Two Linear Systems Criteria for Exponential Dichotomy (*).

KENNETH J. PALMER (Canberra, Australia) (**)

Summary. – Two criteria, one postulating the existence of a not necessarily positive definite Lyapunov function and the other postulating conditional input-output stability, are given, ensuring that a system of linear differential equations has an exponential dichotomy.

1. - Introduction.

Let A(t) be a locally integrable $n \times n$ matrix function on $[0, \infty)$. Two criteria ensuring that the linear differential equation,

$$\dot{x} = A(t) x ,$$

be uniformly asymptotically stable have been much investigated.

The first criterion postulates the existence of a Lyapunov function $x^*H(t)x$, where H(t) is a bounded, continuously differentiable positive definite Hermitian matrix function satisfying

(2)
$$\dot{H}(t) + H(t)A(t) + A^{*}(t)H(t) \leq -I$$

(cf., for example, KRASOVSKII [6, p. 59] and Theorems 5 and 6 in BROCKETT [3, p. 202]). This has been generalized in two directions.

In [2] ANDERSON and MOORE have shown that if A(t) is continuous and C(t) is a continuous $l \times n$ matrix function such that (A(t), C(t)) is uniformly completely observable then the right hand side of (2) can be replaced by $-C^*(t)C(t)$. In [8] (see also COPPEL [4]) Massera and Schäffer have shown that if we drop the condition that H(t) be positive definite and assume that (1) has bounded growth, then we get a criterion for exponential dichotomy. We prove a result which includes both these generalizations as special cases. Our result uses a generalized observability condition, introduced by MEGAN [9].

The second criterion postulates bounded-input bounded-output stability, i.e. if u(t)

^(*) Entrata in Redazione il 10 gennaio 1979.

^(**) Thanks are due to Mr. W. A. Coppel for suggesting the problems and helpful advice.

is a function in \mathfrak{L}^{∞} then all solutions of

$$\dot{x} = A(t)x + u(t)$$

are in \mathcal{L}^{∞} (see PERRON [12]). This has also been generalized in two directions.

In [13] (see also Theorems 3 in [3, p. 197]) Silverman and Anderson have considered systems,

(4a)
$$\dot{x} = A(t)x + B(t)u,$$

$$(4b) y = C(t) x,$$

where B(t), C(t) are $n \times m$, $l \times n$ matrix functions. They have shown that if A(t), B(t), C(t) are bounded, (A(t), B(t)) is uniformly completely controllable and (A(t), C(t)) is uniformly completely observable then the bounded-input bounded-output stability of (4) is equivalent to the uniform asymptotic stability of (1). In [2] ANDERSON and MOORE weakened the boundedness conditions on A(t), B(t), C(t) and replaced \mathfrak{L}^{∞} by the space \mathcal{M}^2 of piecewise continuous functions with uniformly bounded square norms on intervals of a fixed finite length. In [1] ANDERSON replaced \mathcal{M}^2 by \mathfrak{L}^2 . In [9] and [10] MEGAN has considered \mathfrak{L}^p inputs and \mathfrak{L}^q outputs and used a generalized observability condition.

In their work [8] MASSERA and SCHÄFFER have considered a quite general class of function spaces. Let \mathfrak{B} , \mathfrak{D} be two such function spaces. We say that the pair $(\mathfrak{B}, \mathfrak{D})$ is *admissible* for (3) if whenever u(t) is in \mathfrak{B} there exists a solution x(t) of (3) in \mathfrak{D} . For appropriate choice of $(\mathfrak{B}, \mathfrak{D})$ this yields a criterion for (1) to have an exponential dichotomy.

We have considered pairs $(\mathfrak{L}^p, \mathcal{M}^q)$, $(\mathcal{M}^p, \mathcal{M}^q)$, $(\mathfrak{L}^p, \mathfrak{L}^q)$ $(1 \leq p, q \leq \infty)$ and give criteria that (1) have an exponential dichotomy in terms of the admissibility of these pairs for (4), under the assumption that $(\mathcal{A}(t), \mathcal{B}(t))$ and $(\mathcal{A}(t), \mathcal{C}(t))$ satisfy generalized controllability and observability conditions. Our technique is to use a duality argument to reduce the problem to the case considered by Massera and Schäffer. We note that our results give a complete answer to the problem posed by Anderson at the end of [1].

2. – Preliminaries.

For the whole of this paper, A(t), B(t), C(t) are locally integrable $n \times n$, $n \times m$, $l \times n$ matrix functions on $[0, \infty)$.

The system (1) is said to have bounded growth (resp. decay) if there are constants M > 0, $L \ge 0$ such that

$$|\varphi(t, \tau)| = |X(t) X^{-1}(\tau)| \leq M \exp\left[L|t - \tau|\right]$$

for $0 \leq \tau \leq t$ (resp. $0 \leq t \leq \tau$), where X(t) is the fundamental matrix for (1) with X(0) = I. [$|\cdot|$ denotes the Euclidean norm when the argument is a vector in *n*-dimensional Euclidean space E^n and the corresponding operator norm when the argument is a matrix.]

(1) is said to have an exponential dichotomy if there exist constants K > 0, $\gamma > 0$ and a projection P (i.e. $P^2 = P$) such that

$$|X(t) P X^{-1}(\tau)| \leq K \exp\left[-\gamma(t-\tau)\right] \quad \text{for } 0 \leq \tau \leq t$$

and

$$|X(t)(I-P)X^{-1}(\tau)| \leqslant K \exp\left[-\gamma(\tau-t)
ight] \quad \text{for } 0 \leqslant t \leqslant \tau.$$

If $1 \leq p \leq \infty$, we say that the pair (A(t), B(t)) is *p*-uniformly controllable (cf. [9, p. 126]) if for some $\delta > 0$ there exists $\varrho > 0$ such that for all $t \geq 0$ and all ξ in E^n ,

$$\begin{split} & \int_{t}^{t+\delta} |B^*(\tau)\varphi^*(t+\delta,\tau)\xi|^p d\tau \geqslant \varrho^{-p} |\xi|^p \qquad (\text{when } p < \infty) \,, \\ & \underset{t \leqslant \tau \leqslant t+\delta}{\text{ess sup }} |B^*(\tau)\varphi^*(t+\delta,\tau)\xi| \geqslant \varrho^{-1} |\xi| \qquad (\text{when } p = \infty) \,, \end{split}$$

where * denotes the conjugate transpose.

