
Two Linear Systems Criteria for Exponential Dichotomy (*). 

KENNETH J. PAL~ER (Canberra, Australia) (**) 

S u m m a r y .  - Two criteria, one postulating the existence o/ a not necessarily positive definite 
Zyapunov function and the other postulating conditional input-output stability, are given, 
ensuring that a system of linear differential equations has an exponential dichotomy. 

1 .  - I n t r o d u c t i o n .  

Let  A(t) be a locally integrable n • n mat r ix  funct ion on [0, oo). Two criteria ensur- 
ing tha t  the linear differential equation,  

(1) ~ = A( t )x  , 

be uniformly asymptotically stable huve been much investigated.  
The first criterion postulates the existence of a Lyapunov ]unction x*H(t)x,  where 

/ /( t)  is a bounded,  con t inuous ly  differentiuble positive definite Hermi t ian  ma t r ix  
funct ion satisfying 

(2) I:I(t) ~- H(t)A(t)  ~- A * ( t ) H ( t ) < - - I  

(cf., for example,  KRASOVSKII [6, p. 59] and Theorems 5 and 6 in BROCKETT [3, p. 202]). 
This has been generalized in two directions. 

In  [2] ANDERSO~ and MOORE have shown tha t  if A(t) is continuous and C(t) is 
a continuous I x n  matr ix  funct ion such tha t  (A(t), C(t)) is uniformly completely 
observable then the r ight  hand  side of (2) can be replaced by  -- C*(t)C(t). In  [8] 
(see also COPPEL [4]) Massera and Schifffer have shown tha t  if we drop the condition 
tha t  H(t) be posit ive definite and assume tha t  (1) has bounded growth, then  we get 

cri terion for exponential dichotomy. We prove a result  which includes bo th  these 
generalizations as special cases. Our result  uses a generalized observability condition, 
in t roduced by  MEGA~ [9]. 

The second criterion postulates bounded-input bounded-output stability, i.e. if u(t) 

(*) Entrata in Redazione il 1O gennaio 1979. 
(**) Thanks are due to Mr. W. A. Coppel for suggesting the problems and helpful advice. 
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is a function in ~ then all solutions of 

(3) 2 ---- A(t )x  + u(t) 

are in fi~ (see PE]~ON [12]). This h~s also been generalized in two directions. 
In [13] (see also Theorems 3 in [3, p. 197]) Silverman and Anderson have consi- 

dered systems, 

(4a) :~ = A( t )x  + B( t )u ,  

(4:b) y = C(t)x, 

where B(t), C(t) are n x m ,  I x n  matrix functions. They have shown that  if A(t), B(t), 
C(t) are bounded, (A(t), B ( t ) ) i s  uniformly completely controllable and (A(t), C(t)) 
is uniformly completely observable then the bounded-input bounded-output stability 
of (4) is equivalent to the uniform asymptotic stability of (1). In [2] ANDEI~SON 
and ~00~E weakened the boundedness conditions on A(t), B(t), C(t) and replaced ~ 
by the space A(~ 2 of piecewise continuous functions with uniformly bounded square 
norms on intervals of a fixed finite length. In [1] A~DERS0~ replaced Jt6 ~ by ~. In [9] 
and [10] ME,AN has considered s inputs and ~ outputs and used a generalized ob- 
servability condition. 

In their work [8] ~ASSE~A and SC~;~rFE~ have considered a quite general class of 
function spaces. Let ~B I ~D be two such function spaces. We say that  the pair (~B, ~) 
is admissible for (3) if whenever u(t) is in ~ there exists a solution x(t) of (3) in ~.  
For appropriate choice of (:B, q)) this yields a criterion for (1) to have an exponential 
dichotomy. 

We have considered pairs (~, Jii~q), (Ji~, JLq), (~, s ( l < p ,  q-<co) and give cri- 
teria that  (1) have ~n exponential dichotomy in terms of the admissibility of these 
pairs for (4), under the assumption that  (A(t), B(t)) and (A(t), C(t)) satisfy generalized 
controllability and observability conditions. Our technique is to use a duality argu- 
ment to reduce the problem to the case considered by ~assera and Schi~ffer. We 
note that  our results give a complete answer to the problem posed by Anderson at 
the end of [1]. 

2 .  - P r e l i m i n a r i e s .  

For the whole of this paper, A(t), B(t), C(t) are locally integrable n Xn,  n x m ,  
1 x n matrix functions on [0, co). 

