Two Linear Systems Criteria for Exponential Dichotomy (*).

KENNETH J. PAtMER (Canberra, Australia) (¥*)

Summary. — Two criteria, one postulating the ewistence of a mol necessarily positive definite
Lyapunov function and the other postulating conditional input-output stability, are given,
ensuring that o system of linear differential equations has an exponential dichotomy.

1. — Introduction.

Let A(z) be a locally integrable » X n matrix function on [0, co). Two criteria ensur-
ing that the linear differential equation,

1 = A{t)x,

be uniformly asympiotically stable have been much investigated.

The first criterion postulates the existence of a Lyapunov function x*H(t)x, where
H(t) is a bounded, continuously differentiable positive definite Hermitian matrix
function satisfying

@) H(t) + HQ) AG) + A*0) Ht)<—1I

(cf., for example, KRASOVSKII [6, p. 59] and Theorems 5 and 6 in BROCKETT [3, p. 202]).
This has been generalized in two directions.

In [2] ANbERsSON and MoORE have shown that if A(f) is continuous and C(%) is
a continuous I x#n matrix function such that (A(#), C(t)) is uniformly completely
observable then the right hand side of (2) can be replaced by — C*(#)C(¢). In [8]
(see also COPPEL [4]) Massera and Schiffer have shown that if we drop the condition
that H(#) be positive definite and assume that (1) has bounded growth, then we get
a criterion for exponential dichotomy. We prove a result which includes both these
generalizations as special cages. Our result uses a generalized observability condition,
introduced by MEGAN [9].

The second criterion postulates bounded-input bounded-output stability, i.e. if u(f)

(*) Entrata in Redazione il 10 gennaio 1979.
(**) Thanks are due to Mr, W. A. Coppel for suggesting the problems and helpful advice.
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is a funetion in £* then all solutions of
(3) &= A2 + u(t)

are in £ (see PERRON [12]). This has also been generalized in two directions.
In [13] (see also Theorems 3 in [3, p. 197 ]) Silverman and Anderson have consi-
dered systems,

(4a) = A(t)x + B{t)u ,
(4d) y= 0w,

where B(t), C(t) are n Xm, I xn matrix functions. They have shown that if A(z), B(?),
O(¢) are bounded, (A(t), B(#) is uniformly completely controllable and (A(t), C(t))
is uniformly completely observable then the bounded-input bounded-output stability
of (4) is equivalent to the uniform asymptotic stability of (1). In [2] ANDERSON
and MoorE weakened the boundedness conditions on A(t), B(#), C(f) and replaced £
by the space A(? of piecewise continuous functions with uniformly bounded square
norms on intervals of a fixed finite length. In [1] ANDERSON replaced G2 by £2. In [9]
and [10] MEGAN has considered £ inputs and £¢ outputs and used a generalized ob-
servability condition.

In their work [8] MASSERA and SCHAFFER have considered a quite general class of
function spaces. Let B, D be two such function spaces. We say that the pair (5, D)
is admissible for (3) if whenever u(t) is in & there exists & solution #(f) of (3) in D.
For appropriate choice of ($, D) this yields a criterion for (1) to have an exponential
dichotomy.

We have considered pairs (£7, M), (A7, M), (£2, £9) (1<p, g<o0) and. give cri-
teria that (1) have an exponential dichotomy in terms of the admissibility of these
pairs for (4), under the assumption that (A(?), B(t)) and (A4(¢), C(?)) satisfy generalized
controllability and observability conditions. Our technique is to use a duality argu-
ment to reduce the problem to the case considered by Massera and Schiiffer. We
note that our results give a complete answer to the problem posed by Anderson at
the end of [1].

2, — Preliminaries.

