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Summary.  - This paper considers the existence of optimal controls for systems governed by a 
second order parabolic partial differential equation in divergence form with Cauchy condi- 
tions. As preliminary results, theorems concerning the convergence of the sequence of weak 
solutions corresponding to a sequence of admissible controls are proved. Two general forms 
of criteria are considered. The first one is taken as a function of the weak solution of the 
system, and the other is taken as a function of the solution of the system and control. Several 
theorems and corollaries on the existence of optimal controls are then presented. 

l .  - Introduct ion.  

Questions concerning the existence of optimal controls for systems governed by  
parabolic par t ia l  differential equations with first boundary  conditions have been sub- 
stantial ly studied in references [1], [5], [8], [11] and [12]. Although necessary condi- 
tions for opt imal i ty  for problems of optimal control of systems moni tored by  para- 
bolic par t ia l  differential equations with Cauchy conditions and with bounded mea- 
surable controls appearing in the coefficients and forcing te rm can be found in refe- 
rence [2], the question concerning the existence of optimal controls has not  been 
investigated. The aim of this paper  is t o provide a par t ia l  answer to this question. 
More precisely, we can only allow the bounded measurable controls to appear  in 
the forcing t e rm and some coefficients. 

The class of systems considered in this paper  is described by  linear second order 
parabolic par t ia l  differential equations in divergence form with Cauchy boundary  
conditions. The controls influence the systems by  altering the coefficients. Speci- 
fically, i f / )  is a class of admissible controls, then, for each u E D, there are functions 
a~.:Q - ~ R  1 (j = 1, . . . , n ) ,  c":Q --->R 1 and d":Q -->R 1 where Q = (0, T ] x R "  and T 
a positive real. Fo r  a u ~ D, the system is 

(].1) 
(1.2) 

{ ~v, : -  (ai~q~, ~ a~v)~ ~ bj(v~ ~ c~cf ~ d ~ on Q,  

$1 ~v(O, .) = ~Vo on R ~, 

(*) Entrat~ ia Redazione il 26 ottobre 1978. 
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where a ,  : Q -+ R ~ (i, j = 1, ..., n) and b~: Q -* R ~ (j = 1, ..., n) are the coefficients 
not  influenced by  the control, while %:  R ~ --~ R ~ is the initial function. 

The conditions on the coefficients, the forcing term, the initial da ta  and the per- 
formance criterion will be presented in later  sections. The class of admissible controls 

is defined by  

(1.3) D ~ (u :Q --> U: u is measurable} 

where U is a compact  convex subset of R ~ tha t  contains, wi thout  loss of generality, 

the point  0. 
The forcing te rm and those coefficients t ha t  depend upon u are constructed from 

the corresponding functions a j : Q •  ~, ( ~ l , . . . , n ) ,  c : Q •  ~ and 
d: Q • U--~ R ~ which are given. I f  z: Q • U--~ R ~ then  z~: Q - ~  R ~ such tha t  

(1.4) z (t, x) = z(t, x, u(t,  x)) . 

In  section 2, the assumptions and notations are presented, and in section 3, the 
existence of weak solutions for system S~ and the properties of such weak solutions 
are investigated. The main results of this paper  are given in section 4. Theorem 4.1 
states a general result  for performance criterion tha t  depend only explicitly of ~. 
B y  a l ineari ty assumption, we have Theorem 4.2 where the criterion depends expli- 
cit ly upon both  u and ~. 

2. - Bas ic  notat ion  and assumpt ions .  

Before describing the basic assumptions to be imposed upon the coefficients of 
system $1, we introduce some useful notations.  

Le t  B be a connected, Lebesgue measurable subset of a finite dimensional Euclidean 
space. Then /~  denotes the closure of B, ~B the boundary  of B and ]B[ the Lebesgue 
of B. For  p ~ [1, + ~ ) ,  LV(B) is the space of functions z: B -+ R 1 such tha t  

Ilzii.(B) { f  Iz(x)? dx} 
B 

is finite, and L~ is the space of those functions such tha t  

ess sup I (x)l 
w~B 

is finite. I f  1 is an integer, 0 ~< l ~<-~ ~ ,  then  C~(B) denotes the class of 1 times con- 
t inuously differentiable functions from B into R% and CZo(B) is the subset of CZ(B) 
of functions with compact  support  in B. Le t  W~(B) be the completion of the space 
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Co(B) in the norm 

Throughout  the rest  of this paper, z~, will denote the distr ibutional derivat ive of z 
with respect to x~. 

Le t  X be a Banach  space. Then, for q ~ [1, -[- c~)~ Lq(I, X) is the class of func- 

tions z: (0, T] -+ X such tha t  
T 

0 

is finite, and, for q = + c~, L~(I, X) is the class of functions z: (0, T] -+ X such t h a t  

Hzl]~,,x--~ ~ ess sup ]lz(t) llx 
t~(O, T] 

is finite. When X = L~(B), p ~ [1, + c~], then ]]'[[q,x is wri t ten as 1[" H~.q.(o.~J• and 
L~(I, L~(B)) is wri t ten  as L~'q((0, T)• 

Throughout  this paper, the following assumptions are imposed on the coeffi- 

cients, the forcing te rm and the initial da ta  of system $1. 

AI: ar Q---> R ~ (i, j = 1, ..., n) are continuous on Q and there are positive con- 

stants #1 and #3 such tha t  thlz]~<~a~(t, x)z~z~<#21z[ ~ for all z ~ R "  and for all 

(t, x) e Q. 

A2: at, e , d : Q •  ~ ( j = l , . . . , n )  arc measurable on Q• and continuous 

on U for all (t, x) eQ. 

A 3: b~eL~176 (j = 1, . . . ,  n) ,  

A~: ~oEL~(R'). 

A~: There is a positive constant  #~ such tha t  for all u e D, j ~ {1, ..., n}, the norms 
a u c u d n 

A6: For  each ( t , x ) e Q ,  the set 

F(t, x, U) 

x, u?] 
a.(t, x, u ) /  

c(t, x, ~) | 
d(t, x, u) _l 

~R~+~: u~ U] 

is convex. Fur ther ,  i t  is assumed tha t  F ( . , . ,  U) is a measurable set-valued 

funct ion defined on Q. 



16 D. W. I~EII) - K. iJ. Tv, o: Existence o] optimal controls, etc. 

Since U is compact,  i t  is obvious tha t  if u E D then  the i - th  component  funct ion 
of u ,  u~, belongs to L~~ A sequence {u k} in D is said to converge in the weak * 

topology to u ~ if and only if (u~. ~} converges in the weak * topology of L~(Q) to u ~ 
i = 1, ..., r. Since U is compact  and convex, i t  should be noted  t h a t  if {u k} is a se- 
quence in D, then  there  is a subsequence {u ~} and a funct ion u ~  D such tha t  {u k'} 

converges in the weak * topology to u ~ 
A measurable funct ion z: Q • U --> R ~ is said to satisfy the l ineari ty condition if 

z(t, x, u) = (z*(t, x), u} + z**(t, x) 

for M1 (t, x, u )~  (2 X U, where z*: Q - +  R ~ such tha t  all of i t s  component  functions 
belong to L~(Q), z * * : Q - - ~ R  ~ belongs to L~(Q), ~nd <., .} denotes the s tandard  
inner product  on RL For  a funct ion satisfying the l ineari ty condition z~*--~ z ~~ in 
the w e a k ,  topology on L~(O)for all sequences {u k} in D tha t  converge in the w e a k ,  
, topology to a % ~ .D. 

