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Summary. — Consider the Dirichlet problem for an elliplic equation in a domain Q, with coefficients
having discontinuity on a surface I'. Suppose I' divides Q2 into 2, U 2, (82, the inner core),
the thickness of 2, is of order of magnitude &, and the modulus of elliplicity in £2; is of order
magnitude i,. The asymptolic behavior of the solution is studied as ¢ — 0, A; — 0, provided
lim (g/4,) exists. Other questions of this type are studied both for elliptic equations and for
elliptic variational inequalities.

Introduction.

In thig paper we consider elliptic equations, and also elliptic variational inequali-
ties, with piecewise continuous coefficients. The coefficients have jumps along certain
hypersurfaces. Thus we can write the domain £2, where the solution is considered,
a8 a disjoint union of regions £, such that the coefficients of the operator are smooth
in each £,, but have a jump across the boundary 00,.

More specifically we assume that the coefficients of the operator, in one specific
region £, , have an order of magnitude 1, , and consider the situation when 2, — 0
whereas the « thickness » of 2, may shrink to zero at the same time. The region 2,
may be considered as a « reinforcement » of O\ &2, . The smaliness of 1; has the inter-
pretation, at least in problems of elasticity, that the reinforcement is made up of
an « extremely hard » material.

Such problems of reinforcement for 2-dimensional elliptic equations and varia-
tional inequalities have been studied by Caffarelli and Friedman in the dam problem[1]
and in elastoplastic problems [2]. In these papers the limiting solutions (as 4, — 0)
have been identified and uniform estimates on the convergence have been obtained.

In this paper we derive L? estimates for the rate of convergence. Unlike [1], [2],
the present approach applies for any number of dimensions.

(*) Entrata in Redazione il 23 ottobre 1978.
(**) The second author is partially supported by National Science Foundation
Grant 7406375 A0l. The third author is partially supported by National Science Foundation
Grant MC575-21416 A01.
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In Part I we consider a boundary reinforecement for elliptic equations. That
means that £, is a layer whose boundary contains the boundary of Q. For simplicity
we take the coefficients in O\ (2, to be continunous. The limiting problem depends
on the thickness ¢ of £, or, more precisely, on lim (¢/4,). There are actually three
types of possible limit problems, and they are dealt with in Sections 2-4; some auxiliary
estimates are derived in Section 1.

In Part II we deal with interior reinforcement, that is, Qiq lies in £2. Here again
there are several possible limiting solutions, depending on lim (g/4,).

In Part IIT we establish results analogous to those of Parts I, IT for variational
inequalities.

SANCHEZ-PALENCIA [8] has studied the ease of interior reinforcement in the
special case where the reinforcing material oceupies a lense-shaped region Q; around
a smooth surface §; Qiu shrinks to 8 ag 4, — 0. His limit problems are similar to
those obtained in Part. II. He works with H?* a priori estimates (resulting from the
« variational » approach) whereas our approach is based on deriving H* a priori esti-
mates; the latter approach can be used to obtain better estimates on the rate of con-
vergence to the limit problem of the corresponding solutions.

In case £, is a fized domain interior to £ and .Q\!Za is eonnected, the « varia~
tional » approach of SANCHEZ-PALENCIA [8] was extended by Lions [4] to yield an
agymptotic series (in 1,, as 4, —> 0) for the solution.

We finally mention that the methods of this paper apply also to interior-boundary
reinforcement problems; such problems are studied in [1] where another method
is used for deriving the necessary a priori estimates. Our methods (like those of [8])
apply also to parabolic equations.

Parr I. BOUNDARY REINFORCEMENT FOR ELLIPTIC EQUATIONS

1. — A priori estimates.

Let I'y § be %! connected hypersurfaces in R», sueh that I" lies in the interior
of 8. Let £, be the bounded domain with boundary I, and denote by 2 the bounded
domain with boundary §. The boundary of the domain 0, = O\ 2, is the I'U 8.

Let (af(x)) (k= 1,2) be a positive definite matrix with elements in 0(2) for
some > 0, and define the conormal derivative ou/cv* on I' by

-~

ou LI o
~ = A\ L) COR (W, V)
8’1)70 i”‘z:]_ H( ) ( (3] ) awj

where » is the normal to I pointing toward Q,. The vector y* = ( S ofi(@) cos (a;, L))?;l
is called the conormal vector. :
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Let f* (k =1, 2) be given functions in (*+*({) and let A, be positive numbers.
Consider the problem: Find % = (u?, »*) satisfying:

(1.1) \ Y z ( () ) =f* in 2 (k=1,2),
i, 1
(1.2) ut=wu? on I,
out ou?
(1.3) ,21%= o on I}
(1.4) w*=40 on §.

According to [3], this problem has a unique classical solution, that is, #* is in
0D, N C2(£;) and (1.1)-(1.4) are satisfied in the usual sense.

A weaker formulation of (1.1)-(1.4) is given by the variational principle: Find
w = (u?, u?) in HXQ) which minimizes ‘

di=1

2 (4
(1.5) > f( S Apak, :’M 2“_ + szuk)
k=19k
or, equivalently, find w4 = (u?, u?) in H}(2) such that
2 our v
(1.6) k;f( ;llk b + 7= ) =0 for any ve Hy(Q).

A unique solution for this problem exists under weaker conditions on a%, f* and I,
8 than those stated above (see [3] [7]).