- For the whole of this paper, A(?), B(t), C(f) are locally integrable n xn, n Xm,
I xn matrix funetions on [0, co). '

The system (1) is said to have bounded growth (resp. decay) if there are constants
M > 0, L>0 such that

oty 7)| = |X(@) X(7)| < M exp [Lft — 7[]
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for 0 <7 <t (resp. 0 <t < 1), where X(¢) is the fundamental matrix for (1) with X(0) = I.
[|- |[denotes the Euclidean norm when the argument is a vector in n-dimensional
Fuclidean space Hr and the corresponding operator norm when the argument is
a matrix. |

(1) is said to have an exponential dichotomy if there exist constants K > 0, y > 0
and a projection P (i.e.P* = P) such that

[ X(t) PX(r)|<Kexp[—y(t—17)] for O0<o<?
and
X)W — P)XYz)|<K exp[—y(r—1)] {for 0<i<T.

If 1<p<oo, we say that the pair (A(t), B(t)) is p-uniformly conirollable (cf. [9,
p. 126]) if for some ¢ > 0 there exists ¢ > 0 such that for all >0 and all § in BE~,

[1B*@)g*(t + 8, n)Epdr>gigl  (when p< oo),
t

ess sup |[B*(v)g*(t + 0, 1)é[>¢ | (when p=o0),
t<T<E+0
where % denotes the conjugate transpose.
If 1 <p < g<oo, Holder’s inequality shows that p-uniform controllability implies
g-uniform controllability. On the other hand, when B(?) is essentially bounded and (1)
has bounded growth the inequality

t+0 +9

f IB* () ¢*(t + 0, 7)&|tdr < (N M exp [L5] |§|)«—pf B¥(z) g*(t + 6, 1) P dr,

t t

where N = esg Sup [B(#)|, shows that g-uniform controllability implies p-uniform

controllability for 1<p < ¢ < oo.

(A(t), B(t)) is defined to be uniformly completely controllable (cf. [2, p. 400]) if (1)
has bounded growth and decay, (A(f), B(t)) is 2-uniformly controllable and there ex-
ists a constant «>0 such that '

t+6

& [t + 6, 1) B(x) BHx)p*(t + 6, 7)dr-E<aré]

11

for all £>0 and & in E». From equation (10) in [2, p. 400] it is clear, using the bounded
t+d

growth and decay, that this last condition can be replaced by stup f]B('r)]2dt< oo,
‘ =20
1

Finally, (4(2), C(t)) is said to be p-uniformly observable if (A*(t), O*(t)) is p-uni-
formly controllable,



202 KeNNETH J. PALMER: Two lincar systems criteria for exponential dichotomy

3. — Lyapunov function criterion.

The following theorems generalize Theorem 5 in [2, p. 411] with the differences
that we restrict ourselves to [0, oo) and the derivative of the Lyapunov function
along a solution satisfies an inequality rather than an equality. They also generalize
Propositions 1 and 2 in Lecture 7 of [4] and, in the finite-dimensional case, Theo-
rems 92.B and 92.4 in [8, pp. 324, 321].

A vector function on [0, co) is said to be absolutely continuous if it is absolutely
continuous on every compact subinterval.

THEOREM 3.1. — If (1) has an exponential dichotomy and for some p (1 <p < o0),

41
sup | |C(7)lpdr < o0,

t=0 b

there exists a continuous fumction V: [0, co) X B* — R with the following properties:
(1) V(t, Ax) = APV (R, ) for all t, © and real 1;

(ii) there exisis f> 0 such that
[Vt )| <Blelr  for all ¥, x;
(iii) if ®(¢) is @ solution of (1), then V (¢, x(t)) is absolutely continuous and
%V(t, z(t)) <— |C@)x(@)? ae..
We define
222V (£, @) =ﬁ0(r) Xi(z, t)wjrdr —f|0(r) Xo(r, Yajrdr,
where t 0
X, 1) = X)) PX ), X,(1)=XWIT—P)X 7).