If $1 \le p < q \le \infty$, Hölder's inequality shows that *p*-uniform controllability implies *q*-uniform controllability. On the other hand, when B(t) is essentially bounded and (1) has bounded growth the inequality

$$\int\limits_t^{t+\delta} |B^*(\tau) \varphi^*(t+\delta, \tau) \xi|^q d\tau \leqslant (NM \exp [L\delta] |\xi|)^{q-p} \int\limits_t^{t+\delta} |B^*(\tau) \varphi^*(t+\delta, \tau) \xi|^p d\tau ,$$

where $N = \underset{t \ge 0}{\operatorname{ess sup}} |B(t)|$, shows that q-uniform controllability implies p-uniform controllability for $1 \le p < q < \infty$.

(A(t), B(t)) is defined to be uniformly completely controllable (cf. [2, p. 400]) if (1) has bounded growth and decay, (A(t), B(t)) is 2-uniformly controllable and there exists a constant $\alpha \ge 0$ such that

$$\xi^{t+\delta} \xi^* \int \varphi(t+\delta,\tau) B(\tau) B^*(\tau) \varphi^*(t+\delta,\tau) d\tau \cdot \xi \leq \alpha |\xi|^2$$

for all $t \ge 0$ and ξ in E^n . From equation (10) in [2, p. 400] it is clear, using the bounded growth and decay, that this last condition can be replaced by $\sup_{t\ge 0} \int |B(\tau)|^2 d\tau < \infty$.

Finally, (A(t), C(t)) is said to be *p*-uniformly observable if $(A^*(t), C^*(t))$ is *p*-uniformly controllable.

3. - Lyapunov function criterion.

The following theorems generalize Theorem 5 in [2, p. 411] with the differences that we restrict ourselves to $[0, \infty)$ and the derivative of the Lyapunov function along a solution satisfies an inequality rather than an equality. They also generalize Propositions 1 and 2 in Lecture 7 of [4] and, in the finite-dimensional case, Theorems 92.B and 92.A in [8, pp. 324, 321].

A vector function on $[0, \infty)$ is said to be *absolutely continuous* if it is absolutely continuous on every compact subinterval.

THEOREM 3.1. – If (1) has an exponential dichotomy and for some p ($1 \le p < \infty$),

$$\sup_{t \geqslant 0} \int\limits_t^{t+1} |C(\tau)|^p d\tau < \infty \,,$$

there exists a continuous function $V: [0, \infty) \times E^n \to \mathbf{R}$ with the following properties:

- (i) $V(t, \lambda x) = |\lambda|^p V(t, x)$ for all t, x and real λ ;
- (ii) there exists $\beta > 0$ such that

$$|V(t,x)| \leq \beta |x|^p$$
 for all t, x ;

(iii) if x(t) is a solution of (1), then V(t, x(t)) is absolutely continuous and

$$\frac{d}{dt} V(t, x(t)) \leqslant - |C(t)x(t)|^p \quad \text{a.e.}.$$

We define

$$2^{1-p} V(t, \dot{x}) = \int_{t}^{\infty} |C(\tau) X_{1}(\tau, t) x|^{p} d\tau - \int_{0}^{t} |C(\tau) X_{2}(\tau, t) x|^{p} d\tau ,$$

where

$$X_1(t, \tau) = X(t) P X^{-1}(\tau) , \quad X_2(t, \tau) = X(t) (I - P) X^{-1}(\tau) .$$

Using Lemma 3.1 in Massera and Schäffer [7, p. 524],

$$2^{1-p}|V(t,x)| \leq K^p \Big[\int_t^\infty \exp\left[-p\gamma(\tau-t)\right] |C(\tau)|^p d\tau + \int_0^t \exp\left[-p\gamma(t-\tau)\right] |C(\tau)|^p d\tau \Big] |x|^p \leq 2^{1-p}\beta |x|^p,$$

where

$$eta = 2^p K^p (1 - \exp\left[-p\gamma
ight])^{-1} \cdot \sup_{t \ge 0} \int\limits_t^{t+1} |C(\tau)|^p d au$$

Moreover, if x(t) = X(t)x(0) is a solution of (1), then

$$2^{1-p}V(t,x(t)) = \int_{t}^{\infty} |C(\tau)X_{1}(\tau,\tau)x(\tau)|^{p}d\tau - \int_{0}^{t} |C(\tau)X_{2}(\tau,\tau)x(\tau)|^{p}d\tau$$

is absolutely continuous and for almost all t,

$$\begin{split} \frac{d}{dt} V(t, x(t)) &= -2^{p-1} \big[|C(t) X_1(t, t) x(t)|^p + |C(t) X_2(t, t) x(t)|^p \big] < \\ &\leq - \big[|C(t) X_1(t, t) x(t)| + |C(t) X_2(t, t) x(t)| \big]^p < - |C(t) x(t)|^p \,. \end{split}$$

To prove a converse of this theorem we use the following lemma, which generalizes a result mentioned in the remarks at the end of Section 2 in PALMER [11].

LEMMA 3.1. – Suppose (1) has bounded growth and there exists a continuous function $V: [0, \infty) \times E^n \to \mathbf{R}$ with the following properties:

- (i) $a(r) = \sup \{ |V(t, x)| : t \ge 0, |x| \le r \} < \infty \text{ for all } r > 0;$
- (ii) there exists $\delta > 0$ such that if x(t) is a solution of (1), V(t, x(t)) is nonincreasing and for all $t \ge 0$,

$$V(t + \delta, x(t + \delta)) - V(t, x(t)) \leq -b(|x(t + \delta)|),$$

where b(r) is a nonnegative nondecreasing function for r > 0 with b(r) > 0 if r is large enough.

Then (1) has an exponential dichotomy.

Choose $\Delta > 0$ so that $b(\Delta) > 0$. Suppose x(t) is a solution of (1) such that for some t_0 ,

$$V(t_0) = V(t_0, x(t_0)) < -a(\Delta)$$
.

Then if $t \ge t_0$,

$$-a(|x(t)|) \leqslant V(t) \leqslant V(t_0) < -a(\varDelta)$$

and so $|x(t)| > \Delta$ if $t \ge t_0$. Given $t \ge t_0$, there exists a positive integer m such that

 $t_0 + m\delta \leq t < t_0 + (m+1)\delta$. Then

$$\begin{split} V(t) - V(t_0) &\leq V(t_0 + m\delta) - V(t_0) \\ &= \sum_{p=1}^{m} \left[V(t_0 + p\delta) - V(t_0 + (p-1)\delta) \right] \\ &< -\sum_{p=1}^{m} b \left(|x(t_0 + p\delta)| \right) \\ &< -mb(\varDelta) \\ &\leq - \left[\delta^{-1}(t - t_0) - 1 \right] b(\varDelta) \;. \end{split}$$

So $V(t) \to -\infty$ as $t \to \infty$. Also $a(|x(t)|) \ge -V(t) \to \infty$ and hence $|x(t)| \to \infty$ as $t \to \infty$.

