi<~, I D ~ l < c  if I~i<~. 
We now introduce a change of coordinutes 

x ~ -  g ( x ~ ,  . . . ,  x,~_~) 
(1.11) y , = x ,  ( l~<i~<n--  1), Y~-= k ( x ~ , . . . , x ~ _ ~ , e )  

Then,  with ~k(y) = .u~(x), we have 

~u ~ ~u~ ~ k  ~ 
= a~j ~y~ ~yj % ax~ ~xj ~ -~ 

Denote  by  ~ the image of V under  (1.11), and denote b y / ~ n  I?, ~ n lY the images 
of P (~  V, S c~ V respectively under  (1.11). Then 

/~ (~ ]? is contained in y .  ~-- 0, 

S n ~ is contained in yn = -  e. 



H. BlCEZIS - L. A. CAFFARELLI - A. F~n~)~x~ :  Rein/orcement problems, etc. 223 

We m a y  ussume thut  ~ is the n-dimensionul cube [y~] < ~o, l < i < n .  Finally,  denote  
by  ~ ~ ~ the imuge of ~2~ f~ V under (1.11). 

Since u e H~o(Y2), 
Yn 

~ . ~ 1  f ~lyneyn.  
--8 

Therefore,  with y* = (y~, ..., y.-~), 

Also 

f i~e~l~dY*<Ce f ID~I~dY. 

f I  l=dy< f ID II  y. 

Going back to the x-coordinates we get a similar inequali ty in tg~ (~ V. Taking 
a finite open covering of ~ ,  we conclude tha t  

.P ~21 

(1.13) fl  l ax<e  fl )  l ax 
~9 x Y2~ 

Using the s tandard  inequal i ty  

f2~ .U f2~ 

the  relation u ~ =  u 1 on F, and (i.12), we get 

~J Q* ~J2 

Combining this with (L13), we obtain 

(1.14) 
~1 Q2 Y21 Q~ 

Taking v = (u 1, u ~) in (1.6), we obtain 

(1.15) 

Hence 
Q1 ~s $21 ~l 

t2~ -q~. ..q2 
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for any large 01. Substituting into (1.14), we get 

(1.16) 

where (1.15) was used. Since 

Cs f ([u~l z Cs ~ 

for any large 01, (1.16) gives 

f f 
'~1 ~'~ 

that  is, the assertion (1.8) holds. 
Using (1.8) we obtain 

Substituting this into the right hand side of (1.15), the assertion (1.9) follows. 
To prove (1.10), let ~(y) be a Co(V ) function such that  ~ ----- 1 in 

17o : {Y: lY~]< ~ for l <i<n} . 

Suppose first that  

(1.17) { ~ is three times continuously differentiable; 

~k is three times continuously differentiable in ~k 53 I7. 

Let 
. - I  8 ~  

l = 1  

In  view of (1.17), (v t, v ~) belongs to H~(Y2) and, therefore, (1.6) holds for v = (v 1, v2). 
Going into the y-coordinates, we get 

(1.1s) 
/ r  '/,,~" = i ~ I ~ l  
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r ~_-~:T.~ (r <C  integrat ing by parts we find since IJ 
that  the left-hand side is equal to 

~=1 . 8 y i  8 y i ~ :  1 

k = l  ~=1/,~=1 
5~ P 

- -  a i~  �9 ~=~ . ~=~ i.~=~ ~y~Sy~ 8~8y 
~ n  V 

- -  d y .  

Hence, (1.18) gives 

(1.19) 
2 f , - ~  32z~k ~ 2 f k=l  l ~ l  ~=1 

5~n Vo b,~nu 

where/~2 is the vector with components 8~/Sy~y~ l < i < n ,  l < ~ l < n - - 1 .  
By Sehwarz's inequality, 

~k 

where M is a positive constant to be determined later on (independently of s, 2~). 
Substituting this into the right hand side of (1.19) ~nd using (1.9), we get 

(1.20) k~l f ;b~ID2ukl~< - ~ k = l  8 . 

From the differential equation 

we can estimate Z,~(8e~k/Sy~) in terms of the other terms. Using this estimate and 
(1.20), we get, after using (1.9), 

(1.21) 

f2k n Vo F2k n V 

15 - A n n a l i  eli M a t e m a t i c a  
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We now go back to the x-coordinates and obtain an est imate on 

2~ f ID~uk[ 2 (1.22) 
~2~a v~ 

where Vo is the inverse image of ?o under  the mapping (1.11). 

Le t  Ws be a ~-neighborhood of /~. I f  ~ is sufficiently small, we can cover W~ 
with a finite number  of neighborhoods of the form Vo. Collecting all the estimates 
on the terms (1.22) we obta in  

~c=1 = 
~ a W~ ~Q~ ~ W~ 

where C is a constant  independent  of M. Choosing M > 2 C ,  the assertion (1.10) 
follows. 

