Real Hypersurfaces in Quaternionic Projective Space (*).

A. Martínez - J. D. Pérez

Abstract

Summary. - This paper is devoted to make a systematic study of real hypersurfaces of quaternionic projective space using focal set theory. We obtain three types of such real hypersurfaces. Two of them are known. Third type is new and in its study the first example of proper quaternion OR-submanifold appears. We study real hypersurfaces with constant principal curvatures and classify such hypersurfaces with at most two distinct principal curvatures. Finally we study the Ricci tensor of a real hypersurface of quaternionic projective space and classify pseudoEinstein, almost-Einstein and Einstein real hypersurfaces.

0. - Introduction.

Real hypersurfaces of a Riemannian manifold have been largely studied, especially in the case of a real space form (see [4], [9], [17], ...) and a complex space form (see [5] and its references). However, results for real hypersurfaces of quaternion space forms (and concretely, of quaternionic projective space) are few. In fact, the first paper on this subject is the one of PaK, [18], and we can also cite [19].

In the case of complex projective space, $C P^{m}$, CECIL and RYaN, [5], applying focal set theory obtain some examples of real hypersurfaces that can classify attending to the behaviour of their Ricci tensor. They also obtain the non-existence of Einstein real hypersurfaces in complex projective space. In the case of quaternionic projective space this result is not true. This can be seen from [15] because there is a radius such that the corresponding geodesic hypersphere is Einstein.

The purpose of the present paper is to make a systematic study of real hypersurfaces of quaternionic projective space. For this we adapt focal set theory to this space, considering quaternionic projective space embedded in a Euclidean space (see [20] and [21]), embedding whose geodesics are easily expressed.

In § 2, using focal set theory we obtain three examples of real hypersurfaces. Two of them are largely known and are the ones classified by PaK [18], attending to the behaviour of their second fundamental form. Third example is new and § 3 and § 4 are centered on its study.

The examples obtained have constant principal curvatures, thus § 5 is devoted to the study of such real hypersurfaces that we classify if they satisfy an additional

[^0]condition concerning certain distributions over the hypersurface associated to the quaternionic structure of quaternionic projective space (Theorem 5.7).

In $\S 6$ we classify real hypersurfaces with two distinct principal curvatures (Theorem 6.2).

Finally, § 7 is devoted to the study of the Ricei tensor of a real hypersurface in quaternionic projective space. Concretely, after a classification of pseudo-Einstein and almost-Einstein (Definition 7.1) real hypersurfaces we obtain that the only Einstein real hypersurfaces are open subsets of geodesic hyperspheres of a certain radius (the ones mentioned above).

The results obtained along the paper establish clear differences between the complex case (as studied by CEcIL and Ryan) and quaternionic case.

1. - Quaternionic projective space. Basic statements.

Let us consider $Q^{m+1}, m \geqslant 2, Q$ being the algebra of quaternions with its usual symplectic product \langle,$\rangle and let g_{0}=\operatorname{Re}\langle$,$\rangle be the usual Euclidean metric on$ Q^{m+1}. The quaternionic projective space $Q P^{m}$ can be obtained from the unit sphere $S^{4 m+3}$ of Q^{m+1} by identifying x to $\lambda x, \lambda \in Q,|\lambda|=1$. Thus $S^{4 m+3}$ is a fibre bundle over $Q P^{m}$ with structural group S^{3} and projection Π. If $q \in S^{4 m+3}$ the horizontal subspace of $T_{q} S^{4 m+3}$ is $T_{q}^{\prime}=\left\{p \in Q^{m+1} /\langle p, q\rangle=0\right\}$ and the vertical subspace is spanned by $j_{1} q, j_{2} q$ and $j_{3} q$, where j_{1}, j_{2}, j_{3} are the unit quaternions.

We shall consider on $Q P^{m}$ the metric given by $g(X, Y)=g_{0}\left(X^{\prime}, Y^{\prime}\right)$ and the connection $\bar{\nabla}_{x} Y=\Pi_{*}\left(\nabla_{x^{\prime}}^{\prime} Y^{\prime}\right)$ for any $X, Y \in T Q P^{m}$ where ${ }^{\prime}$ denotes the corresponding horizontal lift and ∇^{\prime} is the covariant differentiation of $S^{4 m+3}$. Then, it is known that the Sasakian 3 -structure of $S^{4 m+3}$ induces on $Q P^{m}$ a structure of quaternion Kaehlorian manifold of constant quaternionic sectional curvature 4 (see [13], [14]) (1). That is, there exists on $Q P^{m}$ a 3 -dimensional vector bundle \hat{V} of tensors of type $(1,1)$ with local basis of almost Hermitian structures $\left\{J_{1}, J_{2}, J_{3}\right\}$ satisfying,