Now let x(t) be a solution of (1) such that |x(0)| = 1 and $V(t, x(t)) \ge -a(\Delta)$ for all $t \ge 0$. Then if $\sigma > 0$, $\sigma x(t)$ is also a solution of (1) and $V(t) = V(t, \sigma x(t)) \ge -a(\Delta)$ for all $t \ge 0$. [Otherwise $\sigma |x(t)| \to \infty$ as $t \to \infty \Rightarrow |x(t)| \to \infty \Rightarrow V(t, x(t)) \to -\infty$.] For all positive integers m,

$$- a(\sigma) \leq -V(0)$$

$$\leq V(m\delta) - V(0) + a(\varDelta)$$

$$= \sum_{p=1}^{m} [V(p\delta) - V((p-1)\delta)] + a(\varDelta)$$

$$\leq -\sum_{n=1}^{m} b(\sigma |x(p\delta)|) + a(\varDelta) .$$

So $\sum_{p=1}^{\infty} b(\sigma |x(p\delta)|) < \infty$ and hence $\liminf_{p \to \infty} \sigma |x(p\delta)| \leq \Delta$ for all $\sigma > 0$. This implies that $\liminf_{p \to \infty} |x(t)| = 0$.

Let t_m be the least value such that $|x(t_m)| = \exp[-m]$. Then $0 = t_0 < t_1 < \dots$. There exists an integer p such that $t_m + p \delta < t_{m+1} < t_m + (p+1) \delta$. With $\sigma = -\Delta \exp[m+1]$ and $V(t) = V(t, \sigma x(t))$,

$$\begin{aligned} -a(\varDelta e) &< -V(t_m) \\ &\leq \sum_{q=1}^{p} \left[V(t_m + q\delta) - V(t_m + (q-1)\delta) \right] + a(\varDelta) \\ &\leq -\sum_{q=1}^{p} b(\sigma | x(t_m + q\delta) |) + a(\varDelta) \\ &\leq -pb(\sigma | x(t_{m+1}) |) + a(\varDelta) \\ &= -pb(\varDelta) + a(\varDelta) . \end{aligned}$$

Hence $t_{m+1} - t_m < (p+1) \, \delta \leq [b(\Delta)^{-1}(a(\Delta e) + a(\Delta)) + 1] \, \delta$ for all *m*. Using the bounded growth, it follows as in [4, p. 62] that there exist constants K > 0 and $\gamma > 0$, depending on M, L, δ and the functions *a* and *b*, such that

(5)
$$|x(t)| \leq K \exp\left[-\gamma(t-\tau)\right] |x(\tau)| \quad \text{if } 0 \leq \tau \leq t.$$

Let U_1 be the subspace of E^n consisting of initial values of bounded solutions of (1) and let U_2 be any fixed subspace supplementary to U_1 . Then, as in [4, p. 62], we can show that exists T > 0 such that $V(T, X(T)\xi) < -a(1)$ if $\xi \in U_2$, $|\xi| = 1$. This means that $|X(t)\xi| > 1$ if $t \ge T$.

Consider a particular solution $x(t) = X(t)\xi$ with $\xi \in U_2$, $|\xi| = 1$. Since $|x(t)| \to \infty$ there exists a greatest value t_m such that $|x(t_m)| = \exp[m]$. Then $0 < t_0 < t_1 < ...$ and $t_0 < T$. Let p be an integer such that $t_m + p\delta < t_{m+1} < t_m + (p+1)\delta$. With $\sigma = \Delta \exp[-m]$ and $V(t) = V(t, \sigma x(t))$,

$$\begin{aligned} -a(\varDelta e) - a(\varDelta) &= -a(\sigma | x(t_{m+1}) |) - a(\sigma | x(t_m) |) \\ &\leq V(t_{m+1}) - V(t_m) \\ &\leq \sum_{q=1}^{p} \left[V(t_m + q\delta) - V(t_m + (q-1)\delta) \right] \\ &< -\sum_{q=1}^{p} b(\sigma | x(t_m + q\delta) |) \\ &\leq -pb(\sigma | x(t_m) |) \\ &= -pb(\varDelta) . \end{aligned}$$

So $t_{m+1} - t_m < (p+1) \delta \leq [b(\varDelta)^{-1}(a(\varDelta e) + a(\varDelta)) + 1] \delta$. Using the bounded growth it follows that there exist constants $K > 0, \gamma > 0$ as before such that

(6)
$$|x(t)| \leq K \exp\left[-\gamma(\tau-t)\right] |x(\tau)| \quad \text{if } T \leq t \leq \tau.$$

(5) and [6), together with the bounded growth, imply that (1) has an exponential dichotomy.

We now state our converse of Theorem 3.1.

THEOREM 3.2. – Suppose (1) has bounded growth and for some $p, 1 \leq p < \infty$, (A(t), C(t)) is p-uniformly observable. If $V: [0, \infty) \times E^n \to \mathbf{R}$ is a continuous function such that

(i) $\sup \{ |V(t, x)| : t \ge 0, |x| \le r \} < \infty$ for all r > 0,

(ii) for all solutions x(t) of (1), V(t, x(t)) is absolutely continuous and for almost all t,

$$\frac{d}{dt}V(t, x(t)) \leqslant - |C(t)x(t)|^p,$$

then (1) has an exponential dichotomy.

The hypotheses imply that if x(t) is a solution of (1) then V(t, x(t)) is nonincreasing and moreover,

$$egin{aligned} Vig(t+\delta,x(t+\delta)ig) &- Vig(t,x(t)ig) &< -\int\limits_t^{t+\delta} |C(au)\,x(au)|^p\,d au \ &= -\int\limits_t^{t+\delta} |C(au)\,arphi(au,\,t+\delta)\,x(t+\delta)|^p\,d au \ &< -arrho^{-p}|x(t+\delta)|^p \ . \end{aligned}$$

Hence the conditions of Lemma 3.1 are fulfilled with $b(r) = \rho^{-p} r^{p}$.

4. - Admissibility criteria.

We introduce the Banach function spaces: \mathbb{C}^p $(1 \leq p < \infty)$, the real *p*-integrable functions f on $[0, \infty)$ with norm,

$$||f||_{p} = \left[\int_{0}^{\infty} |f(t)|^{p} dt\right]^{1/p};$$

 \mathfrak{L}^{∞} , the essentially bounded real measurable functions f with norm

$$||f||_{\infty} = \operatorname{ess\,sup}_{t \ge 0} |f(t)|;$$

 \mathcal{M}^{p} $(1 \leq p < \infty)$, the real measurable functions f such that for some $\delta > 0$,

$$\sup_{t\geq 0}\left[\int_{t}^{t+\delta}|f(\tau)|^{p}\,d\tau\right]^{1/p}<\infty\,,$$

which we use as norm and denote by $|f|_{p}$. Finally we define $\mathcal{M}^{\infty} = \mathcal{L}^{\infty}$ and $|\cdot|_{\infty} = \|\cdot\|_{\infty}$.

