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S u m m a r y .  - I t  is shown that in  a natural way there are Treeisely sixteen classes o] almost 
Hermit ian ~ani]olds. 

1 .  - I n t r o d u c t i o n .  

In order to generalize Kahler geometry various authors have studied certain 
types of almost Hermitian manifolds, e.g., Hermitian manifolds, almost Kahler mani- 
folds. These types of manifolds bear sufficient resemblance to Ki~hler manifolds so 
that  it is possible to generalize a portion of Kahler geometry to each type. In [20] 
Ko~o established inclusion relations between various classes. In  [9], [10] these inclu- 
sion relations were shown to be strict by the method of constructing explicit examples. 

The main point of the present paper is to fit all of these classes into a general 
system, which in a reasonable sense is complete. This will be accomplished by means 
of a detailed study of a representation of the unitary group U(n) on a certain space W. 
Geometrically, W can be interpreted as the space of tensors which satisfy the same 
identities as the covariant derivative of the Ki~hler form of an almost Hermiti~n 
manifold. 

Our scheme provides a general framework in which to study almost Hermitian 
maniolfds. On the one hand the classes of nearly Kahler manifolds, almost Kahler 
manifolds, etc., fit nicely into our pattern. In addition, locally conformal Kahler 
and almost Kahler manifolds occur. There are sixteen classes in all. Furthermore 
our scheme is important in the study of invariants of almost Hermitian manifolds. 

The sixteen classes come about in the following way. The representation of U(n) 

on W has four irreducible components, W---- W1 (~ W2 �9 W3 Q W~. I t  is possible to 
form sixteen different invariant subspaces from these four. Each invariant subspace 
corresponds to a different class of almost Hermitian manifolds. For example, W1 
corresponds to the class of nearly Kahler manifolds, W2 to the class of almost Kahler 
manifolds, and W~(~ W4 to the class of Hermitian manifolds. 

(*) En~rata in Red~zione il 24 hglio 1978. 



36 AL~EI)  G]~Y - L w s  ~r H]~VELLA: Almost Hermitian mani[olds 

I n  section 2 we define precisely the space W, and using Weyl ' s  theorem on invar- 
iauts we prove  the irreducibil i ty of the components  in the decomposit ion of W. We 
show in section 3 how each invar iant  subspace of W corresponds to a class of almost  
Hermi t i an  manifolds. 

We construct  in section 4 a certain tensor  field/x which measures the  failure of 
an almost  t t e rmi t i an  manifold to be locally conformally equivalent  to a KShler  
manifold;  the  tensor  field is analogous to the Weyl  conformal tensor  field of Rieman- 
nian geometry.  Using # we determine which of the classes are preserved under  
conformal  changes of metr ic .  The results of section 4 are used in section 5 to find 
all possible inclusion relat ions between the sixteen types,  and to demonst ra te  t h a t  
all of the  inclusions are strict.  

A par t icular ly  interest ing class tha t  arises in our scheme is the class correspond- 
ing to W~. This is the class ql)~ of almost  t Ie rmi t ian  manifolds M satisfying the 

iden t i ty  
- - 1  

(1.~) Vx(F)(]~, Z) -- 2(n --  ~) {(X, 3~) ~F(Z) -- (X ,  Z)  ~l~(Y) 

-- (X,  J~Y} cgF(JZ) + (X, JZ} ~t~(J:Y)} , 

where 2n is the real dimension of M. Three facts about  the  class %1), are no tewor thy :  
(t) Any  manifold in %1)~ automat ical ly  has an integrable almost complex structure.  
(2) Any  manifold locally conformally equivalent  to a KShler manifold is in %0~. 
(3) Le t  the Lee form 0 of an almost  Hermi t i an  manifold M be defined b y  
0 =  ~ F - J .  Suppose M e  ~ then  M is locally or globally conformally KShler ian 
according to whether  0 is closed or exact .  

In  section 6 we give many  examples of almost  t t e rmi t i an  manifolds in each of 
the sixteen classes. A large number  of the  examples are compact  homogeneous spaces. 

In  section 7 we discuss the invariants  of U(n) f rom a more general point  of view, 
and we determine a]l invar iants  of the representa t ion of U(n) on the  space of tensors 
involving two derivat ives of the  components  of the  metr ic  tensor and almost complex 
structure.  These are the six invariants  ~, ~*, llV/~ll ~, lldFll ~, [I~F[I 2, and IIsII ~. Fur-  
thermore ,  we determine the  l inear relations between these invariants ,  and in this 
way we compute  the  space of invar iants  of order  2 for each of the 16 classes. Our 
work generalizes t ha t  of GILKEY [8] who did the  computa t ion  for Hermi t i an  man- 

ifolds. See also [4]. 
Final ly  in section 8 we show tha t  there  are na tura l ly  four classes of almost  

symplect ic  manifolds. 
We wish to t hank  I. CATTA~E0-GASPAI~I~II, M. ~EI~:N~NDEZ, P. LIBER~A~:N~ i ~ 

GILKJEY, A. ~ .  ~AV]~IILA, S. SALAIViON~ I. VAISYdfA~% and L. VA~KECI~E for useful  

comments .  

2. - The space of  covariant derivatives of  the Kfihler form. 

The covar iant  der ivat ive  V/~ of the  K~hler  form of an almost  Hermi t i an  mani- 
fold is a cov~riant  tensor  of degree 3 which has various sy m m et ry  propert ies.  We 
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shall define a finite dimensional  vector  space W t h a t  will consist  of those tensors t h a t  

possess the  same symmetr ies .  Then we s tudy  the decomposi t ion of W into irreducible 
components  under  a cer tain na tu ra l  representa t ion  of the  un i t a ry  group. 

Lee V be a real  vec tor  space of dimension 2n with  an a lmost  complex s t ruc ture  J 

and  a real  posi t ive definite inner p roduc t  ( , ) .  We assume t h a t  J and ( , )  are 
compat ib le  in the  sense t ha t  (Jx ,  J y )  = (x, y) for x, y E V. Le t  V* denote the dual  

space of V, and  consider the '  space V*@ V*@ V*. This space is na tu ra l ly  isomor- 

phic to the  space of all t r i l inear  eovar ian t  tensors on V. Le t  W be the subspace of 
V* @ V* @ V* defined b y  

W = {oc ~ V* @ V* @ V* ] c~(x, y, z) = - -  a(x, z, y) = --  ~(x, Jy,  Jz) for all x, y, z ~ V } .  

There  is a na tu ra l  inner p roduc t  on W given b y  

2~  

(oc, t3) = ~ o~(ei, e,, e~)fl(ei, % e~), 
i ,~,  k = l  

where {e~, ..., e~.} is an a rb i t r a ry  o r thonormal  basis of V. Also, for e ~  W let  ~ e  V* 
be defined b y  

2n 

~(z) = ~ ( e , ,  e,, z) 
i = l  

for z e  V. We define four  subspaces of W as follows: 

Wl = { ~  Wl~z(x, x, z) ~- 0 for all x, z~  V} , 

W~ = {~ ~ W]oc(x, y, z) -F ~(z, x, y) + a(y, z, x) = 0 for all x, y, z e V) , 

W~ = {a ~ W[a(z, y, z) -- cz(Jx, Jy,  z) = c~(z) = 0 for all x, y, z e V) , 

I 1 W~ = ~ 6 Wl~(x , y, z) -- 2(~ -- 1~) ((x, y} ~(z) (x, z} 5(y) 

-- (x, Jy}  5.(Jz) @ (x, Jz}  ~(Jy)) for all x, y, z ~ V~. 
J 

The usual  represen ta t ion  of U(n) on V induces a represen ta t ion  of U(~) on W. The 
nex t  t heo rem describes the decomposi t ion of this induced represen ta t ion  into irre- 
ducible components .  