$$
\begin{array}{cl}
J_{1} J_{2}=-J_{2} J_{1}=J_{3} \\
\bar{\nabla}_{X_{X}} J_{i}=q_{k}(X) J_{j}-q_{j}(X) J_{k} & i=1,2,3 \\
\left(d q_{i}+q_{j} \wedge q_{k}\right)(X, Y)=4 g\left(X, J_{i} Y\right), & i=1,2,3, \\
\bar{R}(X, Y) Z=g(Y, Z) X-g(X, Z) Y+\sum_{k=1}^{3}\left\{g\left(J_{k} Y, Z\right) J_{k} X-g\left(J_{k} X, Z\right) J_{k} Y+\right. \tag{1.4}\\
& \left.+2 g\left(X, J_{k} Y\right) J_{k} Z\right\}
\end{array}
$$

${ }^{(1)}$ In this paper we shall consider on $Q P^{m}$ the metric of constant quaternionic sectional curvature 4 , and $m \geqslant 2$.
for any $\bar{X}, Y, Z \in T Q P^{m}$, where \bar{R} denotes the Riemannian curvature tensor of $\bar{\nabla}$ and (i, j, k) is a cyclic permutation of ($1,2,3$), $q_{k}, k=1,2,3$, being local 1 -forms on $Q P^{m}$.

Let $H M(m+1)=\left\{B \in g l(m+1, Q) / B^{c}=B^{c}\right\}$ where B^{c} (respectively, B^{q}) denotes the quaternionic conjugate (respectively, the transpose) of B. Consider on $H M(m+1)$ the metric given by

$$
\begin{equation*}
g(A, B)=\frac{1}{2} \operatorname{trace}(A B), \quad A, B \in H M(m+1) \tag{1.5}
\end{equation*}
$$

In [20] Saкамото proves that $\tilde{\psi}: S^{4 m+3} \rightarrow H M(m+1)$ given by

$$
\begin{equation*}
\tilde{\psi}(q)=q^{c t} q, \quad q \in S^{4 m+3} \tag{1.6}
\end{equation*}
$$

nduces an immersion $\Psi: Q P^{m} \rightarrow H M(m+1)$ satisfying
(A) $\Psi\left(Q P^{m}\right)=\left\{B \in H M(m+1) / B^{2}=B\right.$, trace $\left.B=1\right\} ;$
(B) Ψ is an equivariant full isometric embedding into $\{B \in H M(m+1) /$ trace $B=1\}$.

Therefore, we can consider $Q P^{m}$ identified to $\Psi\left(Q P^{m}\right)$. In the rest of the paper the reader would make the necessary changes of notation when $Q P^{m}$ is identified to $\Psi\left(Q P^{m}\right)$. Under this identification the tangent and normal spaces to $Q P^{m}$ at $B \in Q P^{m}$ are

$$
\begin{align*}
& T_{B} Q P^{m}=\{X \in H M(m+1) / X B+B X=X\} \tag{1.7}\\
& T_{B}^{\perp} Q P^{m}=\{Z \in H M(m+1) / Z B=B Z\} \tag{1.8}
\end{align*}
$$

Denoting by $\tilde{\nabla}$ the connection induced on $Q P^{m}=\Psi\left(Q P^{m}\right)$ by the Riemannian one of $H M(m+1)$ and by $\tilde{\sigma}, \tilde{\nabla}^{\perp}$ and \tilde{A} respectively the second fundamental form, the normal connection and the shape operator of $Q P^{m}=\Psi\left(Q P^{m}\right)$ in $H M(m+1)$ we get, [8],
(1.9) $\quad \tilde{\sigma}(X, Y)=(X Y+Y X)(I-2 B), \quad \tilde{A}_{Z} X=(X Z-Z X)(I-2 B)$

$$
\begin{equation*}
\tilde{\sigma}\left(J_{k} X, J_{k} Y\right)=\tilde{\sigma}(X, Y), \quad k=1,2,3 \tag{1.10}
\end{equation*}
$$

for any $X, Y \in T_{B} Q P^{m}, Z \in T_{B}^{\perp} Q P^{m}$, where I denotes the identity matrix of $H M(m+1)$ and $\left\{J_{1}, J_{2}, J_{3}\right\}$ is a local basis of the quaternionic structure of $Q P^{m}$. Moreover from (1.10),