Using Lemma 3.1 in Massera and Schéffer [7, p. 524],

oo 11

20|V (1, 2)| < K7| [exp [~ py(z — 0] |C() patx + [oxp [ ppit — 2110 dr] iz <

<21_plglw|p7
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where
i+1

f =2 Kr(1— oxp [~ py))sup [|0(r) .
=Tt

Moreover, if x(t) = X(¢)2(0) is a solution of (1), then

oo ¢ :
252V (1, a(t) = [ 0() Xa(s, Da(a) pdz — [ 10() Xofz, ) a(z) pdz
t 0
is absolutely continuous and for almost all i,

d :
7 V6 a(t) = — 22 [[00) Da(t, H)at) 2 + [0() Xalt, 1) wlt) ] <
<— [10@) X2, 1)) + [O(8) Xa(t, ©)2(t) [J2<— |C@R)a(H) 7.

To prove a converse of this theorem we use the following lemma, which generalizes
a result mentioned in the remarks at the end of Section 2 in PArMER [11].

LEMMA 3.1. ~ Suppose (1) has bounded growth and there exists a continuous function
V: [0, co) x B — R with the following properties:

(i) a(r) = sup {{V({t, #)|: t>0, |w|<r} < oo for all »> 0;

(ii) there ewists & > 0 such that if ©(t) is a solution of (1), V (¢, x(t)) is nonincreas-
ing and for all t>0,

Vit -+ 8, ot + 8)) — V(t, () <— b(ls(t + 6)]) ,

where b(r) is a nonnegative nondecreasing function for » > 0 with b(r) >0
if r is large enough.
Then (1) has an exponential dichotomy.

Choose A > 0 so that b(4)> 0. Suppose x(t) is a solution of (1) such that for
some %, ’

V(to) = V(s 2(to)) < — a(4) .

Then if t>1,,

~ a(le(t)]) <V < V() < — a(4)

and so |z(t)| > 4 if t>1,. Given t>t,, there exists a positive integer m such that
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to - mé<t <ty + (m 4 1)48. Then
V() — V(te) < V(te + md) — V(t)

[V(to + pd) — V(to +(p—1) (3)]

3
Mz
3

< - 1b(ldﬂ(to + pd)))

< — mb(4)
< — [67Y(t — o) — 1]B(4) .

So V(i) >— oo as t —oo. Also a(|x(t)])>— V() - oo and hence [a(t)| — oo as
t — oo.

Now let «(t) be a solution of (1) such that |#(0)| = 1 and V(t, #(t)) >— a(4) for
all £=0. Then if o > 0, ox(?) is also a solution of (1) and V(#) = V (i, o(t)) >— a(4)
for all t>0. [Otherwise olz(f)| — oo as ¢ — oo = [#(t)| — oo = V(t, #(t)) — — oo.]
For all positive integers m,

— a{o)<— V(0)
<V(md) — V(0) + a(4)

[V(pd) — V((p —1)6)] -+ a(4)

I
YL

1

mn

<=2 b(ole(@9)) + a(4) .

p=1 :
So Y b(o}z(pd)|) < co and hence lim inf olw(pd)| <4 for all o> 0. This implies that
p=1 ‘ :
lim inf [2()| = 0.
Let ¢, be the least value such that |#(t,)] = exp [—m]. Then 0=1{<?<....
There exists an integer p such that t, + péd<tm<twm+ (p +1)6. With o=

= Aexp[m 4+ 1] and V() = V(t, ox(?)),

— a(de)<— V(i)

<§1[V<tm+ 40) — V{tm+ (g — 1) 8)] + a(4)
<— S b(o@(tn -+ ¢0))) + a(4)
¢=1

= — pb(d) + a(d) .
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Hence fmy1—tn<< (p + 1)0<[b(4)(a(de) + a(4)) + 1]6 for all m. Using the
bounded growth, it follows as in [4, p. 62] that there exist constants K > 0 and y > 0,
depending on M, L,  and the functions @ and b, such that

(5) le(t)| <K exp[— y(t — 7)]jx(7)] if O<o<t.