In  the above proof we have made  the smoothness assumptions of (1.17). In  the 
general case, we approximate /~ ,  S by  C ~ surfaces F~,,, S~. Then (see [6]) the condi- 
t ion (1.17) is satisfied for the corresponding solution u~k. As easily checked f rom the 
above proof of (1.10), the constant  C occurring in (1.10), for u k ~ u~,k depends only 
on bounds on the first two derivatives of the local representat ion of F~,  S~; hence 
it  can be taken  to be independent  of m. Taking m -~ co, the proof of (1.10) follows. 

]~E~A~:. -- Lemma 1.1 and, in fact,  all the results of this paper~ extend to more 
general elliptic operators obtained by  adding ~ [  ~ b~(x)~u/~xj ~ cqx)u]  to the  left  
hand side of (1.1); ok>0. 

2 .  - T h e  c a s e  e / ~ l  -~ ~, ~ < oo. 

Tn-EO~E~ 2.1. - J~] ~1 -~ 0, e/~l -> ~ where 0 < o~ < o% then 

(2.1) u ~ -* w uniformly in compact subsets of f2~, where w is the solution of 

(2.2) ~ ~ ~ [ k ~w~ f2 , - -  t % j  - -  

Ow 
(2.3) ~ 2 h ( x )  ~ 2  -~ w = 0 on 1 ~. 

P~ooF. - Le t  x ~ ~ F and let  I be the ray  in the conormal direction @ initiating at  x ~ 
it  intersects S at  a point  x 1. By  (1.2)~ (1.3)~ 

~2 ~U2(x0) h(x0)  ~ u i ( x 0 )  
(2.4) u~(x0) + ~h(xO) ~ -- u~(zo) + 

where # is the unit  vector  in the direction v ~. 
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Clearly 
tk(x ~ 

f Ou ~ (2*5)  u l ( x  0) : u l ( z  0) - -  u l ( x  1) : - -  ~ a s  

o 

where k(x ~ = h(x~ and s measures the length on 1 from x ~ to x~. Also, for any  x 

in 1 (~ ~(21, 

~u~(x ~ ~u~(x) C ~ u  ~ 

Substi tuting this into (2.5), and substi tuting the resulting expression for u~(x ~ into 
(2.4), we obtain 

~k(f,) ~ u  ~ 
= _ dsJ d . (2.6) u~(x ~ + z sh(x~ 

0 0 

Using (1.10) we get 

.r 
since ~ ~ C ~ .  

By  (1.9), (1.1O), we also have 

Hence 

(2.s) 

f t  ~u2(x) 2ds~CfJDu~(x )12dx-kCf]D2u2(x ) ]~dx~C ~ �9 
F D~ D2 

~u~(x) 
f u~(x) + ~h(x )  ~ ds -~ O 
1 ~ 

if (~/~1)---)" g" We can now complete the proof of the theorem, in case ~ > 0, by  
representing u s in terms of Robin's function, and in case ~ ~ 0 by representing u ~ 
in terms of Green's function. 

3 .  - T h e  c a s e  e / i t 1 - >  c ~ ,  s - ~  O. 

Tn-EO~E~ 3.1. - I] s/~l -> ~ ,  s --> 0 then there exist constants A~,~ such that 

(3.1) 

(3.2) 

u 2 -- A~I ~ ~ w uni]ormly in compact subsets o] ~2~, where w is the solution o] (2.2) 
subject to the Neumann boundary condition 

~ - 7  on 1", ~,--- / dx ~ . 

t~j 1" 



228 Ii .  BREZlS - L. A. CAF~A~ELLI - A. F~I]~I)~A~: Rein]orcement problems, etc. 

PR00F. - The first inequali ty in (2.7) is still valid. Multiplying it by  ~/82 we get 

(3.3) f ~1 u~(x ) + )~2h(x) ~u2(x) 2 -[ ~ ds < Cs~ . 

1" 

By (1.12), (1.9), 

J e  ~ e j e 
r Q~ 

Hence (3.3) gives 

(3.4) f ~u~ 

We now represent u2 in terms of l~eumann's function and use (3.4). We conclude 
! 

t ha t  there is ~ constant  c = c(~,  s) such tha t  every sequence (2~, s') has a subse- 
// 

quenee (~1, e'~) such tha t  

(3.5) u2(x)- c()~, e") is uniformly convergent in compact subsets of Y2~, 

if ( ~ ,  ~ ) -~ o. 
Now let F ,  be a surface parallel to /" and lying in Y2~ such that ,  for any  x E / '  

there is a unique point x ,  o f / ' ,  lying on the inner normal -- v t o / '  at  x, and x ,  x -~ 
is small and independent of x. 