TxE o~ E~  2.1. - We  have  W = W1 @ W~ @ W~ @ Iu This direct  sum is or tho-  
gonM, and i t  is preserved under  the induced representa t ion  of U(n) on W. The 
induced represen ta t ion  of U(n) on Wi is irreducible. For  n = 1, W =  {0}; for n = 2, 

W I =  W s =  {0}, so t ha t  W =  W~@ Wd. For  n = 2, W2 and W4 are nontrivia],  and  
for n>~3 all of the  W/ are nontrivial .  
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I)~oo~. - I t  is not  difficult to check tha t  W~ and W~ are orthogonal and tha t  

W~ Q W2 = (~ e W 1 ~(x, y, z) -~- ~z(Jx, Jy,  z) --~ 0 for all x, y, z E V} . 

Thus W~, W~ ~ Ws, are mutua l ly  orthogonal;  fur thermore 

Moreover, it  can be verified tha t  

Wa Q W4-~ (c~ ~ W 1 ~z(x, y, z) -- o:(Jx, Jy,  z) ~ 0 for all x, y, z ~ V} . 

Hence all of the Wi's are mutual ly  orthogonal,  and W~--W1Q W2 • W~Q W4. I t  
is also easy to prove tha t  this decomposition is preserved under  the action of U(n). 

We now show tha t  the induced representation on each nontrivial  Wi is irredu- 
cible. Firs t  consider the case n~> 3. To each component of the induced representa- 
t ion of U(n) on W we assign a U(n) invar iant  symmetr ic  bilinear form which vanishes 
precisely on tha t  component.  Thus the number of components of the representa- 
t ion of U(n) on W is less t han  or equal to the dimension of the space of quadrat ic  
invariants of the representation of U(n) on W. 

We now show tha t  when n > 3 this dimension is equal to 4. We define I] II 2, A, 
B, C by  

2 n  

[[ 11 = X 
4,J, k =  1 

2n 

A(~)-~  ~ ~(ei, ej, ek)~(ej, ei, ek) , 
i ,J ,  k = l  

2n 

B ( o : ) :  ~ ~(ei, ej, e~)~(Jei, Je~, e~) , 
i , j , k ~ l  

2n [ 2n 2 

I t  is clear tha t  ii [I 2, A, B, C arc quadrat ic  invariants of the induced representa- 
t ion of U(n) on W. That  they  are linearly independent  can be proved directly, or 
it  follows from theorem 5.2. We remark tha t  Jl [I 2, A, and C are invariants of O(2n). 

To prove tha t  I[ ]12, A,  B, C span the space of quadratic invariants,  we mus t  
use Weyl 's  theorem on invariants  of the uni ta ry  group. Weyl 's  theorem is s tated 
for the orthogonal group in a convenient way in [2, p. 76] (see also [18]). We shall 
need instead WeyPs theorem for the uni ta ry  group, bu t  in the form of [2, p. 76]. 
This can be effected by using Hermi t ian  symmetr ic  bilinear forms instead of real  
symmetr ic  bilinear forms and after wards taking the real and imaginary parts.  Accord- 
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ing to this theorem every  quadrat ic  invar iant  of W is ~ linear combinat ion of elemen- 
t a r y  invariants  P~ of the form 

2~ 

P,~(~)= ~ a(~|174174174 e~,..., %+., %+,), 
Q,... ,~t+:= 1 

where F is given by  F(x, y )= (Jx, y} and ~ is ~ permuta t ion  of degree 2 lq-6 .  
Here  l is the number  of F ' s  occuring in the tensor  product ,  and wi thout  loss of 
general i ty  we may  assume tha t  0 < l < 3 .  Also a ( ~ ) ~ ) ~ @ . . .  Q F )  denotes the 
obvious action of a as a pe rmuta t ion  of the arguments.  

I t  is not  difficult to prove tha t  P~(~) = 0, except  when 1 = 0 or 2. In  the case 
l ~ 0, i t  can be checked tha t  every  e lementary  invar iant  P~ is a scalar mult iple of 
II It ~, A, or C. When l =  2, every  e lementary  invar iant  _P~ is a seM~r multiple of 
one of these three,  or it  is a mult iple of B. 

Thus the representa t ion of U(n) on W has precisely four components,  when n ~> 3. 
When ~ = 1 or 2, i t  is easy to ver i fy  tha t  the s i tuat ion degenerates into tha t  de- 
scribed in the s ta tement  of the theorem. Hence the theorem follows. 

RE~A~K. -- I f  dim V = 2n, then dim W = 2 dim (W~ �9 W~) -~ 2 dim (Ws �9 W4) 

: 2n2(n-1). Also d i m W ~ =  �89 1)(n--  2), dim W2= ~n(n-- 1)(n-}- 1), d i m W 3 =  
= n(nq-1)(n-- 2) (for n>2), and d i m W 4 ~  2n. 

3.  - T h e  s i x t e e n  c l a s s e s .  

Let  M be a C ~ almost  Hermi t ian  manifold with metr ic  ( ,  }, l~iemannian connec- 
t ion V, and almost complex s t ructure  J .  Denote  by  ~(M) the Lie algebra of C ~ 
vector  fields on M. Then we have (JX,  J Y }  = (X, :F} for X, Ye~(dl / ) .  Also, 
S will denote  the Nijenhuis tensor of M, tha t  is, S(X, Y ) ~  IX, Y]q-J[JX,  YJq- 
q- J[X, J~] -- [JX, JY] for X,  Y ~ ~(M). The K~hler form F is given by  F(X, Y) = 
= (JX,  Y}; and the Lee form is the 1-form 0 defined by  O(X) = ( ( - -1) / (n- - I ) )  ~F(JX) ,  
where ~ denotes the coderivative.  

For  any  almost Hermi t ian  manifold there is a representat ion of U(n) on each 
tangent  space M~. P u t  

w ~ =  {~e  ~ * |  M * |  ~ *  I ~(x, y, z) = -- ~(x, z, y ) =  -- ~(x, Jy, J~)} .  

Then the induced representa t ion of U(,)  on Wm has the four components  W~I, W ~ ,  
W.~8, Win4, as described in the previous section. I t  is possible to form from these 
four a total  of sixteen invar iant  subspaces of Wm (including (0} and W~). 

DEFINITION. -- Let U be one of the sixteen invariant subspaces of W. For an 

almost Hermi t i an  manifold M and m E M, let  Um denote the corresponding sub- 



40 ALFRED GRAY - LuIs  5I. ]~[EI~VELLA: Almost ttermitian mani]olds 

space of W~. Then ell will denote the class of all almost Hermit ian  manifolds M 
such tha t  (VF),,a U~ for all m ~ M .  