Let U, be the subspace of E” consisting of initial values of bounded solutions
of (1) and let U, be any fixed subspace supplementary to U;. Then, as in [4, p. 62],
we can show that exists 7'> 0 such that V(T, X(T)¢) < — a(1) it £€ U,, |§|=1.
This means that [X()&|>1 if ¢1>T.

Consider a particular solution #z(t) = X(¢)é with&e U,, || = 1. Since j2(f)| - oo
there exists a greatest value ¢, such that [2(f,)] = exp [m]. Then 0<ty <t < ...
and t,<T. Let p be an integer such that #, - pd<tm, 1 <tn -+ (p + 1)J. With
o= Aexp[—m] and V(i) = V(i ox(t)),

— a(de) — a(4) = — a(oB(tn.)]) — a(o]2(t.)])
< V(tm.{.l) - V(tm)

<
4

[V(tw -+ ¢8) — V{tm -+ (g — 1) )]

iMs

<— =Zib(fflﬁv(tm + ¢9)))
<— pb(ofe(tn)))
= — pb(4) .

80 tpp— tn< (p + 1) d<[b(A)(a(de) + a(4)) 4+ 1] 5. Using the bounded growth
it follows that there exist comstants K > 0, y > 0 a8 before such that

(6) (@) | < K exp [— y(z — t)]jz(r)] if T'<i<r.

(5) and [6), together with the bounded growth, imply that (1) has an exponential
dichotomy.
We now state our converse of Theorem 3.1.

THEOREM 3.2. — Suppose (1) has bounded growth and for some p,1 <p < oo, (A(t),
O(1)) is p-uniformly observable. If V:[0, c0) X E*» — R is a continuous function such
that

(1) sup {|[V({t, ®)|: >0, |2|<r} < co for all r> 0,
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(ii) for all solutions wx(t) of (1), V (¢, x(t)) is absolutely continuous and for almost
all t,

27 a0) <~ 0020

then (1) has an exponential dichotomy.

The hypotheses imply that if #(¢) is a solution of (1) then V (¢, #(f)) is nonincreasing
and moreover,

t+0

V(e + 8, a(t + ) — V{1, o) < — [I0m)a(a)|pde

Hence the conditions of Lemma 3.1 are fulfilled with b(r) = =72

4. — Admissibility criteria.

We introduce the Banach function spaces: £7 (1 <p < o0), the real p-integrable
functions f on [0, co) with norm,

I, = [ﬁf(t) pat]”

0

£2, the essentially bounded real measurable functions f with norm
[f]le = esssup 12)];

M? (1<p < 00), the real measurable functions f such that for some 6> 0,

t+6

T
sup [ [lf(r)par|" < oo,
20 §
which we use as norm and denote by [f|,. Finally we define A° = £”and |- |, = || - |-

A typical one of our Banach spaces we denote as B and its corresponding norm
as |-|s. We also consider intersections %, N B, of two of our spaces with norm
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[ls, + [ ]|», and also associate spaces B’ (cf. [8, p. 50]). A real measurable
function f is in B’ if

o0

sup{ [ 1f®)llg)1ds: g B, [g]a =1} < oo.

0

With this as norm, $' is then a Banach space. In particular, (£7)'= £¥ for 1 <p <co,
where p~1 4 p’-1=1.

If F is a finite-dimensional Banach space with norm |- |, we denote by $(F) the
vector space of measurable functions f: [0, co) —F such that [f|: [0, co) — R is
in B. Clearly, B(F) is a Banach space with norm ||[f[;||, which we write without
ambiguity as ”foB ’

Let &, D be two of our Banach spaces. We say that the pair (B, D) is admissible
for the system (4) if for any input « in B(E™) there is at least one output y in D(E?).
Let P: E* —> E» be a projection with range the following subspace,

(e B O() X(1)€ is in DAY} .
Then we define a linear mapping 0: B(E™) — D(EY) by
(6u)(®) = O(t)[&(t) — X(¢) PZ(0)],

where #(t) is a solution of (4e) such that C() &) is in DEYN. So (Bu)(t) =
== C(t)#(t) where x(f) is the unique solution of (4a) such that C(f)x(?) is in D(F*) and
Px(0) = 0. ‘

We now prove a useful little lemma.