Since 

u~(x) - uS(x,)  = ~ a s  , 

we have 

.U Q ,  

where ~ .  the region bounded by F . ,  F. Multiplying both sides by (21/s) ~ and using (1.9), 
we get 

(3.6) f ~lu2(x) - -~  u2(x*) '~dS*~ 
/ -  

By (3.5), for fixed point x o in .(25, 

j u ~ ( x , )  - u~(Xo)l < r  

Combining this with (3.6) we find tha t  

(3.7) u~(x) - Q ~  dS~< C' ~'2e 
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where  Cz~ ~ = 21u2(Xo)/e is a cons tan t .  Using this in (3.3), we ob ta in  

f (3.8) ~ h ( x ) ~  + Q ~  <C + e ~ . 
F 

Since 

and,  b y  (3.8), 

we deduce  t h a t  

(3.9) 

.02 D2 F 

F 

- ~ 0  --> O~ - -  --~ Cx:),  if s 21 

l i m  C ~  =(f/~dx)/(fldS). 
Represen t ing  u ~ in t e rms  of N e u m a n n ' s  func t ion  and  using (3.8), (3.9), the  asser- 

t ion  of the  t h e o r e m  follows. 

RE~AI~I(. - I f  

f p  dx 0 =/= 
f2, 

for  a sequence (e', 4'1)--> O. 
which  is impossible.  

t hen  A ~  -+ oo. Indeed ,  o therwise  we ge t  f r o m  (3.3) 

f ~U2 i d S - ~ O  

Consequen t ly  w will have  to  sat isfy (3.2) wi th  ? = O, 

4.  - T h e  case  o f  t h i c k  r e i n f o r c e m e n t .  

W e  shall  now s t u d y  the  ease where  21 -~ 0 bu t  ~ does no t  shr ink to  zero. I n  fac t  
we shall  t ake  S to  be  fixed. 

The  pa i r  (v 1, v 2) = (~lu 1, ~ u  2) satisfies /tk ~ ~xi \  '~ ~xJ = 

where  #1 = 1, #~ = 2~I21. 

V ~ = V 2 on  /'~ 

Ov ~ Ov 2 

v 1 = 0 on S 

As 21-> O, #1 tends  to  oo. 
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Let  z(x) be the solution of the variational problem 

f ~z ~v f 
4 ,  G = i , i= l  

/21 $? 
for any  

(4.2) v e Ho~(~), v = eonst in ~ 

z ~ Ho~(~?), z = eonst in ~2~. 

We can determine z as follows: Le t  ~ be the solution of 

(4.3) 
in 

~ = 0  o n S ,  , ~ = 1  o n / " ,  

and let U be the solution of 

(4.4) 
,] = 0  on S u F .  

i n  f ~ l ,  

Then (see [2]) the solution of (4.1), (4.2) is Co~ + U where Co is a constant  determined by 

(4.5) 
P r -Q2 

The following result is proved in F2]: 

[t),lu 1 -  zl~dx --> 0 if 2t -~ 0. (4.6) 
DI 

For  (~ positive and sufficiently small, denote by/~o the set of points in f2~ obtained 
from F by moving each point x o f / "  u distance 6 along the direction -- v2(x). Denote 
by xo the point on Po such tha t  x xo is in the direction -- ~(x). Write 

(4.7) ~2 ~U2(Z) )~1 ~A~I(x) ~)I(X5) [~vl(x) ~)l(x(~)l 

In  view of (4.6), 

(4.8) ~-~v~vl(xo)~ - -  ~-~z(xo)-->0 uniformly on _P~, as 21-~0 
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Also, 

(4.9) f ID2(,~tlul) 12dx 
1 ~ ff-,~ 

where Go is the region bounded by F~, F. 
The proof of Lemma 1.1 extends to the present case with minor changes, provided 

we replace s by  1 in all the estimates. Thus (1.8)-(1.10) hold and, in particular, i t  
follows tha t  the r ight-hand side of (4.9) is bounded by C6. Using this and (4.8), 
we deduce from (4.7) tha t  

l im ~ ~ z(x~) C~. 

The function z is continuously differentiable in ~2. Hence from the last relation 
we can deduce tha t  

li-~,_.0 f ~2 ~u2(x)o~ 2 ~ z(x) 2 dS~<~(d) 

where ~(~) -~ 0 if ~ -+ 0. I t  follows tha t  the left-hand side vanishes. Representing u S 
in terms of the 5Teumann function we then obtain the following result. 

Tn~O]CE~ 4.1. - I f  ~1 --> 0 and S is fixed, then ~ u  ~ --> z in L2(~)  where z is the solu- 
tion of (4.1), (4.2). ~urther, there exist constants A~ such that 

\ 

(4.10) uS(x) -  A~--> w(x) uniformly in compact subsets of [23 

where w is the solution of (2.2) suject to the Neumann boundary condition 

~w ~z 
(4.11) ~2 ~ -- ~1 on F. 

PART II .  I ~ T E R I O R  REI~FORCEME1NTT FOR E L L I P T I C  EQUATIONS 

5.  - A pr ior i  e s t i m a t e s .  