Of course in order for this definition to be meaningful, one must  show tha t  for 
any  almost Hermit ian manifold M, V/7 has all the required symmetries in order 
tha t  (VF)~ e W~ for all m E M. I t  is obvious tha t  Vx(/~)(Y, 2) is skew-symmetric 
in I7 and Z. Also we have 

Vx(F)(:Y, JY)  = X F ( I  z, JY)  -- F(Vz Y, J Y )  -- F(:Y, VzJY)  

= XtI:YiI"-- ( V x Y ,  : Y ) -  (J:Y, VzJY-) 

= �89 �89 ' =  o,  

so t h a t  Vx(F)(Y, Z) = -- Vx(Y)(J~,  JZ) for X, Y, Z e  ~(M). 
The class corresponding to W~ will be denoted by ~l)~, and tha t  corresponding 

to Wi @ Wj by %1)~ @ ~0~, etc. Also, Jr will correspond to {0} and ~ to W. Some, 
but  not  all, of the classes have been studied. We explain how the classes just intro- 
duced coincide with classes studied by various authors:  

= the class of K~hler manifolds; 

21)1= ~VJ4 = the class of nearly K~hler manifolds (also called almost Tachi- 
bana spaces) ; 

%t)2= AJ~ = the class of almost K~hler manifolds; 

21)3= JGn 8 J ~ =  the class of IKermitian semi-K~hler manifolds (also called 
special IKermitian manifolds); 

%/)4= a class which contains locally conformal Ki~hler manifolds; 

21)1 @ ~2 = (~:E = the class of quasi-K~hler manifolds; 

~3@ 21~4= Je = the class of Hermi t ian  manifolds; 

ql)2 @ 21)~= a class which contains locally conformal almost Kiihler manifolds; 

~1~1@ 21)2@ ~1)~= 8 J 5 =  the c!ass of semi-K~hler manifolds; 

~1)~ @ ~1)3 @ ql)4= ~ 1 classes studied by HERVELLA and V!DAL [16], [17]; 

1 
%/) = the class of almost Hermi t ian  manifolds. 

We now use the results of section 2 to describe the sixteen classes. 

THEOREhr 3.1. -- The defining relations for each of the sixteen classes (in the case 
tha t  d i m M > 6 )  are given in Table I.  The case d i m M =  4 is t reated in Table I I .  



ALFI~ED GlCAY - Lugs  ~ .  I=[EI~VELLA: A l m o s t  H e r m i t i a n  m a n i ] o l d s  41  

TABLE I. -- A lmos t  H e r m i t i a n  mani /o lds  o/ d imens ion  > 6. 

Class Defining conditions 

5% V r  = o 

~ = A~js V x ( r ) ( X ,  Y) = 0 (or 3 V~ = d r )  

'/D2 = ~3~ 

'iDa= 83% n 3~ 

'tt3~ 

'/D1 @ 'LD2 = O.3~ 

'iDa �9 'IDA = 5s 

~2  ~ "l/)3 

d r  = 0 

~ r  = S = 0 (or V~(r)(Z, Z) -- Vjx(~)(JY, Z) = ~ r  = O) 

- 1  
v~(r)(r ,  z) - 

2 ( ~ -  1) 

d r  = r A  0 

(<x, y> ~r(z) - <x, z> ~r(y) 

- <x, Jy> ~r(JZ) + <x, jz> ~(Jy)} 

v x ( r ) ( y ,  z )  + v j z ( r ) ( a y ,  z)  = o 

s = o (or V~(r)(y,  z )  - V ~ ( r ) ( ] y ,  z)  = o) 

V~(r)(X, z )  - Vsx(r)(JX, ~) = ~ r  = o 

(or  | IV~(~)(Y,Z) 1 
\ XYZ[ ~b -- i 

r ( x ,  y )~r (Jz)}  = o) 

- -1  
v~<r)<x, y) = {[[x[? ~r<~) - <x, ~> ~r(x)  

2(n 1) 
- < J X ,  z >  6 r ( J X ) }  

| {vx(r)(r,  z) - v jx(r) (Jy,  z)) = ~ r  = o 
X Y Z  

$ r  = o 

- 1  
v~(r)(y, z) + vj~(r) (JZ, z) = {<x, ~> ~r(z) 

n - -  1 

- <x, z> ~ r ( z ) -  <x, JZ> dr(Jz) + <x, jz> 0~(Jy)} 

v~(r)(x, ~1 - v ~ ( r ) ( ] x ,  17) = o (or <S(x, y), x> = o) 

| {v~(r)(~, z) - v+~(r)(J~, Z)} = o 
X Y Z  

(or ~ <s(x, r), Jz> = o) 
X Y Z  

No condition 

P~ooP .  - T he  resul ts  of sect ion 2 give i m m e d i a t e l y  the  defining re la t ions  for  the  

fo l lowing classes : 3L, q91, %02, %01)3, %0~, %0~ @ %02, %08 @ %0~, %01 @ %02 Q %1)3, and  %0. 

W e  n o w  check  the  r ema in ing  classes. 

F o r  the  class %02 Q %03 @ %04 we observe  t h a t  t he  o r thogona l  p ro jec t ion  $1: W - +  W1 
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is given by  

Sl(~)(x, y, z) -= ~ ~{a(x, y, z ) -  ~(Jx, Jy, z)} 

for x, y, z~ V, where ~ denotes the cyclic sum. Hence  W~OWsC~W4= W~= 
= (~ j S~(~)= 0}. Thus we obtain the defining relat ion for ql)~@ 21)3@ q94. Similar 

arguments  apply  to ~ Q  ~ G ~0~ and ~ @  ql)~@ ~ .  The defining relations for 
all the  other  classes with two summands can be de termined b y  taking the intersec- 
tions among the classes with three  summands.  

Also, for the class "tl)~@ 21)~ one proves direct ly tha t  the defining relat ion can 
be wr i t ten  more simply as dF  = - F  A 0. Final ly  the a l te rna te  conditions for the 
classes %I)~G ~1)~@ ~ and ql)~ �9 ~ ) ~  follow from the following identi t ies:  

(S(X,  Y), JZ}  = {Vx(J  ) Y -- V j x ( J ) J Y - -  Vy(J)X-j -  V jy (J )JX ,  Z} 

and 

2 <Vx(J ) Y - -  V jx (J )J  Y, Z} = (S(X,  Y), J Z } -  (S (Y ,  Z), J X } - ~  (S(Z, X), J Y}  

for X,  Y, Z e E(M). 

TABLE !I.  - Almost Hermitia~ mani]olds o] dimeq~sion =- 4. 

Class Defining conditions 

35 V/~ = 0 

A ~  = q/)2 d E  = 0 

5r = ~/)4 S = 0  

%0 No condition 

I~E~A~K. -- A potent ia l ly  interest ing class of almost  Hermi t i an  manifolds are 
those satisfying d F k = 0  for some k with l ~ k ~ n .  For  k = l  this class is 21)2, and 
for k = n - - 1  it is ~ @ ' ~ 2 @  ql)~. F r o m  the results of section 2 we suspect t h a t  
for a rb i t ra ry  k, the  class defined b y  d F ~ =  0 must  coincide with one of the classes 
given in table I. We now determine this class precisely. 

