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S u n t o .  - Si  studia una classe di applicazioni continue negli spazi novmati e si dimostrano, per 
tall applieazioni, proprieth analoghe a q~elle della teoria del g~ado di .Leray-Sehauder. S i  
danno ese~npi di problemi ai l imit i  per eqzeazioni di]]erenziali ordina~'ie che 2ossono essere 
agevolmente trattati usando la teoria sviluppata nel pvesente Iavoro. 

O. - I n t r o d u c t i o n .  

Let E, F be normed spaces and • c E  be open and bounded. Let ]: ~ - + F  be 
continuous and such that ] ( x ) ~  0 for any x belonging to the boundary ~D of D. 
If  the equation ](x) = h(x) is solvable whenever h: ~ - ~  F is compact and vanish- 
ing on OD, then we say that J is 0-epi (zero-epi). 

The main task of this paper is to develop, with very elementary tools, the theory 
of 0-epi maps and to show that in many applications it represent a good substitute 
for degree theory. In facts, 0-epi maps have properties such as existence, bmmdary 
dependence, normalization, localization and homotopy invariance analogous to those 
of degree theory. Moreover, since 0-epi maps may act between different Spaces in 
many cases they can be used to prove existence results for boundary value problems 
avoiding the tedious procedure of looking for Green functions and transforming 
these problems into the equivalent integral form. Actually, 0-epi maps may also 
be viewed as a simple tool which helps the use of Sehauder fixed point theorem (in 
fact, the normalization property is nothing else but  a reformulation of this funda- 
mental fixed point theorem) and they can be successfully combined with degree 
theory to get deeper results. 

The plan of this paper is as follows. After introducing the notion of 0-epi maps 
and giving their main properties (section 1) we proceed (section 2) with the study 
of 0-cpi maps defined on the whole space /~ (and not merely on the closure of an 
open bounded subset of E). In this context we get surjectivity results. 

The theory of 0-epi maps is then applied (section 3) to nonlinear (~ abstract )> 
boundary value problems in the context of the so-called alternative methods for 
boundary value probleras. 

(*) E n t r a i n  i n  R e d a z i o n e  i l  7 a p r i l e  1979.  
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The last section is devoted to examples of 0-epi maps and applications to 
boundary  value problems for ordinury differential eq~lations, with a part icnlur at ten- 
t ion to the case of boundary  value problems depending on a parameter  (see Theo- 
rem 3.2 and the  examples thereafter) .  

1 .  - O-epi  m a p s  w i t h  b o u n d e d  d o m a i n .  

Let  E,  F be normed spaces and ~Q c E be open and bounded.  We say tha t  a 
eontimlous map /:  ~ - ~ F ,  defined on the closure ~C2 of ~ ,  is O-admissible (p-admis- 
sible, p ~ F) if /(x) ~= 0 (/(x) r p) for all x e ~2. 

l~eeall t ha t  ~ continuous map h: X - ~ F ,  X c.E, is said to be compact  if it  
maps bounded sets into relat ively compuct subsets of F.  

DEFINITION 1.1 .  -- A 0-admissible map /: ~ - + F  is said to be 0-epi if for any  
compact  mup h: ~ -~ F such tha t  h(x) : 0 for any  x e ~2  the equat ion /(x) = h(x) 
has a solution in f2. 

We point  out  tha t  when F =  E and /: ~ - + E  is a compact  per turba t ion  of the 
identi ty,  the above definition agrees with tha t  of esselltia] compact  vector  field (with 

respect  to ~2) as given by  A. GI~ANAS [4]. 
A p-admissible map /:  ~ - + F  is called p-epi, p E F ,  if the m ap  /-p defined b y  

(]-p)(x) = / ( x )  -- p is 0-epi. The basic propert ies of 0-epi maps are unalogous to the  
properties which characterize Brouwer 's  degree. 

EXISTENCE Pt~0PEICTY. -- Zet /: ~ ---> F be p-epi. Then the equation ](x) = p has a 

solution in ~2. 

I~OI~IVfALIZATIO~ P~OPE~TY.- The inclusion i: ~-+E is p-epi i /  and only i /  

p e ~2. 

P~ooF. - (Only if). I t  is a direct consequence of the definition of p-epi map. (If) I t  
is enough to show tha t  i is 0-epi provided tha t  0 e Q .  Le t  h: E - + E  be compact  
and such tha t  h ( x ) - - 0  for any  x ~ 9 .  Since 0e~Q the equation i ( x ) =  h(x) has 
solution in ~Q if and only if the map  h: E - +  E has a fixed point. The existence 
of a fixed point  for h is ensured by  Schauder 's  fixed point  theorem since h(E) is 

compact.  

LOCALIZATI01~ I)I~0PElCTY. - Let /: 9--> F be O-epi and assume that /-~(0) is con- 
tained in an open set [2~cQ. Then the restriction o/ ] to ~ ,  /]i~1: 91-->F, is O-epi. 

PlcooP. - Le t  h: ~1-+ Lw be continuous compact  and vanishing on ~QI. E x t e n d  h 
to a compact  map ~: ~ -+/~ by  put t ing  ~(x) ---- 0 if x ~ ~\~Q1. The equa t ion / (x)  -~ 
---- h(x) has a solution Xo e ~2. The condition ]-1(0) c f21 ensures tha t  Xo e f21. Q.E.D. 
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H0~OTOPu 1)I~OPEETu ]: ~-->F be O-epi and let h: ~ X [ 0 ,  l]-->~V be com- 
pact and such that h(x~ 0) ' :  0 ]or any x~  ~.  Assume that ](x)-F h(% t ) ~  0 ]or all 
x ~ / 2  and ]or any tQ[0~l] .  Then / ( . ) ~ h ( . ~ S ) : ~ - ~ F  is O-epi. 

P~ooF. - Le t  k: ~ - ~ 2 ~  be compact  and such tha t  k(x)-~ 0 for ~ll x e~ /2 .  The 
set S-----{xe~:  ](x)-Fh(x, t)-~ l~(x) for some t e [ 0 ,  1]} is closed since [0, 1] is com- 
pact.  Le t  ~: ~ - ~ [ 0 ,  1] be a continuous funct ion such tha t  ~(x)----1 for every  
x e S and ~(x) ---- 0 for all x e ~/2. The existence of ~ is ensured b y  Uryshon's  Lemma.  
Consider the equation 

/ (x)  = ~(x) - h(x ,  ~ ( x ) ) .  

Since the map ~: ~ - + F  defined b y  ]~(x) = k(x) -- h(x, of(x)) is compact  and i t  van- 
ishes on t/2, there  exists a solution x o of the above equation. Clearly xo~ S. Hence 
~(xo)---- 1 and 

](Xo)+ h(Xo, 1) = k(Xo). Q.E .D.  

BOUEDAI%Y DEPENDEI~CE PI%0PEI%TY. - .~et ]: ~--> F be O-epi and k: ~--> F be 
compact. Assume that k ( x ) :  0 ]or all x ~ / 2 .  Then ]-Fk: ~-->F is O-epi. 

We shall derive now some consequences of the above properties.  Recall tha t  a 
map ]: ~ ~ F is proper if ]-I(K) is compact  for every  compact  subset K c F.  I t  
is easy to show tha t  if ] is proper  then  ](~) is closed. Therefore,  in this case, 

. f(~) = t ( ~ ) .  

TREOnE~ 1.1. - Let ]: ~-->F be O-epi and proper. Then ] maps /2 onto a neigh- 
borhood o] the origin. More precisely i] Uo is the connected component of ~ ] ( ~ / 2 )  
containing the origin~ then Uoc](/2). 