The system (1) is said to have bounded growth (resp. decay) if there are constants 
M >  O, L~>0 such that  

I~(t, ~)1 = ]X(t) X-l(~)]< M exp [Z It - ~ I] 



K E ~ E ~ r  J. PAL~Vm~: Two linear systems criteria /or exponential dichotomy 201 

for 0 <~ r ~< t (resp. 0 ~< t ~< ~), where X(t) is the fundamenta l  matr ix  for (1) with X(0) ----- I .  
If" [denotes the Euclidean norm when the argument  is a vector in n-dimensionM 
Euclidean space E ~ and the corresponding operator norm when the argument  is 

a matrix.]  
(1) is said to have an exponential dichotomy if there exist constants K > 0, y > 0 

and a projection P (i.e.P ~ = P) such tha t  

lX(t)PX-1(~)J<~K exp[--y(t  - v)] for O<<. v<<.t 
and 

[X(t)(I-- P ) X - I ( ~ ) I < K  exp [-- ~(~--  t)] for 0 < t < ~ .  

I f  l<p~<c~ ,  we say tha t  the pair (A(t), B(t)) is p-uni]ormly controllable (ef. [9, 
p. 126]) if for some (~> 0 there exists ~ >  0 such tha t  for all t > 0  and all ~ in E ~, 

fJB*(v)q~*(t-~ 6, ~)~]~d~>e-~]~l~ (when < c~), P 
t 

ess sup 1B*(v)qD*(t -~ (~, ~)~l>~e-~t~] (when p = c<~), 

where . denotes the conjugate transpose. 
I f  1 ~<p < q ~< cx3, tt61der's inequali ty shows tha t  p-uniform controllability implies 

q-uniform controllability. On the other hand,  when B(t) is essentially bounded and (1) 
has bounded growth the inequali ty 

f [B*(~) v*(t § 6, ~) ~ I~dr < (NM exp [/~6] [~ I)~-'.I IB*(~) v*(t § 6, r) ~ t ~ aT, 
t 

where ~Y ~ estssup [B(t)[, shows tha t  q-uniform controllability implies p-uniform 

controllability for 1 < p  < q < c~. 
(A(t), B(t)) is defined to be uni]ormly completely controllable (cf. [2, p. 100]) if (1) 

has bounded growth and decay, (A(t), B(t)) is 2-uniformly controllable and there ex- 

ists a constant  a > 0  such tha t  

+ d, ~)B@)B*(v)~*(t + (~, v)d~.~<~ocI~l ~ 
t 

for all t~> 0 and ~ in E ~. From equation (10) in [2, p. 400] it  is clear, using the bounded 

growth and decay, tha t  this last condition can be replaced by sup fiB(7:)12 dr< co. 
t>~O 

t 

Finally,  (A(t), U(t)) is said to be p-unijormly observable if (A*(t), C*(t)) is p-m~i- 
formly controllable. 
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3. - Lyapunov function criterion. 

The following theorems generalize Theorem 5 in [2, p. 411] with the differences 
tha t  we restrict ourselves to [0, ~ )  and the derivative of the Lyapunov function 
along a solution satisfies an inequali ty rather Shah an equality. They also generalize 
Propositions 1 and 2 in Lecture 7 of [4] and, in the finite-dimensional case, Theo- 
rems 92.B and 92.A in [8, pp. 324, 321]. 

A vector function on [0, c~) is said to be absolutely continuous if it  is absolutely 
continuous on every compact  subinterval. 

THEOREI~ 3.1. - I f  (1) has an exponential dichotomy and for some p (1 ~<p < c~), 

t + l  

supt~>o/IC(~) I~d~ < ~ ,  

there exists a continuous function V: [0, c~) •  ~ --> R with the following properties: 

(i) V(t, ;~x)= I~l~V(t, x) for all t, x and real 4; 

(ii) there exists fl > 0 such that 

where 

LV(t, x)l<~lxl" for all t, x; 

(iii) iJ x(t) is a solution of (1), then V(t, x(t)) is absolutely continuous and 

We define 

d 
V(t,  x(t)) < -  IC(t)x(t)l" a . e . .  

t 0 

xI ,dv  , 

Xl ( t ,  ~) = X ( t ) P X - l ( z )  , X , ( t ,  ~) = X ( t ) ( I - -  r ) X - ~ ( z )  . 

Using Lemma 3.1 in Massera and Sch~ffer [7, p. 524], 

c~ t 

t 0 

<2~-~r  ~ , 
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where 
t + l  

= 2~K,O -- exp [-- p~])- ' ,  snp ~lC(~) 
t ~ 0  t 

Moreover~ if x(t) -~ X(t)x(O) is a solution of (1)~ then 

oo t 

21-~V(t,x(t)) = f  lc(~)Xdv,  ~)x(~) l~d~-- f  lC(v)X~(~, T)x(v)l~dv 
t 0 

is absolutely continuous and for a lmost  all t~ 

d V(t, x(t)) -= -- 2~-l[IC(t)Xdt , t)x(t)] �9 ~- f ( t ) X d t  , t)x(t)] ~] ~< 
dt 

<- -  [IC(t)Xdt, t)x(t)l ~- lC(t)Xdt, t)x(t)l]~ < - ]C(t)x(t)]~. 