In this part I we shall consider the agymptotic behavior of the golution as A, — 0.
‘We shall first deal with the case where the thickness of 2, shrinks to zero as A, — 0.

Let h(z) be a positive function defined on [" and let y (v € I') denote the ray ini-
tiating at # in the conormal direction »(z). Denote by z. (¢ > 0) the point on u,
such that #,4 = eh(w)/|»"(x)|. If ¢ is sufficiently small then the set of points we,
when « varies over I, form a manifold, designated by I.. We shall now assume that

(1.7) 8=1Tk,
and prove the following lemma,

LeMya 1.1. — There exists a positive-constant C such that, for all e, A, sufficiently
small,

(1.8) f|u1]2dw —{~f]u2{2dw<02—: + G,
o8 !

9
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(1.9) AlfIDulPdw —f—f|Du2i2<0§ to,
o @ !
(1.10) b prtao+ [pepac<o? 0.
Q4 25 ’ !
Here D%y is the vector with components az“lu/ax‘{l- -+ 0wy, where |o| = oy + -
+ X = j~

PrOOF. ~ In what follows € will denote a generic positive constant independent
of ¢, 4;. Let #° be any point of I" and let V be a small neighborhood of #°. Recall
that in V we can represent I" and § in the form

I'nVim=g4s), s=(81,.,8~) (A<i<n)
8N V:iw, = gy(s) + evih(s)/|»*]? (I<i<n)
where »' = (v}, ..., ;). Assume, for definiteness, that

0@y -y Bn w”"i)¢ 0 onl'NYV.
O(81y ey Sny)

Then we can represent I'N V (with perhaps a smaller neighborhood V) in the form
By = G(%q, ooy Pyyq) ,
and SNV in the form
T = G By ory Tn—y) — EB(Dy, ooy By, )

where |D*g|<C, [ D%kj<ec if |x|[<2.
We now introduce a change of coordinates

B — J(@yy oery Tn_y)
E(@yy ooy @n_yy €)

(1.11) Y=o, (I<i<n—1), Yn =

Then, with #*(y) = u*(x), we have
» Out ou® N OUF Oi*

Denote by ¥V the image of ¥ under (1.11), and denote by I’ ¥, § n ¥ the images
of I'm V, 8N V respectively under (1.11). Then

'V is contained in y, = 0,

SNV is contained in Yp = — &.
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We may assume that 7 is the n-dimensional cube ly:] < 8y, 1<i<n. Finally, denote
by 0.n 7 the image of 2, V under (1.11).
Since u € Hp(Q),

Therefore, with * = (¥1, ..., Yn—1)y

f|a112dy*<og f |Da|2dy .

;”nV 0¥

Also
fldllzdy<06 f \Da|2dy .

.Q,nf; Hav

- Going back to the z-coordinates we get a similar inequality in £, n V. Taking
a finite open covering of Q;, we conclude that

(1.12) [lwras < ce [1Durraa,
r o

(1.13) f’|u1|2 de< Cazfll)ullzdw .
a2, 2, :
Using the standard inequality
f[u2|2dx<0f|m|2ds + 0f|pwirds,
2% r R
the relation w® = %' on I, and (1.12), we get

fmz]szoajwul]zdm + 0f|1)u2|2dm.
2

2 Ql

Combining this with (1.13), we obtain
(114) ﬁulpdx + [|urfrdo < e[| Durf2do + oﬁpuz]zdm .
2, 2, Q 2y
Taking v = (ul, 4?) in (1.6), we obtain
(1.15) llf]DulPdm T f[Dm]mK C’flul] dw -+ of[uzldx.
2y 2, 2 2

Hence

1 1
[pupco g fwop 4 g [k
Qa‘ 191 193
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for any large €,. Substituting into (1.14), we get
{' , Ce
(1.16) J [wr 2+ § lu2P<Ce | [Dutt 4- O< N || -+ ) u2|)+ C
2, 2 € e @

where (1.15) was used. Since

_(Zf < w2 Ce?
A =)o T
Qr 5
for any large ¢,, (1.16) gives
2
f{ulgz —i—f]u2]2<0 +05,
2 $2; '

that is, the assertion (1.8) holds.
Using (1.8) we obtain

[+ <o e+ flel) <05+ 0

Substituting this into the right hand side of (1.15), the assertion (1.9) follows.
To prove (1.10), let {(y) be a 0g(V) function such that £ =1 in

Vo= {y: ly:] < g—”for 1<i<n} .

Suppose first that

I’ ig three times continuously differentiable;
(1.17)
i* is three times continuously differentiable in &, N V.
Let
L =124k
Pk =g ko) = B*
3 G ) =)