Pnoo~.  - The set 1(~/2) is closed since ] is proper. Hence U0 is open~ which im- 
plies t ha t  Uo is also pa th  connected. Le t  p e Uo and ~: [07 1] -+ Uo be a continuous 
map such tha t  ~(0) : 0 and a(1) ----- p. The homotopy  (x~ t) --->](x) -- G(t) ensures tha t  
](.) -- ~(1) : ~ -+ F is 0:epi, which implies thus p e ](/2). Q.E.D. 

Observe tha t  if in Theorem 1.1 we assume tha t  1(/2) is bounded then  ](~/2) 
separates {he origin fl'om the infinity, i.e. Uo is bounded.  

Le t  ]: ~ - + F  be continuous, injective and proper.  Then ](/2) need not  be open 
as it is easily seen by  embedding the interval  [0~ ]]  c R into R 2. :bleverthless the 
following result  holds. 

THEO~E:~ 1.2. -- Let ]: ~---> F be continuous, injeetive and proper. Then ](/2) is 
open i] and only i ] ]  is p-epi ]or any p ~/(/2). 

P ] ~ o o ~ . -  (If) Assume p el( /2)  and ] p-epi. Applying Theorem 1.1 to the 
map ]-p we obtain tha t  ]-p maps /2 onto a neighborhood of 0. Thus ](~) is open. 
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(Only if) Assume tha t  ](D) is open. Since f is injeetive and proper we have tha t  ] 
is invertible on its image and the inverse is continuous. I t  is enough to show tha t  
if 0el([2) then ] is 0-epi. Le t  h: ~ - + F  be compact ~nd vanishing on 3[2. Define 
a map g : F - ~ F  by 

I h(]-~(Y)) if y e ]([2) 
g(Y) l o if y + ]<[2). 

Since ]([2) ~ ](~) and ]([2) is open we obtain tha t  3](/2) ~ ](3[2). Hence g vanishes 
on 3]([2). This shows tha t  g is continuous. Since g(F) is relatively compact and 
g(F) c/~ there exists y 0 e F  such tha t  Y0= g(Yo) (by Sehauder Fixed Point  Theo- 
rem). Clearly yoe](~) and xo= ]-~(Yo) is a solution of ~he equation 

l ( x ) =  h(x) . Q.E.D. 

The following result is an extension of the Normalization Property.  

COrOlLArY 1.1. - _Let ]: ~ - ~  F be eontinuous~ injective and proper. Assume that 
]([2) is open. Then ] is p-epi i] and only i] p ~](~). 

1)~oo~. - (Only if) I t  is a direct consequence of the definitions. (If) I t  is a 
consequence of Theorem 1.2. Q.E.D. 

Note tha t  if ]: ~ - + ~  is continuous, injective and proper then ](~) is closed 
and ] is a homeomorphism between ~ and ](~). On the other hand if ]: ~ - ~ F  is a 
homeomorphism onto ](~) and ](~) is closed then ] is proper. Hence a homeomor- 
phism ] between ~ and ](~) is proper if and only if ](~) is closed. 

Recall tha t  a set Q c/~ is star-shaped with respect to the origin if ty e Q for 
every y ~Q and t ~[0~ 1]. The following result is a consequence of the Homotopy  

Property.  

T~-EORE~s 1.3. -- Let ]: ~ - ~ F  be O-epi. Assume that there exists a star-shaped 
(with respect to the origin) subset Q c F such that Q (h ](3s O. Then the equation 
](x)----h(x) has a solution ]or any compact map h: ~-->F such that h(3[2)cQ. In  
particular Q r ]([2). 

P~oos.  - Let  x ~ 3~ and 2. ~ [0, 1]. Clearly 2h(x)eQ and ](x)~Q. Hence ](x):/: 
:A 2h(x) for all x ~ ~[2 a n d  for every )~ ~ [0, 1]. Therefore ] - - h  is 0-epi. In  particu- 
lar ](x) = h(x) for some x e/2. Le t  p ~ Q. By  taking as h the constant  map h(x) = p 
for every x e ~  we obtain tha t  p el([2). Thus Q c]([2). Q.E.D. 

The following two results present possible ways of obtaining 0-epi maps start ing 
from maps having this property. 
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Tm~ol~E~ 1.4. - Let f: ~ - - ~  be continuous, O-admissible and proper. 
be a sequence of O-epi maps from ~ into 5 ,  which converges uniformly to ]. 
is O-epi. 

~et {f~} 
Then ] 

P~ooF. - Le t  h: ~ - - > F  be continuous compact  and vanishing on ~59. Le t  x~ 

be any  solution of the equation f~(x)= h(x) and pu t  y~=  f(x~) -- f,(x~) -= f(x~) -- h(x~) 
n = 1, 2, .... Clearly y~--> 0 as n -+ ~ oo. Since f -- h is proper  (recall t ha t  h is com- 
pact) we obtain tha t  {x~} has a cluster point  ~. Obviously f(~)----h(5). Q.E.D. 

T~I~O~E~{ 1.5. (Per turbat ion Theorem for 0-epi maps). - Let ]: ~ - + ~  be a 
proper O-epi map and let h: .C~• ], 1]- -~F be compact and such that h(x, O) = 0 for 
any x~ '~ .  Then there exists s > 0  such that f ( . ) - - h ( . , A )  is O-epi for every I~l< e. 

P~{oo~. - By  the  H o m o t o p y  P rope r ty  it suffices to show tha t  there  exists s > 0 
such tha t  f(x) # h(x, ~) for all x e ~59 and ,% ~ (-- s, s). Assume the contrary.  Then 
there  exists a sequence {(x~, X~)} in ~g9•  1] such tha t  ~,,-+0 and 

f(Xn) = h ( x n ,  ).n) . 

Since h is compact  and f is proper  the sequence {x~} has a cluster point  xo ~ ~59. I t  
follows tha t  ](xo)= h(xo, O)= O, a contradict ion with the 0-admissibility of f .  Q.E.D. 

The following results exhibit  some interesting classes of 0-epi maps (Theo- 
rems 1.6-1.9). 

l~ecall t ha t  a continuous map ]: ) ~ - + / ~  X c E, is called a compact vector field 
if the map  h: X - +  E defined by  h ( x ) =  x - - ] (x )  is compact.  

TI~E01~E~r 1.6. - Let f: i~-->B be a p-admissible compact vector field defined on 
the closure i~ of an open bounded set Q c E .  I f  the Leray-Schauder degree deg (f, 59, p) ~ 0 

then f is p-epi. 

P~oom - Le t  h: ~ - +  E be continuous, compact  and vanishing on ~59. Clearly 

] - - h  is a compact  vector  field which coincides with f on 359. By  the boundary  
dependence proper ty  of the Leray-Schauder  degree we have d e g ( ] - - h ,  59, p)---- 

deg (f, 59~ p) =/: 0. Hence the equat ion ](x) -- p = h(x) has a solution~ i.e. ] is 
p-epi. Q.E.D. 

The following is an example of a 0-epi map f: 59 -~ R, 59 c R, with deg (f, zP, 0) = 0 : 
59 = ( -  2 ,  - 1) w (1,  2 ) ,  f ( x )  = x ~ -  2.  

In  Theorems 1.7-1.9 below the spaces E,  iv are assumed to be Banach. This 
restriction can be removed in m a n y  different ways as the comments thereaf ter  show. 

Tn-EOI~E~ 1.7. - Let L: E - ~  ~ be bounded, linear and surjective with dim K e r L  = 
=--n<~-oo.  Let g: I~--~R~ be continuous and such that g (x )#O for any x ~ 5 9 ~  
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n KerL .  I] the Brouwer topological degree deg(gJ ,  j - l ( ~ ) ,  0 ) 5 0  where J:  R ~ - . E  
is linear and such that I m J ~  K e r L  then the map M: ~ - ~  I~ •  ~ defined by M(x)-~  
.~ (Lx, g(x)) is O-epi. 