Let  _]"2, _]"1, /'o be connected C 1'1 hypersurfaces such tha t  Fi+l lies in the interior 
o f / ~ .  Denote by [23 the domain with boundary  F~, by [23 the domain with boundary  
/~2 k)/ '1, and by [21 the domain with boundary F1 kJ Fo. 

Set [2 : [21 kJ ~2 k) ~8. 
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Let  (a~) (k = 1, 2, 3) be positive definite and C ~+7 matrices defined in ~ ,  and let  ]~ 
be functions in C~+~(D). For  2̀~ > 0, consider the problem: 

(5.1) ~ Z ~ ,a~(x)  = ]~ in ~ (k = 1, 2, 3), 
~,~=~ ~x~ \ ~x~] 

(5.2) u ~+I = u ~ on Fk (/~ = 1, 2), 

~uk+~ -- ,2 ~u~ (5.3) `2,~-t-.1 ~k+i k ~----~ on ff~ (k = 1, 2), 

(5A) u l = 0  on Po. 

This problem has a unique classical solution. I t  can be given also in the varia- 
t ional form (1..6) where k ranges over 1, 2, 3. 

We shall consider [2~ as a layer  of reinforcement,  and s tudy the asymptot ic  behav- 

ior as `2~-~ 0. 
Denote  by  (F2)~ the manifold consisting of the points 

x~ = x + ~h(x)mx) / l lmx) l l~  

where x varies over / '~ ;  h(x) is a given positive function. We shall assmne tha t  

(5.5) F,  = (F~)~ 

and prove the following lemma. 

LElV~A 5.1. - There exists a positive constant C such that, /or all s, 2̀1 suJJiciently 
small, 

(5.6) 

(5.7) 

(5.s) 

f ~2 
Iu~12dx<~ C-~2§ C,  

k=l s162 

z~ f lD2u~12ax<C~§ o. k=l 

PROOF. -- By  s tandard  inequalities, 

(5.9) 

(5.10) 
F, D~ 
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As in the proof of Lemm~ 1.1 we have 

r Z'x Yl, 

Using (5.10) we get 

(5.12) 

l~inally, 

fl~ol~<ofl~p § o~flD~l ~, 
Es Q~ ~* 

D2 19i ~Q~ 

~2 3 1"2 Yl s 

so that ,  upon using (5.11), 

(5.13) fl~,~<CfID~, ~ + c~flD~l~ + ~fID~l~, 
.t28 s Y2, [2 a 

~ r om the variat ional  principle (1.6) (with k = 1, 2, 3 and v ~ u ~ in D~), we obtain 

D.e .,q~ 

Now, for any  M > 1, 

where (5.9) was used; the constants C in the sequel will not  depend on the choice 
ef M (which will be made below). 

Also, 

C 

by  (5.12). Finally,  

~ s  "Oi Q2 ,c2s 
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by  (5.13). Thus, 

f ( ) ~=~ lu~t<<. C + CMNmax ~ , 1  + ~ [Dull2 +~/I + N IDu 2l~ . 

Subst i tut ing this into (5.14) and choosing M = N + Ne/2,,  N sufficiently large, we 
obtuin the inequali ty (5.7). 

The assertion (5.6) follows from (5.7) and (5.9), (5.12), (5.13). 
Finally,  the  proof of (5.8) is similar to the proof of (1.10); it is based on locally 

transforming F~, /~ into planar regions lying on ~ - ~  0, ~ = -  s respectively, 
.'4--1 

subst i tut ing tes t  functions ~ ~ ~ 2 4 ~ / ~  and making use of (5.7). 
Z = I  

6 .  - A s y m p t o t i c  e s t i m a t e s  a s  s / ~ 2  - +  :r ~ < c ~ .  

Let  x~F~,  x2~ F~ be such tha t  x ~ lies on the eonormal v2(x2) initiating at  x 2. 
Denote  b y / ,  the unit  vector  in the direction v2(x2). 

F rom (5.3) we have 

(6.1) 

Clearly, 

2~ ~v~(x~ ) 
1", a 

~u~(xl) ~u~(x2) _ 2 [ ~u~(xl) ~u2(x~)~ 

2"= 

ds dS~, < C22 s + 1 

where (5.8) has been used. 
Also, since 

we have 

Iv~(x ~) - v2(x~)l < r  

2~ ~r2(x~ ) ~v(x2) dS~.<.< C).~s 
1~ 1"2 

]Du2 ]2 < r e f 
F~ 

<C2~e f 
~8 

!Du~ 12 

where (5.7), (5.8) have been used. I t  thus follows from (6.1) tha t  

f ~ul(xl ) (6.2) 21 ~vl(xl ) 
Fa 
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l~rom (5.2) we h a v e  

f O eh(x3) ~u~(x 3) (6.3) u~(x ~) - -  u~(x ~) -~ u2(x 1) - -  u~(x ~) -~ 3--~ u:~-- ~ ~- 

SO t h a t  

(6.~) 