To prove ~ converse of this theorem we use the following lemma, which generalizes 
a result  ment ioned in the remarks at  the end of Section 2 in PAL~El~ [11]. 

I 2 E ~ A  3.1. - Suppose (!) has bounded growth and there exists a continuous ]unction 
V: [0, oo) •  --~ R with the ]ollowing properties: 

(i) a(r) = sup {iV(t, x)]: t > o ,  Ix]dr} < ~ ]or all r >  O; 

(ii) there exists (~ > 0 such that i] x(t) is a solution o] (1), V(t, x(t)) is nonincreas- 
ing and ]or all t~>O, 

V(t -~- 3, x(t q- (5)) -- V(t, x(t)) < - -  b(tx(t ~- 3)1) , 

where b(r) is a nonnegative nondecreasing ]unction ]or r ~ 0 with b(r) ~ 0 
i] r is large enough. 

Then (1) has an exponential dichotomy. 
Choose A > 0 so tha t  b ( A ) ~  O. Suppose x(t) is a solution of (1) such tha t  for 

s o m e  t o ) 

v( to)  = V( to ,  X(to)) < - a ( A )  . 

Then if t ~> to 

and so Ix(t)] > z] if t>to. 

- -  a(lx(t ) ]) ~ V(t)< V(to) < -- a(A) 

Given t>to, there exists a positive integer m such tha t  
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to t mO<~t< to § (m § l)O. Then  

V(t) -- V(to) <~ V(to § mO) -- V(to) 

= ~ IV(to + po) - v(to + (p - 1) o)] 

< - ~ b(IX(to + p0)l) 

< -- mb(A) 

< - -  [O-~(t --  to) - -  1 ] b ( A ) .  

So V(t) -~ -- c~ as t -+ c~. Also a(lx(t)I) > - -  V(t) -+ c~ and  hence  Ix(t)] -+ c~ as 

t ---> cx3. 
N o w  let  x(t) be a solut ion of (1) such t h a t  Ix(O)] = 1 a n d  V(t, x(t))>1--a(A) for  

all t~>O. T h e n  if a >  O, ax(t) is also a solut ion of (1) a n d  V(t) = V(t, ax(t)) >~-- a(A) 
for  all t~>O. [Otherwise  ~lx(t)I-+c~ as t - + c ~  ~ Ix(t)i ~ c ~  ~ v(t ,x(t))  - + -  ~ . ]  
F o r  all pos i t ive  in tegers  m,  

- a(a) <<-  V(O) 

< V ( m O ) -  V(o) § a(A) 

= ~ [V(pa) - V((p - 1) a)] + a(A) 

< - -  Z b(~lx(pO)l) + a(A) .  
~ = 1  

So ~ b(a]x(pO)]) < oo a nd  hence  lira inf a[x(pO)]<<.A for  all a >  0. This implies t h a t  
~---> oo 

l im inf Ix(t)] = O. 
t --> oo 

Le t  t, ,  be  the  least  va lue  such t h a t  Ix(t~)] = exp [-- m]. Then  0 = to < tl < .. . .  

There  exists  an  in teger  p such t h a t  t~ § § (p § 1)0.  W i t h  a = 

= A exp [m § 1] a nd  V(t) = V(t, ax(t)), 

- a(Ae) < -  V(tm) 

<.~[V( t , .  + qO) -- V(t,~ + (q--  1)0) ]  + a(A) 
q = l  

< -  ~ b(~Ix(t~ + @)1) + a(A) 
q = l  

< -  pb(~lx(t~+~)I) + a(~) 

= - -pb(A)  + a(A).  
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Hence t~+~--t,~< (19 ~- 1)(~<[b(A)-~(a(Ae) + a(z])) ~- 1]~ for all m. Using the 
bounded growth, it  follows as in [4, p. 62] tha t  there exist constants K > 0 and y > 0, 
depending on M,  L, (~ and the functions a and b, such tha t  

(5) I x ( t ) ] < K e x p [ - y ( t -  T)]]x(~)J if 0~<~<t. 

Let  U~ be t h e  subspace of E ~ consisting of initial Yalues of bounded solutions 
of (1) and let U~ be any  fixed subspaee supplementary to U1. Then, ~s in [4, p. 62], 
we can show tha t  exists T >  0 such tha t  V(T,  X ( T ) ~ ) < -  a(1) if ~ e  U~, I~l = 1. 
This means tha t  IX(t) ~1 > 1 if t > T. 

