On the Solvability of Nonlinear Cperator Equations
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Sunto. — 8 studia una classe di applicazioni continue negli spazi normati e si dimosirano, per
tali applicazioni, proprietd analoghe o quelle della teoria del grado di Leray-Schauder. St
danno esempi di problemi ai limiti per equasioni differensziali ovdimarie che possono essere
agevolmente trattati usando la teoria sviluppate nel presente lavoro.

0. — Introduction.

Let H, F be normed spaces and 2c F be open and bounded. Let f: 2->F be
continuous and such that f(x) = 0 for any « belonging to the boundary 042 of L.
If the equation f(z)= h(x) is solvable whenever h: 2 — F is compact and vanish-
ing on 042, then we say that f is 0-epi (zero-epi).

The main task of this paper is to develop, with very elementary tools, the theory
of 0-epi maps and to show that in many applications it represent a good substitute
for degree theory. In facts, 0-epi maps have properties such as existence, boundary
dependence, normalization, localization and homotopy invariance analogous to those
of degree theory. Moreover, since 0-epi maps may act between different spaces in
many cases they can be used to prove existence results for boundary value problems
avoiding the tedious procedure of looking for Green functions and transforming
these problems into the equivalent integral form. Actually, 0-epi maps may also
be viewed as a simple tool which helps the use of Schauder fixed point theorem (in
fact, the normalization property is nothing else but a reformulation of this funda-
mental fixed point theorem) and they can be successfully combined with degree
theory to get deeper results.

The plan of this paper is as follows. After introducing the notion of 0-epi maps
and giving their main properties (section 1) we proceed (section 2) with the study
of 0-epi maps defined on the whele space E (and not merely on the closure of an
open bounded subset of ). In this confext we get surjectivity results.

The theory of 0-epi maps is then applied (section 3) to nonlinear ¢ abstract»
boundary value problems in the context of the so-called alternative methods for
boundary value problems.

(*) Entrata in Redazione il 7 aprile 1979.
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The last section is devoted to examples of 0-epi maps and applications to
boundary value problems for ordinary differential equations, with a particular atten-
tion to the case of boundary value problems depending on a parameter (see Theo-
rem 3.2 and the examples thereafter). '

1. — 0-epi maps with bounded domain.

Let E, F be normed spaces and £2cFE be open and bounded. We say that a
continuous map f: 2 — F, deflned on the closure Q of 2, is 0-admissible (p-admis-
sible, pe F) if f(x) %0 (f(x) = p) for all xe L.

Recall that a continuous map h: X —F, X CH, is said to be compact if it
maps bounded sets into relatively compact subsets of F.

DEFINITION 1.1. — A 0-admissible map f: 2 —F is said to be 0-epi if for any
compact map h: 2 ->F such that h(z)= 0 for any xe 02 the equation f(x)= h(x)
hag a solution in £.

We point out that when F= F and f: O — F is a compact perturbation of the
identity, the above definition agrees with that of essential compact vector field (with
respect to 2) as given by A. GRANAS [4]. o

A p-admissible map f: 2 — F is called p-epi, peF, if the map f-p defined by
(f-p)(@) = f(®) — p is 0-epi. The basic properties of 0-epi maps are analogous to the
properties which characterize Brouwer’s degree.

EXISTENCE PROPERTY. — Let f: Q — F be p-epi. Then the equation f(x)= p has a
solution in L.

NORMALIZATION PROPERTY. — The inclusion i: Q — K is p-epi if and only if
pe L.

Proor. — (Only if). It is a direct consequence of the definition of p-epi map. (If) It
is enough to show that ¢ is 0-epi provided that 0 2. Let h: E—F be compact
and such that h(z) =0 for any x¢ Q. Since 0c 2 the equation i(x)= h(z) has a
solution in 2 if and only if the map h: B —E has a fixed point. The existence

of a fixed point for % is ensured by Schauder’s fixed point theorem gince h(E) is
compact.

LOCALIZATION PROPERTY. — Let f: @ — F be 0-epi and assume that f-2(0) is con-
tained in an open set Q,c Q. Then the restriction of f to &y, flg: Q,—F, is 0-epi.

PROOF. ~ Let h: Q,— F be continuous eompact and vanishing on 002,. Extend h
to a compact map h: 2 —F by putting h(z) = 0 if 2e O\L2,. The equation f(z) =
= h(z) has a solution z,€ 2. The eondition F-(0) c 2, ensures that #,€ £2,. Q.E.D.
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HoMoTOPY PROPERTY. — Let f: @ —F be 0-epi and let h: Qx[0,1]—F be com-
pact and such that h(z, 0)=0 for any we Q. Assume that f(z)+ h(z, 1)~ 0 for oll
we 0 and for any t€[0,1]. Then f(:)--h(-,1): Q—F is 0-epi.

ProOF. — Let k: 2 — F be compact and such that k(z) =0 for all z€ 2. The
get S = {we[?: f(x) + h(x, t) = k(x) for some t&[0, 1]} is closed since [0, 1] is com-
pact. Let ¢: 2—[0,1] be a continuous funection such that ¢(z)=1 for every
ze S and g(x) =0 for all ze 0. The existence of ¢ is ensured by Uryshon’s Lemma.
Consider the eguation

f(#) = k(@) — h(z, p(x)) .

Since the map h: @ —F defined by h(x) = h(z) — h(», (%)) is compaect and it van-
ishes on 082, there exists a solution , of the above equation. Clearly z,€S. Hence
(@) =1 and

fle) + b2y, 1) = k() .  Q.E.D.

BOUNDARY DEPENDENCE PROPERTY. — Let f: Q—F be 0-epi and k: Q—F be
compact. Assume that k(x) =0 for all €0Q. Then f-k: 2 —F is 0-epi.

We shall derive now some consequences of the above properties. Recall that a
map f: @—F is proper if 1K) is compact for every compact subset KcF. It
is easy to show that if f is proper then f(£) is closed. Therefore, in this case,

Q) =)

TuEOREM 1.1. — Let f: @ — F be 0-epi and proper. Then f méps Q onto a neigh-
borhood of the origin. More precisely if U, is the connected component of F\J(042)
containing the origin, then U,c f(Q

Proor. — The set f(0£2) is closed since f is proper. Hence U, is open, which im-
plies that U, is also path connected. Let pe U, and o: [0, 1]— U, be a continuous
map such that ¢(0)= 0 and ¢(1)= p. The homotopy (x,?)—f(®) — o(t) ensures that
f()—o(1): 2 - F is 0-epi, which implies that pef(2). Q.E.D.