(6.6) 

(6.7) 

and ,  of course,  also 

~W~ 
(6.8) + 

,j = ~ ~X~ \ 

where  D 3 : ~3,  ~ ~-- ~2 U/"~ U .Q~, a n d  

(6.9) w 1 = 0 

f sh(x~) ~ 3u~(x ~) (6.5) u~(x ~) - -  u3(x 2) /~ 3v3(x3 ) < Cs ~ �9 

F r o m  (6.2), (6.4) we see t h a t  if 8/~12--> ~, u ~ --> w ~ for  k = 1, 3 then ,  fo rmal ly ,  

(w ~, w 8) sa t i s fy  t he  re la t ions  

~ ~ ~v-- Y on 

~w a 
w ~ - -  w 2 = ~ h ( x )  ~ on F2 ,  

on /~o. 

Thus  we are  led to  t he  fol lowing theo rems .  

T]~EO~ElVs 6.1. -- I ]  43 --> O, S / ~  -~  ~ where  0 4 o: < oo then u ~ -+ w ~ (k ~-- 1, 3) un i -  

]ormly  i n  compac t  subsets  o] f2~, where  w 1, w ~ ]orm the so lu t ion  o] (6.6)-(6.9). 

P~ooF .  - W e  in t roduce  a d i f f eomorph i sm Q of ~J1 u ~23 on to  ~1 w ~3 such t h a t  
t he  de r iva t i ve s  of Q are  b o u n d e d  b y  O(s) (cf. [1; Sec. 8]). Se t  

~ k =  u~oQ (k = 1, 3). 

T h e n  (41, ~a) sa t i s fy  a s y s t e m  s imilar  to  (w 1, w 3) w i th  coefficients 5~j, ]k such t h a t  

(6.10) la,%-- a~l < r I?--  l~l < Cs 

= ] k  in ~ ( k = l ,  3) 

ff~ 
3 

_ _ q ~ 3  
3#3 ' 

where  (5.8) has  been  used.  Thus ,  if ~ < C ~ 3 ,  
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and with additive terms ~ ,  ~3 in the corresponding right hand sides of (6.6), (6.7) 
where 

(6.11) f [%I~<Ce + C(~ ) ~ 

here Lemma 5.1 is used in obtaining (6.11). 
~ r o m  ( 6 . 1 0 )  we ge~ 

' (~,~- 4 )  ~ ~ < c~3 1~)~ ~1 ~ <  c~ 

where (5.7) has been used. 
Now let 

z~ = ~ k _  w ~ (k = 1, 2). 

Then, on 1"3, 

(6.12) A1 ~ z l -  23 ~z~ ~---~ ~ = ~h, 
_ .  az 2 

z ~ -  z 3 = a/~)h ~ -k ~ �9 

Multiplying the elliptic equation for z ~ by z k (k = 1, 3), integrating over ~ and 
adding, we get 

(6.13) 

By  (6.12), the integral over F~ is equal to 

f (  ~zl " ~z3~ ( 2  ~z3 ~z3 (6.14) ~1 ~ - ~ v..~) ~ + j ~ ~ ~l~ ~ + i 
-v2 /'2 

where 

(6.15) 

1"2 T'~ 

here we have used Schwarz's inequMity, (6.11) and Lemma 5.1. 
By  (6.11), (6.12), the first integral in (6.14) is bounded by C(X/[-~ [z--e/22t). 

The second integral in (6.14) is positive. Using this and (6.15), we obtain from (6.13) 
the inequali ty 

5~ 5~ 
The assertion of Theorem 6.1 now readily follows. 
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7.  - A s y m p t o t i c  e s t i m a t e s  i n  c a s e  s/%2-~ oo. 

Consider now the case where s/21 -+ 0% s -+ O. We multiply (6.4) by  (2~/e) ~ and 
obtain 

(7.i) f 2.h(x) 
/ .  

Since 

we also have 

~,"(x~)~u"(x~) ,~_~ (ul(x 1) - u"(x~)) ~<r 

2 ~U2 2 , 

T :  ,Qs 

where (5.7) has been used. Thus (7.1) implies 

~U3 2 

(7.2) f ~  <c. 
Let  

Qs,~ -~ {x e 123, dist. (x, 1"2) > ~}. 

Representing u s in terms of the Neumann function and using (7.2), it  follows tha t  

Ju3(x)- u~(xO)[<C (xeI28,o) 

ff 
where x ~ is any  point in D,. Further ,  any  sequence (s', ~'2) has a subsequencc (s", 2~) 
such tha t  

(7.3) u s -  u3(x ~ is uniformly convergent in Ds. ~ for any ($ > 0, 

provided (8", ~ )  -+ O. 
Since, by  (5.7), 

<Ce2J s 
i~i Q I 

(7.1) gives 

(7.4) f ~u3 ~2 u8 ~ ~2 ~,h(x) ~ + T < C--e + Cs~ " 
s 
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For  any  x e 1"~, denote  b y  x ~ the nearest  point  to x on ~/23. ~. Then 

 :ff uo u3(x ) -  u3(x ~ < r -~ , W -~ ~ ~ " 

Using this in (7.4) and  using also (7.3), we find as in Section 3, t h a t  

(7.5) u ~ -  C4~-> w 3 un i formly  in compac t  subsets of [23, 

where C&~ are some constants  and 

- 
(7.6/ 2 3 h ( x ) ~  : y on F2, y : /s . 

