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Summary. We study the estimation of a density and a hazard rate function 
based on censored data by the kernel smoothing method. Our technique 
is facilitated by a recent result of Lo and Singh (1986) which establishes 
a strong uniform approximation of the Kaplan-Meier estimator by an aver- 
age of independent random variables. (Note that the approximation is carried 
out on the original probability space, which should be distinguished from 
the Hungarian embedding approach.) Pointwise strong consistency and a 
law of iterated logarithm are derived, as well as the mean squared error 
expression and asymptotic normality, which is obtain using a more tradition- 
al method, as compared with the Hajek projection employed by Tanner 
and Wong (1983). 

1. Introduction 

Suppose T1, ..., T, are i.i.d, nonnegative random variables ("lifetimes") with com- 
mon continuous distribution function (d.f.) F and suppose C1, ..., C, are i.i.d. 
nonnegative random variables ("censoring sequence") with common d.f.G. 
Assume also that the lifetimes and censoring sequence are independent. In the 
setting of survival analysis data with random right censorship, one observes 
the bivariate sample (X1, 61) . . . .  (X,, 6,), where 

Xi= T~A C,, aI=I{T~<C,} 
with A denoting minimum and 1{" } denoting the indicator function on a set. 
One question of interest in survival analysis is the estimation of the hazard 
the function h defined as follows when it is further assumed that F has a density 
f: 

h(X)=dx I - l o g  F(x)] =f(x)/F(x), for F(x)< 1, 

with/v= 1 - F .  (The quantity H(x)= --log F(x) is called the cumulative hazard 
function.) In the setting without censoring, parametric models of monotone fail- 
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ure rate have been extensively studied (see Ch. 3 of Barlow and Proschan (1975)). 
The nonparametric estimation of h(x) was initiated by Watson and Leadbetter 
(1964a, 1964b). Subsequent research works include Rice and Rosenblatt (1976) 
and Singpurwalla and Wong (1983). There are essentially three variants based 
on the delta-sequence smoothing introduced by Watson and Leadbetter (1964a, 
1964b) and Rice and Rosenblatt (1976): 

and 

h(.a)(x)--~ k.(x -u)  dF.(u)/• (x), F~(x) < 1; (1.1) 

h(~Z)(x)=~ k.(x-u)dF.(u)/F~(u)=~ k.(x-X(j)) /(n-j+ l); (1.2) 
n 

h(.3)(x)-=S k.(x--u)dH.(x)=~ k.(x--X~j))log[1--(n--j+ l)-a], (1.3) 
n 

where F, is the empirical d.f., H , ( x ) = - l o g  F,(x), X(j) is the jth order statistic 
from the sample {Xi, i=  1 . . . .  , n} (note that since there is no consoring, Xi = T~, 
i=  1, ..., n); and {k,} is a delta-sequence (see Walter and Blum (1979)), which 
in the kernel case is specialized by taking 

k,(v)=(1/b,)k(v/b,), (1.4) 

where k is usually a bounded, symmetric, density function, and {b,} is a so-called 
bandwidth sequence such that bn~O, nb,--* oo as n ~ m. It was shown in Rice 
and Rosenblatt (1976) that h(~2)(x)-h(~3)(x)=@(n-1), h(,J)(x), i= 1,2, 3, all have 
the same asymptotic variance (i.e., variance of the asymptotic distribution), but 
h(,1)(x) has a different asymptotic bias. No expressions for Eh(~l)(x) or Var h(,1)(x) 
were obtained. 

When the data are subjected to random right censoring, the problem becomes 
more complex, primarily because the estimate of F(-), due to Kaplan and Meier 
(1958), now take on a product form: 

~o< = [ n - i  \a(i) 
1 -  x KM,(x)= x ~ )  if x<X~,); 

1 if x > X(,) and the largest observation is uncensored. 

