Two Linear Systems Criteria for Exponential Dichotomy (*).

Kenneth J. Palmer (Canberra, Australia) (**)

Abstract

Summary. - Two criteria, one postulating the existence of a not necessarily positive definite Lyapunov function and the other postulating conditional input-output stability, are given, ensuring that a system of linear differential equations has an exponential dichotomy.

1. - Introduction.

Let $A(t)$ be a locally integrable $n \times n$ matrix function on $[0, \infty)$. Two criteria ensuring that the linear differential equation,

$$
\begin{equation*}
\dot{x}=A(t) x, \tag{1}
\end{equation*}
$$

be uniformly asymptotically stable have been much investigated.
The first criterion postulates the existence of a Lyapunov function $x^{*} H(t) x$, where $\boldsymbol{H}(t)$ is a bounded, continuously differentiable positive definite Hermitian matrix function satisfying

$$
\begin{equation*}
\dot{H}(t)+H(t) A(t)+A^{*}(t) H(t) \leqslant-I \tag{2}
\end{equation*}
$$

(cf., for example, Krasovskit [6, p. 59] and Theorems 5 and 6 in Brockett [3, p. 202]). This has been generalized in two directions.

In [2] Anderson and Moore have shown that if $A(t)$ is continuous and $C(t)$ is a continuous $l \times n$ matrix function such that $(A(t), C(t))$ is uniformly completely observable then the right hand side of (2) can be replaced by - $C^{*}(t) C(t)$. In [8] (see also Coppel [4]) Massera and Schäffer have shown that if we drop the condition that $H(t)$ be positive definite and assume that (1) has bounded growth, then we get a criterion for exponential dichotomy. We prove a result which includes both these generalizations as special cases. Our result uses a generalized observability condition, introduced by Megan [9].

The second criterion postulates bounded-input bounded-output stability, i.e. if $u(t)$
(*) Entrata in Redazione il 10 gennaio 1979.
${ }^{(* *)}$ Thanks are due to Mr. W. A. Coppel for suggesting the problems and helpful advice.
is a function in \mathfrak{L}^{∞} then all solutions of

$$
\begin{equation*}
\dot{x}=A(t) x+u(t) \tag{3}
\end{equation*}
$$

are in \mathbb{L}^{∞} (see Perron [12]). This has also been generalized in two directions.
In [13] (see also Theorems 3 in [3, p. 197]) Silverman and Anderson have considered systems,

$$
\begin{align*}
& \dot{x}=A(t) x+B(t) u \tag{4a}\\
& y=C(t) x
\end{align*}
$$

where $B(t), C(t)$ are $n \times m, l \times n$ matrix functions. They have shown that if $A(t), B(t)$, $O(t)$ are bounded, $(A(t), B(t))$ is uniformly completely controllable and $(A(t), O(t))$ is uniformly completely observable then the bounded-input bounded-output stability of (4) is equivalent to the uniform asymptotic stability of (1). In [2] ANDERson and Moore weakened the boundedness conditions on $A(t), B(t), C(t)$ and replaced \mathfrak{L}^{∞} by the space \mathscr{K}^{2} of piecewise continuous functions with uniformly bounded square norms on intervals of a fixed finite length. In [1] ANDERSoN replaced \mathcal{N}^{2} by \mathcal{L}^{2}. In [9] and [10] MEgan has considered \mathscr{L}^{p} inputs and \mathscr{L}^{q} outputs and used a generalized observability condition.

In their work [8] MASSERA and SCHÄFFER have considered a quite general class of function spaces. Let $\mathfrak{B}, \mathfrak{D}$ be two such function spaces. We say that the pair ($\mathfrak{B}, \mathfrak{D}$) is admissible for (3) if whenever $u(t)$ is in \mathfrak{B} there exists a solution $x(t)$ of (3) in \mathfrak{D}. For appropriate choice of ($\mathscr{A}, \mathfrak{D}$) this yields a criterion for (1) to have an exponential dichotomy.

We have considered pairs ($\left.\mathfrak{L}^{p}, \mathcal{H}^{q}\right)$, $\mathcal{M}^{p}, \mathcal{M}^{q}$), ($\left.\mathfrak{L}^{p}, \mathfrak{L}^{q}\right)(1 \leqslant p, q \leqslant \infty)$ and give criteria that (1) have an exponential dichotomy in terms of the admissibility of these pairs for (4), under the assumption that $(A(t), B(t))$ and $(A(t), C(t))$ satisfy generalized controllability and observability conditions. Our technique is to use a duality argument to reduce the problem to the case considered by Massera and Schäffer. We note that our results give a complete answer to the problem posed by Anderson at the end of [1].

2. - Preliminaries.

For the whole of this paper, $A(t), B(t), O(t)$ are locally integrable $n \times n, n \times m$, $l \times n$ matrix functions on $[0, \infty)$.

The system (1) is said to have bounded growth (resp. decay) if there are constants $M>0, L \geqslant 0$ such that

$$
|\varphi(t, \tau)|=\left|X(t) X^{-1}(\tau)\right| \leqslant M \exp [L|t-\tau|]
$$

for $0 \leqslant \tau \leqslant t($ resp. $0 \leqslant t \leqslant \tau)$, where $X(t)$ is the fundamental matrix for (1) with $X(0)=I$. [$1 \cdot \mid$ denotes the Euclidean norm when the argument is a vector in n-dimensional Euclidean space E^{n} and the corresponding operator norm when the argument is a matrix.]
(1) is said to have an exponential dichotomy if there exist constants $K>0, \gamma>0$ and a projection P (i.e. $P^{2}=P$) such that

$$
\left|X(t) P X^{-1}(\tau)\right| \leqslant K \exp [-\gamma(t-\tau)] \quad \text { for } 0 \leqslant \tau \leqslant t
$$

and

$$
\left|X(t)(I-P) X^{-1}(\tau)\right| \leqslant K \exp [-\gamma(\tau-t)] \quad \text { for } 0 \leqslant t \leqslant \tau
$$

If $1 \leqslant p \leqslant \infty$, we say that the pair $(A(t), B(t))$ is p-uniformly controllable (cf. [9, p. 126]) if for some $\delta>0$ there exists $\varrho>0$ such that for all $t \geqslant 0$ and all ξ in E^{n},

$$
\begin{array}{ll}
\int_{i}^{t+\delta}\left|B^{*}(\tau) \varphi^{*}(t+\delta, \tau) \xi\right|^{p} d \tau \geqslant \varrho^{-p}|\xi|^{p} & \text { (when } p<\infty \text {), } \\
\underset{t \leqslant \tau \leqslant t+\delta}{\operatorname{ess} \sup ^{2}}\left|B^{*}(\tau) \varphi^{*}(t+\delta, \tau) \xi\right| \geqslant \varrho^{-1}|\xi| & \text { (when } p=\infty \text {), }
\end{array}
$$

where $*$ denotes the conjugate transpose.
If $1 \leqslant p<q \leqslant \infty$, Hölder's inequality shows that p-uniform controllability implies q-uniform controllability. On the other hand, when $B(t)$ is essentially bounded and (1) has bounded growth the inequality

$$
\int_{i}^{t+\delta}\left|B^{*}(\tau) \varphi^{*}(t+\delta, \tau) \xi\right|^{\alpha} d \tau \leqslant(N M \exp [L \delta] \mid \xi)^{q-p} \int_{i}^{t+\delta}\left|B^{*}(\tau) \varphi^{*}(t+\delta, \tau) \xi\right|^{p} d \tau
$$

where $N=$ ess sup $|B(t)|$, shows that q-uniform controllability implies p-uniform controllability for $1 \leqslant p<q<\infty$.
$(A(t), B(t))$ is defined to be uniformly completely controllable (cf. [2, p. 400]) if (1) has bounded growth and decay, $(A(t), B(t))$ is 2 -uniformly controllable and there exists a constant $\alpha \geqslant 0$ such that

$$
\xi^{*} \int_{t}^{t+\delta} \varphi(t+\delta, \tau) B(\tau) B^{*}(\tau) \varphi^{*}(t+\delta, \tau) d \tau \cdot \xi \leqslant \alpha|\xi|^{2}
$$

for all $t \geqslant 0$ and ξ in E^{n}. From equation (10) in [2, p. 400] it is clear, using the bounded growth and decay, that this last condition can be replaced by $\sup _{t \geqslant 0} \int_{i}^{i+\delta}|B(\tau)|^{2} d \tau<\infty$.

