Existence of Optimal Controls
for Systems Governed by Parabolic Partial Differential Equations
with Cauchy Boundary Conditions (*).
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Summary. - This paper considers the existence of optimal controls for systems governed by a
second order parabolic partial differentiol equation in divergence form with Caucky condi-
tions. As preliminary resulls, theorems concerning the comvergence of the sequence of weak
solutions corresponding to a sequence of admissible conirols are proved. Two general forms
of criteria are considered. The first one is taken as a function of the weak solution of the
system, and the other is laken as a function of the solution of the system and control. Several
theorems and corollaries on the emistence of oplimal controls are then presented.

1, - Introduction.

Questions concerning the existence of optimal controls for systems governed by
parabolic partial differential equations with first boundary conditions have been sub-
stantially studied in references [1], [5], [8], [11] and [12]. Although necessary condi-
tions for optimality for problems of optimal control of systems monitored by para-
bolic partial differential equations with Cauchy conditions and with bounded mea-
surable controls appearing in the coefficients and forcing term can be found in refe-
rence [2], the question concerning the existence of optimal controls has not been
investigated. The aim of this paper is to provide a partial answer to this question.
More precisely, we can only allow the bounded measurable controls to appear in
the forcing term and some coefficients.

The class of systems considered in this paper is described by linear second order
parabolic partial differential equations in divergence form with Cauchy boundary
conditions. The controls influence the systems by altering the coefficients. Speci-
fically, if D is a class of admissible controls, then, for each « € D, there are functions
a;/:Q —~ R (j=1,...,n), ¢": @ — R and d*: Q — R* where @ = (0, T|X R~ and T
a positive real. For a u e D, the system is

(1.1) { Pe = (@4 o, + 05@)0, + b0, + ¢ +d*  on Q,
(1.2) ' @(0, *) = o on R,

(*) Entrata in Redazione il 26 ottobre 1978.
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where a;;:Q — R (4, j=1,...,n) and b;: Q — R* (j =1, ..., n) are the coefficients
not influenced by the control, while ¢,: R* — R* is the initial function.

The conditions on the coefficients, the foreing term, the initial data and the per-
formance criterion will be presented in later sections. The class of admissible controls
is defined by

(1.3) D 2 {u:Q - U:u is measurable}

where U is a compact convex subset of Rr that contains, without loss of generality,
the point 0.

The forcing term and those coefficients that depend upon  are constructed from
the corresponding functions a;: QXU >R (j=1,..,m), ¢:QXU ->R' and
d: Q¢ x U — R! which are given. If 2: QX U — R* then 2*:Q — R' such that

(1.4) 21, w) = 2(t, @, u(l, z)) .

In section 2, the assumptions and notations are presented, and in section 3, the
existence of weak solutions for system §; and the properties of such weak solutions
are investigated. The main results of this paper are given in section 4. Theorem 4.1
states a general result for performance criterion that depend only explicitly of @.
By a linearity assumption, we have Theorem 4.2 where the criterion depends expli-
citly upon both % and ¢.

2. — Basic notation and assumptions.

Before describing the basic assumptions to be imposed upon the coefficients of
system §;, we introduce some useful notations.

Let B be a connected, Lebesgue measurable subset of a finite dimensional Euclidean
space. Then B denotes the closure of B, 0B the boundary of B and |B| the Lebesgue
of B. For pell, + bo), L?(B) is the space of functions 2: B — R! such that

0,8 == {f |2()? d”}lm

] zoz) == [2]

is finite, and L*(B) is the space of those functions such that

2l 2=z == l2]o,n =5 €55 5P Jo(a)

is finite. If I is an integer, 0 <l< -~ oo, then C'(B) denotes the class of I times con-
tinuously differentiable functions from B into R!, and C(B) is the subset of CY(B)
of functions with compact support in B. Let W(B) be the completion of the space
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Throughout the rest of this paper, 2, will denote the distributional derivative of 2
with respect to x,.

Let X be a Banach space. Then, for g e[1, | oo), LY, X) is the class of func-
tions z: (0, T] — X such that

oo {f (o) )

0

Cy°(B) in the norm

el el + ( 3 o

is finite, and, for ¢ = + oo, L*(I, X) is the class of functions z: (0, T] — X such that

|2loo,x == es5 sup [2(2) | x
te(0,71

s

is finite. When X = I?(B), p €[1, + oo], then | -], x is written as |-
LY(I, I*(B)) is written as L™%((0, T) X B).

Throughout this paper, the following assumptions are imposed on the coeffi-
cients, the forcing term and the initial data of system §;.

9,0,(0,T1x B and

A,: a;:Q —R* (4,j=1,...,n) are continuous on @ and there are positive con-
stants u, and p, such that |22 < ay(t, @) 2,2, <pol2|® for all ze R and for all

(t, ») € Q.

A, a;,6,d:QxU—~>R (j=1,..,n) are measurable on @X U, and continuous
on U for all (¢, «) Q.

Ag: biELw(Q)y (7 =1, .., n),
A, poe LR

A,: There is a positive constant u, such that for all we D, je {1,..., n}, the norms
| a7 0.7 [loo,ar [0 oo,ar [18"]5,0 304 [@o] 2, rn are less than or equal to y,.

A,: TFor each (t,%) e, the set

00,Q 7 “ba|

........

B, U) 2| %2 u) | e Rrie: e U

is convex. Further, it is assumed that F(-, -, U) is a measurable set-valued
function defined on ¢.
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Since U is compact, it is obvious that if u € D then the i-th component function
of u, u;, belongs to L°(Q). A sequence {#*} in D is said to converge in the weak *
topology to u?, if and only if {u} converges in the weak * topology of L=(Q) to uj,
i=1,..,r. Since U is compact and econvex, it should be noted that if {«*} is a se-
quence in D, then there is a subsequence {u*} and a function u° € D such that {u*}
converges in the weak * topology to u°.

A measurable function 2: QX U — R is said to satisfy the linearity eondition if

2(ty @, w) = {&*(1, @), up + &**(t, @)

for all (¢, 2, u)cQ x U, where 2*: @ — R" such that all of its component functions
" belong to L*(Q), =**:Q — R* belongs to L*(Q), and (-, -> denotes the standard
inner product on R’. For a function satisfying the linearity condition % — 2 in
the weak * topology on L*(Q) for all sequences {u*} in D that converge in the weak
% topology to a w4, D. ‘ '

On occasions, we shall make the assumption

Ay The functions a; (j =1, ...,n), ¢ and d satisfy the linearity condition.