Observe that if in Theorem 1.1 we assume that f(2) is bounded then f(0£2)
separates the origin from the infinity, i.e. U, is bounded.

Let f: 2 — F be continuous, injective and proper. Then f(£2) need not be open
as it is easily seen by embedding the interval [0,1]c R into R2 Neverthless the
following result holds.

THEOREM 1.2. ~ Let f: Q — T be continuous, injective and proper. Then [(Q) is
open if and only if f is p-epi for any pef(£2). '

Proor. ~ (If) Assume pef(Q) and f p-epi. Applying Theorem 1.1 to the
map f-p we obtain that f-p maps £ onto a neighborhood of 0. Thus f({2) is open.
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(Only if) Asgume that f(£2) is open. Since f is injective and proper we have that f
is invertible on its image and the inverse iz continuous. It is enough to show that
if 0ef(Q) then f is 0-epi. Let h: 2 —F be compact and vanishing on 92. Define
a map g: F—T by

M) it yef(@Q)

9(y) = —
0 if yéf).
Since 7(2) == f(£) and f(2) is open we obtain that 9f(2) = f(02). Hence g vanishes
on 0f(£2). This shows that g is continuous. Since g(F) is relatively compact and
g(F)C F there exists y,€F such that y,= g(y,) (by Schauder Fixed Point Theo-
rem). Clearly ,€f(£2) and z,= f(y,) is a solution of the equation

fl#)=h(z). Q.E.D.
The following result iy an extension of the Normalization Property.

COROLLARY 1.1. — Let f: Q — F be continuous, injective and proper. Assume that
f(£) is open. Then f is p-epi if and only if pef(£2).

ProoOF. — (Only if) It is a direct consequence of the definitions. (If) It is a
congequence of Theorem 1.2. Q.E.D.

Note that if f: & —F is continuous, injective and proper then f(2) is closed
and f is a homeomorphism between 2 and (). On the other hand if f: @ —F is a
homeomorphism onto f(£2) and f(£2) is closed then f is proper. Hence a homeomor-
phism f between 2 and f(£2) is proper if and only if f(£2) is closed.

Recall that a set QcF is star-shaped with respect to the origin if fye@ for
every ye@ and te[0,1]. The following result is a consequence of the Homotopy
Property.

THEOREM 1.3. — Let f: @ —F be 0-epi. Assume that there ewists a star-shaped
(with respect to the origin) subset Q CF such that Q N f(00)=0. Then the equation
f®) = h(x) has a solution for any compact map h: Q—F such that h(02)cQ. In
particular Q C f(Q2).

Proo¥. — Let e 002 and A€[0, 1]. Clearly Ak(z)€Q and f(r)¢@Q. Hence f(x)~
o Ah(x) for all e o2 and for every A€[0,1]. Therefore f—h is 0-epi. In particu-
lar f(z) = k{#) for some z€ 2. Let peQ. By taking as h the constant map h(z) = p
for every xe 2 we obtain that pef(2). Thus Qcf(2). QE.D.

The following two results present possible ways of obtaining 0-epi maps starting
from maps having this property.
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THEOREM 1.4. ~ Let f: @ —F be continuous, 0-admissible and proper. Let {f.}
be a sequence of 0-epi maps from Q imto F, which converges uniformly to f. Then f
8 0-epi.

PrOOF. — Let h: 2 —F be continuous compact and vanishing on 882. Let 2,
be any solution of the equation f,(#)= h(z) and put y,== f(@,) — fu(@.) = f(@,) — W(2,)
n=1,2,... Clearly y,~>0 as # —- co. Since f— & is proper (recall that % is com-
pact) we obtain that {«,} has a cluster point Z. Obviously /(&)= h(Z). Q.E.D.

THEOREM 1.5. (Perturbation Theorem for 0-epi maps). — Let f: O —F be a
proper 0-epi map and let h: QX[—1, 11— F be compact and such that h(x,0) =0 for
any xe . Then there exists >0 such that f(-)— k(-, 1) is 0-epi for every |A|<e.

Proor. — By the Homotopy Property it suffices to show that there exists ¢ >0
such that f(x) #h(z, 1) for all xc 02 and Ae(—e, ). Assume the contrary. Then
there exists a sequence {(#., 1,)} in 0Q2X[—1, 1] such that 1,—0 and

Since & is compact and f is proper the sequence {z,} has a cluster point z,€ 002. It
follows that f(z,) = h(z,, 0) = 0, a contradiction with the 0-admissibility of f. Q.E.D.

The following results exhibit some interesting classes of 0-epi maps (Theo-
rems 1.6-1.9).

Recall that a continuous map f: X —F, X c ¥, is called a compact vector field
if the map h: X — E defined by h(z) =z — f(») is compact. ’

THEOREM 1.6. — Let f: @ —F be ‘a p-admissible compact vector field defined on
the closure 2 of an open bounded set Qc E. If the Leray-Schauder degree deg (f, 2,p) 7 0
then f is p-epi.

PrOOF. — Let h: 2 — E be continuous, compact and vanishing on 0. Clearly
f—h is a compact vector field which coincides with f on 2£2. By the boundary
dependence property of the Leray-Schauder degree we have deg(f—bh, 2,p)=
= deg(f, £, p) = 0. Hence the equation f(») —p = h(x) has a solution, ie. f is
p-epi. Q.E.D.

The following is an example of a 0-epi map f: 2 — R, 2 c R, with deg(f, £,0)=0:
Q= (—2,—1)U(1,2), flz)=x2—2.

In Theorems 1.7-1.9 below the spaces H, F are assumed to be Banach. This
restriction can be removed in many different ways as the comments thereafter show.

THEOREM 1.7. —~ Let L: E — F be bounded, linear and surjective with dim Ker L =
=mn<-oo. Let g: Q— R be continuous and such that g(x)=0 for any xeolN
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NKer L. If the Brouwer topological degree deg (gJ, J-1(£2),0) 0 where J: R*— B
is linear and such that ImJ = Ker L then the map M: Q — F X R defined by M(r) =
= (La, g(x)) is 0-epi.

PrOOF. — Let A: FXRr~—>F be defined by A(y,2)= Sy-+ Jz, where §: FF— E
is any bounded linear right inverse of L (recall that dimKerL << 4 o). Observe
that A is an isomorphism, thus M is 0-epi if and only if the composition f = M A4:
A4-1Q)— FX R is 0-epi. Now, f(y, 2) = (L(Sy+ J2), 9(Sy - J2)) = (y, 9(8y + J2)) =
= (y, &) — (0, z— g(Sy - J2)). Therefore, f is of the form I — h, where » maps A-1(£2)
into the finite dimensional space {0} X R». By the definition of the Leray-Schauder
degree we get ‘

deg (fa A_I(Q)y 0) = deg (f I{o}xR“; A-YQ) ﬂ ({0} X R*), 0) = deg (gJa J-1LQ), 0) #0.
Thus, f is 0-epi (see Theorem 1.6). Q.I.D.