Tm~ORE3'~ 3.2. - Le t  A:~ (k) denote  the class of almost  t t e rmi t i an  manifolds for 

which dF  ~= 0. Then  

d ~ ( k )  = 

'/1~ for l<~k~<n--2 , 

ql~l Q '/~02 (~ '11)8 for k -~ n -- 1, 

q~ for k = n .  
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P~ooF.  - T h a t  AJ~(~)~- ~ is obvious. ~ e x t  let  l < k < n - - 1 ,  and  let  {E~, JE~, 
..., E~, JE~} be an o r thonormal  basis on an open subset  of M, where M~AJ~(k). 
We compute  d/Sk and find 

(3.1) 6 ~ dFk( E~, , JE~ , ..., Ei, , JE  ~, , X) 

k 

k! ~ dH(E~j, JE~,, X ) .  
~'=1 

Wri t t en  out, (3.1) is a sys tem of l inear equat ions:  

dY(Ex, JE~, X)-}- di,V(E2, JE2, X) -~-... -~- dF(.Ek, JE,~, X) =- O, 

(3.2) dY(E~, J.E~, X ) +  ...+ dF(E~_~, JEk_~, X) + di.V(E~+~, JE~+x, X ) =  0,  

I n  the  ease when 1 < k < n -  2, (3.2) has only the  t r ivial  solution. Similarly one shows 
tha t  dF(X, 17, Z) = 0, and  so AJ~ (k)-- ~2  for l<k<.n-=2. When  k = n - - 1 ,  (3.2) 

reduces to ~/7(X) = 0. Hence  the  theorem follows. 
Also, theorem 3.2 follows f rom a divisibil i ty theorem for symplec t icm anifolds. 

see [5], [6], [23]. 

4. - Classes preserved under eonformal changes of  metric. 

I n  this section we de termine  which of the  sixteen classes are preserved  under  a 

eonformal  change of met r ic ;  we assume tha t  the  a lmost  complex s t ruc ture  remains  

unchanged.  The  2- and 4-dimensional  cases are quite simple, and so we assume t h a t  
all manifolds have  dimension a t  least  6. 

D~FI~ITIO~. - Le t  qL be one of the sixteen classes given in table  I .  Then  qL ~ 

will denote  the  class of all manifolds locally conformal ly  re la ted  to manifolds in qL. 
I n  other  words, (M, J, (,)o)EqL o if and  only if for each m e M there  exists an open 
neighborhood V o f  m such tha t  (V, J, ( , ) o )  is eonformal ly  re la ted  to (V, J, ( ,  ~) eqL. 

I t  will be  convenient  to introduce a tensor  field # which is a conformal  inva r i an t  

for a lmost  H e r m i t i a n  manifolds.  There  is an ana logy be tween  # and  the  Weyl  

conformul tensor.  J u s t  as the  Weyl  eonformal  tensor  measures  the  failure of a 
R iemann ian  manifold  to be  conformal ly  fiat, the  tensor  field # measures  the  fai lure 

of an a lmost  Hermi t i~n  manifold  to be  conformal ly  K~ihlerian. 

Dnl~II~ITIO~. - Le t  (M, J, <, )) be an a lmost  t I e r m i t i a n  manifold.  Then # is the  

tensor  field of t y p e  (2, 1) given b y  

(4.1) <p(x, ]~), z} = v,(F)(]~, z) + - -  

for X, Y, Z c ~.(M). 

1 

2(n i) 
-- <X, JY~ O~(JZ) + <X, JZ)  O/P(JY)},  
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Lw~vnwA 4.1. - Le t  (M, J ,  <, >) and (M, J ,  ( ,  >o) be locally eonformally related 
almost t Ie rmi t ian  manifolds. Then the corresponding tensor fields # and #o satisfy 
# o =  #. 

PI~OO]F. - There is a well-known formula expressing the l~iemannian connection 
of {,}o in terms of the l~iemannian connection of { , } :  

(4.2) V ~ Y =  V x Y + X ( ~ ) i g @  Y(~)X--  {X, :g} grad~ 

for X, Y ~ g ( M )  (where {grada,  X} -= Xa). F rom (4.2) (see [9], [10]) it  follows tha t  
V~176 is related to V/~ by  the formula 

(~.3) V~176 ~, Z) = ee~{Vx(F)(Y, Z ) -  {X, Y}JZ(a)@ {X, Z}JIr (a)  

-- {X, JY}  Z(a)+ {X, JZ} Y(a)}, 
and tha t  ~o/~o is related to ~i~ by 

(~.~) ~oi~o(x) = ~ ( x ) +  2 ( n -  I )JX(a) ,  

for X, Y, Z E E(M). F rom (4.3) and (4.4) we obtain immediately # = #% 
Next  we prove 

Tl~Eogm~ ~.2. - For  any  class qL given in table I we have %b~ ~4@qL.  Thus 
q L =  qL o if and only if ~_c%L. I tenee the eonformally invariant  classes are: ~4,  

PgooF. - The defining relation for each of the classes mentioned in the s ta tement  
of the theorem can be rewrit ten in terms of #. F rom table I we have 

M e ql)~ if and 

M ~ ql)l @ %t)a if and 

M e Ql~2 @ ql)a if and 

M e 21)3 @ qg~ if and 

M ~ ~01 @ ~1)2 @ q)34 if and 

M e 21)1 @ q133 @ ~1?4 if and 

M ~ ~t))~ @ ~ll) 3 @ "d)~ if and 

only if Ct = 0 

only if #(X, X) -= 0 for all X ~ 3~(M), 

only if | {#(X, I7), Z} = 0 for all X, ](, Z ~ ~(M), 
X Y Z  

only if #(X,  ~ ) - -  # (JX ,  J Y )  == 0 for all X,  Y e ~(M) , 

only if 

only if 

only if 

~(X, Y ) + # ( J X ,  J Y ) - : 0  for a]l X, I z e ~ ( M ) ,  

#(X, X) -- # (JX ,  JX )  : -  0 for all X e ~ ( M ) ,  

{#(X,  Y) -- # (JX ,  J Y ) ,  Z} = 0 
xYz for all X, Y, Z e ~(M) . 

F rom these descriptions it is clear tha t  if ell is any one of the eight classes contain- 
ing 2194, then  (M, J ,  {,  }) eqL if and only if (M, J ,  {, }o) eqL, where {,  } and {, }o 
are conformally related. 
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We note the following formulas: 

(a.5) 

(~.6) 

{#(X, ~-) -- #(JX, JX), Z} = {Vx(J ) Y-- Vzx(J)(JY), Z} 

-~ �89 ~), JZ} -- �89 g), JX} ~ �89 X), J~}  , 

| (#(x,  y), z} = d~(x, y, z ) -  (~vAO)(X, y, z ) .  
X Y Z  

Actually the form d E -  FA0 depends only on the symplectic structure F (see w 8). 
This is the conformal torsion introduced by L I ~ E ~  [23, p. 71]. Libermann 
also introduced a torsion corresponding to/~. Formula (4.6) shows that/~ determines 
d~- -  ~A0. The converse, however, is not true. For example if M ~ %0~ but M ~ 35, 
then d E = ~ A 0 - - ~ 0  on M but # re0 .  See also [2~]. 

:Next suppose % n  9 2 ~  35. We have shown that  2L~ ~ .  The following 
theorem characterizes those manifolds in ~ (~ %0~ which are contained in ~1s ~ 

Tm~o]~E~ 4.3. - Let % be one of the sixteen classes and suppose that  % n  ~ 4 ~  35. 
Let ( M , J , { , } ) ~ % @ ~ .  Then 

(i) (M, J,  ( , ) )  e %  ~ (that is, (M, J,  ( ,  }) is locally eonformally equivalent to 
an almost Hermitian maniZold in %) if and only if the Lee iorm 0 of (M, J ,  {,})  
is closed. 