9a  -r's 

As for u ~, using (6.2) one can show tha t ,  for some constants  0~,~, 

(7.7) u I --~ w 1 uni formly  in compac t  subsets of s  

where 

~w 1 3w 7 
(7.8) ~ ~ = 2~ ~ - h(x) on 1~ ; 

also, of course, w x and w 3 s~tisfy (6.8) and  w 1 sutisfics (6.9). The proof of (7.7) uses 

a di f feomorphism of s onto t~i-~ Y2~ ~3 ]11 ~Y ~92 and the corresponding a rgumen t  

of Section 4; the  details are omit ted .  

We  sum up: 

THEO~E~ 7.1. - I ]  e/2~ ~ 0% s --> 0 then (7.5), (7.7) hold, where w 3 is the solution 

of (6.8) with k -~ 3 sat is fy ing the N e u m a n n  boundary condition (7.6), and w 1 is the solu- 

t ion of (6.8) with  k - ~  1 sa t i s fy ing  the boundary conditions (7.8), (6.9). 

Thick  reinforcement.  We consider briefly the  case of th ick  reinforcement ,  t h a t  

is~ F1, F~ are now fixed and  the p a r a m e t e r  23 tends to zero. As in Section 4 we begin 

wi th  the  f~ct establ ished in [2] t h a t  

(7.9) X~u 2 - + z  un i formly  in compac t  subsets of $2~, 

where  z is the  m i n i m u m  of the  funct ional  

= const  in ~23: 
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We can then show (as in Section 4) tha t  there exist constants A~, such tha t  

(7.10) u ~ - -  A~. -+ w ~, u ~ -+ w ~ uniformly in compact subsets of/2~ and ~2~, respee- 
tively, 

where w ~ (k = 1, 3) satisfies (5.1) and 

(7.11) 2 3w~ ~z ~ 8  = ~v-'-5 on F2, 

~W 1 ~Z 
(7.12) ~, ~v 1 = ~v--- ~ 

(7.13) w ' = 0 on Fo .  

on F~. 

PA~T I I I .  REI~FOt~CEMENT FOR V_~I~IATIONAL I~TEQUA]bITIES 

8. - A priori  e s t imates .  

In  this section we extend Lemma 1.1 to the elliptic variational inequali ty 

(8.1) = xf( i k gj=l 
E~ 

3U~x~ ~(v ~x~- u k _ _  ) +/*(v - u*)) dx> o 

f o r  e v e r y  v e Ho~(g2), v>qJ, uk>q~, u = (u  ~, u ~) e Ho~(/2); 

the function ~0 is in C~(~) and ~ < 0  on a/2. 
Le t  rio(t) be C ~ functions in t e R,  for any  ~ > 0, such tha t  

ri0(t) -~ 0 if t>O,  

fl~(t) - + -  oo if t < O, 8 --> O, 

f~(t)>o. 

Consider the elliptic problem (the <( penalized problem >>) 

(8.2) k ,  ai~ 

D, 

\ 
§ 1% + fl~(u ~ -  q~)v)dx = 0 

for any  v E t I~ (~) ,  u -~ (u  1, ~ )  ~ Hie(Q). 

Denote by  % : (u~, u~) the unique solution of (8.2). Then, as is well known, as 
8 - + 0  

(u~, u~) -> (u 1, u ~) in Z~(/2), 

where (u 1, u ~) is the solution of (8.1). 
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IJlxi~r 8.1. - There exists a constant C independent o] (~ such that 

Y2~ 

and such that the estimates o] Lemma 1.1 hold ]or (u~, u~); consequently, the estimates 
o] Zemma 1.1 hold also /or the solution (u ~, u 2) of (8.1). 

Pi~ooF. - The proof of (1.8), (1.9) extends to the  present case provided we sub- 
st i tnte v ---- u s -  ~0 in (8.2) to get an auxiliary inequali ty analogous to (1.15). Sub- 
st i tut ing v = f l s (us- -~)  in (8.2) and using (1.9), we obtain the inequali ty (8.3). 
We now proceed to derive (1.10), taking for simplicity ~ ~ 0. In  the inequali ty ana- 
logous to (i.19) we now have an addit ional te rm on the left hand side, namely,  

f ~-i ~Qk 
k = l  /=1 

by  (1.9) and (8.3). Thus, (1.20) follows. 
Using the ec~uation (8.2) and (1.20), (8.3), the est imate (1.21) also follows, and the 

proof of (1.10) can now be completed as before. 