A typical one of our Banach spaces we denote as \mathcal{B} and its corresponding norm as $\|\cdot\|_{\mathcal{B}}$. We also consider intersections $\mathcal{B}_1 \cap \mathcal{B}_2$ of two of our spaces with norm

 $\|\cdot\|_{\mathcal{B}_1} + \|\cdot\|_{\mathcal{B}_2}$ and also associate spaces \mathcal{B}' (cf. [8, p. 50]). A real measurable function f is in \mathcal{B}' if

$$\sup\left\{\int\limits_{0}^{\infty} |f(t)||g(t)|dt\colon g\in\mathfrak{B}, \; \left\|g
ight\|_{\mathfrak{B}}=1
ight\}<\infty.$$

With this as norm, \mathfrak{B}' is then a Banach space. In particular, $(\mathfrak{L}^p)' = \mathfrak{L}^{p'}$ for $1 \leq p \leq \infty$, where $p^{-1} + p'^{-1} = 1$.

If F is a finite-dimensional Banach space with norm $|\cdot|_F$ we denote by $\mathfrak{B}(F)$ the vector space of measurable functions $f: [0, \infty) \to F$ such that $|f|_F: [0, \infty) \to \mathbf{R}$ is in \mathfrak{B} . Clearly, $\mathfrak{B}(F)$ is a Banach space with norm $||f|_F||_{\mathfrak{B}}$, which we write without ambiguity as $||f||_{\mathfrak{B}}$.

Let $\mathfrak{B}, \mathfrak{D}$ be two of our Banach spaces. We say that the pair $(\mathfrak{B}, \mathfrak{D})$ is admissible for the system (4) if for any input u in $\mathfrak{B}(E^m)$ there is at least one output y in $\mathfrak{D}(E^i)$. Let $P: E^n \to E^n$ be a projection with range the following subspace,

$$\{\xi \in E^n \colon C(t) X(t) \xi \text{ is in } \mathfrak{D}(E^i)\}$$
.

Then we define a linear mapping $\theta: \mathfrak{B}(E^m) \to \mathfrak{D}(E^i)$ by

$$(\theta u)(t) = C(t) \left[\tilde{x}(t) - X(t) P \tilde{x}(0) \right],$$

where $\tilde{x}(t)$ is a solution of (4a) such that $C(t)\tilde{x}(t)$ is in $\mathfrak{D}(E^1)$. So $(\theta u)(t) = C(t)x(t)$ where x(t) is the unique solution of (4a) such that C(t)x(t) is in $\mathfrak{D}(E^1)$ and Px(0) = 0.

We now prove a useful little lemma.

LEMMA 4.1. – Suppose (1) has bounded decay and that for some $r, 1 \leq r \leq \infty$, (A(t), C(t)) is r-uniformly observable. If x(t) is a solution of (4a) then for $t \geq \delta$,

$$\begin{split} \varrho^{-1}|x(t)| &\leqslant \prod_{t=\delta}^{t} |C(\tau)x(\tau)|^r d\tau \Big]^{1/r} + M \exp\left[L\delta\right] \prod_{t=\delta}^{t} |C(\tau)|^r d\tau \Big]^{1/r} \int_{t=\delta}^{t} |B(\tau)u(\tau)| d\tau \qquad (r < \infty) \\ \varrho^{-1}|x(t)| &\leqslant \operatorname{ess\,sup}_{t=\delta\leqslant\tau\leqslant t} |C(\tau)x(\tau)| + M \exp\left[L\delta\right] \operatorname{ess\,sup}_{t=\delta\leqslant\tau\leqslant t} |C(\tau)| \int_{t=\delta}^{t} |B(\tau)u(\tau)| d\tau \qquad (r = \infty) \,. \end{split}$$

In particular if $|C|_r < \infty$, $|B|_{r'} < \infty$ and $u \in \mathcal{L}^r(E^m)$, x(t) is in $\mathcal{L}^r(E^n)$ if and only if C(t)x(t) is in $\mathcal{L}^r(E^1)$.

Suppose r > 0. For $t \ge \delta$,

$$\begin{split} \varrho^{-1}|x(t)| &\leq \prod_{t=\delta}^{t} |C(\tau)\varphi(\tau,t)x(t)|^{r} d\tau \Big]^{1/r} \\ &= \prod_{t=\delta}^{t} |C(\tau)x(\tau)| + \int_{\tau}^{t} C(\tau)\varphi(\tau,s)B(s)u(s)ds \Big|^{r} d\tau \Big]^{1/r} \end{split}$$

by the variation of constants formula

$$\leq \left[\int_{t-\delta}^{t} |C(\tau)x(\tau)|^{r} d\tau\right]^{1/r} + \left[\int_{t-\delta}^{t} \int_{\tau}^{t} C(\tau)\varphi(\tau,s)B(s)u(s)ds \Big|^{r} d\tau\right]^{1/r}$$

by Minkowski's inequality.

If $r = \infty$, then for $t \ge \delta$,

$$\varrho^{-1}|x(t)| \leq \underset{t-\delta \leq \tau \leq t}{\operatorname{ess sup}} |C(\tau)\varphi(\tau,t)x(t)| = \underset{t-\delta \leq \tau \leq t}{\operatorname{ess sup}} \left|C(\tau)x(\tau) + \int_{\tau}^{t} C(\tau)\varphi(\tau,s)B(s)u(s)ds\right|.$$

The inequalities follow immediately.

Suppose now that $|C|_r < \infty$, $|B|_{r'} < \infty$ and u is in $\mathfrak{L}^r(E^m)$. Then if C(t)x(t) is in $\mathfrak{L}^r(E^1)$ it is clear from the inequalities that x(t) is in $\mathfrak{L}^r(E^n)$.