In view of (1.17), (¢', v®) belongs to Hy(£2) and, therefore, (1.6) holds for » = (v*, v*).
Going into the y-coordinates, we get

| a,ﬁk

. OUF 0O ou”
oY,

J‘ i N I LY P [ o % nil
A= =—\§ TALa <

| J =17 oy a?/i( zgx 3?/2;) y ¥=1 J 1=

Qnyv QenV

dy

(1.18) 22 A
=1

k




~k
% ) Integrating by parts we find
11
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_ l ot 0

oig®
since k k
( f v ! oy, 3y, T f) f
that the left hand side is equal to

2 k 1 A247%
Z J‘N,cau angaudy

N ayz aya =1 ayl

S)an
2 n—1 n a(d{c:a) Oiik oy R
— 32 o) TV dy .
k§1 y f =121 Oy, Oy, 0y, 0, v
.anV
2 - (3 - az~ azuk
— it
kgl _f ; z: 3y, 0y, 0y; 0y, v
Qe ¥V
Hence, (1.18) gives
2 #n—1 n 024k
o  3u['S3 @<02:fnmmmwmw+umm@
=1 J =S| 0y.0y
20V, .anV

where D2 is the vector with components 02/dy.0y,, 1<i<n, 1<l<n— 1.
By Schwarz’s inequality,

c f mpmnﬁzmg% f |Deaitf2 4+ €A M f |Dii* |2
f)k:)i;o !—21501—7 ékﬁf;

where M is a positive constant to be determined later on (independently of &, ,).
Substituting this into the right hand side of (1.19) and using (1.9), we get

(1.20) f Tl f Ju|Deiip om(— + o) ¥ 0( ¥ CY

.Q,,nV‘, !Fan

From the differential equation

0 . -
~n 3 () =P (=)

we can estimate 1,(0°@"/0y%) in terms of the other terms. Using this estimate and
(1.20), we get, after using (1.9),

(1.21) f AlD2r )2 i f D+ 00,

!)an., .Q,,nff

15 ~ Annali di Motematica
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We now go back to the z-coordinates and obtain an estimate on

(1.22) S f D2 w2

20 Vg

where V, is the inverse image of ¥, under the mapping (1.11).

Let Ws be a d-neighborhood of I'. If ¢ is sufficiently small, we can cover Ws
with a finite number of neighborhoods of the form V,. Collecting all the estimates
on the terms {1.22) we obtain

S | < LS [ nprr 404 0f 4 ofE)
2 ] “I\ﬂ%f DUt O+ Og + (7)

Q,0W, Qo W,

where C is a constant independent of M. Choosing M >20C, the assertion (1.10)
follows.

In the above proof we have made the smoothness assumptions of (1.17). In the
general case, we approximate I', 8 by C® surfaces I',,, S,. Then (see [6]) the condi-
tion (1.17) is satisfied for the corresponding solution u®. As easily checked from the
above proof of (1.10), the constant C occurring in (1.10), for »* = ¥, depends only
on bounds on the first two derivatives of the local representation of I,, 8,; hence
it can be taken to be independent of m. Taking m -> co, the proof of (1.10) follows,

REMARK. — Lemma 1.1 and, in faet, all the results of this paper, extend to more
general elliptic operators obtained by adding A,[ ¥ vi(x)0u/ox; -+ ¢*(»)u] to the left
hand side of (1.1); ¢*>0.

2. — The case ¢4, —a, o< oo.

THEOREM 2.1. — If A, — 0, ¢/A; — a where 0 <« << co, then

(2.1) wu® — w uniformly in compact subsets of Q,, where w is the solution of

&0 0wy .
(2.2) /121’7_2:1 Eaj(“”%) = in L,
ow
(23) oclzh(w) —a;*z‘ —]— w =10 on I

PRroOF. — Let 2° ¢ "and let | be the ray in the conormal direction »* initiating at 2°;
it intersects S at a point #1. By (1.2), (1.3),
Ay

a 2{ mb
(2.4) W) + 3 ehla) o

h(a®) dui(a®)
2] ou

= ¢ (2% -+ ¢

where 4 is the unit vector in the direction »%.
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Clearly

&k(2)

a 1
(2.5) ui(@%) = ui(a®) — ui(w f T s

where k(2°) = h(«°)/|»*]| and s measures the length on I from 2° to 2. Also, for any «
in iN 9,

oul(a®) ou(w) :fa%tl s .

ou o ou out
Substituting this into (2.5), and substituting the resulting expression for #!(«°) into

(2.4), we obtain
ek(x®) 8

A du2(x0) ot | .
(2.6) u(x®) + ﬁ eh(oco)—W = — f ds f 5t do .
0

0
Using (1.10) we get
oul(x) |2

(2.7) o

Ay
w?(x) + 1—1 eh(x)

as<0Z(E + ¢) <ce
<Y\ <ve

since e<<O4,.
By (1.9), (1.10), we also have

|
(2.8) 1!

if (¢/4) > «. We can now complete the proof of the theorem, in case « > 0, by
representing %2 in terms of Robin’s function, and in case « = 0 by representing u?
in terms of Green’s function.

ou?(z) |?
ov?

d <C’f [Du(z) 2 da - C’f |D2ut(z) Pde< C .
2, 2z

ou(x) |2
ov?

wi(x) -+ adh(x) ds — 0

3. — The case ¢/, - co, ¢ —> 0.

THEOREM 3.1. — If &/Ay — oo, € —> 0 then there ewist constants A, such that
(3.1) w*— A, .~ w uniformly in compact subsets of 2,, where w is the solution of (2.2)
subject to the Neumann boundary condition

ow(x)

(3.2) Ash(z) 81}23 =y on I, 4 =(ff2dx)/(f%)

2,y
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ProoF. — The first inequality in (2.7) is still valid. Multiplying it by A%/e? we get

, A
{3.3) f -
r

ou?(x) |2
oy?

= ut(w) + Aph(x)

ds << Og? .
By (1.12), (1.9),

A, AR , Af e
5—2|u (w)12d8<02—28 |Dut(x) 2 de < O—e— C—-+C)<C.
r 2, !
Hence (3.3) gives

(3.4) f

r

ou? |2

A as< (.