(if) (M, if, ( , } )  is globally conformally equivalent to a manifold in % if and 
only if the Lee form 0 of (M, J,  {, }) is exact. 

P~oos. - Suppose (M, J,  {, >) is globally conformally equivalent to a manifold 
(M, J ,  {,}0) in %. Since % n  ql)4= 35 we have %_c ~ O ~ ( ~ q l ) 3 .  Thus the Lee 
form of (M, J,  <, >o) vanishes. By (4.4) the Lee form of (M, J ,  <, >) is exact. 

Conversely, let the Lee form 0 of (M, J, <,) )  be exact, O=d]. Define a func- 
tion a by a =  �89 and put < , > ~  e2~(,>. From (4.2) we have ~o/~o~ 0, and so 
(M, J, ( ,  >0) E (~1 | ~2 | ~3) r~ (% | ~4) = %. 

This proves (if). The proof of (i) is the same except that  everything is done locally 
and the Poincar6 lemma is used. 

Theorem 4.3 shows, for example, that  on any K~hler manifold it is possible to 
make a conformal change of metric and get a manifold in ~0a (which of course is a 
complex manifold). In this way one can construct many non-Ki~hler metrics on 
manifolds in ql)4. 

A more interesting example (due to V)~s~A~ [27]) of a non-Ki~hler manifold 
in ~l)~ is S~XS ~+~,/~>1. In [27] it is shown that  S1x~  2~+~ is locally conformally 
Ki~hlerian. Of course S ~ x S 2~+~ cannot be globally conformally Ki~hlerian because it 
does not have the cohomology of a Ki~hler manifold. 

More precisely, Vaisman has shown that  S~x S 2k+~ is locally conformally equi- 
valent to C 7r {0}. This shows among other things that  all of the Chern numbers 
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of Sx•  S 2~~ are zero (because the  Chern classes depend only on the  a lmost  complex 

s t ructure) .  
As for the  other  Ca lab i -Eckm~nn manifolds $2~+1• S ~+1, their  class is g iven in 

the  following theorem.  

THEO~E~ 4.4. -- L e t  M = S~k+l• S 2~+1 and let  M be given a complex s t ruc ture  

in the  s t anda rd  wey.  Then  assuming k < l  we have :  

M e J5 if end  only if /r = l = 1 .  

Me%04, M ~ 3 5  if end  only if k = l ~  1 > 1 .  

Me'tD3@%0~, M~%03U'LO~t if and  only if bo th  / ~ , l > l .  

P~ooF. - To p rove  the last  s t a t emen t  one computes  the tensor  field # for M. 

Por  k, l > 1 we have  # ve 0 so t h a t  M ~ %0~ end 0 v~ 0 so t h e t  M ~ %03. On the  other  

hand,  the  a lmos t  complex  s t ruc ture  of iV/ is integrable  and  so M e  ~ 3 G  ~4 .  
More computa t ions  for the manifolds S 2k+1 •  are carr ied out  in the  proof 

of theorem 7.1. 

5 .  - T h e  i n c l u s i o n  r e l a t i o n s .  

Firs t  we de termine  which of the s ixteen classes are preserved  under  C~rtesian 

products .  I f  qL is one of the  s ixteen classes let  

%62= the  class of Car tes ian products  of e lements  in qL .  

The  following theo rem is easy to ver i fy :  

TR-EO~E~ 5.1. -- We  have  ~ c % L  prov ided  qL is any  one of the  following 

classes: 35, ~1~1, %0~, %03, %01@ TO~, G))l @ %03, ~2@%03, %03@%0~, %01 @ % 0 2 @ ~ ,  

We  are now r eady  to de te rmine  comple te ly  the  inclusion relat ions be tween  the  

var ious  clesses. 

Tm~o~E~ 5.2. - All possible inclusion rela t ions are given in table  I I I .  All of the  

inclusions are str ict .  

P~ooF.  - T h a t  all of the  inclusions exist  is obvious.  We exhibi t  manifolds  to 

show t h a t  eech of the  inclusions is strict .  
F i r s t  we note  t h e t  the  sphere S 6 is in ~ 1  b u t  not  in 35. Also, if 2~(M) denotes  

the  t angen t  bundle  of a nonflat  R i e m e n n i a n  menifold,  then/~(M) is in ~ 2  bu t  not  in ~ .  
N e x t  let  M1 be an o rd inary  min imal  surfece in R 3. Then  M1 •  4 has  en a lmost  
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T~L~ III.  

%01 %0~ | %03 %01 @ %0~ | %03 

%0"~ @ %0~ %02 @ %03 | %0~ 

Hcrmit ian  structure for which -71/1 •  ~ is in %0a but  not  in J~. For  all of this see [9], 
[10], [11]. These three ,  examples, plus Vaisman's example of S 1 • ~+~, k~>l, show 
tha t  the following four inclusions are Strict: J~ = %01, J~ c %0~, J5 c %03, J~ c %0~. 

Next  we establish the strictness of the inclusions %0~w %0jc %0~O%0~. There 
are two cases to consider. 

Case I (i, ], 4 distinct). - Le t  M~e %0~-- %0j, M j e  %05-- %0~. Then by theorem 5.1 
(%0~Q%0j)2c%0~Q%0j and so M~• On the other hand it  is clear 
tha t  M~ • M~ is neither in %0~ nor %0j. 

Case I I  (i ~ j-~ 4). - Le t  M, e %0,-- J~. Then we can make a nontrivial  change 
of eonformM metric to obtain an almost Hermit ian  manifold M~ such tha t  
M~ e %0~O %04. By  equation (4.r M~ %0,. Also, since M ~  J~, it  follows tha t  M ~  %0a. 
Hence M ~ ~ %0~ u %0~. 

Thus all of the inclusions %0~U %0j= %0~O %0J (i r  are strict. In  exactly the 
some way one proves tha t  the  inclusions %0~ U %0j U %0~= %0~ Q %0~- G %0~ (i, ], k distinct) 
and %01U %0~ U ~1)~ ~) %0~ = %0 are strict. F rom this the theorem follows immediately.  

I n  the course of proving theorem 5.2 we have established the following. 

Coro l lArY  5.3. - The inclusions J~c %0~, %0~) %0~.c %0~(~ %05, %0~ %0~'~) %0~ 
c ~ ( ~ % 0 ~ % 0 ~ ,  and %01U %0~U %03U %0~c %0 are all strict. 

6. - Examples of almost Hermitian manifolds illustrating the sixteen types. 

There are m a n y  non-K~hler almost Hermit ian manifolds arising natural ly  in 
differential geometry. In  section 5 we used a general technique to demonstrate the 
strictness of all the inclusion relations. We now exhibit some especially interesting 
almost Hermit ian  manifolds and show where they  fit in. 
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The class of nearly Kiihler mani]olds q)2~= ~{'~. The most  well known example 
in this class is the sphere ~6. S 6 is a 3-symmetr ic  space [12]. ~o reove r ,  every  
3-symmetr ic  space M has an almost  complex s t ruc ture  and a metr ic  such tha t  

The class o/almost Kiihler manifolds q ~ :  A3~. The t angen t  bundle  T(M) of a 
l~iemannian manifold always has a na tura l ly  defined complex s t ruc ture  and metr ic  
such t ha t  T(M)eTO~. ~oreove r ,  iV(M)~3L provided M is not  fiat. l~ecently 
Tn-u~s~o~ [26] has given an example of a compact  4-dimensional manifold in q~2 
which has no K~hlcr  metr ic  on account  of its cohomology. 