Suppose now that x(t) is in $\mathfrak{L}^r(\mathbb{E}^n)$. If $r = \infty$, then clearly C(t)x(t) is in $\mathfrak{L}^\infty(\mathbb{E}^n)$. Suppose $r < \infty$. Then

$$\int_{0}^{\infty} |C(t)x(t)|^{r} dt = \sum_{\nu=0}^{\infty} \int_{\nu\delta}^{(\nu+1)\delta} |C(t)x(t)|^{r} dt.$$

By the variation of constants formula and bounded decay,

$$|x(t)| \leq M \exp \left[L\delta \right] \left[|x(s)| + |B|_r \left\{ \int_t^s |u(\tau)|^r d\tau \right\}^{1/r} \right]$$

if $t \leq s \leq t + \delta$, and so with $N = 2^{r-1} M^r \exp[rL\delta]$,

$$|x(t)|^{r} \leq N \Big[|x(s)|^{r} + |B|^{r}_{r'} \int_{t}^{s} |u(\tau)|^{r} d\tau \Big] .$$

Hence

$$\int_{\nu\delta}^{(\nu+1)\delta} |C(t) x(t)|^{r} dt \leq N |C|_{r}^{r} \Big[|x((\nu+1) \delta)|^{r} + |B|_{r'}^{r} \int_{\nu\delta}^{(\nu+1)\delta} |u(\tau)|^{r} d\tau \Big] \\ \leq N |C|_{r}^{r} \Big[N \Big(\delta^{-1} \int_{(\nu+1)\delta}^{(\nu+2)\delta} |x(s)|^{r} ds + |B|_{r'}^{r} \int_{(\nu+1)\delta}^{(\nu+2)\delta} |u(\tau)|^{r} d\tau \Big) + |B|_{r'}^{r} \int_{\nu\delta}^{(\nu+1)\delta} |u(\tau)|^{r} d\tau \Big]$$

and therefore

$$\int_{0}^{\infty} |C(t) x(t)|^{r} dt \leq N |C|_{r}^{r} \Big[N \delta^{-1} \int_{1}^{\infty} |x(t)|^{r} dt + (N+1) |B|_{r}^{r} \int_{0}^{\infty} |u(\tau)|^{r} d\tau \Big] < \infty.$$

Lemma 4.1 enables us to show that the operator θ is bounded in certain circumstances.

LEMMA 4.2. – Suppose that (1) has bounded decay and for some pair $(p, q), 1 \leq p$, $q \leqslant \infty, \ |B|_{v'} < \infty, \ |C|_q < \infty \ and \ (A(t), C(t)) \ is \ q$ -uniformly observable. Then if $\mathfrak{B} = \mathfrak{L}^p$, $\mathfrak{D} = \mathfrak{L}^q$ or \mathcal{M}^q and $(\mathfrak{B}, \mathfrak{D})$ is admissible for (4), θ is a bounded linear operator.

If u is in $\mathfrak{B}(E^m)$, $(\theta u)(t) = C(t)x(t)$ where x(t) is the unique solution of (4a) such that C(t)x(t) is in $\mathfrak{D}(E^{i})$ and Px(0) = 0. By Lemma 4.1 with r = q,

(7)
$$\varrho^{-1}|x(t)| \leq \left\| \theta u \right\|_{\mathfrak{D}} + M \exp\left[L\delta \right] |C|_{\mathfrak{q}} |B|_{\mathfrak{p}'} \left\| u \right\|_{\mathfrak{B}} \quad \text{if } t \geq \delta.$$

Suppose $u_v \to u$ is $\mathcal{B}(E^m)$ and $\theta u_v \to y$ in $\mathfrak{D}(E^i)$. We can write $(\theta u_v)(t) = C(t)x_v(t)$, as above. Applying (7) to $u = u_v - u_u$, it follows that $x_v(t)$ is uniformly convergent on $[\delta, \infty)$ to a function x(t). Moreover, by Theorem 31.D in [8, p. 89], x(t) is a solution of (4a) on $[\delta, \infty)$. We extend it to $[0, \infty)$ and the variation of constants formula then implies that $x_{v}(t) \rightarrow x(t)$ uniformly on $[0, \delta]$ also. In particular, Px(0) = 0.

Finally, for all $t \ge 0$,

$$\int_{t}^{t+\delta} |C(\tau) x(\tau) - y(\tau)| d\tau \leqslant \int_{t}^{t+\delta} |C(\tau)| |x(\tau) - x_{\nu}(\tau)| d\tau + \int_{t}^{t+\delta} |(\theta u_{\nu})(\tau) - y(\tau)| d\tau$$
$$\to 0 \quad \text{as } \nu \to \infty.$$

Hence y(t) = C(t)x(t) a.e. and so $y = \theta u$. The conclusion of the lemma then follows from the closed graph theorem.

REMARKS. - (i) Note that if, under the conditions of Lemma 4.2, we just assume that for inputs in a dense subset of $\mathfrak{B}(E^m)$ there is an output in $\mathfrak{D}(E^i)$ but in addition assume that the operator θ (now only defined on a dense subset of $\mathfrak{B}(E^m)$) is bounded (as, for example, in [2]), then the admissibility of $(\mathcal{B}, \mathcal{D})$ can be deduced by the method used in the proof of the lemma.

(ii) In [1], [2], [3], [9], [10], [13] it is assumed that for all inputs u in $\mathfrak{B}(E^m)$ the zero-state output,

$$y(t) = C(t) \int_{0}^{t} X(t) X^{-1}(\tau) B(\tau) u(\tau) d\tau ,$$

14 - Annali di Matematica

is in $\mathfrak{D}(E^i)$. We show under the conditions of Lemma 4.2 and the additional condition that $(\mathcal{A}(t), \mathcal{B}(t))$ be p'-uniformly controllable that this implies all outputs are in $\mathfrak{D}(E^i)$, when the input u is in $\mathfrak{B}(E^m)$.

Let P and θ be as defined above and suppose u is in $\mathfrak{B}(E^m) = \mathfrak{L}^p(E^m)$. From the definition of θ , it is clear that $y(t) = (\theta u)(t)$. Also if u(t) = 0 when $t \ge \delta$, $(\theta u)(t) = C(t)x(t)$, where

$$x(t) = \int_{0}^{t} X(t) P X^{-1}(\tau) B(\tau) u(\tau) d\tau - \int_{t}^{\infty} X(t) (I-P) X^{-1}(\tau) B(\tau) u(\tau) d\tau ,$$

since x(t) is a solution of (4a) such that Px(0) = 0 and C(t)x(t) is in $\mathfrak{D}(E^t)$ ($x(t) = X(t) P \int_{0}^{\delta} X^{-1}(\tau) B(\tau) u(\tau) d\tau$ if $t \ge \delta$ and $|C|_q < \infty$).