It is obvious that Assumption 4, implies Assumption 4,. However, this stronger
assumption will allow us to consider more general criterion functions. All theorems
are proved under the Agsumptions 4, to 4;: If Assumption 4, is invoked, it will be
stated that the theorem is being proved under the Convexity Assurption. However,
if Assumption A is required, the thorem will be said to be proved under the Linearity
Assumption.

3. — Weak solution of parabolic systems.

In this section, it will be shown that, under assumptions 4, - 4,, system 8, admits
2 unique weak solution. Further, certain properties of weak solutions will also be
investigated.

DEFINITION 3.1. — The solution to system 8, corresponding to a control w D
is a map ¢(u)e L**(Q) N L}(I, WYR") such that

(3.1) f @)1, — a5p(U)e Mo, — 05 (W) 7, + b@p()e + @(u)y + d*n =0
Q
for all 5 e 0}(Q) and
(3.2) tim [ p(att, 2)9(0) 4o = [ ufarnte) as
Rn

Rn

for all 5 e C3(R™).
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An the left hand side of (3.1) is a commonly used expression, the following nota-
tion is introduced.

DEFINITION 3.2. — If e 0YQ), p € L¥*(Q) N L2(I, WY(R") and weD, then

(3.34) ey n) = f‘P’?r— BisPailuy— G P, + i) + €9 -+ A
Q

and
¢

(8:35)  gn)s= f fqom— @i Pa s 05 Pl bipa) + ¢y + d¥n

s Rn

THEOREM 3.3. — For each u e D, there is a unique solution ¢(u) to system 8.
Further there is a constant ¢, that depends only upon 7, n, p,, ., and g, such that

(3.4) lp(®)]3,00,0 +é1 lo@)]3,z,0<e([d"[2a + l@olzze)
and
(3.5) lo(@)]32,0< Tey(|8"]2,6 + [9oll2,) -

Further f p(u)(o, @) n(x) do — f @o(®)n (x) dx uniformly with respect to ueD as ¢ —0
Rn Rn
for all 5 e C}(R™).

ProoF. — Let 0, = {r e R": 2| < k} and 6, = (0, T']xX O, for each positive in-
teger k. For each u € D, let us consider the first boundary problem
@0 = (490, + 6)s, + bjg0, +- "¢ +d*  on b,
o] @0, ) = on 0,
@ty z) =0 on [0, T} X 00,.
By Theorem 1 ([4], p. 634), we note that, for each positive integer %, there exists

a unique weak solution ¢,(u) to the problem §;,. Further by letting { =1, s =0
and y, p and g = oco in Lemma 1 ([4], p. 623), it follows that

(3.6) | pslee) |

3,00,61, + 221 I[‘P(“)m

2,2,% < Cy 6IST( ” a

;,ok + “%

;,Ok)

where f is a positive constant that depends only upon n, u,, . and u, and ¢, is a posi-
tive constant that depends only upon 7, n, p;, 4, and y,. Let ¢, = ¢, T, pu(u)(t, 2)
be zero for (f,x) ¢ 0, and let

(3.7) ¢y = c5(pg + ”‘Po”g,m) .

2 ~ Annali di Malematica
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Recalling that |d*[, ,<p,, it follows from (3,6) that
(3.8) - ”‘Pk('“') Hg,oo,a + 21 ”‘Pk(u)m||§.z,o<c4 ’
from which we deduce that

T’r

()

and

lpe(g )z o<ty (6 =1,...,n).

As T*é and ¢t are independent of k, there is a subsequence of the vectors (p:(u),
(94(#)) s o+ » (@1{4)),,, Which is again indexed by k, and a vector (p(u), pX(u),...,¢™u))
such that gi(w) — @(u), (gxw)), —¢*(w) (i =1, ...,n) weakly in L*x(Q) as k — co.
It is easily shown that ¢'(u) is the distributional derivative of @(%) with respect to z,
and we will use ¢(u), instead of ¢*(u). Clearly, we have

(3.9) lp(w)
(3.10) . lp(u),,

i
2e<Tic]

e<d (=1 ..,n)

and thus ¢(u)e L*(I, WY(R")). Moreover, it follows from (3.8) and lemma 2 ([4],
p. 633) that

6.11) [0}

and thus ¢(u) e L22(Q) N L(I, WY{Rn)).
For any positive integer ¥, it follows from Equation 2.2 ([4], p. 622) that ¢u(u)
satisfies the following expression

f% )+ (gl 1) =0

for all 5 € C*(Q) with compact support in [0, 7) X O,. Let n be an arbitrary but fixed
element in 01(Q) with compact support in [0, Ty x Q. Clearly, k can then be chosen
sufficiently large so that the compact support of 7 is in [0, T) X O,. Thus, by letting
k — oo through an appropriate subsequence, it follows from the weak convergence
in (I, W(R)) of the sequence {p(u)} to g(u) that

(3.12) J'(Po @) do + Lo {p(u), n) =

Note that (3.12) holds for any % € CQ) with compact support in [0, 7') X R,
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Next, if » is an arbitrary element in C§(@), then it follows readily from (3.12)
that

(3.13) E(p(u), 1) =0

Thus, in view of Definition 3.1, () will be a weak solution of system S, corresponding
with the control u if it also satisfies condition (3.2).
By Equation 1.3 ([4], p. 619), we can infer that

(3.14) [, 0)1(0, 2) do + £(p(w), ) E =0

R»

for all n e CYQ) with compact support in [0, T) X R~
Let 5 € O3(R™), let 5 be the compact support of  and let n, € C1([0, T]) such that
m(t) = 1fort [0, T/4] and n,(t) = 0 for ¢t € [3T /4, T]. Further, let n,(t, ®) = 5, () n(z).