Here 6(i ) is the induced order statistic corresponding to X(i ). 
Since many well-studied properties of the empirical d.f. cannot be readily 

transferred to the Kaplan-Meier estimator, several researchers circumvented this 
technical difficulty by considering an equivalent problem on the uncensored 
observations (for example, Blum and Susarla (1980), Burke (1983)). Some re- 
searchers (for instance, Ramlau-Hansen (1983)) employed the method of count- 
ing processes. Still others (F61des, Rejt6 and Winter (1981), Burke and Horvath 
(1984)) used a Chung Smirnov type result on the Kaplan-Meier estimator. To 
the credit of Tanner and Wong (1983), expressions for the bias and variance 
in the kernel case (essentially the form h(, 2) given in (1.2)) were obtained by 
direct calculations and asymptotic normality was proved by appealing to Hajek's 
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projection. Padgett and McNichols (1984) gave a review of density and failure 
rate estimators for censored data. 

Our present research is motivated by a recent result of Lo and Singh (1986) 
which establishes a strong uniform approximation of the Kaplan-Meier estima- 
tor by an average of i.i.d, random variables with a sufficiently small error. This 
allows for a more traditional approach to the hazard estimation problem for 
censored data. As contrasted with approaches mentioned in the paragraph 
above, our method will be a direct one. Although it will become apparent that 
we could equally well have considered the variants h(2)(x) or  h(n 3), since there 
have been fewer investigations carried out for h(.1)(x) (see (1.1)) with F.(x) replaced 
by a modified version F.(x) of the Kaplan-Meier estimator defined as follows 
to avoid the possibility that KM.(x)  = 1 : 

I1 ~)<= n - i + l  ~,~ if x<X(,);  
r ~ ( x )  = x ' 

[ F~(X(n)) if x > X(.) and the largest observation is uncensored. 

It is easily checked that F,(x)>(n+ 1) -1 for all x, and that 

sup IKM~(x)-l~,,(x)l=O(n -1) a.s. 
O<x<_T 

for any 0 < T < i n f { t > 0 :  L ( t )= l} ,  where E(x)=F(x).C~(x)=P(Ti>x,  C~>x). 
(Hereafter, a.s. will be an abbreviation for "almost  surely".) 

The main contribution of this paper is to derive an expression for the mean 
squared error (MSE) of h(~l)(x) (Theorem 4.1) which to the best of our knowledge 
has not been hitherto obtained rigorously. In addition, a law of iterated loga- 
rithm and asymptotic normality are obtained for both the density and hazard 
rate estimators. Our arguments are based on Lemma 2.1 which is an improved 
version of Theorem 1 of Lo and Singh (1986). 

In Section 2, we state the preliminaries needed for our presentation. In Sec- 
tion 3, we focus our attention on kernel density estimation under censoring 
via strong approximation. In Section 4, we present the law of iterated logarithm, 
asymptotic normality and mean squared error expression of our hazard rate 
estimate. Finally, in the last section, we conclude with relevant comments and 
some comparison with the nearest-neighbor method. For  more details of the 
proofs we refer the reader to Lo, Mack and Wang (1985). 

2. Preliminaries 

We shall concentrate our analysis on the kernel method. We assume throughout 
our discussion that f is continuous at x, f (x) > 0, G is continuous at x and L(x) < 1 
for a given point x under consideration. Let 

f ,(x) = by 1 ~ k ( x -  u)/b,) dF,(u) (2.1) 
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be the kernel density estimate of f(x) with kernel k and bandwith b,. The 
assumptions we made on the kernel k are as follows: 

(k 1) k is a symmetric density function; 

(k 2) k is compactly supported with support 1-- c, c] ; 

(k 3) k is continuous; 

(k4) kis of bounded variation. 

These assumptions are the "usual"  ones encountered in the kernel method 
of curve estimation. We shall comment on the use of kernels with vanishing 
moments in the last section. 

The assumptions we make on the bandwidth sequence {b,} are: 

(bl) b,--+O as n~oo;  
(b2) (logn)2(nb,)-i~O as n ~ o o ;  

(b 3) b,/bm --* 1 as n, m --* oo with n/m ~ 1, and (log n) 4 = o [-n b, (log log n)]; 

(b4) b, =o[ ( log log  n/n)*/5]. 