Finally, $(A(t), C(t))$ is said to be p-uniformly observable if $\left(A^{*}(t), O^{*}(t)\right)$ is p-uniformly controllable.

3. - Lyapunov function criterion.

The following theorems generalize Theorem 5 in [2, p. 411] with the differences that we restrict ourselves to $[0, \infty)$ and the derivative of the Lyapunov function along a solution satisfies an inequality rather than an equality. They also generalize Propositions 1 and 2 in Lecture 7 of [4] and, in the finite-dimensional case, Theorems $92 . B$ and $92 . A$ in [8, pp. 324, 321].

A vector function on $[0, \infty)$ is said to be absolutely continuous if it is absolutely continuous on every compact subinterval.

Theorem 3.1. - If (1) has an exponential dichotomy and for some $p(1 \leqslant p<\infty)$,

$$
\sup _{t \geqslant 0} \int_{i}^{t+1}|C(\tau)|^{p} d \tau<\infty
$$

there exists a continuous function $V:[0, \infty) \times \mathbb{E}^{n} \rightarrow \boldsymbol{R}$ with the following properties:
(i) $V(t, \lambda x)=|\lambda|^{p} V(t, x)$ for all t, x and real λ;
(ii) there exists $\beta>0$ such that

$$
|V(t, x)| \leqslant \beta|x|^{p} \quad \text { for all } t, x
$$

(iii) if $x(t)$ is a solution of (1), then $V(t, x(t))$ is absolutely continuous and

$$
\frac{d}{d t} \nabla(t, x(t)) \leqslant-|O(t) x(t)|^{p} \quad \text { a.e. . }
$$

We define

$$
2^{1-p} V(t, \dot{x})=\int_{i}^{\infty}\left|C(\tau) X_{1}(\tau, t) x\right|^{p} d \tau-\int_{0}^{t}\left|C(\tau) X_{2}(\tau, t) x\right|^{p} d \tau
$$

where

$$
X_{1}(t, \tau)=X(t) P X^{-1}(\tau), \quad X_{2}(t, \tau)=X(t)(I-P) X^{-1}(\tau)
$$

Using Lemma 3.1 in Massera and Schäffer [7, p. 524],

$$
2^{1-p}|V(t, x)| \leqslant K^{p}\left[\int_{t}^{\infty} \exp [-p \gamma(\tau-t)]|C(\tau)|^{p} d \tau+\int_{0}^{t} \exp [-p \gamma(t-\tau)]|C(\tau)|^{p} d \tau\right] \mid x^{p} \leqslant
$$

$$
\leqslant 2^{1-p} \beta|x|^{p}
$$

where

$$
\beta=2^{p} K^{p}(1-\exp [-p \gamma])^{-1} \cdot \sup _{t \geqslant 0} \int_{i}^{t+1}|C(\tau)|^{p} d \tau
$$

Moreover, if $x(t)=\bar{X}(t) x(0)$ is a solution of (1), then

$$
2^{1-p} \mathcal{V}(t, x(t))=\int_{i}^{\infty}\left|C(\tau) X_{1}(\tau, \tau) x(\tau)\right|^{p} d \tau-\int_{0}^{t}\left|C(\tau) X_{2}(\tau, \tau) x(\tau)\right|^{p} d \tau
$$

is absolutely continuous and for almost all t,

$$
\begin{aligned}
& \frac{d}{d t} V(t, x(t))=-2^{p-1}\left[\left|C(t) X_{1}(t, t) x(t)\right|^{p}+\left|O(t) X_{2}(t, t) x(t)\right|^{p}\right] \leqslant \\
& \qquad \leqslant-\left[\left|C(t) X_{1}(t, t) x(t)\right|+\left|O(t) X_{2}(t, t) x(t)\right|\right]^{p} \leqslant-|O(t) x(t)|^{p}
\end{aligned}
$$

To prove a converse of this theorem we use the following lemma, which generalizes a result mentioned in the remarks at the end of Section 2 in Palmer [11].

LEMMA 3.1. - Suppose (1) has bounded growth and there exists a continuous function $V:[0, \infty) \times E^{n} \rightarrow \boldsymbol{R}$ with the following properties:
(i) $a(r)=\sup \{|V(t, x)|: t \geqslant 0,|x| \leqslant r\}<\infty$ for all $r>0$;
(ii) there exists $\delta>0$ such that if $x(t)$ is a solution of $(1), V(t, x(t))$ is nonincreasing and for all $t \geqslant 0$,

$$
V(t+\delta, x(t+\delta))-V(t, x(t)) \leqslant-b(|x(t+\delta)|)
$$

where $b(r)$ is a nonnegative nondecreasing function for $r>0$ with $b(r)>0$ if r is large enough.
Then (1) has an exponential dichotomy.
Choose $\Delta>0$ so that $b(\Delta)>0$. Suppose $x(t)$ is a solution of (1) such that for some t_{0},

$$
V\left(t_{0}\right)=V\left(t_{0}, x\left(t_{0}\right)\right)<-a(\Delta)
$$

Then if $t \geqslant t_{0}$,

$$
-a(|x(t)|) \leqslant V(t) \leqslant V\left(t_{0}\right)<-a(\Delta)
$$

and so $|x(t)|>\Delta$ if $t \geqslant t_{0}$. Given $t \geqslant t_{0}$, there exists a positive integer m such that
$t_{0}+m \delta \leqslant t<t_{0}+(m+1) \delta$. Then

$$
\begin{aligned}
\nabla(t)-V\left(t_{0}\right) & \leqslant V\left(t_{0}+m \delta\right)-V\left(t_{0}\right) \\
& =\sum_{p=1}^{m}\left[\nabla\left(t_{0}+p \delta\right)-V\left(t_{0}+(p-1) \delta\right)\right] \\
& \leqslant-\sum_{p=1}^{m} b\left(\left|p\left(t_{0}+p \delta\right)\right|\right) \\
& \leqslant-m b(\Delta) \\
& \leqslant-\left[\delta^{-1}\left(t-t_{0}\right)-1\right] b(\Delta) .
\end{aligned}
$$

So $V(t) \rightarrow-\infty$ as $t \rightarrow \infty$. Also $a(|x(t)|) \geqslant-V(t) \rightarrow \infty$ and hence $|x(t)| \rightarrow \infty$ as $t \rightarrow \infty$.