Then 7, € C*(§), equals zero for all (¢, x) €[0, 3T/4] X & and

(3.15) ety @) = n(x), for (4, x) [0, T/4]X R~

For all o €[0, T/4], it follows from (3.12), (3.14), (3.15), (3.9) and (3.10) that
| fotw)o, o) n(a) @ — [pu(e)n(a) @

An R

= [£%(p(w), 772)15 — £ (u), 772)I
= [L"(p(u); 72) 3]

[:3

f fqv(u) M= G Pl@)aey,— G P(1) Y, - byp(We, + ()7 +
Rn

0
< f [ig@ni + [ [laynge@) + | [lan.p0)
0 R» 0 R»

0 Rn
+f [bangr + [ [lengpw] + f [1an)
0 Rn 0 Re 0 R»

@(u) ”2,@ +_ Zl||%-77wllz,<o,a) xE’ ”‘P(“)mnz,a

=

< |la00,0% 2

+ 21 10572, 2, 0,00 % £ 2 (%) [ 2,0 + 21 191 2,00,00x =
+ lle*7

< Inl% ole@)]s,00' 15 + iill%- [T A O]

+ 3 1 ol alp )]0 7 + 3 1
161l el s 00151+ |

go(“)m“&(l

2,(0,d)><5”¢(u) “2,0 + [y

1,8

¥

zo‘a I ”i,a ”‘P(“)w ”2,0 UﬂEF

0,07 0,0 915
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< Imlt o THE 8] + VE2nr v n, |k o | E[ 4+ mudlln, |L o TF ot |E 1 +
+ nk )L o A EE + phln|L o T Aot E R + pyfn]
< 0,6t + Cyo

io,QGiEI

where the positive constants €, and C, are independent of ¢ and %. Thus, ftp(u)-
Rn

(o, ¥)n(x)dr converges uniformly with respect to uc.D to f(po(w) n(x)de as o —0
for any n e OL(R™). R

This proves the last assertion of the theorem. In particular, the convergence holds
for each w e D. Thus, condition (2.3) is satisfied. Therefore, for each w e D, @(u)
is a weak solution of system §,.

The uniqueness of the solution to system S, corresponding to % € D follows from
Theorem 2 ([4], p. 639). The inequalities (3.4) and (3.5) follow from (3.7), (3.9),
(3.10) and (3.11), and letting ¢, = (» + 1)¢,. This completes the proof.

Throughout the remainder of this paper, ¢(u) will denote the solution of system S,
corresponding to 4 € D.

In reference 3, it has been shown that if @(u)e L>°(Q) N L*(I, W(R")) and
satisfies expression (3.1) then there exists a representation for ¢(«) which is con-
tinuous in Q. We will therefore always assume that ¢(u) is continuous in Q.

We shall be concerned with sequences in D). Basically, we shall show that if
{u:} is a sequence in D, there is a u,c D and a subsequence of {u,}, which is again
denoted by the original sequence, such that ¢(u;) — @{%,) in certain topologies.
The relevant theorems are given in Theorem 3.7 and Theorem 3.8. To prove these
theorems, the following lemmas are required.

LEMMA 3.4. — {p(%): u € D} is an equicontinuous family of functions that is uni-
formly bounded on any subset of @ that has a positive distance from the set {0} x R,

ProoF. ~ Let K be any subset of @ that has a positive distance g, from {0} x R,
let ¢ = 4/p,/3 and let w e D. For an arbitrary but fixed (f,Z)ec K, we denote by
Glo) = (I — 9¢% F]x {y € Re:ly — 7| < 3¢/2}. Binee p(u) e L¥=(G(q)) N L2((F — 9¢% 1],
Wi({ye Rr: |y — Z| < 3@/2})) and satisfies the expression (3.1) in G(p), it follows
from Theorem 2 ([3], p. 98) that there exists a positive constant ¢; depending only
upon g, n, u,, y and y, such that

[p()(ty @) <5 ("2 [p(1) g,0,00 T €18 ]co,0)

for all (¢, %) € G(p).
In particular,

lp() (& Z)| <e5(e™ " P p(w) 2,000 + 018 ] 0ra) -
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Since (£, Z) is an arbitrary element in K and the constant ¢; is independent of (7, ),
it follows that

(3.16) |p(u)(t, @) <es(e™ 22l p(w) | 3,0,00 + 0] @]

OO,Q)

for all (¢, 2)e K.
In view of Theorem 3.3 and the fact that [|d"|,, < pslld”
we deduce readily from (3.16) that

2,0<H3 and |lg, 2,Rn < g

(3.17) lp(u)(t, 2)| <es(e™ " P2v/2 Tt 4 o)
for all (¢, x)ec K.
Thus, {p(u): v € D} is uniformly bounded on any subset of @ that has a positive
distance from {0} x Rn.
Let (t,#)eQ and O = ({/2, T]X B where
B2 {zeRw: |z2,— <2 forall i=1,..,mn}

By virtue of (3.17), there is a positive constant ¢ that depends only upon t, T, n,
M, Us and u, such that

|p(u)(t', 2")| < e
for all (¢, 4') € O and for all we D. On R define the pseudo norm |-|, such that

max {7, — s/4} §<0.
o0 §>0.

\ ](85 z)}A :{

Since @(u) is a weak solution of (3.1) on 0, it follows from Theorem 4 ({31, pp. 110-111)
that there are positive constants ¢; and « that depend only upon 0, n, u;, p, and p,
such that

|p()(t", 3") — @u)(t', @")| <esles + ;) {|(' — ¥/, & — @')| ,/ R}

for all (¥, @), (t', #") € 0, 1" <t', where R is the minimum of 1 and the pseudo distance
to 00 from (¢, #'). From this relationship it can easily be shown that if i/, 2') € Q,
and |(¢', ') — (¢, #)| < min (1/4, #/4), then

I(p(u)(t’, 2') — p(u)(t, ”)l < (¢ + 1) {I(t’a z') — (1, m>|/4R}y

where R = min {1, #/16}, and thus that {p(w), w € D} is equicontinuous at (¢, z).
This completes the proof.
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Using Lemma 3.3 and the Ascoli-Arzela Theorem, we can easily obtain the follow-
ing result. .

LEvmA 3.5. — Let {u,} be a sequence in D. Then, there exist a subsequence of
{p(u,)} such that ¢(u,) converges pointwise on ¢ and uniformly on ny compact sub-
set of Q.

LEMMA 3.6. — Under the Convexity Assumption, if {u,} is a sequence in D then
there ig a subsequence {u, }, and a u, € D such that &;* —aj (i =1,...,n), ™ — ™
and d* — d" in the weak % topology on L*(§)) as I — co.