Theorems 1.8-1.9 below are related with boundary value problems « at resonance ».
We recall first that F, is a closed n-codimensional subspace of a normed space F
if and only if there exists a surjective bounded linear operator : F — R» such that
F,= Ker() (i.e. I, is the intersection of the kernels of » linearly independent bounded
functionals). Moreover, @ is unique up to a linear isomorphism of R” into itself.

THEOREM 1.8. — Let L: E—F be a bounded Fredholm operator of index 0 with
dimKerL=n. Let QcE be open bounded and let h: @ —~F be compact and
such that h(z)¢ImL for any ve 02N Ker L. Assume that deg (QhJ, J-(L),0) 20
where J: R*—>H, Q: F—>R* are linear continuous and satisfy Imd = KerL and
Ker @ = Im L. Then there ewists £>0 such that L — Ah is 0-epi for 0< |A|<e.

Proor. — From Theorem 1.7 it follows that the operator M: 2 —-ImILXR®
defined by M(x) = (L, Qh(x)) is 0-epi. Let P: F —ImL be any continuous retrac-

tion. Since M is proper in £ we obtain, by Theorem 1.5, that there exists ¢>0
such that the map :

@ — (Lo — APh(%), Qh(x))

is 0-epi for any O< |i|<e. Let k: 2 —>F be compact and such that k(z)=0 for
any ze€0f2. By the Boundary Dependence Property for 0-epi maps the map

2> (Lo — AP(h(a) + 2= k(@)) , Q(h(@) + A-k(®)))

is 0-epi provided that 0 < [1|<e. Now the result follows from the fact that the

system
{ Lz = AP(h(z) + i*k())

Q(h(x) + A k(z)) =0
is equivalent to the equation Lw — Ah(®) = k(z). Q.B.D.
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THEOREM 1.9. — Let L: F—F be a bounded Fredholm operator of index 0. Let
h: Q —F be compact. Asswme that there exists a compact linear map P: B —F such
that -

1) Ker (L+- P) = {0}
2 La -+ Px 5= A(h(w) -+ Pr)

for any x€0R and 1€][0, 1]. Then L —h is 0-epi provided that 0 Q.

Proor. — We have, by the Fredholm alternative, ind (L -+ P)=ind(L)= 0.
Therefore by (1) L-}- P is an isomorphism. Moreover if 0 € £2, Corollary 1.1 implies
that L+ P is 0-epi on £. The result now follows from the Homotopy Property
of 0-epi maps. Q.E.D.

We point out that throughout this paper all the maps are assumed to be con-
tinuous. However, in many applications one hag to deal with equations of the form
Lz = h(x), where L: B — F is a (not necessarily bounded) Fredholm operator and
h: E— F is a (not necessarily compact) nonlinear operator. Therefore, our methods
seem to break down in these cases. Nevertheless, the following considerations are
in order.

Let B and F be vector spaces and let L: E— I be linear. The operator L is
said to be algebraically Fredholm if KerL and F/Im L are finite dimensional. TIf,
moreover, ¥ and F have normed structures and L has closed image, then L is called a
Fredholm operator. Finally, we say that a Fredholm operator L is top-Fredholm
if it is bounded and it admits a right inverse L™: Im I — E (i.e. LL" is the inclusion
Im L — F) which is bounded.

PRroPOSITION 1.1. — Let F and F be two vector spaces and let L: B —F be alge-
braically Fredholm. Then any normaeble structure on E induces a unique normable
structure on F such that L becomes a top-Fredholm operator. Conversely, any normable
structure on B such that Im L is closed induces a unique normable structure on IH
making L top-Fredholm. Moreover, if a normable structure on E (on F) is complete
8o is the induced one on F (on E).

PRrOOF. —~ Observe first that given a vector space G and a finite codimensional
subspace G, of G, then any normable structure on G, induces a unique normable
structure on G, making G, closed. The existence of this structure is evident. The
uniqueness is obtained by (topologically) decomposing G as G = G, D G, where G,
is finite dimensional and by recalling that any finite dimensional vector space admits
a unique normable structure.

The above observation and the fact that a finite dimensional subspace of a vector
space admits a (topological) direct summand reduces our problem to the very simple
case when L: B — F is an algebraic isomorphism. '
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Now given & norm ¥ —R on ¥ (a norm F—R on F) define a norm on F
(on E) by considering the composition . E—-R (E-% F— R). With this norm L
becomes an isometry. Thus ¥ is Banach if and only if so is H. _

The uniqueness of the normable structure depends on the fact that in our
reduced problem L and L~! must be bounded (i.e. L is an isomorphism of normable
spaces). Q.E.D. :

The fellowing situation arises frequently in the applications (see e.g. [1]).

Let B and F be normed spaces, L: B — F be Fredholm and h: F— F be demi-
continuous (i.e. continuous from the strong to the weak topelogy) sending bounded
sets into bounded sets. Assume moreover that L admits-a compact right inverse
L*:ImL—E. We shall show that under the above assumptions » can be regarded
as a compact map from ¥ into the space F endowed with the structure induced by ¥
and L (or any other structure which makes I bounded).

In fact, since Im L is closed there exists a finite dimensional subspace F, of F
such that F=ImL®F, (topologically). Thus H can be decomposed as hy-h,
where h,(E)cImUL and hy(E)cF,. Since F, is finite dimensional it suffices to show
that h, is compact as a map from E into F,, where F, stands for the space F endowed
with the normable structure induced by E via the linear operator L (or any other
weaker structure). )

The following composition of maps proves our assertion

EXAImL S5 EAF,,

since L™h, is compact, L: E — F, is continuous and LL" is the inclusion Im I — F,.

Let B, F be normed spaces. We recall that any bounded linear operator L: B —F
can be uniquely extended to a bounded linear operator I: £ — F, where B, F' stand
for the completions of ¥ and F respectively. It is not hard to show that if L is

N

top-Fredholm then go is L. Moreover, one has KerL= KerL, ImL=ImJ5 and
ind (L) = ind (L).

Assume now, as it occurs frequently in applications, that E and P are Banach
spaces and L: D(L) - F is a Fredholm operator defined on a dense subspace D(L)
of B. Let h: E—F (or, more generally, h: U —F, U open in E) be such that
L*Ph: B~ H is compact, where L*: Im L — F is any right inverse of L and P is
any bounded projection of ¥ onto ImL (i.e. h is L-compact[3]). We want to
show that » can be regarded as a compact map.