Now let $x(t)$ be a solution of (1) such that $|x(0)|=1$ and $V(t, x(t)) \geqslant-a(\Delta)$ for all $t \geqslant 0$. Then if $\sigma>0, \sigma x(t)$ is also a solution of (1) and $V(t)=V(t, \sigma x(t)) \geqslant-a(\Delta)$ for all $t \geqslant 0$. [Otherwise $\sigma|x(t)| \rightarrow \infty$ as $t \rightarrow \infty \Rightarrow|x(t)| \rightarrow \infty \Rightarrow V(t, x(t)) \rightarrow-\infty$.] For all positive integers m,

$$
\begin{aligned}
-a(\sigma) & \leqslant-V(0) \\
& \leqslant V(m \delta)-V(0)+a(\Delta) \\
& =\sum_{p=1}^{m}[V(p \delta)-V((p-1) \delta)]+a(\Delta) \\
& \leqslant-\sum_{p=1}^{m} b(\sigma|x(p \delta)|)+a(\Delta) .
\end{aligned}
$$

So $\sum_{p=1}^{\infty} b(\sigma|x(p \delta)|)<\infty$ and hence $\liminf _{p \rightarrow \infty} \sigma|x(p \delta)| \leqslant \Delta$ for all $\sigma>0$. This implies that $\liminf _{t \rightarrow \infty}|x(t)|=0$.

Let t_{m} be the least value such that $\left|x\left(t_{m}\right)\right|=\exp [-m]$. Then $0=t_{0}<t_{1}<\ldots$. There exists an integer p such that $t_{m}+p \delta \leqslant t_{m_{+1}}<t_{m}+(p+1) \delta$. With $\sigma=$ $=\Delta \exp [m+1]$ and $V(t)=V(t, \sigma x(t))$,

$$
\begin{aligned}
-a(\Delta e) & \leqslant-V\left(t_{m}\right) \\
& \leqslant \sum_{q=1}^{p}\left[V\left(t_{m}+q \delta\right)-V\left(t_{m}+(q-1) \delta\right)\right]+a(\Delta) \\
& \leqslant-\sum_{q=1}^{p} b\left(\sigma\left|x\left(t_{m}+q \delta\right)\right|\right)+a(\Delta) \\
& \leqslant-p b\left(\sigma\left|x\left(t_{m+1}\right)\right|\right)+a(\Delta) \\
& =-p b(\Delta)+a(\Delta) .
\end{aligned}
$$

Hence $t_{m_{+1}}-t_{m}<(p+1) \delta \leqslant\left[b(\Delta)^{-1}(a(\Delta e)+a(\Delta))+1\right] \delta$ for all m. Using the bounded growth, it follows as in [4, p. 62] that there exist constants $K>0$ and $\gamma>0$, depending on M, L, δ and the functions a and b, such that

$$
\begin{equation*}
|x(t)| \leqslant K \exp [-\gamma(t-\tau)]|x(\tau)| \quad \text { if } 0 \leqslant \tau \leqslant t \tag{5}
\end{equation*}
$$

Let U_{1} be the subspace of E^{n} consisting of initial values of bounded solutions of (1) and let U_{2} be any fixed subspace supplementary to U_{1}. Then, as in [4, p. 62], we can show that exists $T>0$ such that $V(T, X(T) \xi)<-a(1)$ if $\xi \in U_{2},|\xi|=1$. This means that $|X(t) \xi|>1$ if $t \geqslant T$.

Consider a particular solution $x(t)=X(t) \xi$ with $\xi \in U_{2},|\xi|=1$. Since $|x(t)| \rightarrow \infty$ there exists a greatest value t_{m} such that $\left|x\left(t_{m}\right)\right|=\exp [m]$. Then $0 \leqslant t_{0}<t_{1}<\ldots$ and $t_{0} \leqslant T$. Let p be an integer such that $t_{m}+p \delta \leqslant t_{m_{+1}}<t_{m}+(p+1) \delta$. With $\sigma=\Delta \exp [-m]$ and $V(t)=V(t, \sigma x(t))$,

$$
\begin{aligned}
-a(\Delta e)-a(\Delta) & =-a\left(\sigma\left|x\left(t_{m+1}\right)\right|\right)-a\left(\sigma\left|x\left(t_{m}\right)\right|\right) \\
& \leqslant V\left(t_{m_{+1}}\right)-V\left(t_{m}\right) \\
& \leqslant \sum_{q=1}^{p}\left[V\left(t_{m}+q \delta\right)-V\left(t_{m}+(q-1) \delta\right)\right] \\
& \leqslant-\sum_{q=1}^{p} b\left(\sigma\left|x\left(t_{m}+q \delta\right)\right|\right) \\
& \leqslant-p b\left(\sigma\left|x\left(t_{m}\right)\right|\right) \\
& =-p b(\Delta)
\end{aligned}
$$

So $t_{m+1}-t_{m}<(p+1) \delta \leqslant\left[b(\Delta)^{-1}(a(\Delta e)+a(\Delta))+1\right] \delta$. Using the bounded growth it follows that there exist constants $K>0, \gamma>0$ as before such that

$$
\begin{equation*}
|x(t)| \leqslant K \exp [-\gamma(\tau-t)]|x(\tau)| \quad \text { if } T \leqslant t \leqslant \tau \tag{6}
\end{equation*}
$$

(5) and [6), together with the bounded growth, imply that (1) has an exponential dichotomy.

We now state our converse of Theorem 3.1.

Theorem 3.2. - Suppose (1) has bounded growth and for some $p, 1 \leqslant p<\infty,(A(t)$, $C(t))$ is p-uniformly observable. If $V:[0, \infty) \times E^{n} \rightarrow \boldsymbol{R}$ is a continuous function such that
(i) $\sup \{|V(t, x)|: t \geqslant 0,|x| \leqslant r\}<\infty$ for all $r>0$,
(ii) for all solutions $x(t)$ of (1), $V(t, x(t))$ is absolutely continuous and for almost all t,

$$
\frac{d}{d t} V(t, x(t)) \leqslant-|C(t) x(t)|^{v}
$$

then (1) has an exponential dichotomy.
The hypotheses imply that if $x(t)$ is a solution of (1) then $V(t, x(t))$ is nonincreasing and moreover,

$$
\begin{aligned}
V(t+\delta, x(t+\delta))-V(t, x(t)) & \leqslant-\int_{i}^{t+\delta}|C(\tau) x(\tau)|^{p} d \tau \\
& =-\int_{i}^{t+\delta}|C(\tau) \varphi(\tau, t+\delta) x(t+\delta)|^{p} d \tau \\
& \leqslant-\varrho^{-x}|x(t+\delta)|^{p}
\end{aligned}
$$

Hence the conditions of Lemma 3.1 are fulfilled with $b(r)=\varrho^{-p} r^{p}$.

4. - Admissibility criteria.