PROOF. — A8 [a¥|,, o (1 =1, ..., 1), 6", o and [@™|. o are bounded by u, for
all positive integers k, there exist af, (4 =1,...,%), ¢* and d*, each belonging to
L*(Q), and a subsequence of {u,}, which is again indexed by %, such that

a* >a;, (@=1,..,n), ¢, d%—>d*
in the weak % topology on L*®(Q}) as &k — oco.

Next, we shall show that there exists a u, € D such that a; (¢, ) = a,(t, 7, u,(, ),
(i =1,...,n), ¢*(t, @) = c(t, z, u,)t, »)) and d*(, 2) = d(t, 2, u,(t, #)). However this
will follow directly from condition 4, and Theorem 3’ ([7], p. 281) if we can show
that

Faf(t, z) [ a4(1, m,»u)—

y(t, x) £ d:(ta z) | e I, o, U) L1 au(ty2,%) e U
¢*(t, @) o(t, @, u)

ax(t, o) a(t, », u)

almost everywhere on Q.

The proof is by contradiction. Suppose it were false. Then, there exists a measu-
rable set B, c @ so that |Ey| > 0 and

(3.18) y(t, x) ¢ F(t, =, U)

for all (¢, x) e E,.

Since |E,| > 0 it follows, respectively, from Theorem 1 (PLis [9], p. 858) and the
Lusin Theorem that we can choose a measurable subset B, c Q, 0 < |E,| < |E,|/2 such
that the measurable set-valued function f(-, -, U) and the measurable function y
are continuous on @\ F,. Let B, 2 E, N {Q\E,}. ‘

Since 0 < |B,| < |E,|/2, it follows that E,c E, and |H,| > 0. Further, F(-, -, U)
and y are continuous on #,, upon which (3.18) holds.
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Let (%, @) € B, and ¢> 0. By the continuity of F(-, -, U) at (i, #,), there is
an § = 6(¢) > 0 such that

(3.19) F(t, o, U)C Féty, @, U)
whenever |(¢, 2) — (t,, %,)| < 6, where F°({,, @,, U) is the closed ¢ neighbourhood of
F(ty, x4y, U).

Let

M, = {(ty x) € Hy: |(t, ) — (%o, @y)| < 6}

and {B,} be a sequence of subsets of M s that contain (%), #,) such that |B,| 0
as m — oo. Further, let

ay*(t, @)

(3.20) Yult, ) = |08, @)},

Sinece, for all (¢, x) e M,,
Yi(t, @) € F(t, x, U) C Fé(ty, 2, U)

and since, by Assumption A4, F*(ty, z,, U) is closed and convex, it follows that

1
IB—[fyk(t’ x) dx dit € Fe(ty, g, U)
Bm

for all k. Further, as F°(4,, z,, U) is closed, it is clear that

. 1
(3.21) lim [—E—I fy,c(t, x) da dt € Fe(ty, o, U) .
Bm

k—>o0

On the other hand, we note that y, converges to y in the weak % topology and
that [B,|< oo for all m =1, 2, .... Thus,

.1 1

lim — N i

lim 12 f Yi(t, ) dow di ] f y(t, ©) doe 0t
m Bm

|
B
Therefore, it follows from (3.20) that

(3.22) @1—1 f y(t, 2) do dt € Fe(ty, 2y, U) .
Bmn
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Again, by using the closure of the set F°(%,, #,, U) and the continuity of y at (¢, z,),
it follows from (3.22) that

. 1
(3.23) y(to, wo) = lim ]‘_‘B—l fy(t, m) dx thFe(to, Loy U) .
m=>00 m
Bm

As (3.22) holds for all ¢ > 0 and F(f,, ,, U) is closed, we obtain that
Y(to, @) € F(ty, 0o, U) .
But (¢, #,) € E,, and so from (3.17), we have that

Y(toy %) ¢ F(te, %, U) .
This is a contradiction and thus the proof is complete.

THEOREM 3.7. — Under the Convexity Assumption, if {u,} is a sequence in D then
there exists a u,€ D and a subsequence {u} such that {p(u,)} converges to ¢(u,)
weakly in L2(Q), pointwise on @ and uniformly on compact subsets of ¢, whereas
{p(u,),} converges to g(u,),, (i =1,...,n) weakly in L%@Q).

Proor. - By Theorem (3.3), there is a positive constant ¢, independent of k such that

(3.24) () la,0,0<VE TP psg

(3.25) lpaoa<VBdpy (G =1,...,n).

Thus, there exists a subsequence of {u,}, which is also indexed by &, and functions ¢
and ¢;, (i =1, ..., n), each belonging to L*Q), such that {p(u,)} and {p(u),}, (i = 1,
..., 1), converge, respectively, to ¢ and ¢,, (i =1, ..., n), weakly in L2(Q) as k — oo.
From (3.24) and (3.25), we have that :

(3.26) loloza<vV2 ATl

(3:27) il 20 <2 elitg

Using the definition of the distributional derivative of ¢(u,), we have that, for
any 7 € Cy(Q),

(3.28) f () (t, @), (t, @) dedlt = — f P10y ) (b @) (2, @) dt dw
Q Q

By taking the limit as & — oo of (3.28) and noting that both #,, and 5 belong to L(Q),
it follows from the fact that ¢(u,) — ¢ weakly in L*(Q) and that g(u), — @, weakly
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in L*(Q) that

(3.29) f (t, @), (t, @) dwdt = — f ity ¥)n(t, ) dods
Q Q

for any 7 € C(Q), and thus ¢, = g¢,,.
By Theorem 3.3, it is clear from assumption 4, that

() ”2,oo,a <V?2 01{!‘3
for all k. Since ¢, is independent of %, it follows from Lemma 3 ([4], p. 633) that

(3.30) lo

2,00,Q <V?2 c’if,u3 .

The inequalities (3.25), (3.26) and (3.30) imply that ¢ e L>*(Q) N L(I, W(R").

Lemma 3.5 shows that there is a further subsequence of {u,}, which is denoted
by {us,}, such that {p(u,,)} converges to ¢ pointwise on @ and uniformly on any eom-
pact subset of §. However, since {p(u,,)} is a subsequence of {p(u;)} and since ¢(u;)
converges to ¢ weakly in L*Q) as k — oo, it is clear that ¢(u,,) also converges to ¢
weakly in L2(Q) as k — oo.