P~ooF. - Le t  A:  F •  be defined by  A(y, z ) =  S y ~ - J z ,  where S: F--~ E 
is any bounded linear r ight inverse of L (recall tha t  d i m K e r L < - ~  co). Observe 
tha t  A is an isomorphism, thus M is 0-epi if and only if the composition / = M A :  
A-I(Y2) - .  F • R ~ is 0-epi. E o w , / ( y ,  z ) =  (L(Sy ~- Jz), g(Sy + Jz) ) = (y, g( Sy ~- Jz) ) = 
= (y, z) -- (0, z -- g(Sy-~ Jz)). Therefore,  / is of the form I -- h, where h maps A-~(9) 
into the finite dimensional space (0} • R ~. By  the definition of the Leray-Schauder  

degree we get 

deg (], A-1(9),  0) = deg (/l(0~• A - l (9 )  r~ ({0) • 0) = deg (gJ, J-~(9),  O) ~: O. 

Thus~ ] is 0-epi (see Theorem 1.6). Q.E.D. 

Theorems 1.8-1.9 below are related with boundary  value problems <( a t  resonance ~). 
We recall first t ha t  Fo is a closed n-codimensionM subspace of a normed space F 

if and only if there exists a surjeetive bounded linear operator  Q: F--> R ~ such tha t  
:Eo---- KerQ (i.e. Fo is the intersection of the kernels of n l inearly independent  bounded 
functionMs). Moreover, Q is unique up to a linear isomorphism of R ~ into itself. 

THEOICE~ ].8. -- Let I~: E-+ F be a bounded Fredholm operator o] index 0 with 
d i m K e r Z : n .  Let ~ r  be open bounded and let h: ~ - > F  be compact and 
such that h ( x ) ~ I m Z  ]or any x e ~ K e r L .  Assume that deg(QhJ, J-~([2), O)V=O 
where J:  R ~---> E, Q : I~ -~ R ~ are linear continuous and satis]y Im  J : Ker  Z and 
Ker  Q : I m L .  Then there exists e > 0 such that Z - - ~ h  is O-epi ]or 0 ~ ]~ [ < e. 

P~ooF. - F r o m  Theorem 1.7 it  follows tha t  the operator  M:  ~ - ~ I m L •  ~ 
defined by  M ( x ) - ~ ( L x ,  Qh(x)) is 0-epi. Le t  P :  F - ~ I m L  be any  continuous retrac- 
tion. Since M is proper  in ~ we obtain, by  Theorem 1.5, tha t  there exists s > 0 

such tha t  the map 

x -~  (Lx  - ~Ph(x ) ,  Qh(x)) 

is 0-epi for any  0 < ]~t< s. Le t  /~: 9 - > _ F  be compact  and such tha t  k(x) -~ 0 for 
any  x e ~tP. By  the Boundary  Dependence Proper ty  lor 0-epi maps the map 

x-~ ( ~ x -  ~(h(x) + ~-~(x)) , Q(h(x)+ ~- l~ (x ) ) )  

is 0-epi provided tha t  0 <  [). l<e. ~ o w  the result  follows from the fact  t ha t  the 

system 
Lx  = ~P(h(x) ~- ~-~k(x)) 

Q(h(x) ~- 2-~k(x)) = 0 

is equivalent  to the equat ion Z x -  ,~h(x)= l~(x). Q.E.D. 
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T~s 1.9. -- Let L:  E-->/7 be a bounded /Tredholm operator o] index O. Let 
h: ~ - *  /7 be compact. Assume that there exists a compact linear map t): JE--~ F such 
that 

(1) 

(2) 

/or any x e ~2  and ~ e [ 0 ,  1]. 

~er (L+ ~ ) =  (0} 

Lx + t)x ~ ~(h(x) + Ix) 

Then L - - h  is O-epi provided that 0 ~ .  

PnooF.  - We have,  b y  the  F redho lm al ternat ive,  i n d ( L - ~ P ) =  i n d ( L ) =  0. 

Therefore b y  (1) L ~ P is an isomorphism. Moreover if 0 e D, Corollary 1.1 implies 

t h a t  L ~ - P  is 0-epi on D. The result  now follows f rom the I t o m o t o p y  P rope r ty  
of 0-epi maps .  Q.E.D. 

We point  out  t h a t  th roughout  this paper  all the maps  are assumed to be con- 
t inuous. However ,  in m a n y  applicat ions one has to deal wi th  equat ions of the  fo rm 
L x =  h(x), where L:  E - . / 7  is a (not necessarily bounded) F redho lm opera tor  and  
h: E - ~  17 is a (not necessarily compact)  nonlinear operator .  Therefore,  our  methods  

seem to  b reak  down in these cases. Nevertheless,  the following considerations are 
in order. 

Le t  E and  F be vector  spaces and  let  L :  E - + / 7  be  linear. The opera tor  L is 
said to be algebraically /Tredholm if K e r L  and / 7 / I m L  are finite dimensional.  If ,  

moreover ,  E a n d / 7  have  normed structures  and L has closed image,  then  L is called a 
~redholm operator .  Finally,  we say t h a t  a F redho lm opera tor  L is top-/Tredholm 
if i t  is bounded  and  it admi t s  a r ight  inverse L+: I m L - > E  (i.e. E L  + is the  inclusion 

I m L  - ~ F )  which is bounded.  

PI~0P0S!TIo~ 1.].  - Let E and F be two vector spaces and let L:  E - ->F be alge- 
braically Fredholm. Then any normable structure on E induces a unique normable 
structure o n / 7  such that L becomes a top-/Tredholm operator. Conversely, any normable 
structure on /7 such that I m L  is closed induces a unique normable structure on E 
making L top-/Tredholm. Moreover, i] a normable structure on E (on /7) is complete 
so is the induced one on /7 (on ~).  

PROOF. -- Observe first t ha t  given a vector  space G and  a finite eodimensional 
subspace G1 of G, then  any  normable  s t ructure  on G1 induces a unique normable  

s t ructure  on G, making  G1 closed. The existence of this s t ructure  is evident.  The 
uniqueness is obta ined b y  (topologically) decomposing G as G ~--G1G Go where Go 
is finite dimensional and  b y  recalling t h a t  any  finite dimensional vector  space admi ts  

a unique normable  structure.  
The above  observat ion and  the  fact  t ha t  a finite dimensional subspace of a vector  

space admits  a (topological) direct s u m m a n d  reduces ore" p rob lem to the  very  simple 

case when L:  E - >  F is an algebraic isomorphism. 
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I~ow given a norm ~--> R on E (a norm /v _> R on F)  define ~ norm on iv 
�9 �9 j 5  - 1  

(on E) by  considering the composltmn F --> 1~--> R (E-A> s __> R). Wi th  this norm L 
becomes an isometry.  Thus F is Banach  if and only if so is E.  

The nniqtteness of the  normable s tructure depends on the fact  tha t  in our 
reduced problem L and Z -1 must  be bonnded (i.e. L is an isomorphism of normable 
spaces). Q.E.D. 

The following si tuation arises f requent ly  in the applications (see e.g. [1]). 
Le t  E and F be normed spaces, L:  E - ~ / ~  be Fredholm and h: E--> F be demi- 

continuous (i.e. continuous from the strong to the weak topology) sending bounded 
sets into bounded sets. Assume moreover  tha t  L admits  ~a compgct r ight inverse 
L+: I m Z - >  E.  We shall show tha t  under  the above assumptions h can be regarded 
as a compact  map  from E into the  space F endowed with the  s t ructure induced by  E 
and Z (or any  other  s t ructure  which makes L bounded).  

In  fact~ since I m L  is closed there exists ~ finite dimensional subspace Fo of /~ 
such tha t  F - ~ I m L Q F o  (topologically). Thus H can be decomposed as h~-~ho 
where h~(E)cImL and ho(E)c/~o. Since ~o is finite dimensional it  suffices to show 
that h~ is compact  as a map  f rom E into F~, w h e r e / ~  stands for the space F endowed 
with the normable s tructure induced by  E via the linear operator  L (or any  other  
weaker structure).  