We introduce the Banach function spaces: $\mathcal{L}^{p}(1 \leqslant p<\infty)$, the real p-integrable functions f on $[0, \infty)$ with norm,

$$
\|f\|_{p}=\left[\int_{0}^{\infty}|f(t)|^{p} d t\right]^{1 / p}
$$

\mathcal{L}^{∞}, the essentially bounded real measurable functions f with norm

$$
\|f\|_{\infty}=\operatorname{ess} \sup _{t \geqslant 0}|f(t)|
$$

$\mathcal{N}^{p}(1 \leqslant p<\infty)$, the real measurable functions f such that for some $\delta>0$,

$$
\sup _{t \geqslant 0}\left[\int_{i}^{t+\delta}|f(\tau)|^{p} d \tau\right]^{1 / p}<\infty
$$

which we use as norm and denote by $|f|_{\infty}$. Finally we define $\mathcal{M}^{\infty}=\mathcal{L}^{\infty}$ and $|\cdot|_{\infty}=\|\cdot\|_{\infty}$.
A typical one of our Banach spaces we denote as \mathfrak{B} and its corresponding norm as $\|\cdot\|_{\mathscr{B}}$. We also consider intersections $\mathscr{B}_{1} \cap \mathscr{B}_{2}$ of two of our spaces with norm
$\|\cdot\|_{\mathfrak{B}_{1}}+\|\cdot\|_{\mathfrak{S}_{2}}$ and also associate spaces \mathfrak{B}^{\prime} (cf. [8, p. 50]). A real measurable function f is in \mathfrak{B}^{\prime} if

$$
\sup \left\{\int_{0}^{\infty}|f(t)| g(t) \mid d t: g \in \mathfrak{B}, \quad\|g\|_{\mathfrak{B}}=1\right\}<\infty
$$

With this as norm, \mathscr{B}^{\prime} is then a Banach space. In particular, $\left(\mathfrak{L}^{p}\right)^{\prime}=\mathfrak{L}^{p^{\prime}}$ for $1 \leqslant p \leqslant \infty$, where $p^{-1}+p^{\prime-1}=1$.

If F^{\prime} is a finite-dimensional Banach space with norm $|\cdot|_{F}$ we denote by $\mathscr{B}(F)$ the vector space of measurable functions $f:[0, \infty) \rightarrow F$ such that $|f|_{F}:[0, \infty) \rightarrow \boldsymbol{R}$ is in \mathscr{J}. Clearly, $\mathscr{B}(F)$ is a Banach space with norm $\left\|\left\|\left.f\right|_{F}\right\|_{\mathcal{B}}\right.$, which we write without ambiguity as $\|f\|_{\mathcal{B}}$.

Let $\mathfrak{B}, \mathfrak{D}$ be two of our Banach spaces. We say that the pair ($\mathfrak{H}, \mathfrak{D})$ is admissible for the system (4) if for any input u in $\mathfrak{B}\left(E^{m}\right)$ there is at least one output y in $\mathfrak{D}\left(E^{l}\right)$. Let $P: E^{n} \rightarrow E^{n}$ be a projection with range the following subspace,

$$
\left\{\xi \in E^{n}: O(t) X(t) \xi \text { is in } \mathscr{D}\left(E^{\prime}\right)\right\}
$$

Then we define a linear mapping $\theta: \mathfrak{B}\left(E^{m}\right) \rightarrow \mathfrak{D}\left(E^{l}\right)$ by

$$
(\theta u)(t)=C(t)[\tilde{x}(t)-X(t) P \tilde{x}(0)]
$$

where $\tilde{x}(t)$ is a solution of (4a) such that $C(t) \tilde{x}(t)$ is in $\mathscr{D}\left(E^{v}\right)$. So $(\theta u)(t)=$ $=C(t) x(t)$ where $x(t)$ is the unique solution of $(4 a)$ such that $C(t) x(t)$ is in $\mathscr{D}\left(E^{2}\right)$ and $P x(0)=0$.

We now prove a useful little lemma.

Lemma 4.1. - Suppose (1) has bounded decay and that for some $, 1 \leqslant r \leqslant \infty,(A(t), C(t))$ is r-uniformly observable. If $x(t)$ is a solution of (4a) then for $t \geqslant \delta$,

$$
\begin{aligned}
& \varrho^{-1}|x(t)| \leqslant\left[\int_{t-\delta}^{t}|C(\tau) x(\tau)|^{\dot{r}} d \tau\right]^{1 / r}+M \exp [L \delta]\left[\int_{t \rightarrow \delta}^{t}|C(\tau)|^{r} d \tau\right]^{1 / r} \int_{t-\delta}^{t}|B(\tau) u(\tau)| d \tau \\
& (r<\infty) \\
& \varrho^{-1}|x(t)| \leqslant \underset{t-\delta \leqslant \tau \leqslant t}{\operatorname{ess} \sup }|C(\tau) x(\tau)|+M \exp [L \delta] \underset{t-\delta \leq \tau \leq t}{\operatorname{ess} \sup }|C(\tau)| \int_{t-\delta}^{t}|B(\tau) u(\tau)| d \tau \quad(r=\infty) .
\end{aligned}
$$

In particular if $|O|_{r}<\infty,|B|_{r^{\prime}}<\infty$ and $u \in \mathcal{L}^{r}\left(E^{m}\right), x(t)$ is in $\mathcal{L}^{r}\left(E^{n}\right)$ if and only if $C(t) x(t)$ is in $\mathcal{L}^{r}\left(E^{\imath}\right)$.

Suppose $r>0$. For $t \geqslant \delta$,

$$
\begin{aligned}
\varrho^{-1}|x(t)| & \leqslant\left[\int_{t-\delta}^{t}|O(\tau) \varphi(\tau, t) x(t)|^{r} d \tau\right]^{1 / r} \\
& =\left[\int_{t-\delta}^{t} \int_{\delta}^{t} C(\tau) x(\tau)+\left.\int_{\tau}^{t} C(\tau) \varphi(\tau, s) B(s) u(s) d s\right|^{r} d \tau\right]^{1 / r}
\end{aligned}
$$

by the variation of constants formula

$$
\leqslant\left[\int_{t=\delta}^{t}|C(\tau) x(\tau)|^{r} d \tau\right]^{1 / r}+\left[\left.\int_{t-\delta}^{t} \int_{\tau}^{t} C(\tau) \varphi(\tau, s) B(s) u(s) d s\right|^{r} d \tau\right]^{1 / r}
$$

by Minkowski's inequality .
If $r=\infty$, then for $t \geqslant \delta$,

$$
\varrho^{-1}|x(t)| \leqslant \underset{t-\delta \leqslant \tau \leqslant t}{\operatorname{ess} \sup }|C(\tau) \varphi(\tau, t) x(t)|=\underset{t-\delta \leqslant \tau \leqslant i}{\operatorname{ess} \sup _{i-1}}\left|C(\tau) x(\tau)+\int_{\tau}^{t} C(\tau) \varphi(\tau, s) B(s) u(s) d s\right| .
$$

The inequalities follow immediately.
Suppose now that $|C|_{r}<\infty,|B|_{r^{\prime}}<\infty$ and u is in $\mathscr{L}^{r}\left(\mathbb{B}^{m}\right)$. Then if $C(t) x(t)$ is in $\mathscr{L}^{r}\left(E^{r}\right)$ it is clear from the inequalities that $x(t)$ is in $\mathscr{L}^{r}\left(E^{n}\right)$.