Consider ~ particular solution x(t) = X(t) ~ with ~ e U~, [~] ---- 1. Since Ix(t) [ --> c<) 
there exists a greatest  value t~ such tha t  [x(t~)I ~--exp [m]. Then O<to < t~ < ... 
and to<T.  Let  p be an integer such tha t  t~. ~ - p ~ < t ~ + ~ < t ~  ~-(19 ~-1)8.  With 
a = A exp [-- m] and V(t) = V(t, (~x(t)), 

- a ( A e ) -  a ( ~ )  = - -  a ( ~ l x ( t ~ + l ) l )  - -  a ( ~ l x ( t ~ ) I )  

-~  V ( t r n §  - -  V ( t m )  

2~ 

< ~ :  [v(t~ + q~) - v(tm + (q - 11~)] 
q=l 

2~ 

q=l 

< -  19b(~tx( t~) ] )  

= -- pb(A) .  

So tin+l-- tin< (19 ~- 1) (5<~[b(A)-l(a(Ae) + a(A)) ~ 1] (~. Using the bounded growth 
it follows tha t  there exist constants K > O, y ~ 0 as before such tha t  

(6) [x(t)l<K exp [-- y(~ -- t)]lx(~)l if T < t < ~ .  

(5) and [6), together with the botmded growth, imply tha t  (1) has an exponential  
dichotomy. 

We now state our converse of Theorem 3.1. 

T~EOICEY~ 3.2. - Suppose (1) has bounded growth and ]or some 1),1 <<-19 < oo, (A(t), 
C(t)) is 19-uni]ormly observable. I] V: [0, oo) •  ~ --> R is a continuous ]unction such 
that 

(i) sup (IV(t, x)l: t>~O, IxI~r} < c~ ]or all r >  O, 
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(ii) ]or all solutions x(t) o] (1), V(t, x(t)) is absolutely continuous and/or almost 
all t, 

d__ V(t, x(t)) <.-- [C(t)x(t)l ~ 
dt 

then (1) has an exponential dichotomy. 
The hypotheses imply tha t  if x(t) is a solution of (1) then V(t, x(t)) is nonincreasing 

and moreover,  

t +d  

v(t  + ~, x(t + ~)) - v(t,  ~(t)) < - f lC(~)x(,)I~d~ 
t 

t + ~  

= - f l r  t + ~)x(t + ~)],d~ 
t 

< - ~ - ~  Ix ( t  - t -  ~ ) l  ~ �9 

Hence the conditions of Lemma 3.1 are fulfilled with b(r) = ~-~r ~. 

4 .  - A d m i s s i b i l i t y  cr i ter ia .  

We introduce the Banaeh funct ion spaces: C~ (1 < p  < c~), the real  p-integrable 
functions ] on [0, c~) with norm, 

c o  

0 

C =, the essentially bounded real measurable functions ] with norm 

[]]l l~ = e f f ~ 2 p  I](t)l ; 

~(? ( l < p  < c~), the real measurable functions ] such tha t  for some ~ > 0, 

t+6 

t 

which we use as norm and denote by  Itb. Final ly we define Jt0 ~ = [~ and l" 1~ = H" 11~" 
A typical  one of our Ban~ch spaces we denote as ~ ~nd its corresponding norm 

as H" H:~. We also consider intersections ~ (~ ~ of two of our spaces with norm 
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II II" II , and aaso associate spaces 3~' (el. E8, p. 50]). A real measurable 
function ] is in ~5' if 

o o  

sup {f lf(t),Jg(t)ldt: IIgll  = 1} < oo, 
0 

With this as norm, 3~' is then a Banach space. In particular, (s g~' for 1 <~p<~c~, 
where p-x -}- p'-~ = 1. 

I f  F is a ~inite-dimensional Banach space with norm J. J2 we denote by :B(E) the 
vector space of measurable functions ]: [0, c ~ ) - + F  such tha t  t)r [0, c~)- -~R is 
in ~B. Clearly, ff~(F)is a Banach space with norm til][21i:~, which we write without  
ambigui ty  as I[][]:~. 

Let  3~, if) be two of our Banach spaces. We say tha t  the pair (~, if)) is admissible 
for the system (4) if for any  input  u in ~B(E ~) there is a t  least one ou tput  y in O(E~). 
Let  P :  E ~ --> E ~ be a projection with range the following subspace, 

{~ e E": C(t) X(t) ~ is in ~(E~)}. 