We now represent #2 in terms of Neumann’s function and use (3.4). We conclude
that there is a constant ¢ = ¢(/,, &) such that every sequence (1;, ') has a subse-
quence (l;, ¢') such that

(3.5) uP(w)— c()»f(, ¢') is uniformly convergent in compact subsets of Q,,

if (Ay,&) 0.

Now let 'y be a surface parallel to I" and lying in 0, such that, for any e I
there is a unique point #, of I'y lying on the inner normal — » to I' at , and @, & = ¢
is small and independent of .

Since

0
ux) — u(ry) = f—a;uzds y
we have
(@) — uri@.)|2dSy < OO f | Du|®
r [

where Q, the region bounded by Iy, I. Multiplying both sides by (1,/¢)? and using (1.9),
we get

"11 )’1 l2
(3.6) —u(®) — = uw,) | dS,<Cdh,.

£ & |

By (3.5), for fixed point x, in 2,,
(o) — w(i)] < .

Combining this with (3.6) we find that

(3.7) f‘ﬁ wi@) — Oy, |48, <0
e | e
Ir
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where ;= A,u*(%,)/e is a constant. Using this in (3.3), we obtain

0 Ay
(3.8) 2h(2) u( )+GM de\O( + € )
Since
2 auz
ffzdac—lfz (“8 )dJO:J‘)»zéﬁdS
2 r
and, by (3.8),
ou? "as if
flza—ﬂ+malle — 0 1 8—)0,11—>OO,
r

we deduce that

(3.9) lim €, =(ff2dm)/(f%ds).
, Q r

2

Representing «? in terms of Neumann’s function and using (3.8), (3.9), the asser-
tion of the theorem follows.

REMARK. — If
f frdw £ 0

then 4;, — oo. Indeed, otherwise we get from (3.3)

J

for a sequence (s', A;) — 0. Consequently w will have to satisfy (3.2) with y =0,
which is impossible.

1

2
P as — 0

o

4. — The case of thick reinforcement.

‘We shall now study the case where 4, — 0 but & does not shrink to zero. In fact
we shall take S to be fixed.

The pair (v?, v?) = (4,ul, L,u?) satisfies uy z 0 ( ak; zv ) = f* in L2,
ol = p? on T, '
ovt ov?
s = /’626_,)2 on [
vt =0 on §

where u; = 1, py = Ay/A. As 4, — 0, y, tends to oo,
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Let z(x) be the solution of the variational problem

d oz ov
S =|f
(4.1) 4,21 i T, dw ff vdw
2 2
for any
(4.2) ve HY{Q2), v = constin Q,

2 Hy(&), =z=constin Q,.

We can determine 2 as follows: Let ¢ be the solution of

o, 90\ .
Eé-go—i(a,-,.%)— 0 in 2,,
=0 on 8§, {=1 onl,

(4.3)

and let # be the solution of

0 on .
(44) zaa&’,( ”aﬂﬁ,)_fl m 91’

=0 on SUI.

Then (see [2]) the solution of (4.1), (4.2) is 0ol + 7 where C, is a constant determined by

(4.5) favz f@vz ffz )
24

The following result is proved in [2]:

(4.6) (Iut—22dw >0 if 2, 0.
o

A

Tor § positive and sufficiently small, denote by s the set of points in £2, obtained
from I' by moving each point # of I" a distance d along the direction — »%(x). Denote
by #s the point on I's such that x s is in the direction — »*(x). Write

ou{x)
ov?

(4..7) }.2 - 21

dul(w)  Ov'(ws) M) avl(ma)i‘
ot ot +[ ovt ovt |°

In view of (4.6),

(4.8) 2(s) —> 0 uniformly on I, as A, — 0.

v (2s) —

oyt FIE
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Also,
(4.9) f
r

where G is the region bounded by I's, I'.

The proof of Lemma 1.1 extends to the present case with minor changes, provided
we replace ¢ by 1 in all the estimates. Thus (1.8)-(1.10) hold and, in particular, it
follows that the right-hand side of (4.9) is bounded by 0d. TUsing this and (4.8),
we deduce from (4.7) that

lim f
A—0
Ir

The function z is continuously differentiable in £,. Hence from the last relation
we can deduce that
fim f
Ai—>0
Ir

where 7(8) — 0 if 6 — 0. It follows that the left-hand side vanishes. Representing «?
in terms of the Neumann funetion we then obtain the following result.

0 0
51 V(@) — 25 V(@)

ort

2
as, < Céf | DA 1) |2 d
Ga

2

2
uim) 9 aS< 05 .

Ay % 2(@s)

2

ou(x) 0 as <n(s)

or? _5;:

Ay

2(x)

THEOREM 4.1. — If A, — 0 and 8 is fized, then 2, u' > z in L) where z is the solu-
tion of (4.1), (4.2). Further, there exist constanis A, such that

N
(4.10) u(w) — A, — w(w) uniformly in compact subsets of L,,

where w is the solution of (2.2) suject to the Neumann boundary condition

~

w_ o
Zop2 T Pyt

(4.11) on T

Part II. INTERIOR REINFORCEMENT FOR ELLIPTIC EQUATIONS

S. — A priori estimates.

Let I, I}, I, be connected (1 hypersurfaces such that I';4, lies in the interior
of I';. Denote by 2, the domain with boundary I, by £, the domain with boundary
I u I, and by ©, the domain with boundary I U I}.