These assumptions are not mutually exclusive. For  example, (b3) implies 
(b2). Assumptions (bl) and (b2) are similar to the usual requirements one 
imposes in kernel estimation for the uncensored case. The extra factor (log n) 2 
in (b2) is a very small price one pays for using the Lo-Singh representation. 
(b3) (the same as condition (11) in Hall (1981)) is needed to derive the law 
of iterative logarithm for kernel density estimates (Theorem 3.4 (ii)). 

The estimate that we consider is modelled after h(,1)(x) (we continue to label 
this as h(,1)(x) for convenience): 

h(,1) (x) = f ,  (x)/~ (x). (2.2) 

To analyze the asymptotic behavior of h(,1)(x), we need to first analyze that 
offn(X). As mentioned earlier our technique is motivated by the strong represen- 
tation result (Theorem 1) of Lo and Singh (1986). In Lemma 2.1 we shall give 
an improved modified version of their result. Note  that the rate of remainder 
r,(x) in (2.5) below is of order (log n/n), as compared to (log n/n) 3/~ in their 
Theorem 1. We begin with some notations. Let LI(t)=P(X~<t, 6~=1). For  
positive real z and x, and 6 taking values 0 or 1, let 

where 

(z, 6, x) = - g (z/x x) + [L(z)] - t. I {z < x, 6 = 1 }, 

y 

g(y) = ~ [L(s)]-  2 dL, (s). 
0 

(2.3) 

Let ~(x)=~(Xi, c~i, x), also let T be such that L ( T ) <  1. Note that the random 
variables ~i(x) are bounded, uniformly in 0 < x < T, E ~i(x)--0, and 

C o v  (~i (x), ~i(y)) = g (x A y), (2.4) 
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(see Lo and Singh (1986)). 
The following lemma provides the key ideas involved in the results in Sect. 

3 and 4, the proof of which is given in Appendix A.1. 

Lemma 2.1. Let ~i(x)= F(x).  ~i(x). We have 

F, (x) = F (x) + n-1 y, ~i (x)+ r, (x), (2.5) 
n 

where 

and for any ~ > 1, 

sup Ir,(x)l=O(logn/n) a.s., (2.6) 
O ~ x ~ T  

sup E lr, (x)l ~ = O ([log n/n]~). (2.7) 
O ~ x ~ T  

Finally, we state a lemma which by now is a standard device in the kernel 
estimation literature: 

Lemma 2.2. Assume the kernel k is a bounded density and (b l) holds. Let q 
be an integrable function. 

(a) For every continuity point x of q, we have 

lim b21 S k ((x - u)/b,) q (u) d u = q (x). (2.8) 
n 

(b) I f  in addition k is symmetric with finite second moment, and q is twice 
continuously differentiable at x, then 

b21 ~ k ((x - u)/b,) q (u) d u = q (x) + (q" (x)/2) S v 2 k (v) d v- b, z + 0 (b2). 

3. Strong Approximation of f .  (x) 

We shall obtain, in Proposition 3.1, a strong approximation of f , (x)  and use 
it to derive asymptotic properties of the kernel density estimate. Let ~i and 
r, be defined as in Sect. 2. Also define 

and 

fiV)= ~ f (x--  vb,) k(v) dv - f (x), 

a , (x)=(nb.)  -1 ~ S ~ i ( x - vb , )  dk(v), 
n 

(3.1) 
(3.2) 

e, (x) = b, -1 ~ r, (x-- v b,) d k (v). (3.3) 