Put in # the normable structure which makes L: D(L)— F a top-Fredholm
operator and extend L to a top-Fredholm operator L: B F, where F' stands for
the completion of ¥ with respect to the induced structure. Observe now that Ph
coincides with the following composition of maps

EXP RS ImLEEA P,
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Since L*Ph is compact, L is continuous and LL*Ph: B — F coincides with Ph: E—F
we obtain that Ph: E—F is compact. Thus h: B —F is also compact since the
difference h — Ph= (I — P)k is a finite dimensional map.

We ghall describe now another very common situation arising in applications.
Let F be a Banach sgpace and let L: D(L)—F be a Fredholm operator defined
on 3 subspace of F. Denote by F the space D(L) with the Banach structure which
makes L top-Fredholm (or any stronger structure). Assume that the inclusion
E— F is compact. Then the restriction of any continuous map %: #— F to the
subspace D(L) can be regarded as a compact map from ¥ into F by considering
the composition

E—>FL%F.

We close this section with the observation that in Theorems 1.7-1.9 the assump-
tion « ¥ and F are complete » can be removed provided that the linear operator
L: E-—~F is assumed to have a bounded right inverse.

Note that in the case when E, F are complete then any bounded Fredholm
operator L: E — F has a bounded right inverse, i.e. L is top-Fredholm (to see this
apply the Open Mapping Theorem).

2. — 0-epi maps on the whole space.

Let f: E:—F be a continuous map from a normed space E into a normed
space F. Given peF we say that f is p-admissible if f~1(p) is bounded. The map f
is p-epi (on E) if f is p-epi on any bounded open set 2 5 f~(p). Le., the restriction fls
is p-ept (in the former sense) for any bounded open £ >f-'p) (or, equivalently,
it the equation f(#) — p = h(x) is solvable for any compact » with bounded support).

Notice that in the above definition, in view of the Localization Property for
0-epi maps, we may restrict ourself to sufficiently large open balls centered at the
origin,

The plan of this section is as follows.

After a suitable formulation of the Homotopy Property, some facts regarding
0-epi maps defined on the whole space are presented. The proofs are given only
when the results are not easy consequences of analogous results previously obtained
in the context of 0-epi maps on bounded sets.

Homotory PROPERTY. — Let f: E—F be 0-epi and let h: E X[0, 1]—F be com-
pact and such that h(x,0)= 0 for any xe K. If the set

= {wecE: f(x)4 h(z,t) = 0 for some te(0,1]} is bounded ,

then f(-)+h(-,1) is 0-epi.
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We shall derive now some consequences of the above property. The first one
is analogous to Theorem 1.3.

THEOREM 2.1. — Let Q C F be star-shaped with respect to the origin and let f: B — F
be 0-epi. If {~YQ) is bounded, then the equation f(x)== h(x) has a solution provided
that h: E—F is compact with ImhcQ. In particular, Imf>Q.

CoROLLARY 2.1. — Let I and I' be Banach spaces and let L; B — T be bounded
and linear. Then L is O-epi if and only if it is an isomorphism.

Proor. — (If) It follows immediately from Corollary 1.1 since L is a continuous,
injective, proper and open map.

(Only if) Clearly, L is one-to-one since, being I admissible, Ker L must be
bounded. Since F and F' are Banach spaces it remains to show that I is onto. Take
peF and consider the segment @ = {ip: 0<i<1}. The lineari‘ty of L (actually, its
positive homogeneity) implies that. L-3(@) is bounded. Now, apply Theorem 2.1.

Q.E.D.

COROLLARY 2.2. — Let f: B — I be 0-epi and such that |f(x)] — -+ oo as |#]| — -co.
Then the equation (@)= h(z) has a solution for any compact map h: E— F with
bounded image. In particular f is onto.

ProoF. — Notice that the condition |f(x)] -+ co as x| >+ oo is equivalent
to the fact that the inverse image under f of any bounded subset of F' is bounded.
Now, take any ball Q@ c F, centered at the origin, which confains Imh and apply
Theorem 2.1. Q.E.D.

Observe that under the hypotheses of Corollary 2.2 the map f+ & is 0-epi for
any compact map h: ¥ — F having bounded image. In particular, the map f is
p-epi for any perF.

The following theorem, which is a direct consequence of Theorem 1.4, shows
how a 0-epi map can be obtained as a uniform limit of 0-epi maps.

THEOREM 2.2. — Let f: B —F be 0-admissible and proper on bounded closed sets.
Let {f,} be a sequence of 0-epi maps from B into F, converging uniformly to f on bounded
subsets of H. If the sets ,X(0) are imiformly bounded then f is 0-epi.

The following results exhibit interesting clagses of nounlinear 0-epi maps.

We recall first that a map f: H— H defined on a Hilbert space H is said to
be monotone if (f(x) — f(y), #—y) >0 for all #, y € H, where (-,*) stands for the inner
product in H,

THEOREM 2.3. — Let f: H— H be a continuous monotone operator which is proper
on bounded closed sets. Assume that (f(x),x) >0 jor |@| sufficiently large. Then f
is 0-epi.
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Proow. — Given ne N, define f,: H—H by f.(@) = (1/n)x+ f(x). By a result of
MINTY [6] f, is & homeomorphism of H onto H. Thus, as a consequence of Corol-
lary 1.1, the map f, is 0-epi. Now apply Theorem 2.2. Q.E.D.

We give now a characterization of 0-epi maps acting on finite dimensional spaces.
Let f: R*— E™ be 0-admissible. There exists 7,> 0 such that f(x) % 0 provided that
[#| > r,. Therefore given r>r, we can define f,: §"-t— 8= by f,(%) = f(rz) [1f(re)|
(81 denotes the unit sphere or R*). Let f be the homotopy class associated to f,.
This eclass is clearly independent of »>1,.

THEOREM 2.4. — Let f: R*— R™ be 0-admissible. Then f is 0-epi if and only
if [ is nontrivial.

Proor. — (See [2], Proposition 6.2.2).

As a consequence of the above theorem we have that there are no 0-epi maps
from R» into R™ if n<<m. It also follows that a 0-admissible map f: R*— R ig
0-epi if and only if deg(f,0)s40 (here deg(f,0) stands for the Brouwer degree
deg (f, £2,0), where £ is any bounded open set containing f-1(0)).