9. - Boundary  re inforcement .  

TttEolcE~ 9.1. - I] ,~1 ~ O, s/~1 ---> ~ where 0 < ~ < c% then 

(9.1) u S --~ w uni]ormly in compact subsets o] ~ ,  where w is the unique solution o] 
the variational inequality 

f - f s ~ aw~(v W)dx + ] ~ ( v - - w ) d x +  - ~ h ( v - - w ) d ~ > 0  (9.2) zS,~ % ~ ~ 

/or every v eH1(D~), v > %  w~lt~(Y2~), w > %  

P~ooF. - Multiply the equation for u~ b y  v -  u~ and integrate over ~2. Using 
(2.8) for u~ (which is established ~s in Section 2, using Lemma 8.1) and the relations 

fl~(v-- q~) = O if v > %  

( z ~ -  z ~ ) ( ~ i z ~ ) -  ~ ( z ~ ) ) > o  fo r  z ,  = v - % z~ = u~ - % 
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we obta in ,  a f ter  le t t ing  ~ -+ 0, 

where  

a" ax~ bx~ j . & h  ( v - u g  + p (v -u~)  + r ~ ( v - u  ~) 
1" 12 2 1" 

f 8 17~Apd~q-+O if s - + O ,  A~-+O, ~ - - > . .  

> 0  

B y  [6] there  exists a un ique  solut ion of w of (9.2) and  (by stabil i ty)  u 2 --> w in 
c o m p a c t  subsets  of ~20. This completes  the  prooL 

W e  shall  now consider  the  ease where  e/Z, -+ co. F o r  s implic i ty  we t ake  99 ------ 0. 
We  shall  assume t h a t  

(9.3) f /2dx  < 0 .  
Qa 

L E ~ _  9.2. - I/99 =-- 0 and (9.3) holds, then there exists a unique solution w o] the 
variational inequality 

f). " 3w ~(v-w) f (9.4) zi, ~-,-1 a~ axi --ax~ dx § /2(v -- w)dx>O 
~2 2~ 

/or every v eH~(92), v>O, w eH~(f)~), w > O .  

This resul t  is due  to  L i o n s  a nd  STA~PACCmA [5]. 

T I ~ O ~ E ~  9.3. - I /  99 ~ 0 and (9.3) holds and i/ 

8 3 
e --> O ~ I~-+ 0, ---+ oo, 

then 

(9.5) f lD(u ~-  w)l~dx ~ o 

where w is the unique solution o/ (9.4:). 

P~00F.  - T a k e  for  s impl ic i ty  a 2--~, = ~ j ,  I~ = 1. T h e n  

- Au~ § ~(u~) ~ p ,  - d w  + / ~ ( w )  ~ p 

where  fi(t) is t he  g r a p h  fl(t) = 0 if t < O, fl(O) ---- (-- c~o,O], and  fi(t) = {O} if t > O. 
Thus  

- z l ( u ~ -  w) + ~(u~) - ~(w) ~ o .  

16 - .Anna l i  d i  M a t e m a t i c a  
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Multiplying by  u 2 -  w and integrat ing over D2, we get 

f O(u ~ -~ w) f ~ (u ~ -  w) + IV(u ~ -  w ) ) i ' < o .  

Since u2>O~ ~ w / ~ > O  on 1~, we have 

~W 
~-~ u~> on F .  

Also w(Ow/~) = 0 on F. Hence 

(9.6). ( e ~  r~ ~ f - 3 ~  + J ~ ; ~ +  lv(~'~-w)l~176 

Suppressing the th i rd  t e rm on the left  hand  side and using (2.6)~ we get 

(9.7) <C - -  - - d a  ds dN-k ]wld8 
o -g j a~ aff. 31-g; 

1" .P 0 0 Z'  

~ I - ~  J .  

B y Cauchy's and Schwarz's inequalities, 

.U /" 0 

and, by  Lemma 8.1, the last t e rm is bounded b y  Ce3/~. Also, 

f ~U2 2 ~1 

/- 

Thus we conclude f rom (9.7) t ha t  

/ ' i  ~u ~ ~ ;t~ 

/. 

F r o m  (2.6), 
8/c 8 

J ~, u2> f dsdS. 
- ~ - ~ j \ d ~  

.P 0 0 

Using the est imate (1.10) of Lemm a  8.1 and (9.8), we find tha t  

f ( - c - ~ > - c  ~ + ~ !  ~ !  = ~ �9 
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Since Mso 

/ ,  / ,  

- > 0 :  

the  assert ion (9.5) follows f rom (9.6). 

RR~A~K 1. - I f  we also assume t h a t  e2/2~< C then  f rom (2.6) and  (9.8) we deduce 

t ha t  

flus] < ; C 
.U 

hence also 

(9.9) flu t < c .  