The following composition of maps proves our assertion 

--> .E--~. zV~, 

since L+hl is compact,  L:  E-+ /V 1 is continuous and EL  + is the inclusion I m Z - +  F1. 
Le t  E,  F be normed spaces. We recall that any bounded linear operator  Z:  E --> F 

can be uniquely extended to a bounded linear operator  ~ : / ~ - ~  ~ ,  where ~ , / ~  s tand 
for the completions of E and F respectively. I t  is not  hard  to show tha t  if L is 

top-Predholm then  so is L. ~oreover ,  one has K e r L =  tt:erJ~, I m L  = I m ~  and 
ind (L) ---- ind (Z). 

Assume now, as it  occurs f requent ly  in applications, t ha t  E a n d / ~  are Banach  
spaces and .5: ID(L)-->~ is a Fredholm operator  defined on a dense subspace ~D(L) 
of ~ .  Le t  h : E - ~  (or, more generally, h: U - ~ F ,  U open in E) be such tha t  
Z+t)h: E-->E is compact,  where L+: I m Z - ~ E  is any r ight  inverse of L and P is 
any  bounded projection of F onto I m L  (i.e. h is L-compact  [3]). We want  to 
show tha t  h can be regarded as a compact  map. 

P u t  in F the normable s t ructure  which makes Z:  ~ ( L ) - + / P  a ~op-Fredholm 
operator  and extend L to a top-l~redholm operator  ~ :  E - ~  ~ ,  where _P stands for 
the completion of ~ with respect  to the induced structure.  Observe now tha t  /)h 
coincides with the following composition of maps 
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Since L+_Ph is compact,  L is continuous and LL+Ph:  E- -~F coincides with _Ph: E-+_P 
we obtain tha t  t)h: E - ~ / ~  is compact.  Thus h: E - ~ / 9  is also compact  since the  
difference h -  Ph ~ ( I -  P ) h  is a finite dimensionM map. 

We shM1 describe now another  ve ry  common situation arising in applications. 
Le t  2~ be a Banach  space and let  L:  ~ ( L ) - ~ F  be a Fredholm operator  defined 
on a subspace of /~ .  Denote  by  E the space fl)(L) with the Banach s t ructure  which 
makes L top-Fredholm (or any  stronger structure).  Assume tha t  the inclusion 
E - ~ / v  is compact.  Then the restrict ion of any continuous map h: F--~/~ to the  
subspace O(L) can be regarded as a compact  map f rom E into /V by  considering 
the composition 

E--->~--~h F .  

We close this section with the observation tha t  in Theorems 1.7-1.9 the assttmp- 
t ion <~ E and /~ are complete ~> can be removed provided that the  linear operator  
L:  E - + ~  is assumed to  have a bounded right inverse. 

l~ote tha t  in the case when E,  F are complete then  any  bounded Frcdholm 
operator  L:  E - >  F has a bounded right inverse, i.e. L is top-Fredholm (to see this 
apply  the Open Mapping Theorem). 

2. - O-epi maps  on  the w h o l e  space.  

Notice that 
0-epi maps, we 
origin. 

Le t  ]: E:--~F be a continuous map f rom a normed space E into a normed 
space 2'. Given p e • we say tha t  ] is p-admissible if ]-*(p) is bounded.  The map ] 
is p-epi (oll E) if ] is p-epi on any  bounded open set ~ ~]-l(p).  I.e., the  res t r ic t ion/ ]h  
is p-epi (in the former  sense) for any  bounded open f2 ~ ]-~(p) (or, equivalently,  
if the equat ion ](x) -- p -= h(x) is solvable for any  compact  h with bounded support) .  

in the above definition, in view of the Localization P rope r ty  for 
may  restrict  ourself to sufficiently large open balls centered at  the 

The plan of this section is as follows. 
After  a suitable formulat ion of the H o m o t o p y  Proper ty ,  some facts regarding 

0-epi maps defined on the whole space are presented. The proofs are given only 
when the results are not  easy consequences of analogous results previously obtained 
in the context  of 0-epi maps on bounded sets. 

HOMOTOPY PROPERTY. -- Let ]: E-->F be O-epi and let h: E •  1]-+l~ be com- 
pact and such that h ( x , O ) : O  ]or any x ~ E .  I] the set 

S = {x ~ E: ](x) ~- h(x, t) : 0 ]or some t e (0, 1]) is bounded, 

then ] ( . ) ~ - h ( . ,  1) is O-epi. 
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We shall derive now some consequences of the above proper ty .  The first one 
is analogous to Theorem 1.3. 

T~fEOlCEi~ 2.1. - Zet Q c F  be star-shaped with respect to the origin and let/:  E-+ F 
be O-epi. 1/ ]-~(Q) is bounded, then the equation /(x)~- h(x) has a solution provided 
that h: E--->F is compact with I m h c Q .  In  particular, Im /DQ.  

COrOLLArY 2.1. -- Let E and t z be Banaeh spaces and let L: E ~ F be bounded 
and linear. Then L is O-epi i/ and only i] i t  is an isomorphism. 

P~OOF. - (If) I t  follows immediate ly  f rom Corollary 1.1 since L is a continuous, 
injeetive, proper  and open map. 

(Only if) Clearly, L is one-to-one since, being L admissible, K e r L  must  be 
bounded.  Since E and /~  are Banach  spaces it remains to show tha t  L is onto. Take 
p e F and consider the segment Q ~ {tp: 0 < t < l } .  The l ineari ty of L (actually, its 
positive homogeneity) implies t h a t  L-~(Q) is bounded. Now, apply Theorem 2.1. 

Q.E.D. 

C01r165 2.2. -- Let 1: E--> E be O-epi and such that l]/(x)II-->-]- co as [Ix]l->-[-oo. 
Then the equation ](x)-~ h(x) has a solution /or any compact map h: E - + F  with 
bounded image. In  particular / is onto. 

PROOF. - Notice tha t  the condition ll/(x)ll-+~-c<~ as Ilxl[-+-~ oo is equivalent  
to the fact  tha t  the inverse image under  ] of any  bounded subset of F is bounded.  
Now, take any  ball Q c F,  centered at  the origin, which contains I m h  and apply  
Theorem 2.1. Q.E.D. 

Observe tha t  under  the hypotheses of Corollary 2.2 the map / ~  h is 0-epi for 
any  compact  map  h: E - +  F having bounded image. In  particular,  the  map  ] is 
p-epi for any  p e F.  

The following theorem, which is a direct consequence of Theorem 1.4, shows 
how a 0-epi map can be obtained as a uniform limit of 0-epi maps. 

T~rEO~E~ 2.2. - Let /: E-+ F be O-admissible and proper on bounded closed sets. 
Let {/n} be a sequence o/O-epi maps ]rom E into F, converging uni]ormly to ] on bounded 
subsets o/ E. I] the sets/~1(0) are imi/ormly bounded then ] is O-epi. 

The following results exhibit  interesting classes of nonlinear 0-epi maps. 
We recall first t ha t  a map /:  H--> H defined on a Hi lber t  space H is said to 

be monotone if ( ] ( x ) -  /(y), x - - y ) >  0 for all x, y e H,  where ( . , . )  stands for the inner 
product  in H.  

THE0~v,~ 2.3. -- Let /: H--> H be a continuous monotone operator which is proper 
on bounded closed sets. Assume that ( / ( x ) , x ) > 0  /or  ]lx]] sufficiently Urge. T h e , /  
is O-epi. 
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P~oo~. - Given heN, define ]~: H--->H b y  f~(x)= (1/n)x-~f(~).  B y  a result of 
M I ~ u  [6] L is a homeomorphism of H onto H. Thus, as a consequence of Corol- 
la ry  1.1, the map f .  is 0-epi. Now apply  Theorem 2.2. Q.E.D. 