We shall show that ¢(z, t) = p(w, t) for almost all (x, ¢) € Q. Suppose it were false.
Then, there exists a measurable subset E, c @ with positive measure such that ¢(z, t)
# p(x, t) for all (@, 1) € B,. Let F, be a measurable subset of F, such that 0 < |B,| < co.
Then, @(x, t) = @(w, t) for all (»,?) € B,. Recall that ¢(u,) converges to ¢ pointwise
on ¢ and that ¢(u,) converges to ¢ weakly in L*@) as I > co. Thus, in particular,
o(uy,) converges to ¢ pointwise on E, and ¢(u,) converges to ¢ weakly in L*(H,)
as I — co. However, in view of the inequality (3.24) and the fact that ¢(u;, ) converges
to ¢ pointwise on F;, it follows from Theorem 13.44 ([6], p. 207) that g(u;) also
converges to ¢ weakly in L*(F,) as I — oo. By the uniqueness of the weak limit, we
observe readily that ¢(x, ) = ¢(x,t) for almost all (x,¢) € E,. This is a contradic-
tion. Thus, we conclude that ¢(x,t) = @(z,t) for almost all (x, %) €@Q.

By Lemma 3.6, there is a further subsequence of {u; } which will be indexed by %
and a #,€ D such that a* —aj°, (1 =1,..,n), ¢ —>¢™ and d* —>d™ as k — oo
in the weak s topology on L=(Q). It will be shown that ¢ = @(u,).

Let 5 € 03(Q), and £ be the compact support of 5. Since g(u,) is the solution of
system 8, corresponding to «,, then we readily observe from Definition 3.1 and 3.2 that

(3.31) £5(p(us), 7) = 0 .

Note that g(uy),, = @, (i = 1,..., n) weakly in L*(@) as n —> co and a1, , b;n belong
to L2(Q)). Thus,

f @i, P (W), = f i1, P, fbmfp(uk)m, e fb 1P,
Q Qe Q Q
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as k — co. Since d“* — d* in the weak % topology on L*(Q) and # € L(), it follows
that v

[amn — [amn
Q Q

as k — co. Recall that 9 € C3(Q) with compact support Z. Thus, we observe readily
that ajon,, — aj°y, and ¢%n — d*y weakly in L2%Q) as k — oo and the norms
|7, l5,0 304 [|¢**7],,q are bounded independently of k. Further ¢(u;) — ¢ almost
everywhere (in fact uniformly) on = and ¢(4,) is bounded independently of % on 5.
_Thus, it can be easily shown that :

f“?"’?wﬂ(%) — fa,;.“’nmgp_, (i=1,..,m),
Q Q

and

fc’“"w(uk) — fc”"nqv
Q Q

as k — oco.

Next, we recall that p(u,) — ¢ weakly in L*@Q) and #, € L*(@Q). Thus,

, f () me —>J.<Pm
Q

as k — oo. Putting these results together with (3.31), it follows that »
(3.32) Lh(@yn) =0

for all ne 0yQ). v

Let ne C4R"), and define 7*:Q — R* such that u*(f, #) = 5(z)n.(!) where 7,
€ 01([0, T7), m(ty =1 if t [0, T/4] and n(t) = 0 if t€[3T/4, T]. In view of (3.32),
it follows from Equation 1.3 ([4], p. 619) that if o [0, T/4] then

[o(0, @) (@) @0 = — £, )2 .
Rn

Similarly from (3.31)

[otus)(o, (@) do = — (gl 7#) 17
R

Using the same type of limits to deduce (3.32) from (3.31), it follows that

L% (p(ug)y 1) |7 — L%(g, 1%)|Z
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as k — oco. Thus

lim | ¢(0, z)y(=) do

a0

Rn

= —lim £xo(g, n*)[Z
a0

= —lim lim €% (p(uz), 7*) |2

o0 k—roo

= lim Lim | ¢(u)(o, @)n(z) dz .
o0 k—co

Rn

By the last statement of Theorem 3.3, we recall that

Jpuio, 9yn(e)ds > [pula) o) d
Rn Rn
uniformly with respect to % as ¢0. Thus

tim [ ¢(0, 0)n(@) dw = f¢o<w)n<w) aw
Rn

o0
Rn

for all n € O3(R™).

Therefore, ¢ is a weak solution of system 8, corresponding to u,. However, by
Theorem 3.3, g(u,) is its unique weak solution. This implies that ¢ = @(u,) and
hence the proof is complete.

As a special case, Theorem 3.7 is true under the linearity assumption. However,
in this particular case, stronger results are possible. More precisely, for any sequence
{u,} c D, we can find a subsequence {ukl} of {u,} such that not only @(u;} converges
10 @(u,) in the sense given in Theorem 3.7 as 1 — oo but also ., converges in the weak =
% topology to u,. This extra conclusion allows us to include % in criteria explicitly in
Theorem 4.5 and Corollary 4.6.

For ease in future references, the corresponding result of Theorem 3.7 with con-
vexity assumption replaced by linearity assumption is presented as follows:

THEOREM 3.8. — Under the linearity assumption, if {u,} is a sequence in D then
there is a convergent subsequence {u,} in the weak % topology with limit w,€ D
such that {p(u,; )} converges to ¢(u,) as I - oo weakly in L*@), pointwise on Q and
uniformly on compact subsets of ¢, while {‘P(“k,)mt} (=1, ..., n) converges, respec-
tively, to g(u,), (¢ =1, ..., n), weakly in L*@) as I — oo.

PrOOF. — As {u;} i3 a sequence in D, there is a subsequence, which is also indexed
by k, that converges in the weak % topology to a u,€.D. As in Theorem 3.7, there
is a further subsequence of {u,}, again indexed by k, such that {p(u,)} converges to a
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funection ¢ weakly in L¥Q), pointwise on @ and uniformly on compact subsets of @,
{p(u,),,} converge, respectively, weakly in L*(Q) to ¢, (t=1,..,n),and p € L¥*(Q) N
N LI, WYR™). The facts that af* —af*, ({=1,..,0), ¢ —>¢" and &% —d*"
follows directly from Assumption A;. The rest of the proof is exactly the same as
for Theorem 3.7. ‘

4. — The existence of optimal controls.