Set =0,V 0,V 0.
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Let (af) (k = 1, 2, 3) be positive definite and C*+* matrices defined in {2, and let
be functions in C*+(2). For 1, > 0, consider the problem:

2, ¢ our .
(5.1) Aklz 8—9;(“?;( )_;f" in 2, (k=1,2,3),
iyd=1 Z
(5.2) wHt=y* on I (k=1,2),
auk—i-l auk
(5.3) 2’10-,-1 Gy = Zk*aﬁ on Fk (k = 1, 2),
(5.4) wl=0 on [,.

This problem has a unique classical solution. It can be given also in the varia-
tional form (1.6) where k ranges over 1, 2, 3.

We shall consider £, as a layer of reinforcement, and study the asymptotic behav-
jor ag A, —> 0.

Denote by (I',). the manifold consisting of the points

@, = 2 + eh(w)v(x)/||v*@)|*
where « varies over I,; h(x) is a given positive function. We shall agsume that
(5-5) Iy = (I),
and prove the following lemma.

LEMMA 5.1. — There exists a positive constant C such that, for all &, A, sufficiently
small,

(5.6) %f{u’q dx<0 —i— c,
k=1m‘
(5.7) % [Du’“]2dm<0 0,
(5.8) S Akf ]Dzuklzdmg()’%—{— c.
k= 2

1
(2}
PRrROOF. ~ By standard inequalities,
(5.9) f[u112<0f;1)u112,

(6.10) J|u1lz<0ﬂpu1lz
Iy
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As in the proof of Lemma 1.1 we have
[l <0f e+ cefiDwe,
I I, 23

[l < s usfs + Cet[|Dusf2.

Qs Iy 24

Using (5.10) we get
[l < 0f|Durit + 02D,
Iy 2y 2,
(5.12) f[u212<osf|pu1[z + Gef[l)zu?lz .
: Q4 (e N 2,
Finally,
[ut|2< 0| |u2j2 + C||Du??,
fovcefor s

2,

so that, upon using (5.11),

(5.13) [lwe2< 0| Durfs + oeﬁpuzp + 0| Dusz.
2, 24

3 92

From the variational principle (1.6) (with # = 1, 2, 3 and v = w* in £,), we obtain
3 3
(5.14) > A,Cf |Duk2< € Zf[u’“]
k=1 k=1
Qr Fo/%
Now, for any M > 1, ‘

f|u1[<0M +iMf|u1{2<OM+%leullz
2, . 2, 2

where (5.9) was used; the constants ¢ in the sequel will not depend on the choice
of M (which will be made below).
Also,

o 0
2 —
f[u |<0M+Mf|u2|z<oM+M(sf|pu§1z+szf1puz|z)
2, 2, & 0,

by (5.12). Finally,

f]“3|<CM + %(flﬂullz -+ sf |1Du2? -+ f[Du?']Z)
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by (5.13). Thus,

&

2 C Ce C
kglfiukKG -+ CMN max(l—z, 1) - —Mf |Duf? —{——l‘—[f |[Du |2 4 ﬁf |Dutl2 .
e 2, Q4 [s8

Substituting this into (5.14) and choosing M = N -+ Nefi,, N sufficiently large, we
obtain the inequality (5.7).

The assertion (5.6) follows from (5.7) and (5.9), (5.12), (5.13).

Finally, the proof of (5.8) is similar to the proof of (1.10); it is based on locally
transforming I, I, into planar regions lying on %, =0, &, = — ¢ respectively,

n—1
substituting test functions ¢ Y 92@*/0#; and making use of (5.7).
I=1

6. — Asymptotic estimates as &/1, — o, & < co.
Let ate I, #*c I, be such that # lies on the conormal »*(»?) initiating at &2

Denote by u the unit vector in the direction »*(22).
From (5.3) we have

(6.1)

out{xt) oud(a?) (auz(ml) auz(w“‘)>
Vorl(wl)  Cos(a?)  t\ovi(a')  ov(a?)

r

Olearly,
ou(xt) _ ou(x?)

2 A S : 2 l82%2($s)
[ S~ s | <0 [ [ 550

2
ds A8, < Ohye (—;— + 1)
2

where (5.8) has been used.
Also, since

lv2(at) — »2(@?)| < C¢,

we have
qud(x?)  oui(w?)|

Zif ovi(at)  Ov(xt) ZdS”=< O},igf D < ClﬁaJ‘ |Dus |2
T, 2 P
<Ol f (IDwp 4 [D*w]?) <Clie (L n /13)

25

where (5.7), (5.8) have been used. It thus follows from (6.1) that

(6.2) J" |, oul(xt) ou3(a®)

_ . T 2y,
A (@t 38’”3(002) A8 < O(Ase + Aye?)
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From (5.2) we have

a a 2 2 2
(6.3) wi(@?) — wi(@?) = u(at) — u(z?) = f @WZ eh(x?) 8?2(2;”2)) - ffé%;uz y

so that

) [2 &3 &
<083f 1D2“2]2<0F(1 —]—22),
24

where (5.8) has been used. Thus, if e< (4,

(6.5) f

Ty

eh(2%) A5 dud(x?)
Ay v a?) |

2

ul(wt) — ud(w?) — <

From (6.2), (6.4) we see that if &/A, - «, w* —w" for k = 1,3 then, formally,
(w?, w?) satisfy the relations

ow? ows '
(6.6) her=lhoy only
\ ow®
(6.7) wt — w? = adyh(x) Py on I,

and, of course, also

(6.8) WS i(ag(m) +%)= fo in G, (k =1,3)

RERFRC
where &, = Q,, O,=0Q,UI,U Q,, and
(6.9) wli=0 on[,.
Thus We‘ are led to the following theorems.