On occasions, we shall make the assumption 
l 

A6: The functions a~ (~ = 3% ..., n), c and d satisfy the l ineari ty condition. 

I t  is obvious tha t  .AssumPtion A '  6 implies Assumption A6. t towever ,  this stronger 
assumption will allow us to consider more general criterion functions. All theorems 
are proved under  the Assumptions A~ to A5: I f  Assumption A~ is invoked, it  will be  
s tated tha t  the theorem is being proved under  the Convexi ty  Assumption. However,  
if .Assumption A'  6 is required, the thereto  will be said to be proved under  the Linear i ty  
Assumption. 

3. - Weak solution of parabolic systems. 

In  this section, it  will be shown that ,  under  assumptions A~ - A5, system St admits  
a unique weak solution. Fur ther ,  certain properties of weak solutions will also be 
investigated. 

DE~I~ITIO~ 3.1. - The solution to system $1 corresponding to a control u ~ D 
is a map ~(u) ~ L2'~176 (~ L~(I, WI(R~)) such tha t  

(3.1) fq~(u)vt-- a~jcf(u)~,V~j-- aU~(u)vxj @ bjq~(u)~jV @ c~cf(u)v --~ d~v = 0 
o 

for all ~ E Clo(Q) and 

(3.2) lim,,o a n  = fvo(X)V( ) ex 
R n  R n  

for all ~ ~ C~(R~). 
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An the left  hand  side of (3.1) is a commonly used expression~ the  following nota- 
t ion is introduced.  

DEFINITION 3.2. -- I f  ~ ~ C~(Q), q~ e L~'~(Q) ~ .L~(I, W~(Rn)) and 

O 

and  

(3.3b) 

u e D~ then  

t 

a R n  

T ~ E 0 ~  3.3. - For  each u e D, there  is a unique solution ~(u) to sys tem S~. 
~ u r the r  there is a constant  c, t ha t  depends only upon T, n, tq,/z~, and/za such tha t  

(3.~) 

~nd 

(3.5) 

F u r t h e r / ~ ( u ) ( a ,  x)~(x) dx ---~%(x) ~ (x) dx uniformly with 

for all V ~ r 

respect to u G D as a - +  0 

PROOF. -- Le t  0 k =  { x e R ~ :  Ix[ < k} and 0k----- (0, Y]XOk, for each positive in- 
teger k. Fo r  each u ~ D, let  us consider the first boundary  problem 

1 
% ~ (a~w~, -q- a~. )~ ~ bjq~x, -q- cU~ ~ d ~ on 0 k 

~ '~  ~(0, .) ---- ~o on 0~ 

q~(t, x) = o on [0, T] • ~0k. 

B y  Theorem I ([4], p. 634), we note  that ,  for each positive integer k, there exists 
a unique weak solution ~%(u) to the problem S~',k. !~urther by  let t ing ~ ---- 1, s = 0 
and/~,  p and q = c~ in Lemma 1 ([4], lO. 623), it  follows tha t  

(3.6) 2 

~ = 1  

where fl is a positive constant  t ha t  depends only upon n, tzl, iz~ and/z8 and c~ is a posi- 
t ive constant  t ha t  depends only upon T~ n,/zl,/z~ and/~3. IJet e 8 = c~e ~r, ~ok(u)(t, v) 
be zero for (t~ v) ~ 0, and let  

(3.7) 2 

2 - A n n a l i  d t  M a f e m a t i c a  
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l~ecalling tha t  I[d"II2,~</~, it follows from (3,6) tha t  

( 3 . 8 )  2 , 
i = l  

from which we deduce tha t  

and 

As T�89 and c~ are independent  of k, there is a subsequence of the vectors (9~(u), 
(9~(~))~,, . . . ,  (gJu))~., which is again indexed by k, and a vector (9(u), 9~(u), ... ,9~(u)) 
such tha t  9~(u) -~ 9(u), (gk(u))~, --~ 9~(u) (i ~-- 1~ ..., n) weakly in L~'~(Q) as k --> co. 
I t  is easily shown tha t  9~(u) is the distributional derivative of ?(u) with respect to x~ 
and we will use 9(u)~, instead of 9~(u). Clearly~ we have 

(3.9) 

(3.10) 

and thus 9(u) r L~(I, WI(R~)). Sforeover, it follows from (3.8) and lemma 2 ([4], 
p. 633) tha t  

and thus 9(~) e L2.~ n Z~(I, W~(R~)). 
For  any  positive integer k, it follows from Equat ion 2.2 ([4], p. 622) tha t  9~(u) 

satisfies the following expression 

f o(x)v(0, x )dx  + = o 
Rn 

for all ~/a C1(~)) with compact  support in [0, Z) X 0~. Let  ~ be an arbi t rary but  fixed 
element in C1(~)) with compact  support in [0, T)X Q. Clearly, k can then be chosen 
sufficiently large so tha t  the compact support of ~ is in [0, T)X 0R. Thus, by letting 
k -~ oo through an appropriate subsequene% it follows from the weak convergence 
in _L~(I, WI(R)) of the sequence {9~(u)} to 9(u) tha t  

(3.12) fgo(X)~(O, x)dx + s ~) = O. 
Rn 

Note tha t  (3.12) holds for any  ~/e C1(~)) with compact support in [O, T) X R ~. 
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Next,  if U is an arbi t rary element in C~(Q), then it follows readily from (3.12) 
t ha t  

(3.13) c'(~(~),n) = o  

Thus, in view of Definition 3.1, ?(u) will be a weak solution of system & corresponding 
with the control u if i t  also satisfies condition (3.2). 

By  Equat ion 1.3 ([4], p. 619), we can infer tha t  

(a.l~) f~(u)(z, x)~(~, x) gx + e~(~(u), v)l~ = o 
Rn 

for all ~ e C*(Q) with compact support in [0 , / ' )  • R". 
Le t  ~ e C~(R'), let S be the compact support of ~ and let ~ e C*([0, T]) such tha t  

N~(t) = 1 for t e [0 , / ' /4]  and N~(t) = 0 for t e [3T/4, T]. Fur ther ,  let N=(t, x) = N,(t) ~(x). 
Then ~ e C~(~)), equals zero for all (t, x) e [0, 3/"/4] •  and 

(3.15) w(t, x) = ~(x), for (t, x) e [o, T/~] x R  ~. 