For  any  subsequence of uVs such tha t  u 2 -~ ~ weakly in L~(Q2) we have  Vu ~ --> V~ ~-- 
-~ Aw;  thus ~ is de termined up to a constant .  This and  (9.9) imply  t ha t  there exist  

bounded  constants  A~,  such t h a t  

(9.10) fpd  o 
Qs 

t hen  the  var ia t ional  inequal i ty  (9.6) does not  have  a solution, since the funct ional  

22 ~v dx 

-.Oz "Q~ 

does not  have  a m i n i m um  in the  set:  v ~ H I ( ~ ) ~  v>O.  Indeed,  for a sequence of 

constants  C ~ o o ,  9~(C~) - ~ -  oo. Notice also t h a t  in this case, 

F 

if e --> O, (e/2:) -+ 0% (e~/2:) -+ 0. Indeed,  otherwise, b y  mul t ip lying the  differential 
inequal i ty  for u s b y  v -  u 2 and  in tegra t ing we find t h a t  a subsequence of u s is con- 

vergent  to a solution of (9.9). However ,  such a solution cannot  exist  when (9.10) 

holds. 
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1 0 .  - I n t e r i o r  r e i n f o r c e m e n t .  

In  this section we consider the variat ional  inequal i ty  analogous to (5.1)-(5.4) 
and generalize the results of section 6. The variat ional  inequali ty can be wri t ten in 

the form 

k = l  J \ i , i = l  

a~ ~u~ ~(v - u ~) ) 
~x, O x ~  § ] ~ ( v -  u ~) d x > 0  

for every  v ~ H~(E2), v ~ ,  u -~ (u ~, u ~, u s) ~ H~([2). 

In t roduce  the form 

-QI ~2 

r~ 5. b~ 

over the set K consisting of all functions z = (z 1, z 2) such tha t  z ~ ~ H ~ ( ~ ) ,  z ~ e H~(~2), 
z l > 0 ,  z2~>0, and the trace of z ~ on 3~ is equal to zero. ~ot ice  tha t  z ~ and z ~ are not  

require4 to agree along F2 
Consider the variat ional  problem: 

min gS(z) . 
zeK 

Since the  quadrat ic  pa r t  of ~5(z) is coerciv% there  exists a unique solution (w ~, w3). 
Obviously, (w~ w ~) is the unique solution of the var ia t ional  inequali ty 

(10.3) 21 ~ a~ 3x, 8x~ Ox, Ox~ 

5~ 5. 
+ 1 

r~ b~ 5~ 
for any  (v ~, v ~) ~ K,  (w ~, w ~) ~ K.  

I t  is easily seen tha t  on the subset of 1"2 where w 1 > 0, w 3 > 0, the  relations (6.6), 

(6.7) are satisfied. 

T m ~ o ~  10.1. I ]  ~ ~ O and  s -+ O, )~2 --~ O, (s/22) --> ~ where 0 < ~ < ~ ,  then 

u ~ --> w ~ u n i / o r m I y  in  compact  subsets of ~ (k = 1, 3) 

where  (w 1, w ~) is the so lu t ion  o] (10.3). 

We shall briefly describe the proof. Fi rs t  we note  tha t  Lemma 5.1 extends to the  
present  case; the proof is the same, except  for some modifications as in the proof 
of Le mma  8.1. We can now conclude tha t  the est imate (6.2), (6.4) are valid. 
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~ e x t  we write the  penalized problem for u 1, u~, u], and mult iply the first equa- 
t ion by  v l -  u~ and the third equation by  v ~ -  u], and integrate  over D~ and ~23 
respectively. Now we perform a diffeomorphism of $21 w /2 ,  onto ~ W Ds as a t  the 
beginning of the proof of Theorem 6.1. I t  follows, af ter  let t ing ~ -+ 0, t ha t  u ~, u s 
satisfy a variat ional  inequali ty similar to (10.3) with 

k ]k replace4 by  a~j, ai j  

and with addit ional  terms 

where 

f~k(v - u k) (/~ = 1, 3) 

final o (6.11)); 
T'2 

also, (6.10) holds. 
Using a stabili ty result  for variat ional  inequalities, the assertion of the theorem 

readily follows. 

]~]~_A~Js 1. - I f  ~ = 0 then  (u 1, u s) converges to the solution of the variational 
inequali ty 

b~ 

~ w  1 ~ (v  ~ - w ~) [ ~ ~w~ ~(v  8 - w ~) 

5~ 

d- f ] l (v ! - -w  1) d- f ]3(vS--w3)>~O 
"~1 b. 

for any  (v 1, v 8) e /~ ,  (w 1, w 3) e / ~  

w h e r e / f  consists of all v ~ Hi(y2), v>~O. The proof is similar to the proof of Theo- 
rem 10.1. 

R s . ~ :  2. - For  the case a = c~ one can probably derive asymptot ic  results 
provided the ]~ or the u k are appropriately sealed (compare [1]). 
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