Then we define a linear mapping 0 : ~B(E ~) -+ ~ ( E  t) by  

(Ou)(t) = c(t)[~(t) - x(t ) .P2(o)] ,  

where ~(t) is a solution of (4a) such tha t  C(t)2(t) is in ff)(E~). So (Ou)(t)-~ 
-~ C(t)x(t) where x(t) is the unique solution of (4a) such tha t  C(t)x(t) is in ff)(E ~) and 
Px(O)  = o. 

We now prove a useful little lemma. 

LEZVnV~A 4.1. - Suppose (1) has bounded decay and that for some r, 1 <~ r < oo, (A (t), C(t)) 
is r-uni]ormly observable. I] x(t) is a solution o] (4a) then ]or t>~ ~, 

t t t 

t - ~  t - ~  t--~ 

(r < oo) 

t 

e-'  Ix(t) I< ess sup iC(~)x(~)I + M exp [La] ess sup ]C(~)If ]B(~) u(T)]d~ 
t--~<~ ~<~t t - - ~ v ~ t  t - ~  

(r ~ ( x ) ) .  

In  particular i] ]C]~< c~, ]B[,,< c~ and u ~  ~(E~), x(t) is in ~(E") i] and only i] 
C(t)x(t) is in ~(E~). 
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Suppose r >  O. :For t>(~, 

t 

t--6 

t - -~  

by the variation of constants formula 

t t "  t 

< [fic("x(~'l~dv] 1/~§ [fl fo(~,~(~, s)B(s)u(s)ds ~d~] 1/" 
t - -6  t--O 

by Minkowski's inequal i ty .  
I f  r = c~, then for t > d ,  

t 

0-1Ix(t)] < ess sup iC(~)~0(z, t)x(t)l-~- ess sup C(~)x(~) § s)B(s)u(s)ds . 

The inequalities follow immediately.  
Suppose now tha t  IC]~< c~, [Bt~.< c~ and u is in ~(Em). Then if C(t)x(t) is 

in s z) it is clear from the inequalities tha t  x(t) is in ~(E~). 
Suppose now tha t  x(t) is in ~(E~). I f  r = c~, then clearly C(t)x(t) is in ~*(E'). 

Suppose r < c~. Then 

oo oo(V + 1)6 

flc(t)x(t)l'dt = y,, ~ IC(tlx(tll'dt. 
0 ~0~ 

By the variation of constants formula and bounded decay, 

8 

ix(.)j~ ~ o ~  E~[,x(~,, + j~,~ {ft~<~,.~} 1/~] 
t 

if t<s<.t + ($, and so with N - ~  2~-lM~exp [rL~], 

8 

,->l~<~[,xr + ,. :f ,~.>.~] 
t 

Hence 

(v + 1)6 (v + I)~ 

v6 v6 
(v + 2)0 (~ + 2)a (~ + 1)a 

<~,oI:[~(~-~ f ,-).~ § l~,:. f l~.).~)§ ,~,:. f ,*)-.] 
(~ + 1)0 (v + 1)0 ~ 
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and therefore 

c o  o o  e o  

f [x(t)l dt + + < c o  

0 1 0 

Lemma 4.1 enables us to show tha t  the operator 0 is bounded in certain circum- 
stances. 

LElv~A 4.2. - Suppose  that (1) has bounded decay a n d / o r  some pa i r  (p, q), 1 <<.p, 

q<~co, IBIs. < co, ]CIq< co and . (A( t ) ,  C(t)) is q-uni]ormly observable. Then  i] r = s 
= ~q or J~q and (~, 9 )  is admissible ]or (4), 0 is a bounded linear operator. 
If  u is in $(Em), (Ou)(t) = C(t)x(t) where x(t) is the unique solution of (da) such 

tha t  C(t)x(t) is in ~ ( E  *) and Px(O) = O. By Lemma 4.1 with r = q, 

(7) 

Suppose % ~ u is ~B(E ~) and Ou~ -~ y in ~(E~). We can write (0%)(t) = U(t)~( t ) ,  
as above. Applying (7) to u = u, - -  us ,  it  follows tha t  x~(t) is uniformly convergent 
on [~, co) to a function x(t). ~oreover ,  by  Theorem 31.D in [8, p. 89]~ x(t) is a solu- 
tion of (4a) on [(~, co). We extend it to [0, oo) and the variat ion of constants formula 
then implies tha t  x~(t)-->xit  ) uniformly on [0, 5] also. In  particular, ~Px(0)= 0. 

Finally,  for all t~> 0, 

f I~(~)x(~) - y(~)ld~ < f I~(T)llx(~)- x~(~)ld~ + fl(0%,)(~)- y(~')fd~ 
t t t 

- - - ~ 0  a s  ~ - - ~  cx:) .  

Hence y ( t ) =  C(t)x(t) a.e. and so y = Ou. The conclusion of the lernma then fol- 
lows from the closed graph theorem. 