We note that the integrals are well-defined for large n since k is compactly 
supported, ft,(x) and a,(x) are essentially the bias and random fluctuation com- 
ponents of f,(x), respectively, and e.(x) is the error of approximation in Proposi- 
tion 3.1 below. 
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Proposition 3.1. Suppose k satisfies (k2)-(k4).  Then f11(x) admits the strong 
approximation on the interval [0, T]: 

where 

and for any ~ > 1, 

f ,  (x) =f(x) + fi11 (x) + a11 (x) + e11 (x), (3.4) 

sup [e.(x)l=O([logn/(nb11))  a.s. (3.5) 
O < _ x < _ T  

sup E[G(x)[ ~ = O([log n/(nb.)]~). (3.6) 
O < x < T  

Proof Using the integration by parts lemma of F61des, Rejt6 and Winter (1981) 
and Lemma 2.1, under assumptions (k2) and (k3), we have that if x <  T, where 
L(T) < 1, then 

f~ (x) = b21 ~ k ((x - u)/b11) d F11 (u) 

= b;  1 ~ F, (x -- v b11) d k (v) 

=b21 ~ [V(x-vb11)+n -~ ~ {i(x-vb11)+r11(x-vb11)] dk(v) 
11 

= ~ f (x - -  v b11) k (v) d v + (n b11)-1 • ~ {i (x - v b11) d k (v) 
11 

+b2 1 ~ r11(x-vb11) dk(v) 

=f(x)  + fill(x) + a,(x) + G(x). 

(3.5) and (3.6) follow from (2.6), (2.7) and (k4). [] 

Theorem 3.2. (Bias and variance.) Suppose k satisfies (k l ) - (k4) ,  {b11} satisfies 
(b 1), (b2), f (x)> O, and that f is twice continuously differentiable at x, then 

E f , (x)=f(x)+(f"(x)/2)  S vE k(v)dv.b2 +o(b2)+o((nb,)-l/2). (3.7) 

Var f11 (x) = (n b11)-1 i f  (x)/G(x)] S k z (v) dv + o ((n b11)- 1). (3.8) 

Proof See Appendix A.2. [] 

"Note. The MSE of f11(x) can be obtained from the above theorem, and the 
usual balancing between bias and variance will give the optimal rate n -1/5 
for the bandwidth b11 as in the uncensored case. 

The asymptotic normality of f11(x) now follows from Proposition 3.1 and 
Theorem 3.2: 

Corollary 3.3 (Asymptotic normality). (i) Suppose k satisfies (k 1)-(k4), {b11} sat- 
isfies (b 1), (b2), we have as n ~ Go, 

(nb11) 1/2Ef11(x)-Ef,(x)] a , N(O, a2). 
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(ii) I f  in addition f is twice continuously differentiable at x, and {b,} satisfies 
b ,=o(n -l/s) also, then as n--, o% 

(nb,) 1/a [ . f , (x ) - f (x ) ]  e ,N(0, cr2). 

d 
Here , means convergence in distribution, and cr 2 = [ f  (x)/G(x) ] ~ k2 (u) du. 

The next result can be obtained by verifying conditions (z) and (3) in Theorem 
1 of Hall (1981) using the strong embedding results for the bivariate empirical 
process. 

Theorem 3.4. (Law of iterated logarithm.) Suppose k satisfies (k 1)-(k4). 
(i) I f  {b,} satisfies (b 1) and (b 3), then 

lim sup [-2 log log n/(nb,)]- 1/2 Io-,,(x)l = ( [f(x)/G(x)] ~ k2(v) dr} 1/2 a.s. 
n 

(ii) I f  in addition f is twice continuously differentiable at x and {b~} satisfies 
also (b4), then 

lim sup [2 log log n/(nb,)] - 1/2 I f ,  (x) - f  (x) l = { [f(x)/G(x)] ~ k 2 (v) dr} 1/2 a.s. 
n 

4. Kernel Estimation of the Hazard Rate 

Let h~l)(x) be the hazard rate estimate defined in (2.2). Using results in the 
previous section, we shall establish its asymptotic properties. 

Theorem 4.1. (Mean squared error). Under the assumptions of Theorem 3.2, 

MSE [ h ( 1 ) ( x ) ]  = {[f"(x)/[2 F(x))] ~ v a k(v) dr} a. b 4 

+ {(h(x)/L(x)) ~ k 2 (v) d v}. (n b,)- i  + o (b4, + (n b,) - 1). 