We give now a character izat ion ef 0-epi maps acting on finite dimensional spaces. 
Le t  f: R ~ --> R ~ be 0-admissible. There exists r0 ~ 0 such tha t  f(x) ~ 0 provided tha t  
I[xlI > to. Therefore given r > ro we can define fi: S~-~--~ S m-1 by  f~(x)-~ f(rx)/llf(rx ) [] 
(S k-~ denotes the uni~ sphere or/~k). Le t  f be the homotopy  class associated to f~. 
This class is clearly independent  of r > ro. 

THEOIr 2 . 4 . -  Let f: R~--~R ~ be O.admissible. Then f is O-epi if  and only 
if  f is nontrivial. 

PxooF.  - (See [2], Proposi t ion 6.2.2). 
As a consequence of the above theorem we have tha t  there  are no 0-epi maps 

f rom R" into R ~ if n <  m. I t  also follows tha t  a 0-admissible map ]: R~-+ R ~ is 
0-epi if and only if deg(f ,  0) =# 0 (here deg(f,  0) stands for the  Brouwer  degree 
deg(], f2, 0), where /2 is any  bounded open set containing ]-1(0)). 

T~IEOt~E~ 2.5. - _Let L: E--~ ~F be a bounded Fredholm operator of index 0 from a 
Banach space E into a Banach space F. Let h: E--~F be compact and odd outside a 
sufficiently large ball centered at the origin. Then L ~  h is O-epi provided Z ~  h is 
O-admissible (i.e. ( L ~  h)-l(0) is bounded). 

PROOF. - -  We have to show tha t  given a compact  map k: E - + / ~  with bouoded 
support  the equat ion Lx~-h(x)----l~(x) is solvable. Since indL----0,  there  exists a 
compact  operator  K :  E__>~V such that  L - ~ K  is an isomorphism. The equat ion 
Lx  - /h(x)  ~ k(x) is equivalent  to the equat ion x ---- g(x), where g ~ (L ~- K ) - I ( K - -  h ~ k) 
Obviously, g is compact  and odd outside a sufficiently large ball around the origin. 
Iqow, apply  the infinite dimensional version of Borsuk Theorem (see A. GI~AI~AS [4]). 

Q.V~.D. 

Let  L :  E - ~ / ~  be a bounded linear snrjective map. Assume tha t  d imKerL--- -  
----n < - ~  oo. Le t  g: E - +  R ~ be continuous. Consider the following problem with 
nonlinear boundary  conditions 

Lx  = h(x) , 

g(x) = 0 , 

where h : /~  -+ F is compact.  
The following result  which is an easy consequence of Theorem 1.7, is related 

with problems of this type.  
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T~V~Ol~E~ 2.6. - .Let L: E - ~  F be bounded linear and surjective with dim K e r L  ~- 
n < + co. Let g: E --> R ~ be continuous and J:  R ~ ~ E be linear with I m  J ~ Ker  Z. 

Assume that g -~(O)nKerL  is bounded and deg(gJ,  0 ) # 0 .  Then the map M: E-+  
-+ ~ •  ~ de]ined by M ( x ) =  (Lx, g(x)) is O-epi. 

The following theorem is analogous to a result  due to g. L. M)~wm~ [5] (see 
also 1~. E. GAII~ES - g. L. MAWn:I~ [31). 

Tn-EOI~E~ 2.7. - Let Z: E--> F be a bounded Fredholm operator o/ index 0 and 
let h: E - +  F be compact. Assume that the set So-~ K e r L ( ~  h -~ ( ImZ) i s  bounded and 
deg (QhJ, O) V: O, where Q: F--> R ~ is linear and such that KerQ ~ I m Z ,  n = dim Ker L 
and J:  R ~ - + E  is linear with I m J =  KerL .  I] the set S + =  { x e E :  Z x =  Xh(x) ]or 
some 0 < )-~<~1) is bounded, then the map Z ~ h is O-epi. 

Pl~oor. - Take any  open bounded set ~ containing S o u S +. Theorem 1.7, com- 
bined with the  Homotopy  P rope r ty  for 0-epi maps, shows tha t  L -- h is 0-epi on ~ .  
The result now follows f rom the arb i t ra r i ty  of ~Q. Q.E.D. 

Notice tha t  the condition (( So is bounded )) is equivalent  to ~( QhJ is 0-admis- 
sible ~. Thus, if 2 ~ is bounded,  then  deg (QhJ, 0) is defined and it  is different f rom 
zero if and only if the map. QhJ is 0-epi. 

3. - Further examples of  0-epi maps and applications. 

I n  this section some other  examples of 0-epi maps with part icular  concern to 
ordinary differential operators are given. Few definitions and notat ions are pre- 
sented at  the beginning. 

Given a nonnegat ive integer k the nota t ion C~[a, b] stands for the Banach  space 
of all k-times continuously differentiable real  functions defined on the compact  
interval  [a, b]. 

The norm of x e  C~[a, b] is []x][1~= ~ [lx(i)]fo, where [Ix(')[Io --- max{[x(~)(t)]: re[a,  b]} 

I t  is well-known tha t  Ascoli's theorem gives the compactness of the inclusion 
C~+l[a, b]--~ C*[a, b] for any  k > 0 .  T h i s  fact  allows us to regard any continuous 
map ]: C~[a, b]-+ CO[a, b] as a compact  map  from Ck+~[a b] into C~ b]. 

Let  E,  F and G be Banach  spaces with norms I]" H~, ]]" ]]~ and l[']la respectively. 
Le t  L:  E - ~  F and B:  E - +  G be bounded linear operators.  Assume tha t  the follow- 
ing (bolmdary value) problem 

Z x = y  

(A) Bx  = 0 ,  

has a unique solution for a n y  x e ~ .  Then, in the subspaee E o :  K e r B  the norm 
[]xl]~ IILxI[a is equivalent  to the norm ]lx[[~ (to see this apply the Continuous 
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Inverse Mapping Theorem) to the identity from (Eo ,  I1" lid into  (Eo, ]i" H~ �9 ~ore-  
over under the additional assumption that  B : /~  ---> G is onto, the following problem 

.Lx = y 
(B) B x  = z ,  

has a unique solution for any couple (y, z ) e  F X G and the norm in E defined by 

[Ix]l+= ]IBx]Iq~-HLxt]a is equivalent to the norm l[xH~. By interchanging roles be- 
tween L and B we may observe that  if L: E - + / 7  is onto then problem (B) is 
uniquely solvable for any couple (y, z ) e ~ X G  if and only if the problem 

. L x = O  

(C,) B x  = z ,  

is uniquely solvable for any z e G. 
To illustrate the above considerations we give some examples of equivalent norms 

in C2[0, 1]. ~amely,  

(1) 

(2) 

(3) 

l[~][~= Ix(o)[+ I x ( l ) +  H~flo 

. IlxlI ~ =  Ix(o)l + 15(o)1+ [[~lIo 
1 

llxll 3--  Ix(o)l + ( x ( t ) a t  + 115110~ 
6 

To see this consider the following boundary value problems: 

(1) x ( 0 ) = a ,  x ( 1 ) = b  

{ ~----y 

(2) x (O)=a ,  5 (0 )=b  

I (31 x(O) a ,  . -~ t) dt = b 

0 

I t  is perhaps of interest to interpret classical existence results for ordinary dif- 
ferential equations in terms of 0-epi maps. 