THEOREM 2.5. — Let L: E— F be a bounded Fredholm operator of index 0 from a
Banach space E into a Banach space F. Let h: B—F be compact and odd ouiside a
sufficiently large ball centered at the origin. Then L-+h is 0-epi provided L-+h is
0-admissible (i.e. (L-+h)~%(0) is bounded).

PRrOOF. — We have to show that given a compact map k: F— F with bouoded
support the equation Lx-+ h(z)= k(») is solvable. Since ind L = 0, there exists a
compact operator K: B —F such that L} K is an isomorphism. The equation
Ly - () = k(z) is equivalent to the equation x = g(x), where g= (L4 K) (K —h4k)
Obviously, ¢ is compact and odd outside a sufficiently large ball around the origin.
Now, apply the infinite dimensional version of Borsuk Theorem (see A. GRANAS [4]).

Q.ED.

Let L: E—TF be a bounded linear surjective map. Assume that dim Ker L =
=n<-4 co. Let g: E— R be continuous. Consider the following problem with
nonlinear boundary conditions

{ Ly = h(z),
gx) =0,

where h: B —F is compact.

The following result which is an easy consequence of Theorem 1.7, is related
with problems of this type.
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THEOREM 2.6. — Let L: E — F be bounded linear and surjective with dim Ker L =
=n <+ co. Let g: B — R" be continuous and J: R*»—> B be linear with ITmdJ == Ker L.
Assume that g—l(O)mKerL i8 bounded and deg(gJ,0)s£0. Then the map M: E —
— FX R defined by M(x)= (L, g(»)) is 0-epi.

The following theorem is analogous to a result due to J. L. MAWHIN [5] (see
also R. E. GAINES - J. L. MAawHIN [3]).

THEOREM 2.7. — Let L: E—TF be a bounded Fredholm operator of index 0 and
let h: E—F be compact. Assume that the set 8°= Ker LN K(Im L) is bounded and
deg (@hJ, 0) 5= 0, where @: F — R~ is linear and such that Ker@ = Im L, n = dim Ker L
and J: R*— B is linear with ImJ = Ker L. If the set St= {xc E: Lo = Ah(z) for
some 0<< A<1} is bounded, then the map L —h is 0-epi.

ProoF. — Take any open bounded set £ containing 8°U 87, Theorem 1.7, com-
bined with the Homotopy Property for 0-epi maps, shows that L — k is 0-epi on Q.
The result now follows from the arbitrarity of 2. Q.E.D.

Notfice that the condition « 8° is bounded » is equivalent to « @QhJ is 0-admis-
gible ». Thus, if §° is bounded, then deg(QhJ, 0) is defined and it is different from
zero if and only if the map QhJ is 0-epi.

3. — Further examples of 0-epi maps and applicatiens.

In this section some other examples of 0-epi maps with particular concern to
ordinary differential operators are given. Few definitions and notations are pre-
sented at the beginning.

Given a nonnegative integer k the notation C*[a, b] stands for the Banach space
of all k-times continuously differentiable real functions defined on the compact
interval [a, b]. &

The norm of xe C*a, b] is |2],= D [#?{,, where |49 |,= max {|x@(t)|: te[a, b]}

i=0

It is well-known that Ascoli’s theorem gives the compactness of the ineclusion
C*1[a, b] — C*a, b] for any k>0. This fact allows us to regard any continuous
map f: C¥a, b] - C"[a, b] as a compact map from C*[a b] into C°[a b].

Let E, F and G be Banach spaces with norms ||, | -], and | [, respectively.
Let L: E—F and B: E— G be bounded linear operators. Assume that the follow-
ing (boundary value) problem

L =y
(4) {szo,

has a unique golution for any @€ F. Then, in the subspace F,== KerB the norm
|z]°= | L&|, is equivalent to the norm [#], (to see this apply the Continuous
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Inverse Mapping Theorem) to the identity from (B, ||-|,) into (¥, | [°). More-
over under the additional agsumption that B: F — ¢ is onto, the following problem

L =y
(B) {Bm:z

has a unique solution for any couple (y,2) € FX @ and the norm in F defined by
|#|,= |Bx],+ | L], is equivalent to the norm |z|,. By interchanging roles be-
tween I and B we may observe that if L: F—F is onto then problem (B) is
uniquely solvable for any couple (y,2)e FX G if and only if the problem

Le =0
(©) {Bw:z

is uniquely solvable for any ze€@.
To illustrate the above congiderations we give some examples of equivalent norms
in C70,1]. Namely,

(1) [2]*= la(0)| + |a(1) + [#[,
) LelP= 120+ 0]+ [l
) Jol = o(0) |+ o0 ]+ i

To see this consider the following boundary value problems:

=y
@ {w(0)=a, w(1) = b

o

@) 50) =a, (0)="b

=y 1

(3) 2(0) = a, fm(t)dt:b.
0

It is perhaps of interest to interpret classical existence results for ordinary dif-
ferential equations in terms of 0-epi maps.

ExaMPLE 3.1. — Let L: 010, 1] — C°[0, 1] X R be the linear isomorphism Lax(t) =
(#(t), #(0)) and let h:[0,1]XR->R be a continuous map with bounded image.
Define M: C0,1]— 00, 1]xX R by

M(@)(t) = ((2) — h(t, 2(2), 2(0)) .
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Let %: C°[0, 1]— C°[0, 1] be the Nemytskij operator associated to & and k: C'[0,1]—
- C'0,1] X R be the compact continuous map

= (Jk(x), 0)

where J is the linear, compact inclusion of [0, 1] into €90, 1]. Clearly M = L — k.
Hence M is 0-epi since L is an isomorphism and % is a continuous, compact map
with bounded image (see Corollary 2.2).

The role of R in this example is inessential in the sense that it can be replaced
by R» for any natural number »>1. The other spaces and operators should be
changed accordingly.

ExAMPLE 3.2. — Let C3[0,1] be the (closed) subspace of €2[0,1] of those
functions #(f) such that #(0) = »(1)= 0. Define f: (3[0,1]— 0[0,1] by f(z)
#(t) — a2*(t). The map f can be regarded as the sum of the linear 1som0rphlsm
D?: 00, 1] C°[0, 1] defined by D*w= & and the (nonlinear) compact map ¢ de-
fined by g(#)(f)= — (#(#))®. We ghall show that f is 0-epi and such that ||f(#)] — oo
as @] - oco.