Proof See Appendix A.3. [] 

Theorem 4.2. (Asymptotic normality.) Let r2=  [h(x)/L(x)] ~ k 2 (v) d v. 
(i) Under the assumptions of  Corollary 3.3 (i), as n ~ 0% 

(nb~)l/2 [h(1)(x)_ E h(1)(x) ] d ,N(0, z2). 

((ii) Under the assumptions of Corollary 3.3 (ii), as n ~ oo, 

(nbn)l/Z[h(nt)(x)_h(x) ] d , N(0, z2)" 
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Proof (i) is immediate from Corollary 3.3 (i) and Slutsky's Theorem. (ii) follows 
from Corollary 3.3 (ii) and the fact that 

(nb,) 1/2 [h(~l)(x)- h(x)] = (nbn) 1/2 { f ,  (x)[ (/~ (x)) -1 - (F (x ) ) -  t] 

+ (F(x))-I [f, (x) - f  (x) ] }, 

since the first term on the right converges to zero in probability as n ~ oe. [] 

Corollary 4.3. (Law of iterated logarithm.) Under the assumptions in Corollary 
3.4 (ii), 

lim sup [-2 log log n/(nb,)] - 1/2 ih(t)(x)_ h(x)[ = [(h(x)/L(x)) ~kz(v)  dv] 1/2 a.s. 

5. Concluding Comments 

(a) We have seen in the above discussion the use of Lo and Singh's (1986) 
strong representation of the Kaplan-Meier estimator in analyzing kernel estima- 
tion of hazard rate functions. Although our technique can also be applied to 
ht,2)(x) and h(,3)(x), we have chosen to consider the estimates given by h(nl)(x) 

as it is less explored. Our variance expression and asymptotic normality results 
are similar to those of h(,Z)(x) studied by Yandell (1983), although we have 
employed a more traditional approach. The bias for the three variants appear 
to be different in the scale constant but not the rate. 

(b) Tanner (1983) mentioned that a nearest-neighbor approach may be prefer- 
able to the fixed bandwidth sequence approach from an extensive simulation 
experiment. This observation appears to have some theoretical support judging 
from the recent work of Liu and Van Ryzin (1985) which essentially used an 
asymmetric nearest-neighbor window. Both their findings (Theorems 4.3 and 
4.4) and the findings of some other researchers on nearest-neighbor density 
estimation with censored data (for instance, Mielniczuk (1986)) suggest that 
the censoring mechanism may have no effect on the asymptotic variance for 
nearest-neighbor estimates. This may be an advantage in terms of constructing 
a confidence interval at a fixed point or a simultaneous confidence band if 
one wants to test for goodness-of-fit Nevertheless, one cautions that the bias 
behavior of the Liu and van Ryzin (1985) variable histogram estimator suffers 
essentially the same drawback as nearest-neighbor density estimators in that 
it may be quite large at the tail regions of F (see Mack and Rosenblatt (1979)). 

(c) A number of researchers in kernel estimation have studied the effects 
of kernels which may have vanishing moments. Its use, coupled with the assump- 
tion of a higher degree of smoothness of h(x), can make the convergence of 
the bias to zero faster. This point of view was taken in Singpurwalla and Wong 
(1983). Of course one pays the price that the estimator so constructed may 
take on negative values if the sample size is not "large enough". For this reason 
we have kept the non-negativity of the kernel in this paper. 

Acknowledgment. We are grateful to an anonymous referee for constructive comments. The research 
of J.L. Wang is supported in part by U.S. Air Force grant AFOSR-85-0268. 
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A p p e n d i x  

A .1 .  P r o o f  o f  L e m m a  2.1 

The following lemma is needed in the proof of Lemma 2.1. 

L e m m a  A.1 .  

where 

log/~ (x)  - -  l o g  F (x) = n-1 ~ (i (x) + R. (x), 
n 

(A.I.1) 

P( sup IRn(x)l > an)= O(n-0, (A.1.2) 
O ~ x < - T  

for any fl > 0 with a n = 0. [-log n/n] for some constant 0 depending on ft. 