$$
\begin{equation*}
\tilde{\nabla} \tilde{\sigma}=0 \tag{1.11}
\end{equation*}
$$

that is, the second fundamental form of $Q P^{m}$ in $H M(m+1)$ is parallel,

From (1.4), (1.9), (1.10) and the equation of Gauss it follows

$$
\begin{align*}
& g(\tilde{\sigma}(X, Y), \tilde{\sigma}(V, W))=2 g(X, Y) g(V, W)+g(X, V) g(Y, W)+ \tag{1.12}\\
& \quad+g(X, W) g(Y, V)+\sum_{k=1}^{3}\left\{g\left(J_{k} X, V\right) g\left(J_{k} Y, W\right)+g\left(J_{k} X, W\right) g\left(J_{k} Y, V\right)\right\}
\end{align*}
$$

for any $X, Y, V, W \in T_{B} Q P^{m}$.
数 Finally, the geodesic γ of $Q P^{m}$ passing through B and having the direction $X \in T_{B} Q P^{m}$ is given, [20], by

$$
\begin{equation*}
\gamma(t)=B+\frac{1}{2} \sin 2 t X+\frac{1-\cos 2 t}{4} \tilde{\sigma}(X, X) \tag{1.13}
\end{equation*}
$$

Let M be a real hypersurface of $Q P^{m}$ and N a unit local normal vector field to M. We shall denote $U_{k}=-J_{k} N, k=1,2,3, D^{\prime}=\mathbb{S} p\left\{U_{1}, U_{2}, U_{3}\right\}$ and D the orthogonal complement of D^{\prime} in $T M$ and $J_{k} X=T_{k} X+f_{k}(X) N, k=1,2,3$, where $T_{k} X$ is the tangent component of $J_{k} X$ and $f_{k}(X)=g\left(X, U_{k}\right), X \in T M$. From (1.2) we have

$$
\begin{equation*}
\nabla_{X} U_{i}=-q_{j}(X) U_{k}+q_{k}(X) U+T_{i} A X, \quad i=1,2,3 \tag{1.14}
\end{equation*}
$$

∇ being the connection induced on M and A the Weingarten endomorphism of M, (i, j, k) is a cyclic permutation of $(1,2,3)$.

Moreover, from (1.14), we deduce:

$$
\begin{equation*}
S X=(4 m+7) X+h A X-A^{2} X-3 \sum_{k=1}^{3} f_{k}(X) U_{k} \tag{1.15}
\end{equation*}
$$

for any $X \in T M$, where $h=$ trace A and the Ricci tensor of M is given by $S(X, Y)=$ $=g(S X, \overline{)}$, for any $X, Y \in T M$.

From (1.14), the Codazzi equation of M in $Q P^{m}$ is,

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=\sum_{k=1}^{3}\left\{f_{k}(X) T_{k} Y-f_{k}(Y) T_{k} X+2 g\left(X, T_{k} \bar{Y}\right) U_{k}\right\} \tag{1.16}
\end{equation*}
$$

for any $X, Y \in T M$.

2. - Focal sets and tubes in $Q P^{m}$.

Let M^{n} be an n-dimensional submanifold of $Q P^{m}\left({ }^{2}\right)$. Let $T^{-1} M$ denote the normal bundle of M. For any $(B, \xi) \in T^{\perp} M$, let $F(B, \xi)$ be the point of $Q P^{m}$ at a distance $\|\xi\|$ along the geodesic of $Q P^{m}$ passing through B with direction ξ.
$\left.{ }^{(2}\right)$ Submanifolds appearing in this paper are considered to be connected. For theory of submanifolds of $Q P^{m}$ see [1], [7], [10], [11],

Definition 2.1. - A point $E \in Q P^{m}$ is called a focal point of multiplicity $v>0$ of (M, B) if $E=F(B, \xi)$ for some $\xi \in T_{B}^{\perp} M$ and the Jacobian of F has nullity v at (B, ξ).

Let $\xi \in T_{B}^{\perp} M,\|\xi\|=1$. From (1.13), we have:

$$
\begin{equation*}
F(B, r \xi)=B+\frac{1}{2} \sin 2 r \xi+\frac{1-\cos 2 r}{4} \tilde{\sigma}(\xi, \xi) \tag{2.1}
\end{equation*}
$$

and taking $-\xi$ if necessary, it is enough to consider $r \in(0, \pi / 2]$ in order to compute F_{*}.