Assume that » e C*0,1] is a solution of the boundary value problem

= Alx®+9)
@ {mw=mn:o,

where A€[0,1] and ye ([0, 1] are given.
Let €(0,1) be such that |z(%,)|= [¢]o= max{{m )|: 1[0, 1]}. We have

0> &(%,) signa(ty) = l(ﬁﬁ(to) 4 y(to)) sign x(t,) > ([933 to)| — ly(to ])
= =[5 — () ) > ([~ lylo) -

Thus, |#],<|¥|} (observe that if 1= 0, then |z|,= 0). Hence, the set § = {ze
e 03[0, 1]: D*x - Ag(x) = 0 for some Ae[0,1]} is the singleton {0}. Thus f is 0-epi
and [D*o|<[z]*+ [fz)[<2][f(@)].

ExAMPLE 3.3. — Let CZ[0,1] be as in Example 3.2. For any ze C2[0, 1] define
|#] = |&],. This is & norm in C3[0,1] and it is equivalent to the norm (induced
by €20, 1)) [#]s= lelo+ l&]o+ J&lo- Let f: €20, 1] €90, 1] be defined by /()=
=& —¢”. It is easy to see that f is O-epi. In fact f= L-+h, where L: C30,1]—
— 0'[0, 1] is the linear isomorphism L = & and & is the compact map h(z)= — ¢"
(using again the compactness of the inclusion J: C?[0, 1] C°[0, 1]). Therefore it
is enough to show that 8= {x e Of[0, 1]: Le=— Ah(x) for some A€ (0, 1]} is bounded.
This is immediately verified since #(f) = A¢** implies (recall that 2(0) = »(1) = 0)
(1)< 0. Therefore 0<<#(f)<1 and |o| = |#].<1.
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The following ordinary differential equation of neutral type arises in quantum
mechanics and has been pointed out to us by S. Paveri-Fontana (see problem (D)
below).

Let h:[0,1]X R?*— R be continuous and such that

[h{t, vy 8)|<a—+blr|+cjs],

for some @, b, ¢>0 and all (¢, 7, s)e[0, 1] X R? Let «:[0,1]— R be continuous and
such that 0<«(t)<? for all te{0,1]. Find a O function 2:[0, 1] — R such that

N { (1) = p@ &) + (Y, 2(t), 2(«()))
(D) z(0) = d

where, p:[0,1]— R is a given continuous function and dekR.
Example 3.4 below gives a partial answer to this problem. Some preliminaries
are needed.

DEFINITION 3.1. — Let X c C°[0,1]. We say that a (not necessarily continuous)
map @: X — ([0, 1] is past-isotonic if for any v[0, 1] and any pair of functions
x, y € X such that x(t)<y(t) for all 1[0, v] we have p(x)(7) <e(y)(z).

As an example of past-isotonic map take the following. Let ¢: C°[0, 1]— C°[0, 1]

i
be defined by ¢(2)(t) = »(0) 4 fg(s, #(s)) ds. Then ¢ is past-isotonic provided that
0

g:[0,1]x R—R iy continuous and non decreasing with respect to the second
variable.

Observe also that the composition and the sum of two past-isotonic maps is
past-isotonic.

The following result represents a generalization of the well-known Gronwall’s
Lemma.

Lemua 3.1. — Let ¢: X — C°[0, 1] be past-isotonic. If x,y X are such that x(0) <
< y(0), 2(t) <p(@)(?) and y(t)> p(y)(?) for all 1[0, 1], then (t)< y(t) for 0<t<1.

ProoF. — Let 7= sup{s€[0, 1]: #(?) < y(¢) for 0<i<s}. Clearly, the set {se
€[0,1]: z(t) < y(t) for 0<i<s} is nonempty since z and y are continuous and
(0} < y(0). Let us show that 7=1 and 2(1)<y(l). We have a(7)<e)(1)<
<pW)(7) < y(r). This implies 7= 1, since otherwise we would have z(t) = y(7).

Q.E.D.

CorOLLARY 3.1. — (Gronwall’s Lemma). Let xe C0,1] be such that x(t)<a-+

t
+bfa:(s) ds, where b>0. Then x(t)<aexpbt, [0, 1].
0
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PrOOF. — Define the past-isotonic operator qo [0, 11— C°[0, 1] by @(x)(t) =
11
=a- bfw(s)ds. Now, given ¢> 0, let y.(t)= (a-|-¢)expbi. Clearly,
0

Yo(t) = e+ @(ye) (1) > @(we)(1)  and  g:(0) > a>2(0) .

So, by Lemma 3.1 we get #(f) < y.(t) for all [0, 1]. The arbitrarity of ¢ shows
that 2(t)<aexpbt, te[0,1]. QE.D.

EXAMPLE 3.4, — Agsume that in Problem (D) the function u(f) satisfies the
inequality |u(f)|<1 for every te[0,1]. Then the map M: ('[0,1]—C[0,1]XR
defined by

M@)(1) = (&) — u(t)E(e() — bt @(1), a(=()), #(0)

is 0-epi and such that |M(z)] - co as |a| - co. In particular Problem (D) is solv-
able for any deR.
Let A: C°[0,1]— C°[0, 1] be the linear operator defined by (4z)(f)= w(t) 2(()).
Tt is not difficult to prove that 4 is bounded and |A] = max {|u(t)|: t€[0,1]}=r<1.
+ o0

This shows that I — A, I-the identity, is invertible and (I —A)*= 3 A" There-

fore, given y e ([0, 1] the function n=0
+ oo
a)=73 Ozw)u(a(t))u(a(a(t))) plor2(6)) y (@ (1)

(oc"(t) =1, a™(t) = oc(aM"l(t))) is the unique solution of the functional equation 2(f) —
— p(®) #(()) = y(2).

The linear operator L: €40, 1] — C°[0, 11X R defined by Lz = ((I — 4)Dw, 2(0)),
where Dx =, is an isomorphism since the problem

£=y
{ 2(0) = d
has a unique solution in €0, 1] for any y e (°[0,1] and deR.
Let k: C10,1]— 00, 1] X R be defined by k(x)(t) = (h(t, o(t), @(a(t)), 0). Clearly,
k is compact (since it can be thought as the composition of the compact inclusion
CY0,1]~ C0,1] with a continuous map and M= L— k). M is 0O-epi if the set

8 = {x e 010, 1]: Lo = Ak(»), for some &[0, 1]} is bounded. Let #€8. Then there
exists A€[0, 1] such that ~

B(t) — p() d(a(t) = A, o(t), 2(e(1))) -
#(0) =0 .
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Hence
= 23 ()0 m{x(o0) - 1o 0) Mo @), (1), (o)
z(0) =0
Thus;

()] < :g) " (a + bla(on(s))] + ¢]w(e ”+1(s))]) ds .