For all ~ e [0~/'/4], it follows from (3.12), (3.14), (3.15), (3.9) and (3.10) thag 

f?(u)(a, 
Rn 

x) V(x) dx --f%(x) V(x) dx 

= I~(v(u), ~)1~ - ~(~(~), ~)1 

= I~"(v(~), w) Iol 

0 IRa 

0 R n 0 Rn 0 Rn 

0 R n 0 R n 0 1R~ 

/ , 5 = 1  

a ~ 

5=1 i=l 

/ , 5 = 1  

+ ~ Ila~lls ~ + i IlbsIIL~l['~lls ~ 
5 = 1  i = 1  

+ II II~,oll,7It ,~I1~ I12,~ I~1 + [[#ll~,oll,~II~,o<sl 
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 mli, iioo, o (, I-I + # Ii, ilLo '�89189 �89 + mil, Iioo,o(,1-1 

< Ci a~ + O~a 

where the positive constants C1 and C~ are independent of a and u. Thus, IF(u)' 
R 

�9 (a, x) u (x )dx  converges uniformly with respect to ~ ED to fr u(x) dx as a-->O 
for any  fl ~ Clo(R~). R. 

This proves the last assertion of the theorem. In  particular, the convergence holds 
for each u ~ D. Thus, condition (2.3) is satisfied. Therefore, for each u e D, ~(u) 
is a weak solution of system S~. 

The uniqueness of the solution to system $1 corresponding to u e D follows from 
Theorem 2 ([4], p. 639). The inequalities (3.4) and (3.5) follow from (3.7), (3.9), 
(3.10) and (3.11), and lett ing el = (n + 1)o 8. This completes the proof. 

Throughout the remainder of this paper, ~o(u) will denote the solution of system 8~ 
corresponding to u e D. 

In  reference 3, it  has been shown tha t  if ~ ( u ) e E l ' S ( Q ) n  Z~(I, WI(R=)) and 
satisfies expression (3.1) then  there exists a representation for ?(u) which is con- 
tinuous in Q. We will therefore always assume tha t  F(u) is continuous in Q. 

We shall be concerned with sequences in D. Basically, we shall show tha t  if 
{u~} is a sequence in D, there is a uo e D and a subsequence of {uk}, which is again 
denoted by  the original sequence, such tha t  ?(uk)-->Iv(uo) in certain topologies. 
The relevant theorems are given in Theorem 3.7 and Theorem 3.8. To prove these 
theorems ~ the following lemmas are required. 

LEnA 3.4. - {F(u): u ~ D} is an equieontinuous family of functions tha t  is uni- 
formly bounded on any  subset of Q tha t  has a positive distance from the set {0} X R ~. 

PRoof.  - Le t  K. be any  subset of Q tha t  has a positive distance ~o from {0} X R ' ,  
let ~ = ~/~o/3 and let ~ e D. For an arbi t rary but  fixed (t, ~ ) e  K,  we denote by  
G(q) = ( i --  9e ~, i] • {y e R~:IY -- ~[ < 3d2}. Since q(u) e L~'~(G(q)) n L~((i-- 9e ~, i], 
Wl({yeR~: ]y--5]  < 3e/2}) ) and satisfies the expression (3.1) in G(e), it  follows 
from Theorem 2 ([3], p. 98) tha t  there exists a positive constant  o~ depending only 
upon ~, ~, if1, #2 and #a such tha t  

< + ell 

for all (t, x) e G(O ). 
I n  particular, 
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Since (t, ~) is an arbi t rary element in K and the constant  c5 is independent of (t, ~), 
it  follows tha t  

(3.16) d U 

for all (t, x) e K.  

In  view of Theorem 3.3 and the fact  tha t  Ud~l]~,o</*sHd~l[2,o,</* a and ll~oll2,R-</*~, 
we deduce readily from (3.16) t h a t  

(3.17) Iq~(u)(t, x)[ < cs(e-(~+2)12 VN r~ c~ + e)/*a 

for all (t, x) ~ K. 
Thus, (?(u):  u e D} is uniformly bounded on any  subset of Q tha t  has a positive 

distance from {0} • R ". 
Le t  ( t , x ) e Q  and 0 = (t/2, T ] •  where 

B ~ {z~R.= I~ -x~[<2  for all i = 1 ,  ...,n}. 

By virtue of (3.17), there is a positive constant  c6 tha t  depends only upon t, T, n, 
/.1, #~ and/*6 such tha t  

l~(~)(t ' ,  x')l <c6  

for all (t r, x') ~ 0 and for all u e D. On R I+~ define the pseudo norm [. 14 such tha t  

max{z~,- -s /4}  s<.O. 
l(s, z)td = ~ s > O .  

Since ~(u) is a weak solution of (3.1) on 0, it follows from Theorem 4 ([3], pp. 110-111) 
t ha t  there are positive constants c7 and a tha t  depend only upon 0, n , / . i ,  /t3 and/*3 
such tha t  

I~(u)(t", x") - q)(u)(t', x')l < c,(c6 + / * 3 )  {l( t ' -  t', x " -  x')l~/R )" 

for all (t', x'), (t"~ x 'r) ~ O, t"<t', where/~ is the minimum of I and the pseudo distance 
to 30 from (t', x'). F rom this relationship it can easily be shown tha t  if t', x') ~ Q~ 
and ](t', x') -- (t, x)[ < rain (1/4, t/4), then 

IqJ(u)(t', x') - qJ(u)(t, x)l <c,(c6 +/*3)  (l(t', x') - (t, x ) l /4 /?} '  

where /~----rain {1, t/16}, and thus tha t  {of(u), u e D} is equieontinuous at  (t, x). 
This completes the proof. 
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Using Lemma 3.3 and the  Ascoli-Arzela Theorem, we can easily obtain the follow- 

ing result. 

LE~W_A 3.5. - Le t  {u~} be a sequence in D. Then, there  exist a subsequence of 
{~(uk)} such tha t  ~(uk) converges pointwise on Q and uniformly on ny  compact  sub- 

set of Q. 

L l a m a  3.6. - Under  the Convexi ty  Assumption,  if {u,} is a sequence in D then  
there is a subsequence {uk~}, and a u o ~ D such tha t  a~ -~ a~ ~ (i = 1, ..., n), ~ -+ c ~~ 
and d ~~ -+ d ~~ in the w e a k .  topology on Lc~(Q) as 1 --~ c~. 

PI~O01~. - As lIa~lloo,o (i =- 1, ..., n), IIcu*[loo,o and Ild  ll  o are bounded by ~ for 
all positive integers 16 there  exist  a~, (i = 1, ..., n), c* and d*, each belonging to 
L~(Q), and a subsequence of {u~}, which is again indexed b y  k, such t h a t  

~* - >  * ( i  ---= 1 ,  n )  c ~" - >  c* g~* d *  a~ a i ~ . . . ,  , , --> 

in the w e a k .  topology on L~~ as k ~ co. 
~Text, we shall show tha t  there exists a uo E D such tha t  a~ (t, x) = ai(t, x, no(t, x)), 

(i = 1, ..., n), c*(t, x) = c(t, x, Uo)t, x)) and d*(t, x) = d(t, x, Uo(t, x)). However  this 
will follow directly f rom condition A~ and Theorem 3 ' ([7], p. 281) if we can show 
tha t  

y(t, x) 

x)-I 

a*(t, x) I e F(t, x, v) A,  
c*(t, x) I 

_a*(t, x)J 

"al(t, x, u)- 
. . .  

a~(t,x,u) : u e U  

e(t, x, n) 

d(t, x, u) 

almost everywhere on Q. 
The proof is by  contradiction.  Suppose it were false. Then, there exists a measu- 

rable set Eo c Q so tha t  leo[ > 0 and 

(3.18) y(t, x) ~ F(t,  x, U) 

for all (t, x) e Eo. 
Since ]Eol ~ 0 it  follows, respectively, f rom Theorem 1 (PLIs [9], p. 858) and the 

Lusin Theorem tha t  we can choose a measurable subset E1 c Q, 0 < IE1] < ]Eo[/2 such 
tha t  the measurable set-valued funct ion ] ( . , . ,  U) and the measurable funct ion y 
are continuous on Q \ E , .  Let  E2 ~ Eo n {Q\E1}.  