Let $\left\{X_{1}, \ldots, X_{n}, \xi, \eta_{1}, \eta_{2}, \ldots, \eta_{p}\right\}, p=4 m-n-1$, be an orthonormal basis of $T_{(B, r \xi)}\left(T^{\perp} M\right)$ where $\left\{X_{1}, \ldots, X_{n}\right\}$ (respectively, $\left\{\eta_{1}, \ldots, \eta_{p}\right\}$) is an orthonormal basis of $T_{B} M$ (respectively, of $T_{r \xi}\left(U\left(T_{B}^{\perp} M\right)\right), U\left(T_{B}^{\perp} M\right)$ being the set of unit normal vectors of M at B). Then, from (1.10), (1.11), (1.12) and (1.13) it follows:

Proposition 2.2.
i) $\left(F_{*}\right)_{(B, r \xi)}\left(X_{i}\right)=\frac{1+\cos 2 r}{2} X_{i}+\frac{1}{2} \sin 2 r \tilde{\sigma}\left(X_{i}, \xi\right)-\frac{1}{2} \sin 2 r A_{\xi} X_{i}+$

$$
+\frac{\cos 2 r-1}{2} \sum_{k=1}^{3}\left(g\left(J_{k} \xi, X_{i}\right) J_{k} \xi\right)-\frac{1-\cos 2 r}{2} \tilde{\sigma}\left(A_{\xi} X_{i}, \xi\right), \quad i=1, \ldots, n .
$$

ii) $\left(F_{*}\right)_{\left(B, r_{\xi}\right)}(\xi)=\cos 2 r \xi+\frac{1}{2} \sin 2 r \tilde{\sigma}(\xi, \xi)$.
iii) $\left(\vec{F}_{*}\right)_{(B, r \xi)}\left(n_{j}\right)=\frac{1}{2} \sin 2 r \eta_{j}+\frac{1}{2}(1-\cos 2 r) \tilde{\sigma}\left(\xi, n_{j}\right), \quad j=1, \ldots, p$. Where A_{ξ} denotes the shape operator of M in $Q P^{m}$ corresponding to ξ.

Definition 2.3. - Let $U\left(T^{\perp} M\right)$ be the unit normal bundle of M and $0<r \leqslant \pi / 2$. Consider $\varphi_{r}: U\left(T^{\perp} M\right) \rightarrow Q P^{m}$ given by $\varphi_{r}(B, \xi)=F(B, r \xi), \varphi_{r}\left(U\left(T^{\perp} M\right)\right)$ is called the tube of radius r over M.

Notice that for small enough values of $r, \varphi_{r}\left(U\left(T^{\perp} M\right)\right)$ is a real hypersurface of $Q P^{m}$. If M is an orientable real hypersurface of $Q P^{m}$ we consider $\varphi_{r}: M \rightarrow Q P^{m}$ given by $\varphi_{r}(B)=F\left(B, N_{B}\right), B \in M$, where N is a unit normal vector field to M, for those values of r such that φ_{r} is an immersion, $\varphi_{r} M$ is called a parallel hypersurface at oriented distance r from M

Let $\bar{M}=\varphi_{r}\left(U\left(T^{\perp} M\right)\right)$ be a real hypersurface of $Q P^{m}$ obtained as the tube of radius r over M. If we denote, for any unit $X \in T M$:

$$
\begin{align*}
\bar{X}= & \frac{1+\cos 2 r}{2} X+\frac{1}{2} \sin 2 r \tilde{\sigma}(X, \xi)- \tag{2.2}\\
& -\frac{1}{2} \sin 2 r A_{\xi} X-\frac{1-\cos 2 r}{2} \tilde{\sigma}\left(A_{\xi} X, \xi\right)+\sum_{k=1}^{3} \frac{\cos 2 r-1}{2} g\left(J_{k} \xi, X\right) J_{k} \xi
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{\eta}=\frac{1}{2} \sin 2 r \eta+\frac{1}{2}(1-\cos 2 r) \tilde{\sigma}(\eta, \xi) \tag{2.3}
\end{equation*}
$$

for any unit $\eta \in T^{\perp} M$ such that $g(\eta, \xi)=0$, from Proposition 2.2 we obtain that the tangent space to \bar{M} at $\bar{B}=\varphi_{r}(B, \xi)$ is:

$$
\begin{align*}
T_{\bar{B}} \bar{M}=S p & \left\{\bar{X}_{i} /\left\{X_{1}, \ldots, X_{n}\right\} \text { is an orthonormal basis of } T_{B} M\right\}+ \tag{2.4}\\
& +S p\left\{\tilde{\eta}_{j} /\left\{\eta_{1}, \ldots, \eta_{p}\right\} \text { is an orthonormal basis of } T_{r \xi}\left(U\left(T_{B}^{\perp} M\right)\right)\right.
\end{align*}
$$