The class el quasi-Kiihler mani]olds ql)~ ~) ql)3: O3L. I f  M is a compact  3-sym- 
metr ic  space then  M is homogeneous [12]. I f  the isotropy representa t ion is reduci- 
ble, t hen  M has m a n y  metrics which make  it  a 3-symmetr ic  space. A bi invar iant  
metr ic  is in 21)~; any  other  metr ic  is in ( ~ G q ~ 2 ) - - ( ~ w  21)~). 

The product el odd dimensional spheres $2~+1 x S ~+~ is in "t l)~ ql)~. S e e t h e o r e m  4.4. 

Any complex parallelizable maul]old is in '1)38. This can be checked directly.  

Almost Hermitian manifolds defined by means el vector cross products. In  [11] it  
is shown tha t  any  orientable 6-dimensional submanifold of R s has an almost complex 
s t ructure .  The almost complex s t ruc ture  is const ructed b y  means of one of the two 
3-fold vector  cross products  on R s. When  one uses the  induced metr ic  a large number  
of interest ing 6-dimensional almost  t t e rmi t i an  manifolds occur. I~et M be an almost 
t t e rmi t i an  manifold const ructed in this way.  I n  [11] the following facts are p roved:  

(1) M e ~ l Q q 2 ~ @ ~  always. 

(2) I f  M c R  7, t hen  M e3~ if and only if M is locally flat. 

(3) I f  M c R 7, t hen  M ~ ql)l if and only if M is locally isometric to R 6 or to S a. 

(4) I f  M c R  7, t hen  M e  ~ if and only if Me3L.  

(5) I f  M c  R v, t hen  M e  ~ 1 @  q~  if and only if M is locally isometric to R 6, 26~ 
or S ~ • R 4. 

(6) I f  M e  q~3 ( that  is if M is Hermit ian) ,  then  M is a minimal  submanifold of 
R s. ~u r the rmore  if Mlc  R a is an ordinary minimal  surface then  Mt • Rde ~3 .  

7. - Invar iants  i n v o l v i n g  two  derivatives .  

Let  ? be a funct ion which assigns to each almost Hermi t i an  manifold M a real  
va lued funct ion on M. We call ~ a unitary invariant el order t~, provided  tha t  for 
each m e M  and all normal  coordinate  systems (Xl~ ..., x.)  a t  m it  is possible to 
express ~ as a polynomial  involving a to ta l  of k derivat ives of the components  
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of the metr ic  tensor  and almost complex s t ructure  with respect  to (x~ ..., x~). I t  
is required tha t  the polynomial  be independent  of the choice of normal  coordinate 
system. Uni t a ry  invariants  of odd order are all zero. In  this section we determine 
all un i t a ry  invariants  of order 2 (also called linear invariants)  for each of the sixteen 

classes. 
For  a given class ~ of almost  Hermi t ian  manifolds of dimension 2n~ let  I ~ ( ~ )  

be the space of un i t a ry  invariants  of order 2. GIL]~EY [8] has computed  I~(~lL) when 
elL----- J~, the class of K~hler manffolds~ or when qs %0a ~)"ll)~, the class of Her-  

mit ian manifols. Fi rs t  we compute  I~(%0). For  M e  %0 and m e  M let  

(7.2) 

2 ~  2 n  

a , b , c ~ l  a , b , c = l  

2n 2n 

a = l  a , b = l  

2n 2~t 

7: :  ~ R(e~, eb, e~, eb) , ~ * =  �89 ~ R(ea, Jea, %, J%) , 
a , b = l  a , b ~ l  

where {el, . . . ,e2, } is an a rb i t ra ry  or thonormal  basis of M~. Here  z is the scalar 
curvature  of M~ and ~* is the * scalar curvature  (see [14]). I f  r ..., ~ are 
un i t a ry  invariants  of order 2~ we denote by  [al, ...~ ak] all linear combinations of 
a~, ... ~a~ with constant  coefficients. 

= [llVrH , ii ll , a n d  •  

PROOF. -- For  simplicity we shall t rea t  only the ease n > 3 .  In  the first pa r t  of 
the proof we shall show tha t  the six invariants  given by  (7.1) span I~(%0). After- 
wards it  will be demonst ra ted  tha t  no linear relations between the six invariants  exist. 

F i rs t  we divide the invariants  of order 2 into 3 types.  (One checks t h a t  these 
are the only possibilities; this is easy.) The three types are: 

Type I.  - Invar ian t s  involving two first derivat ives of the components  of the 
almost complex structure.  

Type I I .  - Invar ian ts  involving one second der ivat ive of the components  of the 
almost  complex structure.  

Type I I I .  - Invar ian ts  involving one second der ivat ive of the components  of 
the metr ic  tensor. 

Using the power series expansions of [13] one sees tha t  the invariants  of each 
type  can be expressed in terms of J ,  its first and second covariant  derivatives,  and 
the curva ture  tensor. The results of section 2 can be in te rpre ted  as the computa-  

4 - A n n a l i  d~ M a t e m a t i c a  
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tion of all the invariants of type I. A convenient basis consists of ItWll ~, II~Fll ~, 

ll~FIl~, and lI~ll ~. 
Next we determine the invariants of type I I I .  One first observes that  because 

only derivatives of the metric are involved, any invariant of type I I I  is expressible 
in terms of curvature. Using Weyl's theorem on unitary invariants it follows that 
the space of invariants of type I I I  is spanned by  the elementary invariants of the 
following kinds : 

2 ~  2~  

P a - ~  ~-, a (R) (ea ,  ea, eb, eb) '  P'a--~ ~,  a ( R ( ~ F ) ( e a ,  ea, eb, eb, er ev) , 
a,b=l a,b,c=l 

2n 
P:= y_, ~(R|174 % % % 6~ eo, % %) , 

a,b,c=l 

where a is a permutation of the appropriate degree. See [2, p. 76] and [18]. In  fact 
all invariants of the form P', vanish, and those of the form 2 ,  and P~ are reducible 
to scalar multiples of ~ and ~*. 

l~lext we show that  all invariants of type I I  can be expressed in terms of those 
of type I and I I I .  Following the method of computation for the invariants of type I I I ,  
we find the following invariants (we write a for ca, a* for J%, etc.): 

2 n  2~  

(11 ~ v~b(~l(a, b), (2) ~: V~b(f)(a, b*), 
a~b=l a,b=l 

2n 2n 
(3) ~ V~b(/~)(a* , b),  (4) ~ V~ab(/V)(a *, b*), 

a,b=l a,b=l 

2n 2n 
Vaa,F)(b , b*), (6) Z V2aa*( F)(b, b*). 

a,b=l a,b=1 

On the other hand, we have the l~icci identity 

(7.2) v~x(r)(]( , z ) -  V~w(F)(Y, z ) =  ~(Rwxy, z )+F(Y ,  R~xZ) 

"-~ - -  "~WXYJZ 

and the identity 

- -  I~WXJY Z 

(7.3) V~vx(F)(:Y, J Y )  -~ _ <Vw(J ) Y, Vx(J) Y ) ,  

for W, X,  Y, Z ~ ~(M). The identity (7.3) is proved by  taking the covariant deriv- 
ative of the equation Vx(F)(Y  , J Y ) - ~  O. 