Since 0 < [Eli < ]Eol/2, it  follows tha t  E~ c Eo and ]E2] > 0. ~ur ther ,  F ( . , . ,  U) 
and y are continuous on E~, upon which (3.18) holds. 
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Le t  (to, Xo)eE ,  and e > 0. B y  the continui ty of F ( - , . ,  U) at (to, Xo), there is 
an ~ = ~(e) > 0 such tha t  

(3.i9) :g(t, x, U) c F~(to, Xo, U) 

whenever  ](t, x) -- (to, Xo)] < 5, where F~(to, Xo, U) is the closed e neighbourhood of 
F(to, Xo, U). 

Let  

M~ = {(t, x ) e E , :  [(t, x ) -  (to, xo)l < ~} 

and (B~} be a sequence of subsets of Mo tha t  contain (to, Xo) such that  IB~]-~ 0 
as m --> co. Further ,  let  

a~(t, x) 

(3.20) y~(t, x) -~ a~(t, x) 

c~(t, x) 

~(t ,  x) 

Since, for all (t, x) e M~, 

yk(t, x) e F(t,  x, U) _c F~(to, xo, U) 

and since, by  Assumption A~, /F~(to, Xo, U) is closed and convex, it follows that  

f y (t, x)dxdt F (to, Xo, U) 
.Bm 

for all k. Further ,  as F'(to, Xo, U) is closed, it is clear tha t  

(3.21) lim 1 ( k-~ ~ ,  y,o(t, x) dxat ~F~(to, Xo, ~1. 
lJm 

On the other hand, we note tha t  y~ converges to y in the w e a k .  topology and 
that  IBm] < co for all m -~ 1, 2, .... Thus, 

k-~oo ~ ]  y~(t, x) dxS t  = ~ 1  y(t, x) d x d t .  
~m l~m 

Therefore, it follows from (3.20) tha t  

(3.22) . f  
.Bm 
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Again, b y  using the closure of the set ~ ( t o ,  Xo, U) and the continui ty of y at  (to, xo), 
it  follows from (3.22) tha t  

(3.23) y(t., x.) ----~.~lim ~ y(t,  x) dx dt e x~,(t., x~, U) . 

As (3.22) holds for all e > 0 and/F(to,  xo, U) is closed, we obtain tha t  

y(to, Xo) e zW(to, Xo, U ) .  

But  (to, Xo) eel, and so from (3.17), we have tha t  

y(to, xo) ~ ~(to, xo, U) .  

This is a contradiction and thus the proof is complete. 

Tm~0RE~ 3.7. - Under  the Convexity Assumption, if {u~} is a sequence in D then 
there exists a Uo e D and a subsequence {u~} such tha t  {~(u~)} converges to ~(Uo) 
weakly in Z~(Q), pointwise on Q and uniformly on compact  subsets of Q, whereas 
{q(%,)~,} converges to q~(Uo)~, (i = 1, ..., n) weakly in L~(Q). 

P~ooF. - B y  Theorem (3.3), there is a positive constant  e~ independent  of k such tha t  

(3.2~) 

(3.25) 

Thus, there exists a subsequence of {u,}, which is also indexed by/~,  and functions 
and ~v,, (i = 1, ..., n), each belonging to L~(Q), such tha t  {?(u~)} and {~(uk),,}, (i = 1, 
..., n), converge, respectively, to q and ~v~, (i -~ 1, ..., n), weakly in L*(Q) as k ---> co. 
From (3.24) and (3.25), we have tha t  

Using the definition of the distributional derivative of ~(u~), we have that ,  for 
any ~ e C~(Q), 

(3.28) f~f(u~)(t, x) V~,(t, x) dx at = - f ~(%)~,(t, x) v(t, x) at dx 
o o 

B y  taking the limit as k --> c~ of (3.28) and noting tha t  both  ~ ,  and ~ belong to Z~(Q), 
it follows from the fact  tha t  ~(uk) -+ ~ weakly in L~(Q) and tha t  ~(u~)~, --> ~ weakly 
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in L~(Q) t ha t  

(3.29) f w( t, x) x, t = - f w t, ) v( t, dx dt 
o o 

for any  ~ ~ C~(Q), and thus ~%----~v~,. 
B y  Theorem 3.3, i t  is clear from assumption A5 tha t  

for all k. Since c~ is independent of k, it  follows from Lemma 3 ([4], p. 633) tha t  

(3.30) [[(P [[2,~,a < ~r c~#3" 

The inequalities (3.25), (3.26) and (3.30) imply tha t  ~ eZ~176 L~(I, W~(R~)). 
Lemma 3.5 shows tha t  there is a fu r ther  subsequence of (u,}, which is denoted 

by  {uk~}, such tha t  {?(u~,)} converges to ~ pointwise on Q and uniformly on any  com- 
pact  subset of Q. However, since {~v(uk,)} is a subsequence of {~(u~)} and since ~v(u,) 
converges to ? weakly in L2(Q) as k --> 0% it is clear t h a t  ?(u~,) also converges to ~v 
weakly in Z2(Q) as k --> co. 

We shall show tha t  ~(x, t) = ~v(x, t) for almost all (x, t) ~ Q. Suppose it were false. 
Then, there exists a measurable subset Eo c Q with positive measure such tha t  ~(x, t) 
=/= ~v(x, t) for all (x, t) ~ Eo. Let  E~ be a measurable subset of Eo such tha t  0 < levi < co. 
Then, c~(x, t) V= ~f(x, t) for all (x, t) e E~. Recall tha t  ~v(uk,) converges to ~ pointwise 
on Q and tha t  ~(u~,) converges to ~ weakly in L~(Q) us 1 -+ co. Thus, in particular, 
~v(uk,) converges to ~ pointwise on E~ and ~v(u**) converges to ~ weakly in Z~(E~) 
as 1 -~ co. However, in view of the inequali ty (3.24) and the fact  tha t  ~v(u~,) converges 
to ~ pointwise on E~, it  follows from Theorem 13.44 ([6], lO. 207) tha t  ~v(u~,) also 
converges to ~ weakly in L2(E~) as t --> co. By  the uniqueness of the  weak limit, we 
observe readily tha t  ~(x, t) = q~(x, t) for almost all (x, t )~ E~. This is a contradic- 
tion. Thus, we conclude tha t  ~(x, t ) =  el(X, t) for almost all (x, t ) e  Q. 