Suppose now that $x(t)$ is in $\mathscr{L}^{r}\left(E^{n}\right)$. If $r=\infty$, then clearly $C(t) x(t)$ is in $\mathscr{L}^{\infty}\left(E^{v}\right)$. Suppose $r<\infty$. Then

$$
\int_{0}^{\infty}|O(t) x(t)|^{r} d t=\sum_{\nu=0}^{\infty} \int_{\nu \delta}^{(v+1) \delta}|C(t) x(t)|^{r} d t
$$

By the variation of constants formula and bounded decay,

$$
|x(t)| \leqslant M \exp [L \delta]\left[|x(s)|+|B|_{r^{\prime}}\left\{\int_{t}^{s}|u(\tau)|^{r} d \tau\right\}^{1 / r}\right]
$$

if $t \leqslant s \leqslant t+\delta$, and so with $N=2^{r-1} M^{r} \exp [r L \delta]$,

$$
|x(t)|^{r} \leqslant N\left[|x(s)|^{r}+|B|_{r^{r}}^{r} \int_{i}^{s}|u(\tau)|^{r} d \tau\right] .
$$

Hence

$$
\begin{aligned}
\int_{\nu \delta}^{(\nu+1) \delta}|C(t) x(t)|^{r} d t & \leqslant N|C|_{r}^{r}\left[|x((\nu+1) \delta)|^{r}+|B|_{r^{\prime}}^{r} \int_{\nu \delta}^{(\nu+1) \delta}|u(\tau)|^{r} d \tau\right] \\
& \leqslant N|C|_{r}^{r}\left[N\left(\delta^{-1} \int_{(\nu+1) \delta}^{(\nu+2) \delta}|x(s)|^{r} d s+|B|_{r^{\prime}}^{r} \int_{(\nu+1) \delta}^{\nu+2) \delta}|u(\tau)|^{r} d \tau\right)+\left.\left|B{ }_{r^{\prime}}^{r} \int_{\nu \delta}^{(\nu+1) \delta}\right| u(\tau)\right|^{r} d \tau\right]
\end{aligned}
$$

and therefore

$$
\int_{0}^{\infty}|C(t) x(t)|^{r} d t \leqslant N|C|_{r}^{r}\left[N \delta^{-1} \int_{1}^{\infty}|x(t)|^{r} d t+(N+1)|B|_{r^{r}}^{r_{0}^{r}}|u(\tau)|^{\infty} d \tau\right]<\infty
$$

Lemma 4.1 enables us to show that the operator θ is bounded in certain circumstances.

Lemcha 4.2. - Suppose that (1) has bounded decay and for some pair $(p, q), 1 \leqslant p$, $q \leqslant \infty,|B|_{p^{\prime}}<\infty,|C|_{q}<\infty$ and $(A(t), C(t))$ is q-uniformly observable. Then if $\mathfrak{B}=\mathfrak{L}^{p}$, $\mathfrak{D}=\mathfrak{L}^{a}$ or \mathcal{M}^{a} and $(\mathcal{S}, \mathfrak{D})$ is admissible for (4), θ is a bounded linear operator.

If u is in $\mathfrak{B}\left(E^{m}\right),(\theta u)(t)=C(t) x(t)$ where $x(t)$ is the unique solution of (4a) such that $C(t) x(t)$ is in $D\left(E^{\imath}\right)$ and $P x(0)=0$. By Lemma 4.1 with $r=q$,

$$
\begin{equation*}
\varrho^{-1}|x(t)| \leqslant\|\theta u\|_{\mathfrak{D}}+M \exp [L \delta]|C|_{q}|B|_{\mathfrak{p}^{\prime}}\|u\|_{\mathfrak{B}} \quad \text { if } t \geqslant \delta . \tag{7}
\end{equation*}
$$

Suppose $u_{\nu} \rightarrow u$ is $\mathscr{B}\left(E^{(n)}\right)$ and $\theta u_{\nu} \rightarrow y$ in $\mathscr{D}\left(E^{l}\right)$. We can write $\left(\theta u_{\nu}\right)(t)=O(t) x_{v}(t)$, as above. Applying (7) to $u=u_{v}-u_{\mu}$, it follows that $x_{\nu}(t)$ is uniformly convergent on $[\delta, \infty)$ to a function $x(t)$. Moreover, by Theorem 31.D in [8, p. 89], $x(t)$ is a solution of $(4 a)$ on $[\delta, \infty)$. We extend it to $[0, \infty)$ and the variation of constants formula then implies that $x_{\nu}(t) \rightarrow x(t)$ uniformly on $[0, \delta]$ also. In particular, $P x(0)=0$.

Finally, for all $t \geqslant 0$,

$$
\begin{aligned}
\int_{i}^{t+\delta}|C(\tau) x(\tau)-y(\tau)| d \tau & \leqslant \int_{t}^{t+\delta}|C(\tau)|\left|x(\tau)-x_{v}(\tau)\right| d \tau+\int_{t}^{t+\delta}\left|\left(\theta u_{v}\right)(\tau)-y(\tau)\right| d \tau \\
& \rightarrow 0 \quad \text { as } v \rightarrow \infty
\end{aligned}
$$

Hence $y(t)=C(t) x(t)$ a.e. and so $y=\theta u$. The conclusion of the lemma then follows from the closed graph theorem.

Remarks. - (i) Note that if, under the conditions of Lemma 4.2, we just assume that for inputs in a dense subset of $\mathfrak{B}\left(E^{m}\right)$ there is an output in $\mathfrak{D}\left(E^{\imath}\right)$ but in addition assume that the operator θ (now only defined on a dense subset of $\mathfrak{B}\left(E^{m}\right)$) is bounded (as, for example, in [2]), then the admissibility of ($\mathfrak{B}, \mathscr{D}$) can be deduced by the method used in the proof of the lemma.
(ii) In [1], [2], [3], [9], [10], [13] it is assumed that for all inputs u in $\mathfrak{3}\left(E^{m}\right)$ the zero-state output,

$$
y(t)=C(t) \int_{0}^{t} X(t) X^{-1}(\tau) B(\tau) u(\tau) d \tau
$$

is in $\mathfrak{D}\left(E^{l}\right)$. We show under the conditions of Lemma 4.2 and the additional condition that $(A(t), B(t))$ be p^{\prime}-uniformly controllable that this implies all outputs are in $\mathfrak{D}\left(E^{l}\right)$, when the input u is in $\mathfrak{B}\left(E^{m}\right)$.

Let P and θ be as defined above and suppose u is in $\mathfrak{B}\left(E^{m}\right)=\mathfrak{L}^{p}\left(\boldsymbol{E}^{m}\right)$. From the definition of θ, it is clear that $y(t)=(\theta u)(t)$. Also if $u(t)=0$ when $t \geqslant \delta,(\theta u)(t)=$ $=C(t) x(t)$, where

$$
x(t)=\int_{0}^{t} X(t) P X^{-1}(\tau) B(\tau) u(\tau) d \tau-\int_{i}^{\infty} X(t)(I-P) X^{-1}(\tau) B(\tau) u(\tau) d \tau
$$

since $x(t)$ is a solution of (4a) such that $P x(0)=0$ and $C(t) x(t)$ is in $\mathscr{D}\left(E^{l}\right)(x(t)=$ $=X(t) P \int_{0}^{\delta} X^{-1}(\tau) B(\tau) u(\tau) d \tau$ if $t \geqslant \delta$ and $\left.|O|_{q}<\infty\right)$.