THEOREM 6.1. — If A, — 0, g/1; — o where 0 <o << co then u* — w* (k = 1, 3) uni~
formly in compact subsets of Q,, where wt, w? form the solution of (6.6)-(6.9).

PROOF. — We introduce a diffeomorphism @ of Q, U 2, onto §, U @, such that
the derivatives of @ are bounded by O(e) (cf. [1; Sec. 8]). Set

ik = ykoQ) (b =1, 3).
Then (#, %°) satisfy a system similar to (w?, w?) with coefficients 4, ¥ such that

(6.10) 6% — ok |<Ce,  [F*—f¥|< Ce

i
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and with additive terms #,, 7, in the corresponding right hand sides of (6.6), (6.7 )
where

(6.11) fink]2< Ce + 0(%— oc) 2;
I

here Lemma 5.1 is used in obtaining (6.11).
From (6.10) we get

where (5.7) hag been used.

Now let
#F = ik — w® (kb =1, 2).
Then, on 73,
02> oz? 022
(6.12) lsa;— 35‘3—’-:771’ zl_zszahlsw-{—'y]z.

Multiplying the elliptic equation for #* by #* (k = 1, 3), integrating over 2, and
adding, we get

0zt 023

f & 2
2 2, Iy

By (6.12), the integral over I, is equal to

£ 0zt 028 023 _ 023
A AR P ZZ ah 2
(6.14) j (zl = avs)z + f Tz oz 4 I
2 Fﬂ
where
‘ o2t | 03 — e
(6.15) Tico |2 i+ of|5 ml<0(vE+ £-a);
Iy Iy

here we have used Schwarz’s inequality, (6.11) and Lemma 5.1.

By (6.11), (6.12), the first integral in (6.14) is bounded by C(Ve 4 |x— &/4)).
The second integral in (6.14) is positive. Using this and (6.15), we obtain from (6.13)
the inequality

f|1)z112 1 flyza|2<0(vg S = efh]) -

The assertion of Theorem 6.1 now readily follows.
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7. — Asymptotic estimates in case ¢/1, — co.

Oonsider now the case where /4, - co, ¢ — 0. We multiply (6.4) by (4,/¢)% and
obtain

(7.1) f Ash(x) Z:T(Z:)) —% (ur(z) — wd(@?)) 2< Oe?
. r
Since
(o) — us(a?) =U58ﬁ“ 2<ef ol

we also have

f (i;-) (W) — u(a?)*< O (%—) o f Durl< 0
2,

1

where (5.7) has been nsed. Thus (7.1) implies

(1.2) f

Let '

2

3
ou <0

3

Q5= {we Q,, dist. (x, I,) > 6} .
Representing % in terms of the Neumann function and using (7.2), it follows that
[ud(@) — w(@*)| <0 (w2,

where «° is any point in £,. Further, any sequence (¢', ;) has a subsequence (¢, 1;)
such that

(7.3) u® — u®(2®) is uniformly convergent in £, , for any 6> 0,

provided (¢, A;) — 0.
Since, by (5.7),

2
f—g—zul( 1) <0~8—: [Dutlp< =2,
Iy 2,
(7.1) gives
oud A A
(7.4) fash(m)WJrf | <OFE+ Ce
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For any x eI}, denote by a° the nearest point to « on 92, ,. Then
2 A3 ous |2 3 e A
<(8Z2 I___ <062 =022,
<582fflavl<068”2 08
ry

Using this in {7.4) and using also (7.3), we find as in Section 3, that

(|2

2 2’2
j 2 (o) — T (a?)

Iy

(7.5) w*— O ,—~w® uniformly in compact subsets of 2,

where C; , are some constants and

(7.6) lsh(m)%{; =y on [}, v =(ff3)/(f%) .

8 FB

As for u!, using (6.2) one can show that, for some constants 0,1‘,,,

(7.7) u' —w' uniformly in compact subsets of O\,
where
dw?t ow y
7.8 L f o =
(7.8) hog = e The o0 L

also, of course, w® and w* satisfy (6.8) and w* satisfies (6.9). The proof of (7.7) uses
a diffeomorphism of £, onto @, = 2, U I, U Q, and the corresponding argument
of Section 4; the details are omitted.

We sum up:

THEOREM 7.1. — If ¢/}, — oo, & — 0 then (1.5), (7.7) hold, where w? is the solution
of (6.8) with k = 3 satisfying the Neumann boundary condition (7.6), and w* is the solu-
tion of (8.8) with k = 1 satisfying the boundary conditions (7.8), (6.9).