By Lemma 3.6, there is a fur ther  subsequence of {u~,} which will be indexed by  k 
~ k  and a uo e D such tha t  a~ -+ a~', (i = 1, ..., n), c~'-> c ~~ and d '~-~ d ~' ~s k - >  co 

in the w e a k .  topology on L~(Q). I t  will be shown tha t  ~ = ~0(u0). 
Le t  V e Clo(Q), and ~ be the compact support of ~1. Since ~(u~) is the solution of 

system S~ corresponding to u , ,  then we readily observe from Definition 3.1 and 3.2 tha t  

(3.31) s ~) = 0 .  

!qote tha t  ~v(u~)~, 
to L~(Q). Thus,  

--> ~v~, ( i  1, ..., n) weakly in L~(Q) as n ---> co and a~%j, b~  belong 

Q Q Q Q 
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as k -~ c~. Since d ~ --> d ~~ in the  w e a k ,  topology on L~(Q) and ~ e L~(Q), i t  follows 

that 

f d~*v ~ f d~'n 
O Q 

as k --> c~. Recall  t h a t  V e C~(Q) with  compact  suppor t  ~ .  Thus,  we observe readily 
t ha t  ~' ~o and  c~ U a~ U~ --> a~ ~ --> c~~ weakly  in L~(Q) as k --)- ~ and  the  norms 

I la?~,h,o and llc~ll~,o are b o n d e d  independent ly  of k. Fu r the r  ~v(u~) ~ V a lmost  
everywhere  (in fact  uniformly)  on ~ and  ~0(~) is bounded  independent ly  o f  k on ~.  
Thus,  i t  can be eas i ly  shown t h a t  

and  

f f~~ a~'%~v(%) -+ a~ V~,q, (~ - 1, ..., n), 
Q 0 

Q Q 

~ s  k ---> c ~ .  

~ e x t ,  we recall t h a t  ~(u~) --> ~ weakly  in L2(Q) and  ~ e L~(Q). Thus,  

O 

as k--> c~. Pu t t i ng  these results together  wi th  (3.31), i t  follows t h a t  

(3.32) ~u~ 7) -~ 0 

for all ~ e CI(Q). 
L e t  ,1 e C~o(R"), and define 7 '  : ~) -~ R1 such tha t  ~*(t, x) ~ ~(x)~l(t) where Vl 

e C*([O, T]),  ~,(t) - -  1 if t e [0, T/4] and  w(t) : 0 if t e [3 r /4 ,  T]. I n  view of (3.32), 
it follows f rom Equa t ion  1.3 ([4], p. 619) t ha t  if a ~ [0, T/4:] then  

.I~(z, x)v(x)ax = - ~0(~, v*)l~ . 
R'* 

Similarly f rom (3.31) 

f~(~)(a ,  x)v(x)ax = ~ ( ~ ( ~ ) ,  ~*)[~. 
Rn 

Using the same type  of l imits t o  deduce (3.32) f rom (3.31), i t  follows tha t  

~ ( ~ ( ~ ) ,  7*)I~ -~ ~~ ~*)l~ 
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as /~ -* oo. Thus 

l im f~ (a ,  x)~(x) dx 
~o d 

Rn 

= - - l i m  lim g~(~v(u~), ~*)I~ 
a'i'0 k - -*~  

= lira l im f~(u~)(~, x)~(x)dx . 
Rn 

By the last s ta tement  of Theorem 3.3, we recall t ha t  

f ~o(u~)(z, x) v(x) ax -~ f~o(X)V(x) ax 
Rn Rn 

uniformly with respect to k as a~0. Thus 

f f  o(X)V(x) ar 
Rn Rn  

dx 

for all ~ ~ U~(R~). 
Therefore,  ~0 is a weak solution of system S~ corresponding to uo. However ,  b y  

Theorem 3.3, q(Uo) is its unique weak solution. This implies tha t  q = q(~to) and 

hence the proof is complete. 
As a special case, Theorem 3.7 is t rue  under  the l ineari ty assumption. I towever ,  

in this par t icular  case, stronger results are possible. More precisely, for any  sequence 
{u~} c D, we can find a subsequence (uk~) of {u~} such tha t  not  only ?(u~} converges 
to q~(uo) in the sense given in Theorem 3.7 as I -* co bu t  also uk converges in the weak �9 
, topology to u0. This ex t ra  conclusion allows us to include u in criteria explicitly in 

Theorem 4.5 and Corollary 4.6. 
For  ease in future  references, the corresponding result  of Theorem 3.7 with con- 

vex i ty  assumption replaced by  l ineari ty assumption is presented as follows: 

T ~ E O ~  3.8. - Under  the l ineari ty assumption, if {u~} is a sequence in D t h e n  
there  is a convergent  subsequence {%} in the  w e a k .  topology with limit uo e D 
such tha t  {~(u~z) } converges to F(Uo) as 1 -+ co weakly in L~(Q), pointwise on Q and 
uni formly  on compact  subsets of Q, while {~(uk~)J (i = 1, ..., n) converges, respec- 

t ively, to q~(Uo)~, (i ~- 1, ..., n), weakly in L~(Q) as l --* c o .  

PROOF. -- AS {u~} is a sequence in D, there is a subsequence, which is also indexed 
by  k, tha t  converges in the w e a k ,  topology to a uo ~ D. As in Theorem 3.7, there  
is ~ fur ther  subsequence of {u~}, again indexed by/~, such tha t  {~(u~)} converges to a 
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funct ion ? weakly  in L2(Q), pointwise on Q and uni formly  on compact  subsets of Q, 

{~(uk)~, } converge, respect ively,  weakly  in L2(Q) to ?~ ,  (i : 1, ..., u), and  ~0 e L2'~(Q) (~ 

(~ I ~ ( I ,  W~(R~)). The facts  t h a t  a~ ~ -* a~ ~ (i = 1~ ..., u), c ~'~ --> c ~~ and  d ~ --> d ~' 
follows direct ly f rom Assumpt ion  A '  8. The  rest  of the  proof  is exact ly  the  same as 

for Theorem 3.7. 

4. - The existence of optimal controls. 

The discussion so far  has been concerned wi th  the  propert ies  of solutions of sys- 
t e m  S~. To consider an op t imal  choice of u e D, a per formance  criterion needs to be  

specified. I n  this section, a series of criteria will be  presented and  for each one it  

will be  shown t h a t  an  op t imal  control exists. 
The  first three cases will be  criteria of the  form, minimise a funct ion J :  D -> R ~ 

where 

(4.1) J(u)=](~(~)).  

Let  D~ = {9(u): u ~ D}. The funct ion f: D~ -~ R 1 will be  assumed to be bounded  

and  satisfy a semicont inui ty  condition. The general result  is s ta ted  in Theorem 4.1 
wi th  par t icular  eases s ta ted  as corollaries. Note  t h a t  if J ( D ) =  {x ~ RI :  J ( u ) ~  x 

for some u e D} then  an op t imal  control exists if and  only if there is a u ~ D such 
t h a t  J (u )  ~-- inf J(D) .  The existence of such u e D can be p roved  b y  Theorem 3.7 

or Theorem 3.8. 