LEMMA 4.1. — Suppose (1) has bounded decay and that for somer, 1 <r< oo, (4(t), C(3))
is r-uniformly observable. If x(f) is a solution of (4a) then for ¢4,

t

t {
ot ]m(t)|<[ IC(z)a(7) ;r’dz]l” 1 Mexp [La][ f 1C(v) |*d1:]m f Br)u(n)ldr  (r< o0)
i—&

-3 i—3¢

£
o1[z(2) |<ess sup |0(7)w(v)| + M exp [LS] ess sup |C(7)] f B(r)u(z)ldr  (r = o0).
t—38

t—o<T<t t—6<T<t

In pmticuldr if |0, << o0, |Bl, < oo and u e L(E™), x(t) s in L7(E") if and only if
O x(t) is in Lr(EY).
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Suppose r > 0. For ¢>4,

o a(®)]| < [flC |rdT]W
t—o :
[f Oz f (7) (7, S)B(S)u(s)ds‘rdr]”’

t—
by the variation of constants formula

< [Jewecrar] "+ [|fovrensomna ]

by Minkowski’s inequality .

If » = oo, then for ¢>4,
13

C@a(@) +[0(D)gp(z, 9 Bls)u(s)ds|.

T

o7 w(?)| < ess sup |O(7)g(z, t)o(?) | = ess sup
(- T<t i—0gr<t

The inequalities follow immediately.
Suppose now that |C], << oo, |B|, << oo and # is in £7(F™). Then if O(f)x(f) is
in £r(EY) it is clear from the inequalities that x(¢) is in Lr(E").
Suppose now that z(f) is in L(E*). If r = oo, then clearly C(f)xz(¢) is in £°(E&?Y).
Suppose 7 << co. Then
L

f [C(#) () [rdt = 2 f |C(@) () [rdt .

vﬁ
By the variation of constants formula and bounded decay,
H 1/r
[o(2) < 31 exp (L1 o(s)| + |B |,,{ [t |rdr} ]
11

if t<s<t 4+ 9§, and so with N = 21 M exp [»Ld],

e F <N o) + BI; [ [u@)|rda] -
7

Hence

(v+1)0 (v+1)8

[ 1ewewra<yiog e + 0ol + 1B [ )]
0 0

(v+2)6 (»+2)8 (v+1)8
<[ N(o [ lots)ras + 1B [ wlds) + B | ol

(»+1)6 (v+1)8 8
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and therefore
[lewatrar<¥iop[¥os[wwra + ¥ + DBE [ @l ar] < .
0 1 0

Lemma 4.1 enables us to show that the operator 0 is bounded in certain circum-
stances.

LeMMA 4.2. — Suppose that (1) has bounded decay and for some pair (p, q), 1<p,
g<oo, |Bl, < oo, |C],< co and (A(t), O(t)) is g-uniformly observable. Then if B = €2,
D = £ or M and (B, D) is admissible for (4), 0 is a bounded linear operator.

If u is in B(E™), (6u)(t) = C(t)x(t) where z(t) is the unique solution of (4a) such
that C(¢)z(t) is in D(F*) and Px(0) = 0. By Lemma 4.1 with » = ¢,

(7) o7V z(t)|< ||0u || -+ M exp [L8][CL,|B, |u|s it t=0.

Suppose u, — u is B(E") and Ou, —y in D(EY). We can write (Hu,)(t) = C(t)x,(1),
as above. Applying (7) to u = u, — u,,, it follows that #,(?) is uniformly convergent
on [d, co) to a function x(¢). Moreover, by Theorem 31.D in [8, p. 89], =(?) is a solu-
tion of (4e) on [d, o). We extend it to [0, co) and the variation of constants formula
then implies that () — #(¢) uniformly on [0, §] also. In particular, Pz(0) = 0.