Now, the operator ¢: C°[0, 1]— ([0, 1] defined by
1

= +zoo m (u + bz(an(s)) + cz(oc"+1(s)))ds
n=0
0

is clearly past-isotonic. So, by Lemma 3.1, if ye ("0,1] is such that y(0)>0
(recall that |#(0)]=0 and y(i)> @(y)(t)), then we obtain |z(t)]< y(f). A suitable (to
our purposes) ¥ is the solution of the following integral equation

[

_0&—}-3 1
=1 1—rf(b + ¢)z(s)ds,
[}

where ¢>0. IL.e.,

a-e b+e
y(t) _1_Texp1_rt.

In fact, since y is increasing and the sequence {oc”(t)} is non increasing (recall that
a(t)<t), then we have
i

(a—}—g—l—fb—l—c (ds)>21" fia -+ by(s) + ey(s)) ds

Y =7

N
N
pd

ngow f (& + by(er(s) + ey(ari(s)))ds = plp)®), 0

0

Therefore, by the arbitrarity of s, we obtain

a b+ e)t
|w(t)]<1_7, P 1—vr
Thus
b
2o o exp .

22 ~ Annali @i Malematica
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On the ot}ier hand

+ o0
(0| = |1 3 O - p(e OB, o), a(o0)| <t G+ ol

Thus,
. a b+e¢ biec
Hx“°<l—r(l TP 1—7)'

This proves that the set § is bounded (take in C[0, 1] the norm [&| = [2],+
-+ |#(0)] and recall that if €S then x(0)=0).

It remains to show that |M(z)] —- co as |#] -4 co. Given ze €0, 1] let
Mz = (u,d). By slightly modifying the above argument one can show that [#| =
= |&]o+ @|<yi+ yelufo-+ys|d|, where i, y.,y, are suitable positive constants.
Thus, [#]<yi+ (2t ys) | M(@)].

ExaMpLE 3.5 (see [7]). — Let the boundary value problem be given

{ &+ flty @) = elt) = o(t + T)

(1) 2(0) = o(T) .

Assume that f: RXR»— R is continuous and periodic of period T with respect
to t, e(t) is continuous. We want to show that (1) has a solution provided that there
exist positive constants «, K, M such that either one of the following conditions
is satisfied

4)] K| **<f(t,2)-@, |o|>M, te[0,T];

(Gj) — K| *>f(t,2)2, |=|>M, te[0, T].
Let B = {we CY[0, TT: ©(0) = »(T)}, F= 00, T], L: E—F be defined by Lz = 2.
It is easy to see that L is a Fredholm operator of index 0, Ker L is the n-dimensional

space of congtant functions and Tm L coincides with the kernel of the linear con-
tinuous map Q: F — R defined by

@) QW) =y as

Let fi: F—F be defined by h(#)(t) = — f(t, #(t)) + e(¢) and denote by h the compo-
sition of A with the compaet inclusion i: B — F.
On the basis of Theorem 2.7 we have to show that

(i) the set of veKerL such that i(v)eImL is bounded;

(ii) deg(QhJ,0)s 0 where J: R"— H is the linear map J(u)=u, a constant
function; ‘

(iii) the set 8T= {we E: Lo = Jh(x), A€ (0, 1]} is bounded.
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The first property is easily verified. In fact take veXerL. Then k(v)eImL
implies

T T
3) f f(t, v) dt — f o(t) d
0 0
which implies
T T
(4) ft,v)-vdt=|e(t)-vdt.
Jiewora]

Equality (4) is impossible in both cases (j) and’ (jj) if

(et ar)™
o] >N = maX‘M, ("—) }

K
For the second property observe that if |#|>N -1 then

() QhJ(u) = AQhJ (—u), Ae€[0,1]

sinee QhJ (u) -u is either positive (case j) or negative (case jj) for |u| >N+ 1. Hence
deg(QhJ, 0) = 0. To verify the last property let x(¢) be a solution of

B(t) = — Af(t, 2(t)) + Ae(t)
2(0) = #(T)

and put w(t) = x(?)-»(1). There exists f,[0, T] such that w(t,)= |x(%)|*= |=]3.
Since w(0) = w(T'), w(0) = w(T) we have w(t,) = 22(1,) 4(t,) = 0. Hence

f(to’ w(to)) “(ty) = e(ty) - 2(ty)

which is impossible if

le(t)] > max {M, (%%“)1’“} .

We shall give now some applications of the theory of 0-epi maps to boundary
values problems with parameters.

Let E and F be real Banach spaces and let L: E— F be a bounded linear
injective operator with dim (¥/Im L)=p>0. Let f: EX R’ F be compact. Con-
sider the equation

(1) Le=f,4), w=ecH, AecRr,
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DEFINITION 3.2. — Any couple (v, A) with v e E, 4 R? satisfying (1) is said to
be a solution of the equation (1). In this context we have the following resulf.

THEOREM 3.1. — Let L: E—F and f: EXR?—F be as above and let Q: F — R
be bounded linear and such that KerQ — ImL. Assume that

(i) the set N = {AeRe: Qf(0, 1) = 0} is bounded,
(ii) the set 8" = {(x, 1) e EXR?: Loz = tf(x, 1) for some 0< 1:<1}} is: bounded,

(iii) deg (Qf(0,-),0) =0, where the map Qf(0,-): R*— Re is defined by 1 —Qf(0, A).
Then the map L— f is 0-epi, where L: BEXR*—F is defined by L(z, )= L.

A more general version of Theorem 3.1 is the following.

THEOREM 3.2, — Let L: E—F be a Fredholm operator with ind (L)= —p (p>0)
and let f: ExXRr—F be compact. Assume that

(i) the set 8°= {(w, ) e EXRr: v Ker L, f(, A)eIm L} is bounded,
(ii) the set 8T= {(x, A)e EXR?: Lw = tf(w, ) for some 0< v<1} is bounded,

(iii) deg (@fJ, 0) 5= 0, where J: Rir—> EX R?, Q: F — Rv» are linear continuous
and such that ImJ = Ker LX R?, Ker() =Im L and q¢= dim Ker L.

Then the map L—f is 0-epi, where L: EXR?— T is defined by L(x, ) == La.

PrOOF. — Observe that f}'is Fredholm of index zero and apply Theorem 2.7.
Q.E.D.
ExAMPLE 3.6. — Consider the problem

& = h(t, ®) + Ag(, x)
) { ( g(

2(0) =x(1) =10,

where h, g:[0,1]X R— R are continuous. Assume that there exist positive con-
stants &, a, b, M such that [h(t, #)|< M and e < |g(t, #)|<a -+ b|x|for all (¢, #) €[0, 1] X R.
Then, there exists #& C10,1] and A€ R such that (z, 1) is a solution of (1).