T~EOgE~ 1.1. - Under  the  Convexi ty  Assumption~ let  ]: D1 -~ R ~ satisfy the  fol- 

lowing conditions 

(i) ] is bounded  upon D~, and  

(if) for any  sequence {~o~} in D~ t h a t  converges to a ~ a D1 either weakly  in 
L2(Q) or pointwise on Q, there  is a subsequence of {](~,)} t h a t  converges and  

(4.2) ](~0) < l i m  ] ( ~ , ) .  
~--~oo 

Then,  there  is an op t imal  control to the  prob lem of minimising J(u)  -~ ](~(u)) on D 

subject  to sys tem S1. 

P~ooP.  - Since D is non e m p t y  and  ] is bounded  upon  D, i t  follows tha t  J (D)  

is a non e m p t y  bounded  subset  of R 1, Thus,  inf J (D)  exists and  there  is a sequence 

{u~} in D such t h a t  

(4.3) lira J(u~) = inf J(D)  . 
k--)- r  
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B y  Theorem 3.7, there  is a subsequence of {uk}, which is also indexed b y  k and a 
u0 E D such tha t  ?(u~) --> ~(Uo) both  pointwise on Q and weakly in L~(Q). Thus, b y  (ii), 
there  is a fu r ther  subsequence of {%}, again indexed by  k, such tha t  

(4.4) /(~O(Uo)) <lira I(~(~)). 
,%..--> ~ 

Therefore,  it  follows f rom (4.1) and (4.4) tha t  

J ( ~ o )  = ](~(%)) < l i m  f ( V ( u k ) )  : l i m  J(uk). 
/:-*co k-*oo 

Combining this with (4.3), we observe readily tha t  

J(uo) <in f  J(D) . 

As J (%)  E J(D), this means  J(uo) = inf J(.D) and thus proves the theorem. 

COZCOLT~A~Y 4.4. - Under the Convexity Assumption, let  z be a measure on R ~, 
H: R ' x R  ~ -+ R ~ be measurable on R ~ x R  ~, such tha t  H(x, .) is continuous on R ~ 
for each x ~ R ~ and satisfy the following inequali ty 

(4.5) It~(x, z)] < [p~(x) I H- IzI[p~(x)l 

where p~ and P2 are integrable, with respect to Jr, functions from R ~ -+ R ~. Then, 
there  is an optimal  control to the problem of minimising over D 

J(u) = I / / (x ,  ~(u)(T, x)) 7~((~X) 
Rn 

subject  to sys tem S~. 

P~oos .  - Le t  f: D 1 - + R  ~ be such tha t  

1(~) = f ~ ( x ,  ~(T, x))~(ax) . 
R n  

I f  conditions (i) and (ii) of Theorem 4.1 hold, then  the theorem is proved.  

By  (4.5), for all x e R ~, 

(4.6) I~(x, ~(T, x))l < IPl(X)l -F I~( T, x)llp~(x)] �9 

B y Lemma  3.4, there is a positive constant  C such tha t ,  for all u e D and for all 
x e R " ,  ]~f(r Thus, f rom (4.6) we have tha t  

R n R n  R n 
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Since p~ und p~ are integrable with respect to z, the right hand side is a finite bound 
independent of u ~ D. Thus, ] is bounded on D~. This implies the condition (i) of 
Theorem 4.1. 

Let  {9~} be a sequence in Dz tha t  converges pointwise to 90 ~ D~: By  the conti- 
nu i ty  of H,  

H ( . ,  9k(T, ")) --> H ( . ,  9o(T, ")) pointwise on R% 

RecM1 tha t  19(u)(T,x)l<~C for all u e D  und for all x e R  ~. Thus, i t  follows from 
(4.6) and the definition of D~ tha t  

]~ (x ,  ~ ( T ,  x))l < tp~(x)l § clp~(x)[ 

for all positive integers k and for-M1 x e R ~. Therefore, by  virtue of the Dominated 
Convergence Theorem, we deduce thut  

lim~_~1(9~r = k-+~lim f H(x, 9k(T, x))7~(dx) = f lt(x, 9o(T, x)(z(dx) 
R n R n 

= 1(~o) �9 

This, in turn,  implies the condition (ii) of Theorem 4.1 and hence the proof is complete. 

COrOLLArY 4.3. - Under the Convexity Assumption, let H :  Q x R I -> R ~ be mea- 
surable and satisfy the following conditions. 

(i) H is convex on R ~ for each (t, x)~ Q, 

(ii) H is continuous on Q x R ~, 

(iii) H ( . , . ,  O) e L~(Q), und 

(iv) there exists a constant  y>~O, a p ~ Z  2 (Q) and a measurable function 
p : Q x R ~ ~ R 1 such tha t  

(4.7) 

(4.8) 

Ip(t, x, z)l <~ [pl(t, x) I -t-?lzl 

for M1 (t, x, z) ~ Q x R 1, and 

p(t, x, zl)(z~-- zl) ~H(t ,  x, zl) -- H(t, x, z~) <~p(t, x, z2)(z~-- z~) 

for ull z~z~ ~ R ~ and for all (t, x )~  Q. 

Then there is an optimal control for the problem of minimising 

= fl~(t, x, ~(u)(t, J(u) X ) )  dx gt 
O 

over D subject to system $1. 
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PROOF. -- Let  /: D 1 - + R  1 be such tha t  f ( ~ ) =  fH(t, x, ?(t, x)) dxdt. B y  Theo- 

rem 4.1, it is required only to show tha t  conditions (i) and (ii) of Theorem 4.1 hold. 
Let  ? eD1 .  Since H ( . , . ,  0) ~L~(Q), p ( . , . ,  0) eL: (Q)  and ~ eZ~(Q), it follows 

from (4.8) tha t  

q(t, x) + H(t, x, 0)~<H(t, x, ~v(t, x)) <~ H(t, x, O) -~ p(t, x, O) + p(t, x, 0)~(t, x) 

for all (t, x) ~ Q. 
Thus by  the definition o f / ( ~ )  and by  using 4.7, we deduce readily tha t  

ll( >I <211H(.,., 0)11 ,  + lip(, , o>tt2,QIl ll ,  + []plIt2,o]]~on2,~a -t- 

for all q e D1, where 

IIz(', ", O)H~,Q~-~ { f  ]z(t,x, O)I~ dx dt} 1/" 
Q 

for all p, l~<p < ~ .  
However ,  I[vll~.Q<2T~ci~3. Thus, ] is bounded on D1. This, in turn, implies 

the condition (i) of Theorem 4.1. 
Let  {~v~} be a sequence in D1 tha t  converges to ?* weakly in L~(Q). B y  the Banach 

Saks Theorem ([10]~ p. S0) there is a subsequence of {~v~}, which is also indexed by  k, 

such tha t  1/v ~, cf~ --> r strongly in L~(Q), as v -~ co. Let  ?~ = 1/v ~ cf~. Because H 
k=l k=l 

is convex on R 1, for each v, 

Thus 

(4.9) 

Q Q 

f lim - ~ ] ( ~ ) > h m  lt(t, x, qg,(t, x)) dxd t .  
Q 

dx dt . 