I~E~A~:S. -- (i) Note tha t  if, under the conditions of Lemma 4.2, we just  assume 
tha t  for inputs in a dense subset of ~5(E m) there is an output  in ~)(E *) but  in addit ion 
assume tha t  the operator 0 (now only defined on a dense subset of 5~(E~)) is bounded 
(as, for example, in [2]), then the admissibili ty of (5~, 9 )  can be deduced by the method 
used in the proof of the lemma. 

(ii) In  [1], [2], [3], [9], [10], [13] it  is assumed tha t  for all inputs u in ~ ( E  m) 
the zero-state output ,  

t 

y(t) C(t)fx(t)X-~(r)B(~)u(~:)d~ , 
0 

1 4  - A n n a l l  di Matemat ica  
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is in ~(E~) . .We show under  the conditions of Lemma 4.2 and the addit ional  condit ion 
tha t  (A(t), B(t)) be p ' -uniformly controllable tha t  this implies all outputs  are in ff)(E~), 
when the input  u is in ~(E~) .  

Le t  P and 0 be as defined above and suppose u is in ~ ( E  ~) = g~(E~). F r o m  the 
definition of O, it  is clear tha t  y(t) = (Ou)(t). Also if u(t) = 0 when t>  (5, (Ou)(t) = 
= C(t)x(t), where 

t co  

['X(t) ~oX--I(T) B(T) U('l~) d ' ~  - -  t X( t ) ( I  -- P) X-~(~:)B(v) u(~) d r ,  X ( t )  

0 t 

since x(t) is a solution of (4a) such tha t  Px(O) ---- 0 and C(t)x(t) is in ~ ( E  ~) (x(t) = 

X(t)P~X-~(~)B(~)u(7:)dv if t>(5 and ICtq< oo). 
0 

Equat ing  y(t) with C(t)x(t), we get  

C(t) X( t ) ( I  -- P)]-X-~(~) B(~:) u(r) d~: = 0 
0 

for t > &  By  the observabil i ty p roper ty  of (A(t), C(t)), this means t h a t  

(I - P)fx-~(~) B(v) u(~) d~ 
0 

(8) = 0 .  

Now, for ~ ~ E n, define 

I [B*(t)X*-I(t)(I , P*)~I:B*(t )X*-I( t ) ( I - -  P*)~ if O<t<~(~, 
u ( t )  ~ 

I 0 if t>6 ,  

where ~ i s  ( p - l p ' - - l )  i f p > l  a n d 0 i f p = l .  T h e n u i s i n  C:(E m) and so, by  (8)~ 

p ) ~ x - l ( ~ )  B(~)u(~) a~ = I [B*(~)x*-~(~)(~ - P*)~  I~+~a~ = o .  2'(I 
0 0 

Using the controllabil i ty p roper ty  of (A(t), B(t)), it  follows tha t  ( I -  P*)~ = 0 for 

all ~ and hence P = I ,  which is what  we want .  
We now prove a duality result.  

I~E:KiVI~_ 4.3. - Under the assumptions oJ Lemma 4.2, (~' ,  ff~') is admissible ]or the 
adjoint system, 

(9a) 2 ---- -- A* ( t ) z - -  C*(t)v , 

(9b) w = -- B*( t )z .  
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Moreover when ~) ~ ~,  (p, q) -/= (1, co) and (A(t), B(t)) is p'-uni]ormly controllable, 
the associated projection van be taken as ( I - -  P*). 

The proof  is a modificat ion of the  proofs of Theorems 54.E ~nd 53.E in [8, 

pp. 156, 152]. 
Le t  v e ~ ' ( E  ~) be given and  let z(t) be the solution of (9a) such t h a t  

p c  

z(o) = f P *  x*( t )  r d t .  
0 

Suppose u e ~ ( E  ~) and  u(t) = 0 if t>s.  Then (Ou)(t) = C(t)x(t), where x(t) is a 

solution of (4a) such t h a t  Px(O) = O. Note  t ha t  (I -- P)X-l (s)x(s)  = 0 since Xco(t) = 
= X(t)X-X(s)x(s) is a solution of (1) such t ha t  C(t)x~(t) is in q)(E ~) (x~(t)~-x(t)  
for t>s  and  ICIq< co). 