EXAMPLE 3.1. -- Let  L: C1[0, 1] --~ C~ 1] X R be the linear isomorphism Lx(t) = 
(5(t),x(O)) and let h:[O, 1 ] x R - + R  be a continuous map with bounded image. 
Define M: C~[0, 1] -~ C~ 1] X R by 

i ( ~ ) ( t )  = (~(t) - h(t, ~(t)), ~(0)) . 
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Let  ~: cole, 1] --> C~ 1] be the Nemytski j  operator ~ssociated to h and k :  C~[O, 1]-~ 
-+ C~ 1] •  be the compact  continuous map 

~(x) = (j~(x),  o) 

where J is the linear, compact  inclusion of C~[O, 1] into C0[0, 1]. Clearly M = L -  k. 
Hence M is 0-epi Since L is an isomorphism and k is a continuous, compact  map 
with bounded image (see CorolIary 2.2). 

The role of R in this example is inessential ' in the  sense tha t  it can be replaced 
by  R ~ for any  natural  number  n > l .  The other spaces and operators should be 
changed accordingly. 

EXA~eLE 3.2. -- Let  Co~[0, 1] be the (closed) subspace of C~[O, 1] of those 
functions x(t) such tha t  x(0) : x(1) : 0. Define ]: C~[0, 1] -> C~ 1] b y  ] ( x ) ( t ) :  
2 ( t ) -  x"(t). The map ] can be regarded as the sum of the linear isomorphism 
D~: C~[O, 1]--> C~ 1] defined b y  D ~ x =  2 and the (nonlinear) compact  map g de- 
fined by  g(x) ( t )= -- (x(t)) a. We shall show that  ] is 0-epi and such that  Hi(x)[]--> oo 
as IIxlI-~ co. 

Assume that  x ~ C2[0, 1] is a solution of the boundary  value problem 

(1) { 2 = ; t ( x  ~ + y )  

x(O) = xO) = o ,  

where ~ [ 0 ,  1] and y ~ C~ 1] are given. 
Let  to z (0, 1) be such tha t  Ix(to) l - -  Ilxl[o = m a x  {ix(t)l:  t e [o, 1]}. w e  have 

O>s s ignx ( to ) :  2@~(to)+y(to)) signx(to)> A([x"(to)[- [y(to)l) = : 

= ~(llx]l~o - ty(to)1)> ~(lIx[l~o - IlyI[o) �9 

Thus,  IIxlIo< liyll~o (observe that  if A :  O, then  Ilxl[o= 0). Hence ,  the  set ~ =  (~E 
e C~[O, 1]: D Z x + ~ g ( x ) =  0 for some he [0 ,  1]} is the singleton {0}. Thus ] is 0-epi 

and [ID~x][ < I[x][ ~ § Ill(x)I[ < 2 il/(x)I1. 

EXA~eI~E 3.3. - Let  C~[0, 1] be as in Example  3.2. For  any x e C~[O, 1] define 
][xI] ~ H2IIo. This is a norm in C0~[0, 1] and it is equivalent to the norm (induced 
b y  Ca[0, 1]) Hxll~= HXI]o+ II~l[o~- tl~l[o. Let  ]: C~[0, 1] -+ C~ 1] be defined by  i ( x ) :  
= 2 - - e  ~. I t  is easy to see tha t  ] is 0-epi. In  fact ] =  L -~  h, where L:  C~[0, 1] -~  
--> C~ 1] is the linear isomorphism L x  = ~ and h i s  the compact  map  h(x) -= -- e ~ 
(using again the  compactness of the inclusion J :  Ca[0, 1] -+ C~ 1]). Therefore it 
is enough to show tha t  S---- (x ~ C~[0, 1]: L x :  --  2h(x) for  some ~ e (0, 1]} is bounded. 
This is immedia te ly  verified since ~ ( t ) =  ~e ~(~) implies (recall tha t  x~0)=  x ( 1 ) =  0) 
x(t)-<0. Therefore 0 < ~ ( t ) < l  and Hxl l -  ][~IIo<1. 
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The following ordinary differential equation of neutral  type arises in quantum 
mechanics and has been pointed out to us by S. Paveri-Fontana (see problem (D) 
below). 

Le t  h: [0, 1 ] •  be continuous and such tha t  

Ih(t, r, s)I<~a§ blr l§  clsl , 

for some a, b~ e>~O and all (t, r, s) e l0 ,  1 ] •  2. Let  ~: [0, 1] -->R be continuous and 
such tha t  O<~o:(t)<~t for all t e [ 0 , 1 ] .  F ind  a C ~ function x: [ 0 , 1 ] - > R  such tha t  

(D) { 2( t )  = + h(t, x( t ) ,  x(o:(t))) 
�9 (0) = 

where, #:  [0, 1 ] - ~ R  is a given continuous function and d ~ R .  
Example 3.4 below gives a partial  answer to this problem. 

are needed. 
Some preliminaries 

DEsI~I~IO~ 3.1. - Let  X c C~ lJ. We say tha t  a (not necessarily continuous) 
map ~: X - >  C~ 1] is past-isotonic if for any  r e [ 0 ,  1] and any  pair of functions 
x, y E X  such tha t  x(t)<~y(t) for all t e l 0 ,  3] we have 9(x)O:)<~q~(y)(~). 

As an example of past-isotonic map take the following. Let  ~o: Col0, 1] --> C0[0, 1] 
t 

be defined by  9(x)(t)----x(O)+fg(s, x(s))as. Then ~ is past-isotonic provided tha t  
0 

g: [ 0 , 1 ] •  is continuous and non decreasing with respect to the second 
variable. 

Observe Mso tha t  the composition and the sum of two past-isotonic maps is 
past-isotonic. 

The following result represents a generalization of the well-known Gronwall's 
Lemma. 

LE]V~_~ 3.1. - Let ~: X -* C~ 1] be past-isotonic. I] x, y ~ X are such that x(O) < 
< y(0), x( t )~9(x)( t  ) and y( t )>~(y)( t )  ]or all t~[0 ,  11, then x( t )< y(t) ]or 0 ~ t < l .  

P~ooF. - Let  ~ =  sup {s e [0,1] : x( t )<y( t )  for 0<t~<s}. Clearly, the set ( s t  
e [ 0 , 1 ] : x ( t ) < y ( t )  for 0~<t<s} is nonempty  since x and y are continuous and 
x(0)<y(0) .  Let  us show tha t  3----1 and x(1)<y(1) .  We have x(~)<9(x)(~)< 
~< ? (y) (v)<  y(v). This implies T = 1, since otherwise we would have x ( ~ ) =  y(~). 

Q.E.D. 

COrOLLArY 3.1. - (Gronwall's Lemma). Let x ~  C~ 1] be such that x ( t ) < a +  
t 

+ bfx(s) ds, where b ~ O. Then x(t) ~ a exp bt, t ~ [0, 1]. 
0 
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PnooF. - Define the past-isotonic operator ~: C~ 1]-+C~ 1] by  ~(x)( t )= 
t 

= a-~ bfx(s) gs. Now, given e > O, let y~(t) = (a-t- e) exp bt. Clearly, 
0 

y~(t) = ~ +  ~o(y.)(t) > ~o(y.)(t) and  y.(O) > a > z ( O ) .  

So, by Lemma 3.1 we get x(t)< y~(t) for all t e [0, 1]. The arbi t rar i ty  of e shows 

tha t  x(t) <~ a exp bt, t e [0, 1]. Q.E.D. 

]]XA~I)L~ 3.4. -- Assume tha t  in Problem (D) the function #(t) satisfies the 
inequality [#(t)[< 1 for every t e [0 ,  1]. Then the map M: C~[0, 1]-+C~ 1 ] •  

defined by  

= - 

is 0-epi and stlch t ha t  ]IM(x)I[ -+ c~ as ]]z[[ -+ c~. In  particular Problem (D) is solv- 

able for any  d e R. 
Le t  A:  C~ 1]-+ C~ 1] be the linear operator defined by (Az)(t)= #(t)z(~(t)). 