As (](~k)} is a bounded sequence in R 1, there is a subsequence, again indexed 
by  k, such tha t  (/(~k)} converges to a limit, t towever ,  it is well-known that  if a se- 
quence of reals converges to a limit then the sequence of the averages also converges 

v 

to the same limit. Thus, limo~](~k ) = !imo(1/v ) ~] (?~) .  Combining this relation with 
(4.9), it follows tha t  k=l 

(4.10) lira ](~k)> lira I H(t, x, qD~(t, x)) dx dt . 
k--,'*oo t->co .~ 

Q 
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Letting z~-~ ~*(t, x) and z~-----~0"(t, x) in (4.8), integrating over Q and letting 
--> co, we h a v e  

(4.11) lim f p ( t ,  
0 

x, ~*(t, x)) (~(t ,  x) - ~*(t, z)) ,~x,~t 

< f H(t, x, ~0*(t, x))dx dr--lim f H(t, x, q~(t, :o))dx dt< 
0 O 

< ,~lim f p  (t, x, ~'(t, x)) (qJ*(t, x) -- 9~'(t, x)) dx dr. 
Q 

However, as ?~ -+ ?* strongly in Z~(Q), 

fp(t, % ~*(t, x))(~'( t ,  x) - ~*(t, X)) dx dt 
0 

< lip(, , ~o,(., .))1]~,~11r ~o* h,o 

Thus, 

(4.12) ,--~lim fp ( t ,  x, ~,(t, ~)) (~,(t, x) - ~,(t ,  x)) a~at = o .  

0 

aS ~ --> oo. 

1~cxt, using the fact that  Ib~tl2,Q<~/~ z~eb8 instead of tb*ll2,Q<~/~z~eb, we 
deduce readily from an argument similar to that  given for expression (4.12) that  

(4.13) lim,__~,, f p(t, x, qg,(t, x)) (qg*(t, x) - -  ~(t, x)) dx dt -=- O . 
O 

Combining (4.11), (4.12) and (4.13), we have that  

llm~.o f g(t, x,  ~(t, x))dxdt = f H(t, x ,  ~*(t, x ) )  d x d t  = ](q~*) . 
0 Q 

Thus, by v i r tue  of (4.10), it follows readily that  

lira t(~k) > l@*) .  
k--~oo 

This, in turn, implies the condition (if) of Theorem 4.1. Thus, the proof is complete. 
The technique of Corollary 4.2 fails for Corollary 4.3 because ~0(u) is bounded 

only on sets that  have a positive distance from (0} •  However when ~o = 0 
a stronger result is available for Lemma 3.4, namely the set (~(u) :u  e D) is uni- 
formly bounded upon ~). This result, which was given in Corollary 3.2 ([4], lO. 643), 
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will be used later  to prove the Corollary 4.4 below. Note  tha t  if ~o r C~(R€ then  
the system can be t ransformed into the one with zero initial condition b y  considering 

r  x)  = ~ ( u ) ( t ,  x)  - ~o(t ,  x)  e ~2 . 

C01~OLL~Y 4.4. - Under  the Convexi ty  Assumption, let  ~o = 0 and let  H :  Q x 
x R~-+  R ~ be measurable such tha t  

(i) H is continuous on R ~ for each (t, x ) a  Q. 

(ii) H ( t, x, z) < p~( t, x) ~ Izl ]p~( t, x) I for all ( t, x, z) e Q x R ~, where pl, p~ e LI( Q ). 

Then~ there  is an opt imal  control  to the problem of minimising over D 

J(u) = Itt(t, x, ~(u)(t, X ) )  dx dt 
O 

subject to the system ~q~. 

P~oos .  - Le t  ]: D~ -> R ~ be defined by  ](~s) = fH(t ,  x, qJ(t, x)) dxdt. Since ~o --  0 
Q 

on R ~, by  Corollary 3.2 ([4], 1). 643) and the definition of D~, there is a positive con- 

s tant  c such t ha t  

for all ~v ~ D1 and for all (t, x) a ~). 
Thus, it  follows f rom the definition of ](F) and condition (ii) t ha t  

for all F a D~. 
This, in turn,  implies tha t  ] is bounded on D1 and hence the condition (i) of Theo- 

rem 4.1 is satisfied. 
:Next, using an argument  similar to tha t  given for the corresponding par t  of Corol- 

la ry  4.2, we can easily show tha t  the condition (ii) of Theorem 4.1 is also satisfied. 

Thus, i t  follows f rom Theorem 4.1 tha t  there is an opt imal  control. 

TtrEOI~n)I 4.5. - Under  the Linear i ty  Assumption,  let ]: D1X D -+ R 1 be measurable 

such tha t  

(i) f is bounded on D 1 x D  and 

(ii) for any  sequence {uk} tha t  converges in the w e a k .  topology to a u o  E D 
such t ha t  {~v(uk)} converges weakly in L~(Q), or pointwise on Q, to ~v(uo), 
there  is a subsequence {%} such tha t  {](q~(uk,), %)}  converges and 

]((F(uo), uo) ~<lim ](~(u~,), uk,) �9 

l - - >  o o  

3 - A n n a l i  eli M a t e m a t i c a  
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Then, there  is an optimal  control  for the problem of minimising over D 

subject  to the system $1. 

PROOF. -- By  precisely the same argument  as t ha t  given for (4.3)~ we note  tha t  if 
inf J(D) exists then  there is a sequence {u~} c D such tha t  l im J ( u k ) =  inf J(D).  

k-->co 

Since (u~} c D, by  the Linear i ty  assumption i t  follows from Theorem 3.8 tha t  
there  is a subsequence~ which is also indexed b y / q  and a uo E D such tha t  u~ -+ Uo in 
the w e a k .  topology and ?(uk) --~ ?(uo) in the weak topology of L~(Q) and pointwise 
on Q. By  condition (if) there  is a fur ther  subsequence, also indexed b y / q  such tha t  

and hence 

Thus, 

](qJ(Uo), Uo) < l i m  f(q~(u~), u~) , 
k-.-> r 

J(uo) ~<lim J (u~) =- inf J ( D )  . 
k-'o, c~o 

J(uo) ----- inf J(D) . 

This implies tha t  u0 is an optimal  control  and the proof is complete. 

COROLLARY 4.6. -- Under the Linear i ty  Assumption, let  H :  Q • 2 1 5  U - - ~ R  ~ be 
a measurable funct ion such tha t  

(i) H is convex on R ~ for each (t, x, u ) e Q •  U. 