Using (7.2) it follows that  the invariants (1), (4), (6) vanish. Furthermore we 
have ( 5 ) = -  [[V/~II ~ on account of (7.3). 
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Next  let S0 be the coderivative of the Lee form, tha t  is 

2 n  

(7.41 s0 = - ~ v~ 0o. 
a = l  

From (7A) and the ident i ty  
2n  

(7.5) l ldF[t~- - 31IV_Fll ~ -  6 ~ VoF~0V~Foo 
a , b , c = l  

we find tha t  

(7.6) { (~) = - ( ~ -  1) so + ~ [[dFl[~- ~ [ [w l l  ~ 

(3) = - ( . -  1) s o +  [[sFtl ~ . 

o n  the other hand using (7.2) we have 

(7.7) ( 2 ) + ( 3 ) : T - - z * .  

F rom (7.6) and (7.7) we eliminate S0 obtaining 

(2) = - ~ II W l l ~  § IId~lt ~ -  ~ I1 sFll ~ + t ( 3 -  ~,), 

Furthermore,  we note t ha t  

(7.s) (~-  1) s o - -  ~ l[wl[~+ ~�89 ltlSFll~- �89 (~- ~*). 

Thus we have shown tha t  the six invariants defined by (7.1) span I.(2D). We 
now show tha t  they  are linearly independent  in any  dimension 2 n >  6. 

Suppose tha t  for all almost Hermit ian  manifolds of a given dimension 2 n > 6  
there is a linear relation 

(7.9) AT + Bz* + C[[ VF]] ~-[ - ~lldFII ~ + ~]] s~ll ~+ ~llSll ~= o,  

where A, B, C, E, G, H are constants. By  evaluating (7.9) on different almost Her- 
mit ian manifolds we show tha t  A . . . . .  H = 0. 

Firs t  we evaluate (7.9) on CP ~. For  CP" we have IIv_~ll'= [IdFll~-= IIsFII2= 
= [[A'[[ ~= 0 and ~ =  ~*r I t  follows tha t  

(7.10) A -- -- B .  

Next  we evaluate (7.9) on M~ne ~D1-- J~; for example we can take M~-=  S" •  "-3. 
Then one computes tha t  [ [wl l2=  ~tld~l[~= ~-ll~[[~# o and I[S~[[2= 0. Also 3-- 3*=  
= ]]VFII 2 (see [14]). Thus from (7.9) and (7.10) we get 

(7.11) A-~ C-I-- 9E-~ 1 6 H =  O. 
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Continuing, we evaluate (7.9) on M ~ e  ~2-- ~ ;  for example we can take M ~ - =  
T(U ~) where U is a nonflat g i emann ian  manifold of dimension n. One checks 

t ha t  I[SII~: 4[IV~[I~# 0 and l]a~ll~= [IdYll2= 0. ~ur thermore  v--  z * : - -  �89 IlWli~ 
(see [15]). Thus using (7.9) and (7.10) we find 

(7.12) - -  � 8 9  C §  4 H =  O. 

Similarly we evaluate (7.9) on M ~ e  ~ a - -  J~; for example we can take M ~. to be a 
complex parallelizable manifold which is not  K~hlerian. For  such a manifold we 
have [[(~F]/2= IIS]I~= 0, and [[dFII~= 3liVE]j2:/: 0. Moreover, from (7.8) and the fact  
t ha t  80-= 0, we obtain ~ = ~*. Thus from (7.9) and (7.10) i t  follows tha t  

(7.13) C ~- 3E = 0 .  

~ e x t  we evaluate (7.9) on S~+~(rl) • S~+~(r2). Here un (intcgrable) almost complex 
structure J on S~k+~(r~) • S2~+~(r~) is given as follows: Le t  s and N~ denote the uni t  
outward normals to S~+~(r~) and S~+~(r~) regarded as hypersurfaccs of C ~+~ and 
C *+~, respectively. Le t  J~ and J2 denote the almost complex structures of C *+~ and 
C ~+~, respectively. Then J~V~ and J~N~ are globally defined vector fields on S~+~(r~) 
and S~+~(r~), respectively. Locally, any  vector field Z on S~+~(r~)• S~*+~(r~) can be 
decomposed as 

Z -~ Z I §  Z~§ aJl~V145 bJ~s 

where Z1 is t angent  to S2*+~(rl), Z~ is t angent  to S2*+~(r~) and <Z~, J~N~> ~-<Z2, 
J~N2> -~ O. Then we define an almost complex structure J on S2~+~(rl) • S~+~(r~) by  

J Z  -~ J1Z1-}- J2Z~-- bJ12r247 aJ~Zg~ . 

For  this almost complex structure we have 

Furthermore,  

8k 81 
ilw/i ~ = ~ + ~ and = r ~  + - ' r l  

2k(2k § 1) 2l(2l § 1) 
r~ rl 

Therefore, f rom (7.9) we have 

(7.14) 

2k 21 
3, = ~ +;~. 

(dk2(A + G) § 2k(n + B + Sr § 24E)} 0 ~-r-~ 

1 {d12(A + G) + 21(A + B + Sr + 24E)}. +;} 
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Since (7.14) holds for all r~, r~> 0 and all nonnegat ive integers k, 1 with/~-~ 1 = n - -  1, 

we find tha t  

(7.15) A = -- G ,  

(7.16) A + B +  8C+ 2 4 E :  O. 

(Here (7.16) is already a consequence of (7.10) and (7.13)). 
Fo r  the final equat ion we evaluate  (7.9) on M2~E ~ 4 - -  ~ for which ~0 r 0. For  

example if < , }  denotes the s tandard  metr ic  on CP '~ we c a n t a k e  M2"-~ (CP ~, e2"<, }) 
where a is any  non constant  function. For  such a M "" we have Ilsll~= o and ]]v/~ll~= 

= ~ l la~ l l ,=  ( 2 / ( ~ -  1))II~FII'~ 0 Also, because of (7.8) ~ - -  3*-- II~FII~ o In v iew 
of (7.10), (7.13), and (7.15) we see tha t  (7.9) reduces to 

A ( 3 -  3*-tI~F]I ~) = o .  

Since T - - 3 * - - I I ~ F l l ' ~ o  w e  must  have 

(7.17) A = 0 .  

Thus we have 6 equations in 6 unknowns:  (7.10), (7.11), (7.12), (7.13), (7.15), and 
(7.17). The unique solution is A ---- B ---- C ---- E---- G ---- H = 0. This completes the 

proof.  

~E/gAI~KS. - -  In  the course of proving theorem 7.1 use was made of the invar- 
r ian t  ~0. I t  is expressed in terms of the other  invariants  by  equat ion (7.8). Another  

2n 

natura l  invar iant  t ha t  occurs is <A/V, F}  = ~ dF(a, a*). This invar iant  also can be 
a = l  

expressed in terms of t h e  other  invariants :  

<~F, F> = ~jiarlI~+ 2II~FIi, 

2n 

Still another  impor tan t  invar iant  is the t race of the first Chern form~ ~ 71(e~, Jei). 
i = 1  

I t  is easy to see tha t  this mus t  be an invar iant  of type  I I I ,  and so it  must  be a linear 
combinat ion of 3 and 3*. The exact  combinat ion can be determined by  evaluating 
~71(e~, JeJ first on CP", and then  on S 6 x C ~-a. Using the formula for 71 given 
in [14] for the class ~ ,  it  follows tha t  

~ 71(ei, JeJ v + 53*) 
i= 1 87g 

Final ly  we determine the un i t a ry  invariants  of order 2 for each of the 16 classes. 