The discussion so far has been concerned with the properties of solutions of sys-
tem §,. To consider an optimal choice of % € D, a performance criterion needs to be
specified. In this section, a series of criteria will be presented and for each one it
will be shown that an optimal control exists. )

The first three cases will be criteria of the form, minimise a function J: D — R*
where

(4.1) I(u) = f(p(w)) .

Let D; = {p(u): w € D}. The function f: D, — R* will be assumed to be bounded
and satisfy a semicontinuity condition. The general result is stated in Theorem 4.1
with particular cases stated as corollaries. Note that if J(D) = {ze R:J(u) ==
for some u € D} then an optimal control exists if and only if there is a u € D such
that J(u) = inf J(D). The existence of such € D can be proved by Theorem 3.7
or Theorem 3.8.

THEOREM 4.1. — Under the Convexity Assumption, let f: D, — R satisfy the fol-
lowing conditions

(1) 7 is bounded upon D,, and

(ii) for any sequence {p,} in D, that converges to a ¢ € D, either weakly in
I2(() or pointwise on @, there is a subsequence of {f(¢;)} that converges and

(4.2) f(<p)<llijg f@w,) -

Then, there is an optimal control to the problem of minimising J(u) = f((p(u)) on D
subject to system &8,.

PrOOF. — Since D is non empty and f is bounded upon D, it follows that J(D)
is a non empty bounded subset of R, Thus, inf J(D) exists and there is a sequence
{uz} in D such that

(4.3) lim J(u,) = inf J(D) .

=
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By Theorem 3.7, there is a subsequence of {u,}, which is also indexed by k and a
o € D such that g(u,) — @(u,) both pointwise on @ and weakly in L*(Q). Thus, by (ii)
there is a further subsequence of {u,}, again indexed by k, such that

(4.4) Fg(us)) <lggwf(¢(uk)) .

’

Therefore, it follows from (4.1) and (4.4) that

J (o) = f(gp(to)) <lim f(gp(uy)) = lim J (uz) .

k—>o00 k~>co

Combining this with (4.3), we observe readily that
J () <inf J(D) .
As J(u,) € J(D), this means J(u,) = inf J(D) and thus proves the theorem.

' COROLLARY 4.4. — Under the Convexity Assumption, let 7 be & measure on Rr,
H: R*X R — R* be measurable on R*X R, such that H(#, -) is continuous on R
for each x € R* and satisfy the following inequality

(4.5) [H (@, 2)| < |pa(@)] + [][pa(@)]

where p, and p, are integrable, with respect to =, functions from R» — R%. Then,
there is an optimal control to the problem of minimising over D

J(u) = f H(w, p(u)(T, ©)) n(de)
Rn
subject to system §;.

PrOOF. — Let f: D, — Rt be such that

flg) = [H (@, ¢(T, ) alda) .

Rn

If conditions (i) and (ii) of Theorem 4.1 hold, then the theorem is proved.
By (4.5), for all e R~

(4.6) |H () p(T, @) | < |p(2)| + |@(T, 2)||p2(@)] -

By Lemma 3.4, there is a positive constant ¢ such that, for all w e D and for all
ze R |pu)(T, z)|<C. Thus, from (4.6) we have that

1B @, )T, 9)ln(d) < [ Ips(@) m(de) + O Ips@)lntam)
Rn Rn Rn )
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Since p, and p, .aJre integrable with respect to z, the right hand side is a finite bound
independent of 4 € D. Thus, f is bounded on D,. This implies the condition (i) of

Theorem 4.1.
Let {p,} be a sequence in D, that converges pointwise to ¢, € D;: By the conti-

nuity of H,
H(:y¢u(T, ) = H(-, (T, -)) pointwise on R~

Recall that |p(u)(T,#)|<C for all we D and for all e R*. Thus, it follows from
(4.6) and the definition of D, that

IH(w, (T m))l < Ipl(m)l ~+ Clp.(2)|

for all positive integers & and for all # € R*. Therefore, by virtue of the Dominated
Convergence Theorem, we deduce that

tim ) = lim [ #(e, (T, ) () = [ B, o2, @) do) = (o)
R» Rn

This, in turn, implies the condition (ii) of Theorem 4.1 and hence the proof is complete.

COROLLARY 4.3. — Under the Convexity Assumption, let H: @ X Rt — R! be mea-
surable and satisfy the following conditions.

(i) H is convex on R! for each (¢, 2)e€@,
(ii) H is continuous on @ X R,
(iii) H(-, -, 0) € LYQ), and
)

(iv) there exists a constant y>0, a p,c L*(Q) and a measurable function
p: QX R!— R! such that

@wn Ip(t, @, 2)| <Ipslty 2)] + I
for all (¢,#,2) e QX R, and
(4.8) Pty 2, )22 — 21) <H(t, @, 2,) — H(t, ¥, 2,) <p(ly @, 2,)(21 — %)
for all z,5,& R* and for all (4, x) € Q.
Then there is an optimal control for the problem of minimising
- f H(t, o, p(u)(t, ©)) do dt
@ .

over I} subjeet to system S,.
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PROOF. — Let f: D, - R! be such that f(g fH (t, , o(t, @) dwdt. By Theo-

rem 4.1, it is required only to show that conditions ( } and (ii) of Theorem 4.1 hold.

Let g e D,. Since H(-, -,0) e LYQ), p(-, -, 0) € L¥(Q) and ¢ L), it follows
from (4.8) that

ot @) + H(t, , 0)<H(t, @, ¢(t, ®)) <H(1, 2, 0) + p(t, @, 0) + p(t, 7, 0) (%, @)

for all (¢,2) 0.
Thus by the definition of f(¢) and by using 4.7, we deduce readily that

N <2JH (-5 0o+ 20y -5 Osolplee + [Piloleloe + vIe]ee
for all ¢ € D,, where

1/
s -5 O lnia2{ [ ett, 2, 0))» do ]
)
for all p, 1<p < oo,
However, |@],o<2T*ciu,. Thus, f is bounded on D,. This, in turn, implies
the condition (i) of Theorem 4.1.