I t  is not difficult to prove tha t  A is bounded and n A ]1 = max {]#(t)]: re[0,1]} = r <  1. 
+ c o  

This shows tha t  1 -  A, / - the  identi ty,  is invertible and ( I -  A ) - ~ =  ~ A ~. There- 
fore, given y E C~ 1] the function ,~o 

+ c o  

z ( t ) =  ~#(t)#(ct(t))#(~(o~(t)))...#(~'-~(t))y(~(t)). 
~ = 0  

(~~ = t, ~'~(t) ---- ~(~-~(t))) is the unique solution of the functional equation z(t) - -  

- # ( t ) z ( ~ ( t ) )  = y ( t ) .  

The linear operator /~:  C~[0, 1] -+ C~ 1 ] x R  defined by Lx = ((I -- A)Dx,  x(0)), 
where Dx----5, is an isomorphism since the problem 

x(0)  = d 

has a unique solution in C1[0, 1] for any  y e C~ 1] and g e R .  
Let  k: C1[0, 1] -+ C~ 1] • R be defined by k(w)(t)= (h(t, x(t), x(o~(t)), 0). Clearly, 

k is compact (since it can be thought  as the composition of the compact  inclusion 
C1[0, 1] -+ C~ 1] with a continuous map and M = L -- k). M is 0-epi if the set 
S = {x e C1[0, 1] : Lx = ~k(x), for some ~ e [0, 1]} is bounded. Let  x e S. Then there 

exists t e [0, 1] such tha t  

{ :~Ct}-~(t}i(~(t}) = xh(t, ~(t), ~(~{t})). 
x(o)  = o .  
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Hence 

1 ~ = 0  

x(O) = o 

Thus~ 
t 

~ t = 0  
0 

Now, the operator ~: C~ 1] --> C~ 1] defined by  

t 

0 

is clearly past-isotonic. So, by  Lemma 3.1, if y e C~ 1] is such tha t  y ( 0 ) >  0 
(recall tha t  Ix(o)l = o and y(t) > ~v(y)(t)), then we obtain Ix(t)I< y(t). A suitable (to 
our purposes) y is the solution of the following integral equation 

where s > O. I.e., 

t 1; a-4- s + _ _  (b -f- c) z(s)ds , z(t)=l--.~r ~ - r  
0 

a + s  b + e .  
y(t) ---- 1 - -  reXp ~ ~ " 

In  fact, since y is increasing and the sequence {~(t)} is non increasing (recall tha t  
~(t)<t),  then we have 

t t 

f y(t) = l _ r  a § s § (b -4-e)y(s)ds >~=o ~ r€ ]g(a +by(s )  + ey(s))ds>~ 
0 t 0 

0 

Therefore, by  the arbi t rar i ty  of s, we obtain 

Thus 

a (b + e) t 
Ix(t)l < ~ e x p  1 - -  r 

a b + e  
I1Xl]o< exP 1 - -  r" 

2 2  - A n n a I i  d i  M a t e m a t i c a  
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On the other hand 
+co 

~ = 0  

Thus, 
o (i 

11511~ ~ + l--~rr_reXp �9 

This proves tha t  the set S is bounded (take in C1[0, 1] the norm ]lxtl--]I5][o~ 
~-Ix(o)] and recall tha t  if x e S then  x ( 0 ) =  0). 

I t  remains to show tha t  ]lM(x)l]-+~- co as ]fxIl-+-~ co. Given xeC~ 1] let 
Mx = (u, d). By slightly modifying the above argument  one can show tha t  [IxII -- 
_-]ISI]o~ Idl<y~-y~llu]Io~-y3]d], where 71,72,78 are suitable positive constants. 

Thus, Hx[I <7~§ (7~§ 7~)JIM(x) II. 

EXAMPLE 3.5 (see [7]). - Let  the boundary  value problem be given 

(1) 
{ 5 ~- f(t, x) -~ e(t) -~ e(t + T) 

x(O) = x (T) .  

Assume tha t  ]: R x R ~ - +  R ~ is continuous and periodic of period T with respect 
to t, e(t) is continuous. We want  to show tha t  (1) has a solution provided tha t  there 
exist positive constants ~, K,  M such tha t  either one of the following conditions 

is satisfied 

(J) .~][~:~Hl+tc<](t, X)"X,  

(jj), - -  KHxlI~ +~>~ f(t, x).x, 

Ilx[l~M, t~[0, T]; 

Ilx{I ~M, tel0,  ~3. 

Let  E =  {xe C**[0,1 T]: x(0) = x(/:)}, F =  C~ T], L : / ~ - + / ~  be defined by s  5. 
I t  is easy to see tha t  L is a Fredholm operator of index 0, K e r L  is the n-dimensional 
space of constant  functions and I m Z  coincides with the kernel of the linear con- 
t inuous map Q : F - >  R ~ defined by 

T 

(2) Q(y) =fy(t) dt 
0 

Let  h : / ~ - + / ~  be defined by  h(x)(t)= - / ( t ,  x(t))-4-e(t) and denote by  h the compo- 

sition of ~ with the compact inclusion i : E - +  F. 
On the basis of Theorem 2.7 we have to show tha t  

(i) the set of v ~ K e r L  such that  h ( v ) ~ I m L  is bounded; 

(ii) deg(QhJ, 0 ) # 0  where J :  R ' - + E  is the linear map J ( u ) ~ - u ,  a constant  

function; 

(iii) the set S +~- { x e E :  Z x =  2h(x), 2e (0 ,  1]} is bounded. 
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The first property  is easily verified. 
implies 

T T 

(3) f f(t, v)dt=fect)dt 
0 0 

which implies 

(5) 

In  fact  take v~Ker.L. 

T T 

0 0 

Then h(v) elmL 

Equal i ty  (4) is impossible in both cases (j) and (jj) if 

For  the second property observe tha t  if IluIl>N-]- 1 then 

(5) QhJ(u):/=AQhJ(--u), ], ~ [0, 1] 

since QhJ(u).u is either positive (case j) or negative (case jj) for Ilu]l > N - ~  1. Hence 
deg(QhJ, O)=/= O. To verify the last proper ty  let x(t) be a solution of 

[ :~(t) = - Zf(t, x(t)) + ~e(t) 
x(O) = x ( ~ )  

and put  w(t)=x(t).x(t).  There exists toe[0, T] such tha t  w(to) []X(to)]I 2-= IixIl~. 
Since w(0) ---- w(T), u)(0) ~-- u)(T) we have ~b(to) : 2x(to)"~(to) ---- 0. Hence 

f(to, x(to) ) "X(to) -~ e(to) .x(to) 

which is impossible if 

l /~ 
IIx/,o/, 

We shall give now some applications of the theory of 0-epi maps to boundary  
values problems with parameters. 

Le t  E and F be real Banach spaces and let L :  E - >  F be a bounded linear 
injective operator with dim (F / Im L) = p > 0. Le t  ]: E X R ~--> -~ be compact. Con- 
sider the equation 

(1) L x = l ( x , ~ ) ,  x e B ,  ~ R ~ .  
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DEFI~ITI0g 3.2. -- Any  couple (x, 2) with x e E ,  2 e R~ satisfying (1) is said to 
be a solution of the equation (1). In  this context we have the following result. 

TgnonE~ 3.1. -- Let L:  ~,--~ F and ]: E• F be as above and let Q: F--> R~ 
be bounded linear and such that KerQ = I m L .  Assume that 

(i) the set 2V= {2~R~: QJ(O, 2 ) =  0} is bounded, 

(ii) the set S + =  {(x, 2) e E •  Z x =  ~J(x, 2) /or some o <  ~<~l}]is'bounded, 

(iii) deg (QJ(O, . ), o) V: 0, where the map QJ(O, . ) : R~--> R~ is de/ined by 2 -> QJ(O, 2). 
Then the map f~--]  is O-epi~ where f~: E •  F is de/ined by /~(x, 2 ) ~ Z x .  

A more general version of Theorem 3.1 is the following. 