Proof. Let Ln(t)=n -1 Z I {X i  <=t} and L~,(t)=n -1 Z I { X i < t ,  6i=1} be the 
n n 

empirical distribution and subdistribution function respectively. If one checks 
the proof of Theorem 1 of Lo and Singh (1986) carefully, one will find that 
Rn (x) is composed of three terms: 

R n (x) = Rnl (x) + R.  2 (x) + R. 3 (x), 

where 
x 

Rnl(x)--log/~(x) + ~ [Ln(s)] - 1  dLan(s), 
0 

x x 

Rn2 (x) = I ( [L ( s )  ] -1  _ [-J~l  n ( S ) ]  - 1) dE1 (s) + S ([L(s)] - 2 [-L(s) - Ln(s)] dL1 (s) 
0 0 

-- -- i [E~(x-g(s ) ]2  dLi(s), 
o [E(s)] 2 En(s) 

x 

Rn3 (x)__ y (EL(s) ] - 1 _ [Ln (s) ] - l) d(Lln(S) -Li  (s)). 
0 

Tracing Lo and Singh's proof  carefully and using their Lemma l, it can 
be shown that 

P{ sup IRni(x)l>an}=O(n-~) for i=1 ,2 .  (A.1.3) 
ONx<<-T 

A recent result of Burke, Cs6r~6 and Horvfith (1988) (Lemma) then implies 
that (A.1.3) also holds for Rn3(x ). Lemma A.1. is thus verified. []  

Proof of Lemma 2.1. By Taylor's expansion and Lemma A.1., 

- [-/~ (x)  - F (x) l = [log/~ (x) - -  l o g  F(x) ] .  F(x) + A.. [-log/~ (x) - -  l o g  F(x) ] 2 

= -- n-  1 ~ ~i(x) + F(x). R,  (x) + A,. [log/~ (x) -- log F(x)] 2, (A. 1.4) 
n 
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where A, is between/~(x) and F(x) and is therefore bounded by one. 
The last term on the right of the expansion can be shown to be O (a,) a.s. 

by (A.I.1). The second term on the right is O(a,) a.s. by (A.1.2) and the Borel- 
Cantelli lemma. Hence (2.5) and (2.6) follow. 

For (2.7), we shall only demonstrate the case c~ = 1. Since ~i(x)'s are uniformly 
bounded and ( n + l ) - l < / ~ ( x ) < l  for all x in [0, T], we have sup IR.(x)I 

O < x < _ T  
= O(log(n + 1)). Lemma A.1 then implies (choosing fi > 1) 

and 

sup E]R,(x) l=O(a, )  (A.1.5) 
O <_ x<_ T  

sup E(R, (x )  2)= O(aZ~). (A.1.6) 
O<~x<_T 

Using (A.1.5), (A.1.6) and the Taylor expansion (A.1.4) above, we have 

sup 
O < _ x < _ T  

El log ~ (x ) -  log F(x)[2 ~ sup 2 [E (n-1 2 ~i (X)) 2 + E (R, (x)2)[ 
O ~ x ~ T  n 

=O(n-a). 
Hence 

sup E[r.(x)[< sup F(x ) .E lR . ( x ) [+  sup gl logF. (x ) - - logF(x)[  z 
O N x ~ < T  O < _ x < _ T  O<_x<_T 

= 0 (a . ) .  

Lemma 2.1 is thus proved. [] 

A.2. Proof  of  Theorem 3.2. 

Since (b2) implies that a, /b ,=o((nb,) - l /2) ,  (3.7) follows from Proposition 3.1, 
(2.9) and (3.6). 