Finally, for all >0,

{8 t+0 i+o

[ 10@)a(2) — y@)az < [ [0)]o(2) — a0 ldx + [ (6u,)(2) — y(o)lde
[ [ ¢
—-0 a8 ¥ —> 00.

Hence y(t) = O(t)#(t) a.e. and so y = Hu. The conclusion of the lemmsa then fol-
lows from the closed graph theorem.

REMARKS. — (1) Note that if, under the conditions of Lemma 4.2, we just assume
that for inputs in a dense subset of B(E™) there is an cutput in D(E*) but in addition
assume that the operator § (now only defined on a dense subset of $(E™)) is bounded
(as, for example, in [2]), then the admissibility of (B, D) can be deduced by the method
used in the proof of the lemma.

(i) In [1], [2], [8], [9], [10], [13] it is assumed that for all inputs u in B(E=)
the zero-state output,
i

y(t) = 0 [ X() X1(2) B(x)u(x) v ,

0

14 — Annali di Malematica
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is in D(EY). We show under the conditions of Lemma 4.2 and the additional condition
that (A(s), B(t)) be p’-uniformly controllable that this implies all outputs are in D(F"),
when the input % is in B(E™).

Let P and 6 be as defined above and suppose « is in B(Em) = L£2(H™). From the
definition of 8, it is clear that y(f) = (6u)(¢). Also if u(t) = 0 when >4, (fu)(t) =
= C(#)2(t), where

13 -]
o(t) = f X(8) PX-Y(z) B(z) u(7) d7 — f X(@)(I — P) X~47) B(r)u(r) dv ,
0 [1

sinee x(¢) is a solution of (4a) such that Pz(0) = 0 and O(#)x(t) is in D(EY) (x(f) =
6 .
— X(t)P f X-1(7) B(z)u(r)dz if > and |0],< oo).
0

Equating y(¢) with C(¢)x(t), we getb
d
C(t) X(#)(I — P) f X-1(7) B(7) u(z) dr = 0
1]

for ¢ 8. By the observability property of (4(¢), C(t)), this means that

[

(8) (I—P) f X-1(7) B(z)u(z)dz = 0 .

0

Now, for & e E», define

B¥(t) X*-1(t)(I — P*) EFBH1) X+ ) (I — P¥)E  if 0<i<,
1) =
0 0 ifix>4,

where « is (p~'p'—1) if p>1 and 0 if p = 1. Then v is in £2(E") and so, by (8),
8 L]
£4(I — P) f X-(7) B(z) u(7) dv = f B* (1) X*-1(r)(I — P¥)Epadr = 0 .
0 . 0

Using the controllability property of (A(¢), B(t)), it follows that (I — P*)§ = 0 for
all £ and henece P = I, which is what we want.
We now prove a duality result.

LeMMA 4.3. — Under the assumptions of Lemma 4.2, (D', B') is admissible for the
adjoint system,
(9a) 2= — A*t)z — C*(t)v,
(9b) w= — B¥*{)z.
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Moreover when D = 29, (p, q)#% (1, 00) and (A(t), B(t)) is p'-uniformly controllable,
the associated projection can be taken as (I — P¥).

The proof is a modification of the proofs of Theorems 54.E and 53.E in [8,

pp. 156, 1527
Let ve D'(EY) be given and let 2(t) be the solution of (9a) such that

2(0) = fP* X*(t) C*(t) o(t) di .
0

Suppose u € B(E™) and wu(t) = 0 if 1>s. Then (fu)(t) = C(t)x(t), where x(t) is a
solution of (4a) such that Px(0) = 0. Note that (I — P)X~(s)@(s) = 0 since z.(f) =
= X () X-1(s)2(s) is a solution of (1) such that C(#)z,(f) is in DEY) (v(t) = «(t)
for t>s and |[C|,< o0).