Equating $y(t)$ with $C(t) x(t)$, we get

$$
C(t) X(t)(I-P) \int_{0}^{\delta} X^{-1}(\tau) B(\tau) u(\tau) d \tau=0
$$

for $t \geqslant \delta$. By the observability property of $(A(t), C(t))$, this means that

$$
\begin{equation*}
(I-P) \int_{0}^{\delta} X^{-1}(\tau) B(\tau) u(\tau) d \tau=0 \tag{8}
\end{equation*}
$$

Now, for $\xi \in E^{n}$, define

$$
u(t)=\left\{\begin{array}{l}
\left|B^{*}(t) X^{*-1}(t)\left(I-P^{*}\right) \xi\right|^{\alpha} B^{*}(t) X^{*-1}(t)\left(I-P^{*}\right) \xi \quad \text { if } 0 \leqslant t \leqslant \delta \\
0 \quad \text { if } t \geqslant \delta
\end{array}\right.
$$

where α is $\left(p^{-1} p^{\prime}-1\right)$ if $p>1$ and 0 if $p=1$. Then u is in $\mathcal{L}^{p}\left(E^{m}\right)$ and so, by (8),

$$
\xi^{*}(I-P) \int_{0}^{\delta} X^{-1}(\tau) B(\tau) u(\tau) d \tau=\int_{0}^{\delta}\left|B^{*}(\tau) X^{*-1}(\tau)\left(I-P^{*}\right) \xi\right|^{2+\alpha} d \tau=0
$$

Using the controllability property of $(A(t), B(t))$, it follows that $\left(I-P^{*}\right) \xi=0$ for all ξ and hence $P=I$, which is what we want.

We now prove a duality result.
Lemma 4.3. - Under the assumptions of Lemma 4.2, ($\left.\mathfrak{D}^{\prime}, \mathfrak{B}^{\prime}\right)$ is admissible for the adjoint system,

$$
\begin{align*}
& \dot{z}=-A^{*}(t) z-C^{*}(t) v \tag{9a}\\
& w=-B^{*}(t) z \tag{9b}
\end{align*}
$$

Moreover when $\mathfrak{D}=\mathcal{L}^{\alpha},(p, q) \neq(1, \infty)$ and $(A(t), B(t))$ is p^{\prime}-uniformly controllable, the associated projection can be taken as $\left(I-P^{*}\right)$.

The proof is a modification of the proofs of Theorems $54 . E$ and $53 . E$ in $[8$, pp. 156, 152].

Let $v \in \mathfrak{D}^{\prime}\left(\boldsymbol{E}^{v}\right)$ be given and let $z(t)$ be the solution of (9a) such that

$$
z(0)=\int_{0}^{\infty} P^{*} X^{*}(t) C^{*}(t) v(t) d t
$$

Suppose $u \in \mathfrak{B}\left(E^{m}\right)$ and $u(t)=0$ if $t \geqslant s$. Then $(\theta u)(t)=C(t) x(t)$, where $x(t)$ is a solution of $(4 a)$ such that $P x(0)=0$. Note that $(I-P) X^{-1}(s) x(s)=0$ since $x_{\infty}(t)=$ $=X(t) X^{-1}(s) x(s)$ is a solution of (1) such that $O(t) x_{\infty}(t)$ is in $\mathscr{D}\left(E^{l}\right) \quad\left(x_{\infty}(t)=x(t)\right.$ for $t \geqslant s$ and $\left.|C|_{q}<\infty\right)$.

Now

$$
\begin{aligned}
\int_{0}^{s} z^{*}(t) B(t) u(t) d t & =z^{*}(s) x(s)-z^{*}(0) x(0)+\int_{0}^{s} v^{*}(t) C(t) x(t) d t \\
& =z^{*}(s) x(s)+\int_{0}^{s} v^{*}(t) C(t) x(t) d t
\end{aligned}
$$

Since

$$
\frac{d t}{d} z^{*}(t) x_{\infty}(t)=-v^{*}(t) C(t) x_{\infty}(t)
$$

we have

$$
\begin{aligned}
z^{*}(s) x(s) & =z^{*}(0) X^{-1}(s) x(s)-\int_{0}^{s} v^{*}(t) C(t) x_{\infty}(t) d t \\
& =\int_{0}^{\infty} v^{*}(t) C(t) X(t) P X^{-1}(s) x(s) d t-\int_{0}^{s} v^{*}(t) C(t) x_{\infty}(t) d t \\
& =\int_{0}^{\infty} v^{*}(t) C(t) X(t) X^{-1}(s) x(s) d t-\int_{0}^{s} v^{*}(t) C(t) x_{\infty}(t) d t \\
& =\int_{s}^{\infty} v^{*}(t) C(t) x(t) d t
\end{aligned}
$$

So

$$
\int_{0}^{s} z^{*}(t) B(t) u(t) d t=\int_{0}^{\infty} v^{*}(t) C(t) x(t) d t
$$

and hence, using Lemma 4.2 with $\|\theta\|$ as the operator norm of θ,

$$
\left|\int_{0}^{s} z^{*}(t) B(t) u(t) d t\right| \leqslant\|\theta\|\|v\| \mathbb{D}^{\prime}\|u\|_{\mathfrak{B}}
$$

Replacing u by

$$
u_{1}(t)= \begin{cases}|u(t)|\left|B^{*}(t) z(t)\right|^{-1} B^{*}(t) z(t) & \text { if } B^{*}(t) z(t) \neq 0 \\ 0 \quad \text { otherwise }\end{cases}
$$

we get

$$
\begin{equation*}
\int_{0}^{\infty}\left|B^{*}(t) z(t)\|u(t) \mid d t \leqslant\| \theta\| \| v\left\|_{\mathfrak{D}}\right\|^{\prime}\|u\|_{\mathfrak{B}}\right. \tag{10}
\end{equation*}
$$

Finally, if $u \in \mathscr{B}\left(E^{m}\right)$ is arbitrary, then for all $s \geqslant 0$ with $\chi_{[0, s]}$ as the characteristic function of $[0, s]$,

$$
\begin{aligned}
\int_{0}^{s}\left|B^{*}(t) z(t) \| u(t)\right| d t & =\int_{0}^{\infty}\left|B^{*}(t) z(t) \|\left(\chi_{[0, s]} u\right)(t)\right| d t \\
& \leqslant\|\theta\|\|v\|_{D^{\prime}}\left\|\chi_{[0, s]} u\right\|_{\mathfrak{B}} \quad \text { by } \quad(10) \\
& \leqslant\|\theta\|\|v\|_{\mathfrak{D}^{\prime}}\|u\|_{\mathfrak{B}}
\end{aligned}
$$

and so (10) holds for all u in $\mathscr{B}\left(E^{m}\right)$. Hence $\left|B^{*}(t) z(t)\right|$ is in \mathscr{B}^{\prime} and $B^{*}(t) z(t)$ is in $\mathfrak{B}^{\prime}\left(E^{m}\right)$.
Now if we put $z(t)=X^{*-1}(t)\left(I-P^{*}\right) \xi$ in the above, we get

$$
\int_{0}^{s} z^{*}(t) B(t) u(t) d t=-\xi^{*} x(0)
$$

and hence, using (31.5) in [8, p. 87] and Lemma 4.1 with $r=q$,

$$
\begin{aligned}
&\left|\int_{0}^{s} z^{*}(t) B(t) u(t) d t\right| \leqslant|\xi|\left[|x(\delta)|+\int_{0}^{\delta} B(t) u(t) \mid d t\right] \exp \left[\int_{0}^{\delta}|A(t)| d t\right] \\
& \leqslant|\xi| \exp \left[\int_{0}^{\delta}|A(t)| d t\right]\left[\left.\varrho|\theta|\left|+\left(\varrho M \exp [L \delta]|O|_{Q}+1\right)\right| B\right|_{p^{\prime}}\right]\|u u\|_{\mathcal{S}}
\end{aligned}
$$