To verify (3.8), consider first 

Var a,(x) = (nb,Z) -1 ~ F(x - -  ub,). F(x  - vb,) g [(x - u b,) /x (x - vb,) ] dk(u) dk(v), 

Y 

where we recall g(y)= ~ [L(t)]-  2 dL 1 (t), with derivative 
0 

g' (t) = [L(t)] - 2 dL~ (t)/d t = f  (t)/[G(t). F(t)2]. (A.2.1) 

There exists a positive constant p = p  (x, c)< oo such that for n sufficiently large, 

F(x - u b,)-F(x - v b,) = F(x) 2 + e, (x, u, v). b, (A.2.2) 

with sup ]e, (x, u, v)l > p, since l u[ < c, Iv] < c. For  n sufficiently large, write 

Var a.(x) = a* (x) + e* (x), 
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where 

and 

a* (x) = [F(x)2/n b2,) ] 5j g [ (x - u b,) /x (x - v b,) ] d k (u) d k (v) 

e* (x) = (n bn)- * j5 e, (x, u, v) g [ (x - u b~)/x (x - v b,) ] d k (u) d k (v). 

Using integration by parts, we have 

g [ (x - u b,)/x (x - v b,)] d k (u) = ( -  b.) i g' (x - u b,) k (u) d u. 
C 

Thus by Fubini Theorem and a change of variable, we have 

~ g [ ( x -  ub,) A ( x -  vb,)] dk(u) dk(v)  = b, ~ k2(u) g ' ( x - u b , )  du. (A.2.3) 

Hence by continuity of F and G at x and the dominated convergence theorem 

(nb,) a*(x)  ~ F(x)  2 g'(x) 5 k2(U) du. (A.2.4) 

Similarly, using (A.2.2), it can be shown that e*(x)= O(n-~).  Thus (3.8) follows 
by applying (3.6), (A.2.1) to (A.2.4), and Schwarz inequality to an expansion 
of Var f ,  (x) via (3.4). [] 

A.3. Proof  of  Theorem 4.1. 

Consider 

E [h~)(x)-  h(x)] 2 = E [I + II + III] 2, (A.3.1) 

where 

I = f .  (x) [ (1//~ (x) - (1/F(x))] 

I I=  I-f . (x)-  E f . (x)] /P(x) ,  

III = [E f. (x) - f  (x)]/F(x). 
(A.3.2) 

(A.3.3) 

Note that III is deterministic and E(II.  I I I )= 0. 
We shall show below that the main contribution comes from E(II 2) and 

E(III2), all other terms in the quadratic expansion being of smaller order. 
First observe that 

E[i[=E[fn(x)" ff(x)--_~(X)F(x) F.(x) J ] 

< M (P(x)) -1 {E IF(x) --/2 (x) ] 2}1/2. {E [/2 (x) ] - 2 }~/2 
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by Schwartz inequality, where M=sup[ f . ( x ) l  < oo by (k2) and (k3). Lemma 2.1 
x 

implies that E[_F(x) - / ~ ( x ) ]  2 = O(n-  1) and 

E [ s  2 = Uv(x)_  dn3- 2. p {IF,(x)-/v(x)l =< an} 

+ (n + 1)2-e {IF, (x) - F(x)l > tin} 

=O(1),  

where dn=d-(log n/n) 1/2 for some d>0 .  Hence El I I= O(n-1/2). Similarly, one 
can show that E [-I 2] = 0 (n- 1). 

These facts together with Theorem 3.2 now imply that 

E[I .IIII  = IIIII .E[II = O(n-1/2 b2)+o(n - 1~2(rib. )- 1/2) 
E[I.  III = 0 (n- 1/2 (nb.)-  1/2 + 0 (n- 1/2. (an/b.)l/2. (n bn)- 1/4). 

= o ((n bn)- 1). 

Let b, be of the form c n e, where c, p are both positive constants. Since b 4 
dominates rt -1/2 b 2 for p <  1/4, and (rib,) -a dominates rt -1/2 b 2 for p >  1/6, the 
t e r m  O ( n  -1 /2  b 2) is always dominated by either b 4 or (rib,) -1 for any p >0 .  
Also, (nb,) -1 always dominates n-1/Z(nb,) 1/2, for any p >0 .  Hence E(II 2) and 
E(III 2) will be the main contribution to the MSE of hr The theorem now 
follows from (A.3.2) (A.3.3) and Theorem 3.2. [] 
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