Now

Since
B #4(0)clt) = — (1) O0)2r()
we have
#4(5) a(s) = #5(0) X~3(s) a(s) — f v*(t) O(t) wo(t) dt
(1]
— [v¥(t) C0) X (1) PX(s) () dt — f v*(t) O(t) wo(2) it
[} 0
— f v*(t) O(t) X () X—2(s) a(s) dt — f v#(t) O(t) wo(t) it
0 [1]
- f 0¥ (1) O () (1) dt
So
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and hence, using Lemma 4.2 with ”6“ ag the operator norm of 0,

Jertomonoad <[] [ Il

Replacing u by

lu(®)|IB*(8)2(t) [ BX(t)2()  if B¥(t)2(t) # 0,
(1) =
it 0 otherwise,
we get
(10) [ ez jute)at < 0] ] o] 5 -

Finally, if v € B(E™) is arbitrary, then for all >0 with y, , as the characteristic
function of [0, s],

[ ey e dla = [ B0 20 o)1) a2
0 0

<[l o] o oo s~ Py (20)

< el lell o ol

and so (10) holds for all  in B(E=). Hence |B*(t)z(1)|is in B’ and B*(t)z(t) is in B'(E™).
Now if we put (1) = X* 1 (t)(I — P*)& in the above, we get

3

f (1) Bt u(t) &t = — & 2(0)
0
and hence, using (31.5) in [8, p. 87] and Lemma 4.1 with r =g,
é

lfz*(t)B(t)u(t) a| < [ lo(@)] + [Bwua] esp ]| 6|A<t> at]

0 0

<létesp [ [1m1at] [olfl] + (oM expL81[0), + 1) Bl 5 -

It follows as above that B*(f)z(¢) is in B'(E") = £o'(Em) for all &.
Now suppose D = £, (p, q) %= (1, 00) and (A(t), B(t)) is p’-uniformly control-
lable. Suppose there exists & such that P*&s£ 0 and B*(t) X*-(1)é is in B'(B") =
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= £2(Em). By the p’-uniform controllability of (A(#), B()), #(f) = X*1({)¢ is in
£7'(EBn). Similarly, (1) = X (1) PP*£ is in £4(B") and also, 5*(¢)2(t) = |[P*&J2 for all t.

When ¢ < oo, we deduce that |n()[~*< [P*¢|=2|¢(f)| so that |»(t)|~! is in L(E™.
But, using the bounded decay of (1), we have

‘
le() |1 < Mel’f le(t)[1dx

t—1

and hence %gf lx(2)| > 0, contradicting x € £¢(E*). When ¢ = co and p > 1, we get
[2(2) | > HwH SHP*ER, contradicting z € LY (B, IHence, under our additional conditions,
we have proved that B*(f) X*-1({)¢ is in £# (E=) if and only if P*& = 0,

We now use our lemmas to prove the following theorem.

THEOREM 4.1. — Suppose that for some pair (p, q), where 1<p, g<oo but (p, q) #
# (1, 00),

(1) (1) has bounded growth and decay,
(ii) [Bl, < oo and (A(1), B(t)) is p'-uniformly controllable (p'= p/(p — 1)),
(iii) O], < oo and (A(t), O(t)) is q-uniformly observable, and

(iv) (L7, M) is admissible for (4) when p > 1, (L1, £9) is admissible for (4) whm
p=1.
Then (1) has an exponential dichotomy with projection P having the range

{Ee B O@) X ()& is in DB},

where D = M when p > 1 and £ when p = 1.

Suppose, firstly, that p > 1. If « is in £2(E™) and x(?) is a solution of (4a) such
that C(?)x(t) is in AC2(EY), then it follows from Lemmsa 4.1 with » = ¢ that z() is in
£2(Em). So (£2, £*) is admissible for (4) with I = n, C(t) = I and the associated projec-
tion is P (as defined in the statement of the theorem) since C(2) X(#)& is in A2 (EY)
if and only if X ()& is in £°(E~). Lemma 4.3 then applies to show that (£!, £%),
and hence (L' N £¥, £7), is admissible for the adjoint system (9) with | = n, O(f) = 1
and with associated projection (I — P*). By Lemma 4.1 with » = p’, (£' N £¥, £¥)
must then be admissible for (9) with I = m = n, C(¢) = B(t) = I and with projec-
tion (I — P*). It follows from Theorem 64.B in [8, p. 189] (note that this theorem
still holds if instead of assuming that |[4], < co we only assume that (1) has bounded _
growth) that