Moreover \bar{M} is an orientable real hypersurface whose unit normal vector field N is given by

$$
\begin{equation*}
N_{\bar{B}}=\cos 2 r \xi+\frac{1}{2} \sin 2 r \tilde{\sigma}(\xi, \xi) \tag{2.5}
\end{equation*}
$$

As a local basis of the quaternionic structure of $Q P^{m},\left\{\tilde{J}_{1}, \widetilde{J}_{2}, \tilde{J}_{3}\right\}$ is given by [8]:

$$
\begin{equation*}
\tilde{J}_{i} X=j_{k}(I-2 C), \quad \hbar=1,2,3 \tag{2.6}
\end{equation*}
$$

for any $X \in T_{o} Q P^{m}, C \in Q P^{m}$, from (1.9), (2.5) and (2.6), $\widetilde{J}_{k} N_{\vec{B}}=\tilde{J}_{k} \mathcal{N}_{B}$ and then if $\left\{J_{1}, J_{2}, J_{3}\right\}$ is any local basis of \hat{V}, we get,

$$
\begin{equation*}
J_{k} N_{\bar{B}}=J_{k} N_{B}, \quad \vec{k}=1,2,3 \tag{2.7}
\end{equation*}
$$

From Proposition 2.2, we can obtain the following
Lemma 2.4. - If $J_{k} \xi, k=1,2,3$ are normal to M at B,
i) $\left(F_{*}\right)_{(B, r \xi)}\left(X_{i}\right)=0$ if an only if either $r=\pi / 2$ or X_{i} is an eigenvector of A_{ξ} with eigenvalue cot $r, i=1, \ldots, n$.
ii) $\left(F_{*}\right)_{(B, r \xi)}\left(\eta_{j}\right)=0$ if and only if $r=\pi / 2, j=1, \ldots, p$.
iii) $\left(F_{*}\right)_{(B, r))}(W) \neq 0$ in any other case.

Lemma 2.5. - If $J_{k} \xi, k=1,2,3$ are tangent to M at B,
i) $\left(F_{*}\right)_{(B, r \xi)}(X)=0$ if and only if either $r=\pi / 2$ or X is an eigenvector of A_{ξ} with eigenvalue cot r.
i) $\left(F_{*}\right)_{(B, r \xi)}\left(J_{k} \xi\right)=0$ if and only if either $r=\pi / 2$ or $J_{k} \xi$ is an eigenvector of A_{ξ} with eigenvalue $2 \cot 2 r, k=1,2,3$.
iii) $\left(F_{*}\right)_{(B, r \xi)}\left(\eta_{j}\right)=0$ if and only if $r=\pi / 2, j=1, \ldots, p$.
iv) $\left(F_{*}\right)_{(B, r \xi)}(W) \neq 0$ in any other case, for any unit vector $X \in T_{B} M$ orthogonal to $\oiint p\left\{J_{1} \xi, J_{2} \xi, J_{3} \xi\right\}$.

Lemma 2.6. - If $J_{1} \xi$ is normal and $J_{2} \xi, J_{3} \xi$ are tangent to M at B,
i) $\left(F_{*}\right)_{(B, r \xi)}(X)=0$ if and only if either $r=\pi / 2$ or X is an eigenvector of A_{ξ} with eigenvalue cot r.
ii) $\left(F_{*}\right)_{(B, r \xi)}\left(J_{k} \xi\right)=0$ if and only if either $r=\pi / 2$ or $J_{k} \xi$ is an eigenvector of A_{ξ} with eigenvalue $2 \cot 2 r, k=2,3$.
iii) $\left(F_{*}\right)_{\left(B, r^{\prime}\right)}\left(\eta_{j}\right)=0$ if and only if $r=\pi / 2, j=1, \ldots, p$.
iv) $\left(F_{*}\right)_{B(t, \xi)}(W)=0$ in any other case, for any unit vector $X \in T_{B} M$ orthogonal to $J_{2} \xi$ and $J_{3} \xi$.