Equating y(t) with C(t)x(t), we get

$$C(t) X(t) (I - P) \int_{0}^{\delta} X^{-1}(\tau) B(\tau) u(\tau) d\tau = 0$$

for $t \ge \delta$. By the observability property of (A(t), C(t)), this means that

(8)
$$(I-P) \int_{0}^{\delta} X^{-1}(\tau) B(\tau) u(\tau) d\tau = 0 .$$

Now, for $\xi \in E^n$, define

$$u(t) = \begin{cases} |B^*(t) X^{*-1}(t)(I - P^*)\xi|^{\alpha} B^*(t) X^{*-1}(t)(I - P^*)\xi & \text{if } 0 \leq t \leq \delta, \\ 0 & \text{if } t > \delta, \end{cases}$$

where α is $(p^{-1}p'-1)$ if p>1 and 0 if p=1. Then u is in $\mathfrak{L}^p(\mathbb{E}^m)$ and so, by (8),

$$\xi^*(I-P)\int_0^{\delta} X^{-1}(\tau) B(\tau) u(\tau) d\tau = \int_0^{\delta} |B^*(\tau) X^{*-1}(\tau)(I-P^*) \xi|^{2+\alpha} d\tau = 0.$$

Using the controllability property of (A(t), B(t)), it follows that $(I - P^*)\xi = 0$ for all ξ and hence P = I, which is what we want.

We now prove a *duality* result.

LEMMA 4.3. – Under the assumptions of Lemma 4.2, (D', B') is admissible for the adjoint system,

- (9a) $\dot{z} = -A^*(t)z C^*(t)v$,
- $(9b) w = -B^*(t)z.$

Moreover when $\mathfrak{D} = \mathfrak{L}^{\mathfrak{q}}$, $(p, q) \neq (1, \infty)$ and (A(t), B(t)) is p'-uniformly controllable, the associated projection can be taken as $(I - P^*)$.

The proof is a modification of the proofs of Theorems 54.E and 53.E in [8, pp. 156, 152].

Let $v \in \mathfrak{D}'(E^{i})$ be given and let z(t) be the solution of (9a) such that

$$z(0) = \int_{0}^{\infty} P^* X^*(t) C^*(t) v(t) dt .$$

Suppose $u \in \mathfrak{B}(E^m)$ and u(t) = 0 if $t \ge s$. Then $(\theta u)(t) = C(t)x(t)$, where x(t) is a solution of (4a) such that Px(0) = 0. Note that $(I - P) X^{-1}(s) x(s) = 0$ since $x_{\infty}(t) = X(t) X^{-1}(s) x(s)$ is a solution of (1) such that $C(t) x_{\infty}(t)$ is in $\mathfrak{D}(E^i)$ $(x_{\infty}(t) = x(t)$ for $t \ge s$ and $|C|_q < \infty$).

Now

$$\int_{0}^{s} z^{*}(t) B(t) u(t) dt = z^{*}(s) x(s) - z^{*}(0) x(0) + \int_{0}^{s} v^{*}(t) C(t) x(t) dt$$
$$= z^{*}(s) x(s) + \int_{0}^{s} v^{*}(t) C(t) x(t) dt.$$

Since

$$\frac{dt}{d} z^*(t) x_{\infty}(t) = - v^*(t) C(t) x_{\infty}(t) ,$$

we have

$$\begin{aligned} z^*(s) \, x(s) &= z^*(0) \, X^{-1}(s) \, x(s) - \int_0^s v^*(t) \, C(t) \, x_{\infty}(t) \, dt \\ &= \int_0^\infty v^*(t) \, C(t) \, X(t) \, P X^{-1}(s) \, x(s) \, dt - \int_0^s v^*(t) \, C(t) \, x_{\infty}(t) \, dt \\ &= \int_0^\infty v^*(t) \, C(t) \, X(t) \, X^{-1}(s) \, x(s) \, dt - \int_0^s v^*(t) \, C(t) \, x_{\infty}(t) \, dt \\ &= \int_s^\infty v^*(t) \, C(t) \, x(t) \, dt \; . \end{aligned}$$

 \mathbf{So}

$$\int_{0}^{s} z^{*}(t) B(t) u(t) dt = \int_{0}^{\infty} v^{*}(t) C(t) x(t) dt$$

and hence, using Lemma 4.2 with $\|\theta\|$ as the operator norm of θ ,

$$\left|\int_{0}^{s} z^{*}(t) B(t) u(t) dt\right| < \left\|\theta\right\| \left\|v\right\|_{\mathfrak{D}^{\prime}} \left\|u\right\|_{\mathfrak{B}}.$$

Replacing u by

 u_1

$$(t) = \left\{ egin{array}{ll} |u(t)||B^{*}(t)z(t)|^{-1}B^{*}(t)z(t) & ext{if} \ B^{*}(t)z(t)
eq 0, \ 0 & ext{otherwise}, \end{array}
ight.$$

we get

(10)
$$\int_{0}^{\infty} |B^{*}(t)z(t)| |u(t)| dt \leq \left\|\theta\right\| \left\|v\right\|_{\mathfrak{D}'} \left\|u\right\|_{\mathfrak{B}}.$$

Finally, if $u \in \mathfrak{B}(E^m)$ is arbitrary, then for all $s \ge 0$ with $\chi_{[0,s]}$ as the characteristic function of [0, s],

$$\int_{0}^{s} |B^{*}(t) z(t)| |u(t)| dt = \int_{0}^{\infty} |B^{*}(t) z(t)| |(\chi_{[0,s]} u)(t)| dt$$
$$\leq ||\theta|| ||v||_{\mathfrak{D}'} ||\chi_{[0,s]} u||_{\mathfrak{B}} \quad \text{by (10)}$$
$$\leq ||\theta|| ||v||_{\mathfrak{D}'} ||u||_{\mathfrak{B}}$$

and so (10) holds for all u in $\mathfrak{B}(E^m)$. Hence $|B^*(t)z(t)|$ is in \mathfrak{B}' and $B^*(t)z(t)$ is in $\mathfrak{B}'(E^m)$. Now if we put $z(t) = X^{*-1}(t)(I - P^*)\xi$ in the above, we get

$$\int_{0}^{s} z^{*}(t) B(t) u(t) dt = -\xi^{*} x(0)$$

and hence, using (31.5) in [8, p. 87] and Lemma 4.1 with r = q,

$$\begin{split} \left| \int_{0}^{s} z^{*}(t) B(t) u(t) dt \right| &< |\xi| \Big[|x(\delta)| + \int_{0}^{\delta} B(t) u(t) |dt \Big] \exp \left[\int_{0}^{\delta} |A(t)| dt \Big] \\ &\leq |\xi| \exp \left[\int_{0}^{\delta} |A(t)| dt \right] \Big[\varrho \left\| \theta \right\| + \left(\varrho M \exp \left[L\delta \right] |C|_{q} + 1 \right) |B|_{p'} \Big] \left\| u \right\|_{\mathcal{B}} \,. \end{split}$$

It follows as above that $B^*(t)z(t)$ is in $\mathfrak{B}'(E^m) = \mathfrak{L}^{p'}(E^m)$ for all ξ .