It follows as above that $B^{*}(t) \approx(t)$ is in $\mathscr{B}^{\prime}\left(E^{m}\right)=\mathfrak{L}^{p^{\prime}}\left(E^{m}\right)$ for all ξ.
Now suppose $\mathfrak{D}=\mathfrak{L}^{q},(p, q) \neq(1, \infty)$ and $(A(t), B(t))$ is p^{\prime}-uniformly controllable. Suppose there exists ξ such that $P^{*} \xi \neq 0$ and $B^{*}(t) X^{*-1}(t) \xi$ is in $\mathfrak{B}^{\prime}\left(E^{m}\right)=$
$=\mathcal{L}^{p^{\prime}}\left(E^{m}\right)$. By the p^{\prime}-uniform controllability of $(A(t), B(t)), z(t)=X^{*-1}(t) \xi$ is in $£^{p^{\prime}}\left(E^{n}\right)$. Similarly, $x(t)=X(t) P P^{*} \xi$ is in $\complement^{q}\left(E^{n}\right)$ and also, $x^{*}(t) z(t)=\left|P^{*} \xi\right|^{2}$ for adl t.

When $q<\infty$, we deduce that $|x(t)|^{-1} \leqslant\left|P^{* \xi}\right|^{-2}|\tilde{w}(t)|$ so that $|x(t)|^{-1}$ is in $\mathcal{L}^{y^{\prime}}\left(E^{n}\right)$. But, using the bounded decay of (1), we have

$$
|x(t)|^{-1} \leqslant M e^{L} \int_{t-1}^{t}|x(\tau)|^{-1} d \tau
$$

and hence $\inf _{t \geqslant 1}|x(t)|>0$, contradicting $x \in \mathscr{L}^{q}\left(E^{n}\right)$. When $q=\infty$ and $p>1$, we get $|z(t)| \geqslant\|x\|_{\infty}^{-1}\left|P^{*} \xi\right|^{2}$, contradicting $z \in \mathcal{L}^{D^{\prime}}\left(E^{n}\right)$. Hence, under our additional conditions, we have proved that $B^{*}(t) X^{*-1}(t) \xi$ is in $\mathfrak{L}^{p^{\prime}}\left(E^{m}\right)$ if and only if $P^{*} \xi=0$.

We now use our lemmas to prove the following theorem.

Theorem 4.1. - Suppose that for some pair (p, q), where $1 \leqslant p, q \leqslant \infty$ but $(p, q) \neq$ $\neq(1, \infty)$,
(i) (1) has bounded growth and decay,
(ii) $|B|_{\mathfrak{p}^{\prime}}<\infty$ and $(A(t), B(t))$ is p^{\prime}-uniformly controllable $\left(p^{\prime}=p /(p-1)\right)$,
(iii) $|O|_{q}<\infty$ and $(A(t), O(t))$ is q-uniformly observable, and
(iv) $\left(\mathfrak{L}^{p}, \mathcal{K}^{2}\right)$ is admissible for (4) when $p>1,\left(\mathfrak{L}^{1}, \mathfrak{L}^{q}\right)$ is admissible for (4) when $p=1$.
Then (1) has an exponential dichotomy with projection P having the range

$$
\left\{\xi \in E^{n}: O(t) X(t) \xi \text { is in } \mathscr{D}\left(E^{n}\right)\right\} \text {, }
$$

where $\mathfrak{D}=\mathcal{M}^{q}$ when $p>1$ and \mathfrak{L}^{q} when $p=1$.
Suppose, firstly, that $p>1$. If u is in $\mathfrak{L}^{p}\left(E^{m}\right)$ and $x(t)$ is a solution of ($\left.4 a\right)$ such that $C(t) x(t)$ is in $H^{q}\left(E^{l}\right)$, then it follows from Lemma 4.1 with $r=q$ that $x(t)$ is in $\mathcal{L}^{\infty}\left(E^{n}\right)$. So ($\left.\mathcal{L}^{p}, \mathcal{L}^{\infty}\right)$ is admissible for (4) with $l=n, C(t) \equiv I$ and the associated projection is P (as defined in the statement of the theorem) since $C(t) X(t) \xi$ is in $M^{q}\left(E^{l}\right)$ if and only if $\bar{X}(t) \xi$ is in $\mathcal{L}^{\infty}\left(E^{n}\right)$. Lemma 4.3 then applies to show that ($\mathcal{L}^{1}, \mathfrak{L}^{D^{\prime}}$), and hence ($\mathcal{L}^{1} \cap \mathfrak{L}^{\mathcal{D}^{\prime}}, \mathfrak{L}^{\mathcal{D}^{\prime}}$), is admissible for the adjoint system (9) with $l=n, C(t) \equiv I$ and with associated projection $\left(I-P^{*}\right)$. By Lemma 4.1 with $r=p^{\prime},\left(\mathfrak{L}^{1} \cap \mathfrak{L}^{\mathfrak{p}^{\prime}}, \mathfrak{L}^{p^{\prime}}\right)$ must then be admissible for (9) with $l=m=n, C(t) \equiv B(t) \equiv I$ and with projection $\left(I-P^{*}\right)$. It follows from Theorem $64 . B$ in [8, p. 189] (note that this theorem still holds if instead of assuming that $|A|_{1}<\infty$ we only assume that (1) has bounded growth) that

$$
\begin{equation*}
\dot{z}=-A^{*}(t) z \tag{11}
\end{equation*}
$$

has an exponential dichotomy with projection $\left(I-P^{*}\right.$) and hence that (1) has one with projection P.

Suppose now that ($\mathcal{L}^{1}, \mathfrak{L}^{q}$) is admissible for (4) with $1 \leqslant q<\infty$. By Lemma 4.3, ($\mathfrak{L}^{\alpha^{\prime}}, \mathfrak{L}^{\infty}$) is admissible for the adjoint system (9) with projection $\left(I-P^{*}\right)$ and so, by the first case, (11) has an exponential dichotomy with projection ($I-P^{*}$) and hence (1) has one with projection P.

We now prove a converse theorem.
Theorem 4.2. - Suppose (1) has an exponential dichotomy with projection P and for some pair (p, q), where $1 \leqslant p, q \leqslant \infty,|B|_{p^{\prime}}<\infty$ and $|C|_{\alpha}<\infty$. Then $\left(\mathcal{N}^{p}, \mathcal{M}^{q}\right)$ is admissible for (4) and if $p \leqslant q,\left(\mathfrak{L}^{p}, \complement^{a}\right)$ is admissible. Also, when $\left(A(t), O_{(}(t)\right)$ is q-uniformly observable, the range of P is $\left\{\xi \in E^{n}: C(t) X(t) \xi\right.$ is in $\left.\mathscr{D}\left(E^{i}\right)\right\}$ where $\mathfrak{D}=\mathcal{M}^{q}$ or $\mathbb{L}^{\underline{q}}$.