l~-ow 

Since 

we have  

So 

f z*(t) B(t) u(t) dt 
0 

8 

= z*(s)x(s) - z*(0)x(0) + fv*(t)C(t)x(t)dt  
0 

= z*(s)~(~) + fv*(t) C(t)x(t)dt. 
0 

dt 
-d z*(t)x=(t) = - v*(t) r x=(t) , 

s 

z*(s) x(s) : z*(0) x-l (s)  x(s) - fv*(t) c(t) x~(t) dt 
0 

co 8 

= fv*(t) c(t) x(t)  rx-~(s)  x(s) dt -- fv*(t) C(t) x~(t) dt 
0 0 

co 8 

= fv*(t) c(t) x( t )  x-~(8) x(8) dt -- fv*(t) C(t)x~(t)dt 
0 0 

pc 

= fv*(t) C(t) x(t) dt ,  
8 

8 co 

fz*(t) B(t) u(t) d t =  fv*(t) C(t)x(t) dt 
0 0 
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and hence, using Lemma 4.2 with II011 as the operator norm of 0, 

8 

f~*(t)B(~)u(t)dt < Iloll llvl]~,ll~ll~. 
0 

Replucing u by 

~ ( t )  = 

ire get 

(lO) 

]u(t)]]B*(t)z(t)]-XB*(t)z(t) if B*(t)z(t):/: O, 

0 otherwise, 

c o  

f [u*<t,<t> li~<t> idt < iiolf I1~11 ~ ii~ll ~ ,  
0 

Finally, if u ~ ~ ( E  ~) is arbitrary, then for all s >~ 0 with Z[0,~] as the characteristic 

function of [0, s], 

8 

f 1B*(t)z(t)i]u(t)Idt 
0 

o o  

= f ]B*(t) z(t) ll(Zro,~ u)(t)tdt 
0 

< Iloll II"[l~,Ilz~o,~II~ by (10) 

and so (10) holds for ~11 u in ~(E~). Hence ]B*(t)z(t)] is in :5' and B*(t)z(t) is in ~'(E~).  
Now if we put  z( t )~-X*-~( t ) ( I -  P*)~ in the above, we get 

8 

fz*(t) B(t) u(t) dt ~- -- ~* x(O) 
0 

~nd hence, using (31.5) in [8, p. 87] and Lemma 4.1 with r =  q, 

s 8 

0 0 0 

< J~l cxp [fj~(t)l~t] [oLtoil + ( ~ ,  exp E~o~lclo + 1)IBis,] LI~II~ �9 
0 

I t  follows as above tha t  B*(t)z(t) is in ~ ' ( E  m) = s ~) for all $. 
Now suppose ~ = s (p, q)=/= (1, c~) and (A(t),B(t)) is p ' -uniformly control- 

lable. Suppose there exists $ such tha t  P*$ =/= 0 and B*(t)X*-l(t)$ is in ~5'(E ~) = 
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= s By the p ' -uniform controllability of (A( t ) ,B( t ) ) ,  z ( t ) :  X*-~(t)~ is in 
s Similarly, x(t) = X ( t ) P P * ~  is in s ~) and also, x*(t)z(t) -~ IP*$I ~ for all t. 

When q <  0% we deduce tha t  Ix(t)l-~< IP*~l-~lz(t)l so tha t  Ix(t)p~ is in s 
But ,  using the bounded decay of (1), we have 

t 

Ix(t) 1 -~ < Me~f [x(~)I -~ d v  
t --1 

and hence inf [x(t)[~ 0, contradicting x E s When q = oo and p > 1, we get 
t ~ l  

[z(t) ]~ Ilxll :~ IP*~ ]2, contradicting z e s Hence, under  our additional conditions, 
we have proved tha t  B*(t )X*-~( t )~  is in s ~) if and only if P*~ ---- 0. 

We now use our lemmas to prove the following theorem. 

TgE01CElVs 4.1. -- Suppose  that ]or some pair  (p, q), where l d p ,  q<~oo but (p, q) =/= 
~= (1, oo), 

(i) (1) has bounded growth and decay, 

(ii) IBIs, < oo and (A(t), B(t)) is p ' -uni]ormly controllable (p '-~ p / (p  --  1)), 

(iii) ]CIq< c~ and (A(t) ,  C(t)) is q-uni]ormly observable, and 

(iv) (s J~q) is admissible ]or (4:) when p ~ 1, (s s is admiss ib le /or  (4) when 
p ~ - - 1 .  

Then  (1) has an exponential  dichotomy with projection P having the range 

{~ e E~': C(t) X( t )  ~ is in  ~)(E~)}, 

where ID ---- ~gq when p ~ 1 and s when p ---- 1. 