Now suppose $\mathfrak{D} = \mathfrak{L}^q$, $(p, q) \neq (1, \infty)$ and (A(t), B(t)) is p'-uniformly controllable. Suppose there exists ξ such that $P^*\xi \neq 0$ and $B^*(t) X^{*-1}(t)\xi$ is in $\mathfrak{B}'(E^m) =$ = $\mathfrak{L}^{p'}(E^m)$. By the p'-uniform controllability of (A(t), B(t)), $z(t) = X^{*-1}(t)\xi$ is in $\mathfrak{L}^{p'}(E^n)$. Similarly, $x(t) = X(t) PP^*\xi$ is in $\mathfrak{L}^q(E^n)$ and also, $x^*(t)z(t) = |P^*\xi|^2$ for all t.

When $q < \infty$, we deduce that $|x(t)|^{-1} \leq |P^*\xi|^{-2}|z(t)|$ so that $|x(t)|^{-1}$ is in $\mathfrak{L}^{p'}(E^n)$. But, using the bounded decay of (1), we have

$$|x(t)|^{-1} \leqslant M e^{L} \int_{t-1}^{t} |x(\tau)|^{-1} d\tau$$

and hence $\inf_{i \ge 1} |x(t)| > 0$, contradicting $x \in \mathbb{C}^{q}(E^{n})$. When $q = \infty$ and p > 1, we get $|z(t)| \ge ||x||_{\infty}^{-1} |P^{*}\xi|^{2}$, contradicting $z \in \mathbb{C}^{p'}(E^{n})$. Hence, under our additional conditions, we have proved that $B^{*}(t) X^{*-1}(t)\xi$ is in $\mathbb{C}^{p'}(E^{m})$ if and only if $P^{*}\xi = 0$.

We now use our lemmas to prove the following theorem.

THEOREM 4.1. – Suppose that for some pair (p, q), where $1 \leq p, q \leq \infty$ but $(p, q) \neq (1, \infty)$,

- (i) (1) has bounded growth and decay,
- (ii) $|B|_{p'} < \infty$ and (A(t), B(t)) is p'-uniformly controllable (p' = p/(p-1)),
- (iii) $|C|_{a} < \infty$ and (A(t), C(t)) is q-uniformly observable, and
- (iv) $(\mathfrak{L}^p, \mathcal{M}^q)$ is admissible for (4) when p > 1, $(\mathfrak{L}^1, \mathfrak{L}^q)$ is admissible for (4) when p = 1.
- Then (1) has an exponential dichotomy with projection P having the range

$$\{\xi \in E^n \colon C(t) X(t) \xi \text{ is in } \mathfrak{D}(E^i)\},\$$

where $\mathfrak{D} = \mathcal{M}^{q}$ when p > 1 and \mathfrak{L}^{q} when p = 1.

Suppose, firstly, that p > 1. If u is in $\mathbb{L}^{p}(E^{m})$ and x(t) is a solution of (4a) such that C(t)x(t) is in $\mathcal{M}^{q}(E^{l})$, then it follows from Lemma 4.1 with r = q that x(t) is in $\mathbb{L}^{\infty}(E^{n})$. So $(\mathbb{L}^{p}, \mathbb{L}^{\infty})$ is admissible for (4) with l = n, $C(t) \equiv I$ and the associated projection is P (as defined in the statement of the theorem) since $C(t)X(t)\xi$ is in $\mathcal{M}^{q}(E^{l})$ if and only if $X(t)\xi$ is in $\mathbb{L}^{\infty}(E^{n})$. Lemma 4.3 then applies to show that $(\mathbb{L}^{1}, \mathbb{L}^{p'})$, and hence $(\mathbb{L}^{1} \cap \mathbb{L}^{p'}, \mathbb{L}^{p'})$, is admissible for the adjoint system (9) with l = n, $C(t) \equiv I$ and with associated projection $(I - P^{*})$. By Lemma 4.1 with r = p', $(\mathbb{L}^{1} \cap \mathbb{L}^{p'}, \mathbb{L}^{p'})$ must then be admissible for (9) with l = m = n, $C(t) \equiv B(t) \equiv I$ and with projection $(I - P^{*})$. It follows from Theorem 64.B in [8, p. 189] (note that this theorem still holds if instead of assuming that $|A|_{1} < \infty$ we only assume that (1) has bounded growth) that

$$\dot{z} = -A^*(t)z$$

has an exponential dichotomy with projection $(I - P^*)$ and hence that (1) has one with projection P.

Suppose now that $(\mathfrak{L}^1, \mathfrak{L}^q)$ is admissible for (4) with $1 \leq q < \infty$. By Lemma 4.3, $(\mathfrak{L}^{q'}, \mathfrak{L}^{\infty})$ is admissible for the adjoint system (9) with projection $(I - P^*)$ and so, by the first case, (11) has an exponential dichotomy with projection $(I - P^*)$ and hence (1) has one with projection P.

We now prove a converse theorem.

THEOREM 4.2. – Suppose (1) has an exponential dichotomy with projection P and for some pair (p, q), where $1 \leq p$, $q \leq \infty$, $|B|_{p'} < \infty$ and $|C|_q < \infty$. Then $(\mathcal{M}^p, \mathcal{M}^q)$ is admissible for (4) and if $p \leq q$, $(\mathfrak{L}^p, \mathfrak{L}^q)$ is admissible. Also, when $(\mathcal{A}(t), C(t))$ is q-uniformly observable, the range of P is $\{\xi \in E^n : C(t) X(t) \xi \text{ is in } \mathfrak{D}(E^i)\}$ where $\mathfrak{D} = \mathcal{M}^q$ or \mathfrak{L}^q .

Let u be in $\mathcal{M}^{p}(E^{m})$. Then it follows from Lemma 3.1 in [7, p. 524] that

$$x(t) = \int_{0}^{t} X(t) P X^{-1}(\tau) B(\tau) u(\tau) d\tau - \int_{t}^{\infty} X(t) (I - P) X^{-1}(\tau) B(\tau) u(\tau) d\tau$$

is well-defined, is a solution of (4a) and for $t \ge 0$,

$$|x(t)| \leq 2K(1 - \exp[-\gamma])^{-1}|B|_{n'}|u|_{n}$$

(where we are using 1 instead of δ in $|\cdot|_{p'}$, $|\cdot|_p$). Hence x is in $\mathfrak{L}^{\infty}(E^n)$ and y(t) = C(t)x(t) is in $\mathcal{M}^q(E^l)$.