Let {p:} be a sequence in D, that converges to ¢* weakly in L*@). By the Banach
Saks Theorem ([10], p. 80) there is a subsequence of {p,}, which is also indexed by F,

such that 1/p Z @ — @* strongly in L*(Q), as v — oo, Let ¢* = 1/p 2% Because H
k=1

is convex on R, for each »,

1 12
> E flon) = ;kz fH(t7 2, ity x)) dw dt>fH(t7 @, @*(2, x)) dzvdt.
E=1 =14 s
Thus
4.9) lim 1 z flpr)>lim | H(¢, o, ¢*(2, ©)) do dt .
y=—>c0 V= P—>00

As {f(px)} 18 a bounded sequence in R, there is a subsequence, again indexed
by %, such that {f(p;)} converges to a limit. However, it is well-known that if a se-
quence of reals converges to a limit then the sequence of the averages also converges

to the same limit. Thus, hm f((pk) = 11m (1/v) 2 f(ps). Combining this relation with
(4.9), it follows that

(4.10) llm f(qok)>11m H(t, 2, ¢*(t, x)) dw dt .

p=>00

Q
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Letting 2, = ¢*(f, #) and 2, = ¢’(f, #) in (4.8), integrating over @ and letting
y — oo, We have

(4.11) lim | p(, 2, ¢*(t, 2)) (¢"(¢, ©) — ¢*(¢, v)) dw dt

< f H(t, 2, p*(t, 2)) de dt —Yim | H(¢, x, ¢*(t, x)) dw dt <

<lim |p(t, 2, ¢t ) (p*(¢, ) — (¢, x)) dowdt .

Q

However, as ¢” — ¢* strongly in L*(Q),

} f p(ty 7, ¢*(t, 0) (¢4, @) — p*(t, @) do dtl
! ;

<lpCy 5 9* ¢y Nzeld”— 9* )20
<(Ip:)ze + 719*lea 9" — ¢*]z0 >0 as v - co.
Thus,

(4.12) im | p(2, @, p*(¢, @) (¢*(5, @) — ¢*(¢, @) dwdt = 0.

y—>00

Next, using the fact that |¢”],q<Vv2 T*clu, instead of [g*|,o<V2 T ely,, we
deduce readily from an argument similar to that given for expression (4.12) that

(4.13) . lim f p(t, %, @*(t, 2)) (9*(t, ¥) — @ (1, 0)) dwdt =0 .
| ‘H—booo

Combining (4.11), (4.12) and (4.13), we have that

V>0

lim | H(t, , ¢"(¢, %)) do dt =fH(t, @, p*(¢, ®)) do dt = f(p*) .
Q

Thus, by virtue of (4.10), it follows readily that
Tim (g,) > f(g*) -

This, in turn, implies the condition (ii) of Theorem 4.1. Thus, the proof is complete.

. The technique of Corollary 4.2 fails for Corollary 4.3 because ¢{u) is bounded
only on sets that have a positive distance from {0} X R». However when ¢, =0
a stronger result is available for Lemma 3.4, namely the set {gp(u):u € D} is uni-
formly bounded upon . This result, which was given in Corollary 3.2 ([4], p. 643),

-
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will be used later to prove the Corollary 4.4 below. Note that if ¢, € O53(R") then
the system can be transformed into the one with zero initial condition by considering

D(t, ») = p(u)(t, #) — @olt, ) EQ .

COROLLARY 4.4. — Under the Convexity Assumption, let ¢, = 0 and let H: QX
X R* — R* be measurable such that

(i) H is continuous on R* for each (¢, z) e Q.
(ii) H(t, @, 2) <pa(ty @) + [2]|pa(t, )| for all (¢, #, 2) € @ X R', where p,, p, € LX(@).
Then, there is an optimal control to the problem of minimising over D

T(w) = [H(t, o, plu)t, o)) dwdt
Q
sabject to the system &S;.

PROOF. — Let f: D, — Rt be defined by f(p) = [H(t, @, p(t, #)) dwdt. Since g, = 0
Q

on R, by Corollary 3.2 ([4], p. 643) and the definition of D,, there is a positive con-
stant ¢ such that

lp(t, )| <cp,

for all ¢ € D, and for all (4, ) € Q.
Thus, it follows from the definition of f(p) and condition (ii) that

(@) <|pilie+ opts | D2 1,0 -

for all p € D;.

This, in turn, implies that f is bounded on D, and hence the condition (i) of Theo-
rem 4.1 iz satisfied.

Next, using an argument similar to that given for the corresponding part of Corol-
lary 4.2, we can easily show that the condition (ii) of Theorem 4.1 is also satisfied.
Thus, it follows from Theorem 4.1 that there is an optimal control.

THEOREM 4.5. ~ Under the Linearity Assumption, let f: D, X D — R* be measurable
such that

(i) f is bounded on D,xXD and

(ii) for any sequence {u,} that converges in the weak x topology to a u, eD
such that {p(u,)} converges weakly in L*(Q), or pointwise on @, to @ (Uo),
there is a subsequence {u,} such that {f(p(us,), )} converges and

f(¢(“o)7 “0) <ll_ifon°f(¢(ulcz)’ ukz) .

3 ~ Annali d&i Malematica
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Then, there is an optimal control for the problem of minimising over D

subject to the system S;.

PRrOOF. — By precisely the same argument as that given for (4.3), we note that if
inf J(D) exists then there is a sequence {u,}c D such that %1_1)1(}0 J (u;) = inf J(D).

Since {u,} c D, by the Linearity assumption it follows from Theorem 3.8 that
there is a subsequence, which is also indexed by %, and a %, € D such that u, — u, in
the weak # topology and p(u;) — ¢(%,) in the weak topology of L2(Q) and pointwise
on §. By condition (ii) there is a further subsequence, also indexed by %, such that

f(‘P(“o)y uo) <limf((p(uk), uk) y

k—>co

and hence
J (o) <lim J (u;,) = inf J(D) .

k—>co

Thus,
J (o) = inf J(D) .

This implies that «, is an optimal control and the proof is complete.