T~EO~E~ 3.2. - Let L : E --~ 2' be a Fredholm operator with ind (L) = -- p (p > O) 
and let ]: E •  be compact. Assume that 

(i) the set N~ {(x, 2) e E x R ~ :  x e K e r ~ ,  J(x~ 2) t i r o L }  is bounded, 

(ii) the set S+-~ {(x, 2 ) ~ E •  L x =  ~J(x, 2) Jot some o <  ~<1} is bounded, 

(iii) deg (QJJ, o) V= O, where J :  R ~+~ --~ E • R ~, Q : F ~ Itq+~ are linear continuous 
and such that I m J =  K e r L •  ~, K e r Q = , I m L  and q =  d i m K e r L .  

Then the map ~ - J  is O-epi, where ~: E• is de]ined by ~(x, 2 ) - - Z x .  

P~ooF. - Observe tha t  Z is Fredholm of index zero and apply Theorem 2.7. 
Q.E.D. 

EXAMPLE 3.6. -- Consider the problem 

(1) 
2 = h(t, x) + 2g(t, x) 

x(O) = x(1) = 0 ,  

where h, g: [0, 1]• are continuous. Assume tha t  there exist positive con- 
stunts e, a, b, M such tha t  Ih(t, x) l<~ M and s <~ [g(t, x)[~< a -1- b Ix] for all (t, x) ~ [O, 1] • R. 
Then, there exists x e C1[0, 1] and 2 e R such tha t  (x, 2) is a solution of (1). 

We will prove this fact  applying Theorem 3.1. To this aim let E be the Banach 
space {xe C1[0, 1]: x ( 0 ) =  x ( 1 ) =  0} with norm ][x]] = ]12I]o and let F be the Banach 
space C0[0, 1]. The operator Z : / ~ - * F  defined by L x =  2 is injeetive. The map 
]: E • R ~ f defined b y  ](x, ;~)(t) = h(t, x(t)) § 2g(t, x(t)) is compact. We have to 
find a linear operator Q: xv -*R  such tha t  KerQ = I m L .  For  this observe t ha t  
given y ~/~, the problem 

{ 2 = y  

(2) x(O) = x(1) = o ,  

1 1 

is solvable if and only if f y ( t )d t  ~-O. Thus, Q can be defined by  Qy-=fy( t )  dt. 
o 0 
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1 1 

Le t  us show t h a t  the  set X ' =  {2eR: fh ( t ,O)  dt§ is bounded.  
0 0 

This follows a t  once f rom the assumpt ions  on h and  g. Actually,  if 2 ~Z r then  
1 1 

i21< M/s. We also have  deg (Q](O, .), 0) ve o since Q](O, 2) =fh(t,  O) d t §  2fg(t, o) dt 
1 0 0 

is such t h a t  fg(t, o) dt V= O. 
o 

I t  remains  to show t h a t  the set S + is bounded.  To this a im let (x, 2)~S +, i.e., 
(x, 2) is a solution of the  following p rob lem 

{ ~ = ~(h(t, x) + ~g(t,x)) 
x(O) = x(1) = o,  

1 

for some 0 < ~ < 1 .  Clearly, since w # 0 we mus t  have  f(h(t, x(t))§ 2g(t, x(t))) dt = O. 
0 t 

B y  the assumpt ions  on h and g it  follows t h a t  121<M/s. Since x(t)= ~(h ( s ,  x(s))§ 
§ 2g(s, x(s))) ds we. have  o 

t t 

Ix+l< ~ x  + ~ Iz lf(a + b ix(*)I)e* < M + Ma/~ + (~Ub/~)f ix(s) I es .  
0 0 

B y  Gronwall 's  L e m m a  we get  

Ix(t) I < ( M § Ma/e) exp ( Mbt/s) < (211§ Male) exp ( Mb /s) = k . 

Since llx]l = 1I<1o we have  to eva lua te  I~(t)/. ~ o w ,  [92(t)I<T(M+ Ial(a+bllxl lo))< 
< M §  ~ / ~ ( a §  b~)= f~. Thus,  if (x, 2 ) e ~  +, t hen  l/(x, 2)I] = ]l~llo§ I 2 l < ~ §  M/~. 

Hence  p rob lem (1) is solvable. 

EXA~IPLE 3.7. -- Consider the  bounda ry  v a h e  problem 

(3) 

2 = x 3  § 2 §  
x(O) = x(1) = o 
1 

j x(t)•t = o, 
0 

where y E C~ 1] is given and  2 E R is a parameter .  

We  wan t  to show tha t  there  exist  x s C2[0, 1] and  2 6 R  such tha t  (x, 2) is a 

solution of (3). Le t  E =  (x, 2)~C~[O, 1 ] •  fx ( t )d t=O and let  
0 

F =  C"[O, 1]. Define the  l inear opera tor  Z :  E - + F  b y  L(x, 2)(t) = ~(t) --  2. I t  is easy 
to see t h a t  L is an  isomorphism. Define h: E - + F  b y  h(x, 2)( t )=x3( t ) ,  which is 

odd and  compact .  Therefore the  m a p  Z --  h is 0-epi if (L - -  h)=l(0) is bounded.  We 

shall prove,  actually,  t h a t  I I L x - h ( x ) l  [ - + +  c~ as I lx l l ->+  c~ (i.e. the  inverse imago 
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under  L -  h of any  bounded set is bounded) and therefore problem (3) is solvable 

for any  y ~ C~ 1]. 1 
Le t  (x, ~) be any  solution of (3). Clearly, if x # 0, the condition f x ( t ) d t - ~  0 

0 

implies tha t  there  exist to and t~ belonging to [0, 1] such tha t  x(to) ~ max (x(t)  : t 

e[O, 1 ]}>  0 and x(t~) = min{x(t): te[O,  1 ]}<  O. Clearly, 

0 >~ 2(to) --~ x~(to) + ~ + y(to), 

and 

0 <~ 2(tl) = x3(t~) + ~ -]- y(t~).  

Thus, 

x3(to) - -  xS(t~) <.4 y(t~) - -  y(to) < 2 HY ]]o. 

On the other  hand either x3 ( to )=  [Ixll~ or x 3 ( h ) =  -Ilxl[3o This implies tha t  Ilxll~< 
<x3(to) - -  xS(tl) < 2 IlY I]o. Therefore,  for any  (x, ~) s E we get (by set t ing y = L x  - -  h(x))  

[[xlISo<~2IILx . -  h(x)]lo. Now, since L is an isomorphism we can take in E the  follow- 
ing norm ]](x, 2)1] = HL(x, 4)[Io----- max{]2( t ) - -  hi: tE[0 ,  1]}. This norm, by  the con- 
siderations made at  the beginning of this section, is equivalent  to the norm 

II(x, ~)11 = Ilxll~+ i~I=  Ilxllo+ I[~lIo + ll~]l.+ I~l. Since, 2 - -  ~ = x S - 4 - Z x  - h(x) ,  we get 
12(t)- ~l< ]x(t)]~+ ]lLx - h(x)I[0< ]]x[[~+ I I L ~ -  h(x)]lo. T h u s  i](x, ~)I[ : l] gd -  ~IIo< 
< 3 n Z x -  h(x)n o. This shows n L x - -  h(x ) l I ->+  o~ as I lx l l -~+ oo. 

We close this paper  wi th  an example of a nonlinear ordinary differential operator  

which is admissible bu t  not  0-epi. 

EXAMPLE 3.8. -- Le t  E = {x ~ C1[0, 1]: x(0) ~ x(1)}i The map ]: E - +  C~ 1] de- 
fined by  ] ( x ) ( t ) =  &(t) --  x~(t) is admissible (observe t h a t / ( x )  : 0 if and only if x = 0) 
bu t  it  is not  0-epi since the boundary  value problem 

2(t) = x~(t) + 

x(O) = x(1) 

has no solutions for ~ > 0 (recall Theorem 1.5). 
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