Now suppose $1 \le p < q < \infty$ and let u be in $\mathfrak{L}^p(E^m)$. Then x(t), defined above, is a solution of (4a) and

$$|x(t)| \leq K \int_{0}^{\infty} \exp\left[-\gamma |t-\tau|\right] |B(\tau)| |u(\tau)| d\tau.$$

Following HARTMAN [5, p. 477], we estimate

$$\begin{split} & \left[\int_{0}^{\infty} \exp\left[-\gamma \left|t-\tau\right|\right] \left|B(\tau)\right| \left|u(\tau)\right| d\tau \right]^{\alpha} \\ & = \left[\int_{0}^{\infty} \left\{ \exp\left[-\gamma \alpha \left|t-\tau\right|\right] \left|B(\tau)\right| \left|u(\tau)\right|^{1-(p/q)}\right\} \left\{ \exp\left[-\gamma \beta \left|t-\tau\right|\right] \left|u(\tau)\right|^{p/q}\right\} d\tau \right]^{\alpha} \\ & \text{where } \alpha > 0, \ \beta > 0, \ \alpha + \beta = 1 \end{split} \\ & \leq \left[\int_{0}^{\infty} \exp\left[-\gamma \alpha q \left|t-\tau\right| \right] \left|B(\tau)\right|^{q/(q-1)} \left|u(\tau)\right|^{(q-p)/(q-1)} d\tau \right]^{q-1} \int_{0}^{\infty} \exp\left[-\gamma \beta q \left|t-\tau\right|\right] \left|u(\tau)\right|^{p} d\tau \\ & \leq \left[\int_{0}^{\infty} \exp\left[-\gamma \alpha p' \left|t-\tau\right|\right] \left|B(\tau)\right|^{p'} d\tau \right]^{a(p-1)/p} \left[\int_{0}^{\infty} \left|u(\tau)\right|^{p} d\tau \right]^{(q-p)/p} \int_{0}^{\infty} \exp\left[-\gamma \beta q \left|t-\tau\right|\right] \left|u(\tau)\right|^{p} d\tau \end{split}$$

if p > 1

and

$$\leq \operatorname*{ess\,sup}_{\tau \geq 0} |B(\tau)|^q \cdot \left[\int\limits_0^\infty |u(\tau)| d\tau \right]^{q-1} \cdot \int\limits_0^\infty \operatorname{exp}\left[-\gamma \beta q |t-\tau| \right] |u(\tau)| d\tau \quad \text{ if } p = 1 \,.$$

In either case and also for q = p (by letting $q \rightarrow p$),

$$|x(t)|^{q} \leq c_{p}^{q} |B|_{p'}^{q} ||u||_{p}^{q-p} \cdot \int_{0}^{\infty} \exp\left[-\gamma \beta q |t-\tau|\right] |u(\tau)|^{p} d\tau ,$$

where $c_p = K 2^{1/p'} (1 - \exp[-\gamma \alpha p'])^{-1/p'}$. Then for $1 \le p \le q < \infty$,

$$\begin{split} & \int_{0}^{\infty} |C(t) \, x(t)|^{q} dt \leqslant c_{p}^{q} |B|_{p'}^{q} \left\| u \right\|_{p}^{q-p} \int_{0}^{\tau} |C(t)|^{q} \int_{0}^{\infty} \exp\left[-\gamma \beta q \left| t-\tau \right| \right] |u(\tau)|^{p} d\tau \, dt \\ & = c_{p}^{q} |B|_{p'}^{q} \left\| u \right\|_{p}^{q-p} \int_{0}^{\infty} |u(\tau)|^{p} \int_{0}^{\infty} \exp\left[-\gamma \beta q \left| t-\tau \right| \right] |C(t)|^{q} dt \, d\tau \\ & \leqslant 2c_{p}^{q} (1-\exp\left[-\gamma \beta q \right])^{-1} (|B|_{p'} \left\| u \right\|_{p} |C|_{q})^{q} < \infty \,. \end{split}$$

Finally, if $(I - P)\xi = 0$ then $|X(t)\xi| < K \exp[-\gamma t] |\xi|$ and it follows that $C(t)X(t)\xi$ is in $\mathfrak{L}^q(E^l)$. On the other hand when (A(t), C(t)) is q-uniformly observable, the fact that $C(t)X(t)\xi$ is in $\mathcal{M}^q(E^l)$ implies that $X(t)\xi$ is in $\mathfrak{L}^\infty(E^n)$ and hence $(I - P)\xi = 0$. So in this case, the range of P consists exactly of those ξ such that $C(t)X(t)\xi$ is in $\mathfrak{D}^\infty(E^l)$ where \mathfrak{D} is \mathfrak{L}^q or \mathcal{M}^q .

Theorems 4.1 and 4.2 generalize Theorem 3 in [13, p. 125], Theorem 3 in [2, p. 408] and the Theorem in [1], with the difference that we are working on $[0, \infty)$. In the finite-dimensional case, they also generalize Theorem 4.5 in [10, p. 193] and Theorem 2.3 in [9, p. 129].

REFERENCES

- [1] B. D. O. ANDERSON, External and internal stability of linear systems a new connection, IEEE Trans. Automatic Control, 17 (1972), pp. 107-111.
- [2] B. D. O. ANDERSON J. B. MOORE, New results in linear system stability, SIAM J. Control, 7 (1969), pp. 398-414.
- [3] R. W. BROCKETT, Finite dimensional linear systems, New York, 1970.
- [4] W. A. COPPEL, Dichotomies in stability theory, Berlin, 1978.
- [5] P. HARTMAN, Ordinary differential equations, New York, 1964.
- [6] N. N. KRASOVSKII, Stability of motion (translated from the Russian by J. L. Brenner), Stanford, 1963.

216 KENNETH J. PALMER: Two linear systems criteria for exponential dichotomy

- [7] J. L. MASSERA J. J. SCHÄFFER, Linear differential equations and functional analysis, I., Ann. of Math., 67 (1958), pp. 517-573.
- [8] J. L. MASSERA J. J. SCHÄFFER, Linear differential equations and function spaces, New York, 1966.
- [9] M. MEGAN, On exponential stability of linear control systems in Hilbert spaces, Anal. Univ. Timişoara, 14 (1976), pp. 125-130.
- [10] M. MEGAN, On the input-output stability of linear controllable systems, Canad. Math. Bull., 21 (1978), pp. 187-195.
- [11] K. J. PALMER, The structurally stable linear systems on the half-line are those with exponential dichotomies, J. Differ. Equs., 33 (1973), pp. 16-25.
- [12] O. PERRON, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930), pp. 703-728.
- [13] L. M. SILVERMAN B. D. O. ANDERSON, Controllability, observability and stability of linear systems, SIAM J. Control, 6 (1968), pp. 121-130.