COROLLARY 4.6. — Under the Linearity Assumption, let H:Q X RiX U — R! be
a measurable function such that

(i) H iz convex on R! for each (f,z,u)c@xU.
(i) H(, -, 0,0) € L*Q),
(iii) there is a funetion p, € L3(Q) such that

— Pa(t, 2) (@1 — @s) <H(t, x, @1, ) — H(t, 2, @y, ) <pilt, 2} (@1 — @2)

almost everywhere on @ for all ¢,, p, e R, e U, and

(iv) there is an r-dimensional vector-valued function p, with its ecomponents
belonging to LYQ) such that

{— palt, @)y (w0 — Us)) < H{t, Xy @y Uy) — H(t, Ly @, Up) < LPalty @), (Uy— %y))

almost everwhere on ¢ for all ¢ € RY u,, 4, € U. Then, there is an optimal
control to the problem of minimising over D,

Jw) = [H(t, 7 g(u)(t, o), u(t, o)) dodt,
Q

subject to the system §,.
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. 35
Proor. — Let f: D; X D — R? be defined by

fio, w) = [H(t, o, p(t, 2), utt, 2)) dwds
Q

By (iii) and (iv), we deduce that

H(t, 00, 0’ O) - pl(ta m)qj(t7 w) - <p2(t7 00), ’bl/(t, %')> <H(t7 &, ‘}’J(ty m)7 u(t’ m))

<H(t, @, 0,0) + pi(t, 2) p(t, @) + {pa(t, 2), u(t, 7))

for almost all (¢, #) €@, for all ¢ € D, and for all wc D. Thus, it follows that

g, w)| <2[H(", -, 0, 0)”1,0 + 2(”?’1”2,@)(“‘1)1

2,0) T 2(“?2“1,0)(“u| 00,0)

and hence f is bounded upon D, x D. This implies the condition (i) of Theorem 4.5,
Let {u;} be a sequence in D). Then, it follows from Theorem 3.8 that there is a

subsequence, also indexed by %, and a #, € D such that u, converges in the weak %

* topology to u, and ¢(u,) converges weakly in L*Q) to ¢(u,).
For each positive integer v, let

(4.14) @ =

2 |

2 plus) -

E=1 .

Since g(u) — @(u,) weakly in L*(Q) as k — oo, it can be easily shown that @” = (i)
weakly in 12(Q) and ¢ — ¢(u,) — 0 weakly in L¥(Q) as » — co.

Let ke[1,] be an arbitrary integer. Now, in view of condition (iii), we have

' A w)(‘l’(uk)(ty z) — ‘P(“v)(i’ w))

<H(t, %, p(u) (2, »),

At 90)) — H(t, =, ()¢, 2), u,(, w))
<palt, x)((p(uk)(t, o) — @(t,)(%, 00))

almost everywhere on @. Summing over k, dividing by », using (4.14), integrating
over ¢, and then using the definition of J, we obtain that

(4.15) —fpl(t, @) (@*(t, @) — () (2, w)) do di
Q

<f% i H(t, #, plun)(t, @), ity @) d @t — J (uy)
E=1
Q

< f p.(t, @) (@*(L, @) — @(us)(t, @) dow dt .

Q
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As ¢" — @(u,) — 0 weakly in L2(Q) as v — oo and p, € L¥(@Q), it follows that

f‘pl(t, x)(¢*(t, @) _ o(u,)(t, ¢)dedt -0  as y — oo
2 :

Thus, by taking the limit as ¥ — co in (4.15), we obtain that

(4.16) lim % 1;1 H{t, @, p(uz)(ty ), ws(t, @) dow dt = Lim J (u,) .

Q

- By the convexity of H, we have that
1 v
. 1;1 H(t, @, p(up)(t, ©), ws(t, ) > H(t, 2, @*(t, ©), us(t, )) .
Consequently, it follows from (4.16) that

(4.17) lim | H(t, z, ¢*(t, ), w(i, #)) do di <lim J(u,) .

Q

Further, by virtue of condition (iii) with v = w (2, %), p, = ¢’(t, ©) and @, = @(u,)"
-(t, ), we deduce that

(418)  — [pult, 9) ("t ) ~ plun)lt, 0)) ddt
Q
<'[H(t, , @* (8, ), u, (8, @) dic dt — J-H(t’ @, @(Uo) (ty @), u, (8, ¥)) dec dit
Q Q

< f Dalt, @) (@"(t, @) — (1)1, 7)) dwdt .
Q

Again, as ¢* — @(u,) weakly in L*(Q) and p, € L¥Q), it follows from taking y — oo
in inequality (4.18) that

P—>00 P>

(4.19) lim |H(, , ¢"(¢, ), (i, ) do dt =lm | H (¥, @, p(uo) (%, ), us(t, ) do d .

The inequality (iv) will be used to evaluate the right hand side of (4.19). For
this, let u; = u,(t, ¥), u; = u,(?, ®) and ¢ = @(u,)(t, x), it follows that

(£20)  — [<pulty @), w,(t ) — wolt, ) do s
Q
< [H(t 2, plun)t, @), w,(t, @) dodt — I ()
Q

< [<palty @), 1,(t, ) — we(t, @) dwadt .
Q
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Since u, — 4, in the weak * topology and the components of p, are in L1(Q), we ob-
serve readily that

Lim | <p.3, @), ws(2, ) — ue(t, 2)> dr dt =0 .

Thus, we deduce easily from taking the limit of inequality (3.20) with respect to » that

(4.21) lim | H(t, x, golto) (8, @), us(t, @) dw dt = J (1) .

P—>00

Q

Combining (4.17), (4.19) and (4.21), we conclude that

J(up) <lim J(ur) = lim J (u,) .
y—>00 k—>c0
Thus, condition (ii) of Theorem 4.5 is also satisfied and henee the conclusion follows
immediately from that theorem. This completes the proof.

As was stated in the introduction, this paper only provides a partial answer to
the question of the existence of optimal controls of systems governed by linear second
order parabolic partial differential equation with Cauchy conditions. The difficul-
ties lie in the proof of Theorems 3.7 and 3.8. Because ¢(uy), — @, (@ =1, ..., n)
only weakly in L2?(@), we do not have the convergence of

{faﬁu,w)¢mh)mu,w)n%u,w)dxd4 (G =1, ., n)
Q

or of
“@mmwwmmmm@mmm} (G =1,..,m)
Q

if ay(,j=1,...,m), or by(j =1, ..., n) also depend upon wu.

It should be noted that in Section 8 of [13], examples are exhibited where the a,;
depends upon the control and there iy no optimal control. The important case of
allowing the b,’s to depend upon % is left as an open question.
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