Thick reinforcement. We consider briefly the case of thick reinforcement, that
is, I, I'; are now fixed and the parameter A, tends to zero. As in Section 4 we begin
with the fact established in [2] that

(7.9) Au? — 2z uniformly in compact subsets of £,,
where z is the minimum of the functional

f( il ay; 585 53;5 + 2]‘2C)dm, LeHYQ2,U R,), =constin O
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We can then show (as in Section 4) that there exist constants 4, such that

(7.10) w*— A4, — w? w'->w! uniformly in compact subsets of £, and £,, respec-
tively,

where w* (k =1, 3) satisfies (5.1) and

ous 0z

(7.11) v5s =5 ORI
ow' 0z

(7-12) l—aﬁ=$; on FI'

(7.13) wr=0 on [,.

Part III. REINFORCEMENT FOR VARIATIONAL INEQUALITIES

8. — A priori estimates.
In this section we extend Lemma 1.1 to the elliptic variational inequality

2 B, our o{v— uk) ) .
2

dyd=1

for every v € Hy(2), v>p, w*>@, u = (u', u?) € Hy(Q);

the function ¢ is in C2(Q) and <0 on 0L
Let §5(t) be = functions in ¢€ R, for any ¢ > 0, such that

Bt =0 if >0,
Bs(t) > — 0o it £<<0, § >0,

By(1)>0 .

Consider the elliptic problem (the « penalized problem »)

2 roo, our v . . B
(8.2) kgl J‘(zki,aél aij_a'{;; %; + fro 4 fo(u*— (p)'v)dm =0

for any v e Hi(2), v = (u', u*) € Hy(Q).

Denote by w#, = (4}, u3) the unique solution of (8.2). Then, as is well known, as
8—>0

(u¢]§7 ug) - (uly u2) in L2(9)7

where (u!, 4?) is the solution of (8.1).
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LeMua 8.1. — There exists a constani C independent of 8 such that

(8.3) (18— @ <0
2

and such that the estimates of Lemma 1.1 hold for (u}, u3); consequently, the estimates
of Lemma 1.1 hold also for the solution (u', u?) of (8.1).

ProoF. — The proof of (1.8), (1.9) extends to the present case provided we sub-
stitute v = ws — ¢ in (8.2) to get an auxiliary inequality analogous to (1.15). Sub-
stituting v = fs(ws — ¢) in (8.2) and using (1.9), we obtain the inequality (8.3).
We now proceed to derive (1.10), taking for simplicity ¢ = 0. In the inequality ana-
logous to (1.19) we now have an additional term on the left hand side, namely,

_z 'ﬁau’cgtzzau =;§{fﬂo gygtlauk +fcﬁﬁ“k i(auk)2 ]

.Qk 3V, .an V,, .an 'V.,

o3[ J wer][ [ oo el

Den ¥, Qe Vy

by (1.9) and (8.3). Thus, (1.20) follows.
Using the equation (8.2) and (1.20), (8.3), the estimate (1.21) also follows, and the
proof of (1.10) can now be completed as before.

9. — Boundary reinforcement.
TEEOREM 9.1. ~ If 4; — 0, ¢/, — o where 0 <o < oo, then

(9.1) w2 —w uniformly in compact subsets of £2,, where w is the unique solution of
the variational inequality :

ow o(v — w)
2 —_—
(9.2) f?sz-l ”8 600,- d —]—ff”) w)dm—l—f Zh —w)dS>=0

for every veHl(Q2), v>@, we HY(2,), w>o.

PRrOOF. — Multiply the equation for #j by v — u; and integrate over £,. Using
(2.8) for w3 (which is established as in Section 2, using Lemma 8.1) and the relations

Bov—g)=0 il v>g,

(21— Zz)(ﬁ(zl) - ﬂ(zz)) >0 forz,=0v—@, 5= ’”’g — P
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we obtain, after letting 6 — 0,

fzgz e +f v—uz)+ff2(v—u2)+fyezl<v—u2>>o
2. 1 2, r

o

where

J‘b}"?hl a8 —0 1f8—>0 },,90 /1

By [6] there exists a unique solution of w of (9.2) and (by stability) u? — w in
compact subsets of Q,. This completes the proof.

We shall now consider the case where ¢/4, — co. For simplicity we take ¢ = 0.
We shall assume that

9.3) ‘ fﬁdx< 0.

2,

LEMMA 9.2. — If ¢ = 0 and (9.3) holds, then there exisis a unique solution w of the
variational inequality

oo, 0w o(v
(9.4) As 2 ay
d,d=1 a

2 —
B d —]—ff (v —w)de>0

for every v e HY(,), v>0, we HY(Q,), w>0.
This result is due to LioNs and STAMPACCHIA [5].

THEOREM 9.3. — If ¢ = 0 and (9.3) holds and if

2 &3
e >0, ll—>0,2—1~%oo, Z_>0
then
(9.5) f ID(ut — w)|2dw — 0

where w s the unigque solution of (9.4).
ProoF. — Take for simplicity af, = §,;, 4, = 1. Then
— Aur - w222, — Aw -+ Bw) > f?

where fi(¢) is the graph §(t) = ¢ if ¢ < 0, B(0) = (— oo, 0], and f(t) = {0} if ¢> 0.
Thus

— A(u*— w) + f(u?) — f(w)50.