Suppose, firstly, tha t  p > 1. I f  u is in s m) and x(t) is a solution of (da) such 
tha t  C(t)x(t) is in Jlgq(Ep, then it follows from Lemma 4.1 with r = q tha t  x(t) is in 
s So (s s is admissible for (4) with 1 -~ n, C(t) ~ I and the associated projec- 
tion is P (as defined in the s ta tement  of the theorem) since C( t )X( t )~  is in Jtg~(E ~) 
if and only if X( t )~  is in s174 Lemma 4.3 then applies to show tha t  (s s 
and hence (s (~ s s is admissible for the adjoint  system (9) with 1 ~-- n, C(t) ~ I 
and with associated projection (I -- P*). By Lemma 4.1 with r ----- p ' ,  (s rh s s 
must  then be admissible for (9) with 1 : m ---- n, C(t) ---- B(t)  ~ I and with projec- 
t ion (I -- P*). I t  follows from Theorem 64.B in [8, p. 189] (note tha t  this theorem 
still holds if instead of assuming tha t  IA l~ < oo we only assume tha t  (1) has bounded 
growth) tha t  

(11) 2 = - -  A*(t) z 

has an exponential dichotomy with projection (I -- P*) and hence tha t  (1) has one 
with projection P. 
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Suppose now tha t  (g~, g~) is admissible for (4) with l < q  < c~. By Lemma 4.3, 
(g~', g~) is admissible for  the adjoint system (9) with projection (I -- P*) and so, by  
the first case, (11) has an exponential  dichotomy with projection (I -- P*) and hence (1) 
has one with projection P. 

We now prove a converse theorem. 

TgEo~E~ ~.2. - Suppose (1) has an exponential dichotomy with projection P and 
/or some pair (p, q), where l <p ,  q<~oo, ]Blv,< oo and ICIq< oo. Then (J~ ,  dLq) is 
admissible/or (4 )and  ij p < q ,  (g~, g~)is admissible. Also, when (A(t), C(t)) is q-uni- 
Jormly observable, the range o/_P is {~ e E ~: C(t) X( t )~  is in q)(E~)} where if) = ~Lq 
or g~. 

Let u be in ~ ( E ~ ) .  Then it follows from Lemma 3.1 in [7, p. 524] tha t  

c o  

x(t) = f x ( t )~x-~(~)  B(r u(~:) dr -- f X(t)(S -- P) X-~(r162 u(r d.~ 
0 t 

is well-defined, is a solution of (da) and for t>~O, 

Ix(.t) I < 2K(I -- exp [-- y]) -lIB I~' [u i~ 

(where we are using 1 instead of d in I" I~,, I" I~). Hence x is in g~(E ~) and y(t) ~- 
= C(t)x(t) is in .~q(EZ). 

Now suppose l < p  < q < co and let u be in g~(E,~). Then x(t), defined above, 
is a solution of (da) and 

o o  

Ix(t)l<.Kfexp [ -  t i t -  ~I] IB(~)[lu(~)ld~ �9 
0 

Following HAg~r~A~ [5, p. 477], we est imate 

o o  

0 

o o  

0 

I] IB(~)I I~(~:)I1 ('/~>}{exp [ -  Vfl It-- ~ 1] I~(~)l'/~ ~ 

where ~ > 0 ,  f l > 0 ,  ~ / - f l = l  

o o  o o  

0 0 

oo oo co 

, q(~0-1)/p 

< [fe=p 
0 0 0 

if p > l  
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and 
co  l:~ 

~ > 0  
o o 

if p = 1 .  

I n  either case and also for q = p (by let t ing q-->p), 

co 

0 

where % --- K21/~" (1 -- exp [-- y~p,])-l/~, 
Then for l < p < q <  co, 

WoO Co ~ co  

f IC(t)x(t)]~dt < e~ IB I~' Hull ~-~f [c(t)]~fexp [ -  yflq I t -  v]] [u(~-)I * dt 
0 0 0 

c~o co 

- -  ~ ~, [u(~)]P e x p [ - -  yflq]t-:_ ~]]]C(t)iqdtd~ 
0 0 

<2c 0 - e x p  [-  

Finally,  if (I  -- P )~  = 0 then IX(t)~l<~Kexp [--yt]l~ { a u d i t  follows tha t  C(t)X(t)~ 
is in gq(EZ). On the other h~nd when (A(t), C(t)) is q-uniformly observ~bl% the fact  
that  C(t)X(t)~ is in Ag~(E ~) implies tha t  X(t)~ is in s and hence ( I -  P)~ = 0. 
So in this c~se, the range of P consists exact ly  of those ~ such tha t  C(t) X(t)~ is in 
fl)~(E ~) where ~ is s or dg ~. 

Theorems 4.1 and 4.2 generalize Theorem 3 in [13, p. 125], Theorem 3 in [2, p. 408] 
and the Theorem in [1], with the difference tha t  we are working on [0, 0r In  the 
finite-dimensional ease, they  also generalize Theorem 4.5 in [10, p. 193] and Theo- 
rem 2.3 in [9, p: 129]. 
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