(11) &= — A¥1)z

has an exponential dichotomy with projection (I — P*) and hence that (1) has one
with projection P.
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Suppose now that (£, £9) is admissible for (4) with 1<g < co. By Lemma 4.3,
(£7, £°) is admissible for the adjoint system (9) with projection (I — P*) and s0, by
the first case, (11) has an exponential dichotomy w1th projection (I — P*) and hence (1)
has one with projection P.

We now prove a converse theorem.

THEOREM 4.2. — Suppose (1) has an exponential dichotomy with projection P and
for some pair (p, q), where 1<p, g<oo, |B|, < co and ||, << co. Then (Mr, Me) is
admissible for (4) and if p<gq, (£, £9) is admissible. Also, when (A(t), O(t)) is q-uni-
formly observable, the range of P is {{€ Br: C(t) X(4)E is in D(EY)} where D = Me
or Lo

Let  be in AP(E™). Then it follows from Lemms 3.1 in [7, p. 524] that

¢
w(t) = fX(t)Px— 7) B(z) u(z) dr — fX (I — P) X-(v) B(zx)u(z) dv
0

is well-defined, is a solution of (4a) and for ¢>0,

o) | <2E (1 — exp [— 7))

(where we are using 1 instead of 6 in |-|,, |-|,). Hence & is in £°(E") and y(t) =
= C()x(t) is in M(FY).

Now suppose 1<p << g<< co and let 4 be in L2(E™). Then x(t ) defined above,
is a solution of (4a) and

lo(t) | <K [exp [— ylt — =] [B(z) | ju(x)|dz .

Following HARTMAN [5, p. 477], we estimate

o0

[Jexp [ ylt— w118 ju(z) s

0

= | [texp [ yoit— =} B0 ju(w) f-o}oxp [~ yle — o] ju(e) e |
’ where >0, >0, a - =1

< | Joxp = yoult — wlitq — 1)]1B(=) e u(x) fe-revie |~ Jexp [ valt— el () @z
0 1]
< |Jex [=yop it — el B ax] [ [l ] ™" [exp [~ pait— o ] ju(x)paz
0 0 0

if p>1
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and
<ess sup B[ [lu(o)laz]™ [exp [~ phal— ellum)jir it p=1.
720 0 0

In either case and also for ¢ = p (by letting ¢ — p),

(=]

o) <& BIg u| 5 [exp [— phalt — <) lu(o)rdr

where ¢, = K27 (1 — exp [— yap']) """
Then for 1<p<qg<< oo,

P

[lowetw < o Bl |7 [ 10k [exp [ yBglt — =] ju(n P avar
0 0 0

=t BI% Ju| 77 [ () [exp [— yBalt — )| 0@ araz

0

<261 — exp [— yBg]) (1B, ], C]) 1< o0

Finally, if (I — P)& = 0 then |X(f)&|< Kexp [—pt]|¢]| and it follows that O(1) X (#) &
is in C«(BY). On the other hand when (4(¢), 0(¢)) is g-uniformly observable, the fact
that C(t) X(¢)& is in M(LZ') implies that X(¢)¢ is in £2(&*) and hence (I — P)f = 0.
So in this ease, the range of P consists exactly of those & such that C(f) X(¢)¢& is in
D*(EY) where D is 2 or A

Theorems 4.1 and 4.2 generalize Theorem 3 in [13, p. 125], Theorem 3 in [2, p. 408]
and the Theorem in [1], with the difference that we are working on [0, co). In the
finite-dimensional case, they also generalize Theorem 4.5 in [10, p. 193] and Theo-
rem 2.3 in [9, p. 129].
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