Let u be in $\mathcal{A}^{p}\left(E^{m}\right)$. Then it follows from Lemma 3.1 in $[7$, p. 524] that

$$
x(t)=\int_{0}^{t} X(t) P X^{-1}(\tau) B(\tau) u(\tau) d \tau-\int_{i}^{\infty} X(t)(I-P) X^{-1}(\tau) B(\tau) u(\tau) d \tau
$$

is well-defined, is a solution of $(4 a)$ and for $t \geqslant 0$,

$$
|x(t)| \leqslant 2 K(1-\exp [-\gamma])^{-1}|B|_{\mathfrak{p}^{\prime}}|u|_{p}
$$

(where we are using 1 instead of δ in $\left.|\cdot|_{p^{\prime}},|\cdot|_{\varnothing>}\right)$. Hence x is in $\mathcal{L}^{\infty}\left(E^{n}\right)$ and $y(t)=$ $=C(t) x(t)$ is in $\mathcal{K}^{a}\left(E^{l}\right)$.

Now suppose $1 \leqslant p<q<\infty$ and let u be in $\mathfrak{L}^{p}\left(\mathbb{E}^{m}\right)$. Then $x(t)$, defined above, is a solution of (4a) and

$$
|x(t)| \leqslant K \int_{0}^{\infty} \exp [-\gamma|t-\tau|]|B(\tau)||u(\tau)| d \tau
$$

Following Hartman [5, p. 477], we estimate

$$
\begin{aligned}
& {\left[\int_{0}^{\infty} \exp [-\gamma|t-\tau|]|B(\tau)||u(\tau)| d \tau\right]^{\alpha}} \\
& =\left[\int_{0}^{\infty}\left\{\exp [-\gamma \alpha|t-\tau|]|B(\tau)||u(\tau)|^{1-(\rho / \theta)}\right\}\{\exp [-\gamma \beta|t-\tau|]|u(\tau)| p / g\} d \tau\right]^{\alpha} \\
& \text { where } \alpha>0, \beta>0, \alpha+\beta=1 \\
& \leqslant\left[\int_{0}^{\infty} \exp [-\gamma \alpha q|t-\tau| /(q-1)]|B(\tau)|^{|q(q-1)|}|u(\tau)|^{\mid(\alpha-p) /(q-1)} d \tau\right]^{q-1} \int_{0}^{\infty} \exp [-\gamma \beta q|t-\tau|]|u(\tau)|^{p} d \tau \\
& \leqslant\left[\int_{0}^{\infty} \exp \left[-\gamma \alpha p^{\prime} \mid t-\tau\right]|B(\tau)|^{\mid p^{\prime}} d \tau\right]^{q(p-1) / p}\left[\int_{0}^{\infty}|u(\tau)|^{p} d \tau\right]^{(q-q) / v} \int_{0}^{\infty} \exp [-\gamma \beta q|t-\tau|]|u(\tau)|^{p} d \tau
\end{aligned}
$$ if $p>1$

and

$$
\leqslant \underset{\tau \geqslant 0}{\operatorname{ess} \sup }|B(\tau)|^{q \cdot} \cdot\left[\int_{0}^{\infty}|u(\tau)| d \tau\right]^{q-1} \cdot \int_{0}^{\infty} \exp [-\gamma \beta q|t-\tau|]|u(\tau)| d \tau \quad \text { if } p=1
$$

In either case and also for $q=p$ (by letting $q \rightarrow p$),

$$
\left.|x(t)|^{\alpha} \leqslant c_{p}^{\alpha}|B|_{p^{p}}^{\alpha}\|u\|_{p}^{\alpha-p} \cdot \int_{0}^{\infty} \exp [-\gamma \beta q \mid t-\tau]\right]|u(\tau)|^{p} d \tau
$$

where $c_{p}=K 2^{1 / p^{\prime}}\left(1-\exp \left[-\gamma \alpha p^{\prime}\right]\right)^{-1 / p^{\prime}}$.
Then for $1 \leqslant p \leqslant q<\infty$,

$$
\begin{aligned}
\int_{0}^{\infty}|C(t) x(t)|^{q} d t & \leqslant c_{p}^{\alpha}|B|_{p^{\prime}}^{\alpha}\|u\|_{p}^{\alpha-p} \int_{0}^{\alpha}|O(t)|^{q} \int_{0}^{\infty} \exp [-\gamma \beta q|t-\tau|]|u(\tau)|^{p} d \tau d t \\
& =c_{p}^{\alpha}|B|_{p^{\prime}}^{\alpha}| | u \|_{p}^{\alpha-p} \int_{0}^{\infty}|u(\tau)|^{p} \int_{0}^{\infty} \exp [-\gamma \beta q|t-\tau|]|C(t)|^{q} d t d \tau \\
& \leqslant 2 e_{p}^{\alpha}(1-\exp [-\gamma \beta q])^{-1}\left(\left.|B|_{p^{\prime}}\|u\|_{p}|C|_{\alpha}\right|^{q}<\infty .\right.
\end{aligned}
$$

Finally, if $(I-P) \xi=0$ then $|X(t) \xi| \leqslant K \exp [-\gamma t]|\xi|$ and it follows that $C(t) X(t) \xi$ is in $£^{q}\left(E^{l}\right)$. On the other hand when $(A(t), C(t))$ is q-uniformly observable, the fact that $O(t) X(t) \xi$ is in $\mathcal{M}^{q}\left(E^{l}\right)$ implies that $X(t) \xi$ is in $\mathscr{L}^{\infty}\left(E^{n}\right)$ and hence $(I-P) \xi=0$. So in this case, the range of P consists exactly of those ξ such that $C(t) X(t) \xi$ is in $D^{\infty}\left(E^{l}\right)$ where \mathfrak{D} is \mathbb{L}^{q} or \mathscr{H}^{q}.

Theorems 4.1 and 4.2 generalize Theorem 3 in [13, p. 125], Theorem 3 in [2, p. 408] and the Theorem in [1], with the difference that we are working on $[0, \infty)$. In the finite-dimensional case, they also generalize Theorem 4.5 in [10, p. 193] and Theorem 2.3 in [9, p. 129].

REFERENCES

[1] B. D. O. Anderson, External and internal stability of linear systems - a new connection, IEEE Trans. Automatic Control, 17 (1972), pp. 107-111.
[2] B. D. O. Anderson - J. B. Moore, New results in linear system stability, SIAM J. Control, 7 (1969), pp. 398-414.
[3] R. W. Brockett, Finite dimensional linear systems, New York, 1970.
[4] W. A. Corpel, Dichotomies in stability theory, Berlin, 1978.
[5] P. Hartman, Ordinary differential equations, New York, 1964.
[6] N. N. Krasovskir, Stability of motion (translated from the Russian by J. L. Brenner), Stanford, 1963.
[7] J. L. Massera - J. J. Schäffer, Linear differential equations and functional analysis, I., Ann. of Math., 67 (1958), pp. 517-573.
[8] J. L. Massera - J. J. Schäffer, Linear differential equations and function spaces, New York, 1966.
[9] M. Megan, On exponential stability of linear control systems in Hilbert spaces, Anal. Univ. Timișoara, 14 (1976), pp. 125-130.
[10] M. Megan, On the input-output stability of linear controllable systems, Canad. Math. Bull., 21 (1978), pp. 187-195.
[11] K. J. Palmer, The structurally stable linear systems on the half-line are those with exponential dichotomies, J. Differ. Equs., 33 (1973), pp. 16-25.
[12] O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930), pp. 703-728.
[13] L. M. Silverman - B. D. O. Anderson, Controllability, observability and stability of linear systems, SLAM J. Control, 6 (1968), pp. 121-130.