(ii) H ( . , . ,  0, 0) eL2(Q), 

(iii) there  is a funct ion p~ ~ .L2(Q) such tha t  

-- pl(t, x)(cfl-- ~ )  ~ H(t, x, ~ ,  u) -- H(t, x, %,  u)<~pl(t, x)(q~-- %) 

almost everywhere on Q for all q~, ~ ~ R ~, u e U, and 

(iv) there is an r-dimensional vector-valued funct ion p~ with its components  
belonging to LI(Q) such tha t  

( - -  p~(t, x), (ul - -  us)) •H(t ,  x, % ul) -- H(t, x, % us) < (pdt ,  x), (u~-- us)) 

almost  everwhere on Q for all ~ ~ R ~, u~, u~ ~ U. Then, there  is an opt imal  
control to the problem of minimising over D, 

J ( u )  = rE(t, x, u(t, x)) axat , 
O 

subject to the system ~ .  
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P~ooF. - Le t  ]: D~ X D --> R ~ be defined b y  

](% u) --= fH( t ,  x, r x), u(t, x)) dxd t .  
Q 

B y (iii) and (iv), we deduce tha t  
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H(t, x, O, O) -- p~(t, x)qJ(t, x) -- (p2(t, x), u(t, x)} < H ( t ,  x, F(t, x), u(t, x)) 

<H(t ,  x, O, O) + pl(t, x)~(t, x) + <p2(t, x), u(t, x)> 

for almost  all (t, x) c Q, for all ~ ~ D1 and for all u ~ D. Thus, it follows t h a t  

IX(F, ~)1<2[I~(,, ,, o, o)lL~ + + 2(lfp lll, )(ll ll , ) 

and hence ] is bounded upon D1 X D. This implies the condition (i) of Theorem 4.5. 
Le t  {uk} be a sequence in D. Then, it  follows from Theorem 3.8 tha t  there  is a 

subsequence, also indexed by  k, and a Uo ~ D such tha t  u~ converges in the w e a k .  
. topology to u0 and F(u~) converges weakly in L~(Q) to ~(Uo). 

For  each positive integer ~, let  

(4.]4) ~ :[ ~ ~(u~) 
'1~ k = l  

Since F(u~) -+ ~(u~) weakly in L~(Q) as k --> o% it  can be easily shown tha t  ~" --> ~(Uo) 
weakly in L2(Q) and ?~--  ~(%) --> 0 weakly in L~(Q) as ~ --> oo. 

Let  k e [1, r] be an a rb i t ra ry  integer. Now, in view of condition (iii), we have 

- p~(t, x)(~(u~)(t, x) - q(%)(t, x)) 

<H(t ,  x, qJ(u~)(t, x), %(t, x)) -- H(t, x, ~(%)(t, x), %(t, x)) 

< p~(t, X)(~(u~)(t, x) -- ~(u2(t, x)) 

almost everywhere on Q. Summing over k, dividing b y  ~, using (4.14), integrating 
over Q, and then  using the definition of J ,  we obtain tha t  

(4.15) - f  p~(t, x)(v~(t, x)-v(~,)(t, ~)) dx dt 
Q 

< 7 ~  H(t, x, ~(~)(t, x), ~,(t, x)) dxdt-- J(u,) 
0 

< f p (t, x) - x)) dt . 
O 
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As ~" --  ?(u~) --~ 0 weakly in Z~(Q) as v --~ ~ and P l e  L~(Q), it  follows tha t  

f p d t ,  x ) (c f ' ( t ,x ) - -  qJ(G)( t ,x)dxdt  ---~0 as ~ ---> oo. 
O 

Thus, by  taking the limit as v -~ c~ in (4.15), we obtain tha t  

(4.16) l im H(t ,  
Q 

x, ~(u~)(t, x), u~(t, x)) dx dt ---- lira J(u , )  . 
Y'--~ o o  

�9 B y  the convexi ty  of H,  we have tha t  

1_ ~ ~(t, x, r x), u,(t, ~)) >~v(t, x, r ~), u,(t, x ) ) .  
~ ) k = l  

Consequently, it  follows from (4.16) tha t  

(4.17) ,-~lim f (t, x, x), u,(t, x)) dx dt 
Q 

Fur ther ,  by  vir tue of condition (iii) with u = %(t, x), ~fl -~ ?~(t, x) and ~ = ?(uo)" 
�9 (t, x), we deduce tha t  

(4.18) -- f p d t ,  x)(qJ(t, x) -- ~(Uo)(t, x)) dxdt  
0 

< f~(t,  x, v'(t, ~), ~(t, x )dxd t -  f~(t,  x, V(~o)(t, x), 
0 Q 

<~ f p d t ,  x)(q~(t, x) -- q:(uol(t, x)) dx t i t .  
0 

%(t, x)) dx dt 

Again, as ~ -~ ?(Uo) weakly in L2(Q) and Pl E L~(Q), it follows from taking ~ -+ c~ 
in inequali ty (4.18) tha t  

(4.19) l im IH(t ,  x, ~o~(t, x), udt ,  x)) d x d t  ~-- l im (H(t ,  x, 9~(uo)(t, x), u~(t, x)) d x d t  . 
~--->c~ , . i  v.--->c/o d 

Q O 

The inequali ty (iv) will be used to evaluate the r ight  hand  side of (4.19). For  
this, let  ul = u~(t, x), u~ ~- uo(t, x) and ? = cf(Uo)(t~ x), it follows tha t  

(4.20) - f(p~(t, x), 
O 

G(t,  x) -- Uo(t, x)} dxd t  

< fH(t, x, ~f(Uo)(t, x), u~(t, x ) d x d t -  J(uo) 
Q 

< f<p~(t, x), %(t, ~) - ~~ x)> dxdt. 
O 
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Since % --~ Uo in the w e a k .  topology and the components  of p~ are in Z~(Q), we ob- 
serve readily tha t  

I '(pt(t ,  x), u~(t, x) -- uo(t, x)} dx dt ~-- 0 . l im 
~--> r  ! 

Q 

Thus, we deduce easily f rom taking the limit of inequali ty (3.20) with respect to ~ tha t  

(4.21) l im f H(t,  x, q~o(Uo)(t, x), u~(t, x)) dxdt  = J(uo) . 
J 

o 

Combining (4.17), (4.19) and (4.21), we conclude tha t  

J (uo) <l i ra  J(u~) = lim J(uk) �9 

Thus, condition (ii) of Theorem 4.5 is also satisfied and hence the conclusion follows 
immediate ly  f rom tha t  theorem. This completes the proof. 

As was s ta ted in the introduction,  this pape r  only provides a par t ia l  answer to 
the question of the existence of opt imal  controls of systems governed by  linear second 
order parabolic par t ia l  differentiul equation with Cauchy conditions. The difiicul- 
ties lie in the proof of Theorems 3.7 and 3.8. Because ?(uk)~,--~F~, (i = 1, ..., n) 
only weakly in L~(Q), we do not  have the convergence of 

{ f a ~ ( t , x ) ~ ( % ) ~ , ( t , x ) ~ ( t , x ) d x d t }  ( i , j =  l , . . . , n )  
Q 

or of 

{ fb (t, dxat} (i = 1 , . ,  n) 
Q 

if a, ( i ,  j ~-- !, ..., n), or br ~ 1, ..., n) also depend upon u. 
I t  should be noted tha t  in Section 8 of [13], examples are exhibited where the a ,  

depends upon the control and there is no optimal control. The impor tan t  ease of 
allowing the b~'s to depend upon u is left  as an open question. 
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