16 — Annalt di Matemalica
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Multiplying by %* — w and integrating over £,, we get

_jﬂ@%}t@ (u2 — w) _}_fw(uz_w <0 .
r 2,

Since #2>0, Jw/dv>0 on I', we have
? i ’

0
—w—u2>on I.
dy

Also w(ow/ov) = 0 on I'. Hence

(9.6). a““ 2—}—f8—u-2w-;~f1v : ) <0,

Suppressing the third term on the left hand side and using (2.6), we get

ek 8
2 2 | 241
ou’ a“ P he) as dS+O —=I4J.
o ou?
0 0
By Cauchy’s and Schwarz’s inequalities,
E ol fle
£ ’M/Z 2 2u1 2
IT<— il 71 s
<%ﬂav +07e dsds
r r

and, by Lemma 8.1, the last term is bounded by Ce*/4;. Also,

e (| ouf N
Ir
Thus we conelude from (9.7) that
2
(9.8) TP O;t .
[ 3
From (2.6),
sk &
ou® ou? 0%ut
— — 2 - —
2 Y >f % f(f - do)dsds.
r I 0 i}

Using the estimate (1.10) of Lemma 8.1 and (9.8), we find that

ou? /0\ 2 g3
_— §u> ( + )(;{2) = — 0(8—{—}:)—)0
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el

Ir
the assertion (9.5) follows from (9.6).

Since also

%f
ov

2\ ¥ y)
) seleri)o

RRMARK 1. — If we also assume that £2/1, < C then from (2.6) and (9.8) we deduce
that

flu“KO ;
r
hence also

9.9) [lwz<c.

For any subsequence of %?’s such that w* — { weakly in L*(£,) we have Vu2 — V{ =
= Aw; thus { is determined up to a constant. This and (9.9) imply that there exist
bounded constants 4,, such that

w— A, —w in HYL,).
REMARK 2. — If

(9.10) | fodi < 0
2,

then the variational inequality (9.4) does not have a solution, since the funetional

) L ,.00 0V
2, 2

does not have a minimum in the set: v € H(£,;), v>0. Indeed, for a sequence of
constants 0, }oo, A(C,) —— oco. Notice also that in this case,

f|u2| — 00

r

it € =0, (e/4) — oo, (%/2;) — 0. Indeed, otherwise, by multiplying the differential
inequality for 42 by o — u? and integrating we find that a subsequence of ? is con-

vergent to a solution of (9.9). However, such a solution cannot exist when (9.10)
holds. ’
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1¢. — Interior reinforcement.

In this section we consider the variational inequality analogous to (5.1)-(5.4)
and generalize the results of section 6. The variational inequality can be written in
the form

id onk 8(

(10.1) 2 (21 5,

153

+ fE(v — u’“))dw>0

800,
k
for every ve Hy(8), v>¢, u = (u', w*, u®) € Hy(£2).
Introduce the form

(102)  B(z) :ilj % , 0%t azz L 82:3

2 “i 5, + Z % 2 T,

2y
1 1 3)2 11 3 3
—}—fm(z——z)dS—i—f}‘zdm—l—ffzdm
I, K -

over the set K consisting of all functions 2 = (2%, 22) such that 2 € H yQ,), 22 € HY(S,),
#1>0, 220, and the trace of 22 on 08 is equal to zero. Notice that 2* and 2 are nog
required to agree along I,

Congider the variational problem:

min H(z) .

%K

Sinee the quadratic part of $(z) is coercive, there exists a unique solution (w?, w?).
Obviously, (w?, w®) is the unique solution of the variational inequality

ow! (vt — w?) ow® 0(vd® — w?)

S S g - 0
(10.3) 2, f S al o G do + Ay J > o . da
. 7

ox;

-+ f&%@ (wt — w?)((v? — vé) — {(w— w?)) dS —[—fﬂvl — whde +ff3(v3 —w?)dx >0
I, 1 ~s
for any (v, v3) € K, (w', w?) € K. ?

It is easily seen that on the subset of I, where w> 0, w? > 0, the relations (6.6),
(6.7) are satisfied.

THEOREM 10.1. If ¢ =0 and & >0, A, =0, (¢/A;) =« where 0 < o< oo, then
Uk — wk uniformly in compact subsets of 2, (k=1,3)

where (wl, w?) is the solution of (10.3).

We shall briefly describe the proof. First we note that Lemma 5.1 extends to the
present case; the proof is the same, except for some modifications as in the proof
of Lemma 8.1. We can now conclude that the estimate (6.2), (6.4) are valid.
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Next we write the penalized problem for u}, 43, 43, and multiply the first equa-
tion by o' — u} and the third equation by »*— u}, and integrate over Q, and £,
respectively. Now we perform a diffeomorphism of Q, U @2, onto 0, u 0, as at the
beginning of the proof of Theorem 6.1. It follows, after letting § — 0, that u?, us
satisfy a variational inequality similar to (10.3) with

a¥, f* replaced by a%, f*
and with additional terms

[mo— w9 k=1,3)
I,
where

f 20 (cf. (6.11));

also, (6.10) holds.
Using a stability result for variational inequalities, the assertion of the theorem
readily follows.

REMARK 1. — If o« = 0 then (u*, u3) converges to the solution of the variational
inequality

owt o(v ——w1 ow? o(v ——w3)
fz s fz a2 A

~}—J.f1(171— wt) +ff3(v3~ w?)>0 for any (v!,¢%) e K, (w!,w?)ecK
2 2,

where K consists of all ve Hy(Q), v>0. The proof is similar to the proof of Theo-
rem 10.1.

REMARK 2. — For the case « = oo one can probably derive agsymptotic results
provided the f* or the u* are appropriately scaled (compare [17).
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