We will prove this fact applying Theorem 3.1. To this aim let # be the Banach
space {z e (Y0, 1]: #(0) = 2(1) == 0} with norm |z = |%[, and let F be the Banach
space CO0,1]. The operator L: ¥ ->F defined by Lr= % is injective. The map
f: BXR—TF defined by f(», A)(t) = h(¢, 2(t)) + Ag(t, ({)) is compact. We have to
find a linear operator @: F — R such that Ker@Q = ImL. TFor this observe that
given ye ¥, the problem

€=y
) { #(0) = a(1) = 0,

1 1
is solvable if and only if fy(t) dt=0. Thus, @ can be defined by Qy= fy(t) dt.
0 0
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i 1
Let us show that the set N = {leR: fh(t, 0) di+ Afg(t 0) dt = 0} is bounded.
This follows at once from the assumptions on 2 and g. Aetua]ly, if AEN then

A< M/e. VVe also have deg (@f(0, -),0) £ 0 since Qf(0, fh(t 0) dt+- lfgt 0)dt
is such that fgt 0) dt 5 0.
0

It remains to show that the set §* is bounded. To this aim let (z, 1) e 8%, i.e.,
(, 1) is a solution of the following problem

{ & = T(h(t, &) + 2gt, @)
2(0) =2(1) =0,

. 1
for some 0 < 7<1. Clearly, since 7= 0 we must have f(h t, ®(t)) -+ Zg(t x(t))) dt = 0.

By the assumptions on % and g it follows that |Z|<M /e. Sinee 2(f) =t f ( (s, 2(s)) -
-+ Ag(s, x(s ))) ds we. have

lo(t) | < v M + 7|2 |f(a+ bla(s))ds < I + Maje-+ (Mbje) [ o(s)| ds -

By Gronwall’s Lemma we get

[2(t)| < (M 4 Maje) exp (Mbt/e) < (M + Ma/e) exp (Mb/e) =
Since |z]| = |Z]l, we have to evaluate |#(t)|. Now, [&(t)|<t(M -+ [A|(a+ b]x],))<
<M+ M/e(a-}- bk)= k. Thus, it (#, A) e 8%, then ||(z, 1) = [&]o+4- [A]<k+ M/e.

Henece problem (1) is solvable.

ExAampLE 3.7. — Consider the boundary value problem

F=ua*4 ity
(3) #(0) =2(1) =0

1

Ja)ydt =0,

0

where y e (C'0,1] is given and AeR is a parameter.
We want to show that there exist e 0?[0,1] and A€ R such that (», 1) is a

1
solution of (3). Lef EF= {(w, 2)e 00, 11X R: #(0) = 2(1) = 0, fac(t) dit = 0} and let

F = ("0, 1]. Define the linear operator L: E —F by L(z, l)(t) #(t) — 4. It is easy
to see that L is an isomorphism. Define h: B —F by h(z, 1)(¢) = #*(t), which is
odd and compact. Therefore the map L — & is 0-epi if (L — k)y*(0) is bounded. We
shall prove, actually, that | Lo — h(z)]| —-F co as ||#] —-- oo (i.e. the inverse image
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under L — h of any bounded set is bounded) and therefore problem (3) is solvable
for any y e C[0, 1]. L
Let (#, 1) be any solution of (3). Clearly, if #+ 0, the condition fa:(t) di=10
[1]

implies that there exist ¢, and ¢, belonging to [0, 1] such that x(%)= max {2(f): te
€[0,1]}> 0 and 2(#,) = min {x(t): £€[0, 1]} < 0. - Clearly,

0> &(to) = @*(ty) - A+ y(to) ,

- and
0 <d@(ty) = a*(t) + A+ y(t) .
Thus,
2%(ts) — @*(t) <y(ts) — y(to) <2 [y o -
On the other hand either #3(t)) = [|2 or «®(#)= — |2 This implies that |z|}<

<a3(t,) — x%(t,) < 2]y ]o. Therefore, for any (#, 1) € B we get (by setting y = Lz — h(x))
|#[3<2]La-~ h{x)],. Now, since L is an isomorphism we can take in E the follow-
ing norm | (%, )| = | L(#, A)]o= max {|#(t) — A|: ¢€[0, 1]}. This norm, by the con-
siderations made at the beginning of this section, is equivalent fto the norm
(@ 2] = |ela+ A= oo+ |2]o + [£]o+ |A]. Since, & — 1= a*4- Lo — h(x), we get
#) — 4] < [o(O) P+ | Lo — h@) o< |2]? 4 | Zo — (@) ]o. Thus [(z, )] = [ — o<
<3| Lx— h(z)|,. This shows |Lz— h(@)| - co as [@] = co.

We close this paper with an example of a nonlinear ordinary differential operator
which is admissible but not 0-epi.

EXAMPLE 3.8. — Let B = {xe (0, 1]: (0) = x(1)}. The map f: E — (0, 1] de-
fined by f(»)(t) = #(¥) — #2(t) is admissible (observe that f(z)= 0 if and only if # = 0)
but it is not 0-epi since the boundary value problem

F(t) = (1) + A
z(0) = =(1)

has no solutions for 4> 0 (recall Theorem 1.5).

REFERENCES

[1]1 H. Brrzis - L. NIRENBERG, Characierization of the range of some nonlinear operators and
applications to boundary value problems, Annali Scuola Normale Sup. Pisa, to appear.

[2] M. Furr - M. MarterLI - A, Viegnori, Contributions to the spectral theory for nonlinear
operators in Banach spaces, to appear in Ann. di Mat. pura e appl.



M.

FURL - M. MARTELLT - A. VIeNoLI: On the solvability of monlinear, efe. 343

(3]
(4]
(5]

(6]
(7]

R. E. Gaixgs - J. L. MawnHIN, Ooincidence degree, and nonlinear differential equations,
Lecture Notes in Math. 568, Springer-Verlag, 1977.

A. GraNas, The theory of compact vector fields and some applications fo the theory of functional
spaces, Rozprawy Matematyczne, Warszawa, 30 (1962).

J. L. Mawuix, Equivalence theorems for nonlinear operator equalions and coincidence
degree for some mappings in locally convex topological vector spaces, J. Diff. Eq., 12 (1972),
Pp. 610-636.

G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962),
Pp. 341-346.

K. ScHMITT - G. GUSTAFSON, Non zero solutions of boundary value problems for damped
nonlinear differential systems, Diff. Eq., 30, Symposinm US-Mexico 1975 (1976), pp. 227-241.