THEOlCE~ 7.2. -- Le t  n ~> 3. For  each of the 16 classes ~lL~ the space I.(~[L) is given 
in table IV. Fur the rmore  the linear relations tha t  describe I~(~L) as a subspace of 
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TABLE IV. - Almost Hermitian, mani/olds o] dimension > 6. 

qL I . (qL) Linear  relat ions among the i n w r i a n t s  

Y~ [~] 

I I~ l l  ~ = o 

ql~4 
2 

IlSl? = o 

q ~ @  q ~ =  ~ [~, ~*, I t W l ? ,  lla~ll ~] I lWlI  ~ : ~lld~lI", IlSI? = o 

IIVi~l? = �89 ~ -  ki lSl? ,  l i lY[? = o 

31I~17 + 2~ l iW/ I  ~ =  81IdFl?, .  
32 

q21 (~ ~ 2  (~ ~ = 83; 

'113 

[~, ~*, IlVTll ~, llsH ~] 

[~, ~*~ IIVFl?,  tl~YI?, 3 i l s l ? -  411dFil 2 + 12 ( ~ - -  1) II~Fli ~ 
IISI[2] = 121]VF[[2 

- -  311Sll ~ + Sl ldF]? = 241IV~11 ~ 
H,~FI?, Ilsll 2] 

[~, r llV.Fl] ~, 
II6_FH~, ils[i ~3 

i 

E~,**, llVPll ~, l}d/Vl[ ~' i 
! [ ~ 1 1  ~, I1~17~ ' 

- * *  = _ ~ L i V r i l ~  + ~ I l a ~ i l  ~, 
l l w l l ~  = ~ l l d ~ l i ~  + �88 I E ~ ] I  ~ = o 

IE~i~ll ~ = o 

~ 2 L l v i ~ l ?  = ~Lldl~ll ~ + SiLSli ~ 

No condit ion 
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I.(%0) are given. The corresponding computat ions  for the case n =  2 are done in 

table V. 

TABLn V. - Almost Hermitian manifolds o/ dimension = 4. 

ell 

JC 

'11)5 = AJ5 

/5(%) 

[T] 

[T~ T*] 

[~, r l lWll 5] 

Linear relations among the inv~riants 

= ~ * ,  l l V ~ l l  5 : IlSll 5 : o 

l l s l l  5 = o 

~1) [z, ~*, IIVFII", IISl] 5] No condition 

The method  of proof of theorem 7.2 is the same as tha t  of theorem 7.1. We omit  
the  details. 

~re  r emark  tha t  for n ---- 2 we have the following identities, valid for all almost  

Hermi t i an  manifolds of real dimension 4: ll&Flls=~lldFtl 5 and ]lVi~lls= �89 
+ ~ Ilsll 5. 

8. - The four types o f  almost  symplectie manifolds.  

In  this section we s tudy a generalization of symplectic manifolds using the same 
philosophy tha t  we used for almost  Hermi t ian  manifolds. Ins tead  of s tudying the 
representa t ion of U(n) on the space %0, however, we decompose the representa t ion 
of Sp(n,  R) on A3(V*). In  this manner  we show tha t  there  are in a na tura l  way 
four classes of almost  symplect ie  manifolds. Another  consequence of these considera- 
tions will be (the known fact) t ha t  the Lee form can be defined for any  symplectic 
manifold, and is independent  of any compatible a lmost  Hermi t ian  structure.  See [1], 
[ 5 ] ,  [ 6 ] ,  [ 2 3 ] .  

Let  V =  R 5" be the representat ion space for the ordinary representa t ion of 
Sp(n,  R). Then  there  is a na tura l  induced representa t ion of Sp(n,  R) on A~(V*). 
Denote  by  2' the nondegenerate  2-form on V preserved by  Sp (% R). Following [1] 
we define an isomorphism #:  V--> V* by  t t ( x ) ( y ) = - - E ( x ,  y) for x, y e  V. 

Next  we shall define a map As(V *) --~ V* taking ~ into s This operat ion was 
in t roduced in [5], [6], [23]. Le t  {xl, ..., xs~} be ~ basis of V, and {wl, ..., w~,} the 
corresponding dual basis of V*. Then 

1 2n 

Here  i t  Call be checked tha t  this definition does not  depend on the choice of the 
basis {x 1, ..., xen}. The mapping ~--> 5 is linear. For  an a l ternat ive  definition of 
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see [53, [63, [23]. ~ut 

L E n A  8.1. -- We have As(V *) = $1Q S~. This decomposit ion is preserved under  
the action of Sp (n, R). Fu r the rmore  Sp (n, R) acts i rreducibly on S~ and Ss. 

P~oo~. - I t  is easily checked t h a t  A3(V*)= ~lGSs .  Fur the rmore  i t  is clear 
f rom the  definitions tha t  Sp(n,  R) preserves S~ and S~. Tha t  Sp(n,  R) acts 
i r reducibly on S~ and S~, follows f rom Lel)age's decomposition. 

We now define the Lee form of a symplect ic  manifold. 

DEPI~ITI0~. - Le t  (M, F)  be an almost symplect ic  manifold, t ha t  is, a differen- 
t iable manifold together  with a 2-form F tha t  has maximal  rank  everywhere.  The 
Lee form 0 of (M, F)  is the  1-form 0 given b y  

O(X) -- 2(n -- 1) ~=1 dtz(X, X~, #-1 w~) , 

for X e ~ ( M ) .  Here  {X1, ..., X~.} is a local basis of vector  fields, and wl, ..., ws~ 
is the du~l basis of 1-forms. This definition does not  depend on the choice of basis. 

RE~ARK. -- I t  is possible to define a coderivat ive ~ for a symplect ic  manifold [5], 
[6]. See also [1], [23]. This coderivat ive does not  depend on any  compatible Rieman- 
nian s tructure.  I t  is not  ha rd  to check tha t  

o = ( n -  1) 3~' .  

Following the program of section 3 we can associate with each of the 4 sub- 
spaces {O}, ~1, $2, A2(V *) a class of almost  symplect ic  manifolds. In  analogy with 
theorem 3.1 we have 

T]tnO~n~r 8.2. - The defining relat ion for each of the four classes of almost  
symplect ic  bundles is given in Table VI. The inclusion relations between the  

classes are 

(_/8~ Q, 
(8.1) 8 =  8~n8~ G u  8~ C G ~ 8 ~ .  
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TABLV, VI. - Almost symplectic mani]olds o/ dimension > 4. 

Class 

81 

81 

81 @ 8~ 

Defining conditions 

d.F = 0 

0 = 0  

dF = F A 0  

No condition 

F i n a l l y  l e t  q~: ~ - +  8 be  t h e  f o r g e t f u l  f unc t i on .  (Thus  q) ~pp l i e d  to  ~n ~ lmos t  

H e r m i t i ~ n  m ~ n i f o l d  is t h e  s~me m ~ n i f o l d  c o n s i d e r e d  ~s a n  a l m o s t  s y m p l e c t i e  

man i fo ld . )  I t  i s t h e n  c lea r  t h a t  

r  = 8 ,  

qS(~)  = 8~, 

qS(~) = 8~| 8~. 
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