Let A_{r} be the shape operator of \bar{M}. Using (1.9), (1.10), (1.11), (1.12), (2.2), (2.3), (2.4) and (2.5) we get,

Proposition 2.7. - Suppose that $J_{k} \xi, k=1,2,3$ are normal to M at B. If $\left\{X_{1}, \ldots, X_{n}\right\}$ is an orthonormal basis of eigenvectors of A_{ξ} with corresponding eigenvalues $\lambda_{i}=\cot \alpha_{i}, i=1, \ldots, n, 0<\alpha_{i}<\pi$,

1) $A_{r}\left(\bar{X}_{i}\right)=\cot \left(\alpha_{i}-r\right) \bar{X}_{i}, \quad i=1, \ldots, n$.
2) $A_{r}\left(\overline{J_{k} \xi}\right)=-2 \cot 2 r \overline{J_{1 i} \xi}, \quad k=1,2,3$.
3) $A_{r}\left(\bar{\eta}_{j}\right)=-\cot r \bar{\eta}_{i}, \quad j=1, \ldots, p-4$, $\left\{\xi, J_{1} \xi, J_{2} \xi, J_{3} \xi, \eta_{1}, \ldots, \eta_{p-4}\right\}$ being an orthonormal basis of $T_{B}^{1} M$.

Proposition 2.8. - Suppose that $J_{k} \xi, k=1,2,3$ are eigenvectors of A_{ξ} with corresponding eigenvalues $2 \cot 2 \theta_{k}, 0<\theta_{k}<\pi / 2, k=1,2,3$. Let $\left\{X_{1}, \ldots, X_{n-3}, J_{1} \xi, J_{2} \xi, J_{3} \xi\right\}$ be an orthonormal basis of eigenvectors of A_{ξ} such that $A_{\xi} X_{i}=\cot \alpha_{i}, 0<\alpha_{i}<\pi$, $i=1, \ldots, n-3$. Then:

1) $A_{r}\left(\bar{X}_{i}\right)=\cot \left(\alpha_{i}-r\right) \bar{X}_{i}, \quad i=1, \ldots, n-3$.
2) $A_{r}\left(\overline{J_{k} \xi}\right)=2 \cot 2\left(\theta_{k}-r\right) \overline{J_{k} \xi}, \quad k=1,2,3$.
3) $A_{r}\left(\bar{\eta}_{j}\right)=-\cot r \bar{\eta}_{j}, \quad j=1, \ldots, p$.

Proposition 2.9. - Suppose that $J_{1} \xi$ is normal to M at B and $J_{2} \xi, J_{3} \xi$ are eigenvectors of A_{ξ} with corresponding eigenvalues $2 \cot 2 \theta_{k}, 0<\theta_{k}<\pi / 2, k=2,3$. If $\left\{X_{1}, \ldots, X_{n-2}, J_{2} \xi, J_{3} \xi\right\}$ is an orthonormal basis of eigenvectors of A_{ξ} such that $A_{\xi} X_{i}=$ $=\cot \alpha_{i} X_{i}, 0<\alpha_{i}<\pi, i=1, \ldots, n-2$,

1) $A_{r}\left(\bar{X}_{i}\right)=\cot \left(\alpha_{i}-r\right) \bar{X}_{i}, \quad i=1, \ldots, n-2$.
2) $A_{r}\left(\overline{J_{k} \xi}\right)=2 \cot 2\left(\theta_{k}-r\right) \overline{J_{k} \xi}, \quad k=2,3$.
3) $A_{r}\left(\overline{J_{1} \xi}\right)=-2 \cot 2 r \overline{J_{1} \xi}$.
4) $A_{r}(\bar{\eta})=-\cot r \bar{\eta}$,
for any $\eta \in U\left(T_{B}^{\perp} M\right)$ orthogonal to $J_{1} \xi$.

From Lemmas 2.4, 2.5 and 2.6 and Propositions 2.7, 2.8 and 2.9 the following examples of real hipersurfaces of $Q P^{m}$ with constant principal curvatures are obtained:

Example 1. - Let $M=\{B\}, B \in Q P^{m}$. Then, the tabe of radius $r, 0<r<\pi / 2$, over M is a real hypersurface of $Q P^{m}$ with two distinct constant principal curvatures $\lambda=\cot r$ and $\mu=2 \cot 2 r$ with respective multiplicities $4 m-4$ and 3 . Notice that $\varphi_{r}\left(U\left(T^{\perp} M\right)\right)$ is the set of points of $Q P^{m}$ at a distance r from B, that is, the geodesic hypersphere of center B and radius r.

As $\varphi_{\pi / 2}\left(U\left(T^{\perp} M\right)\right)$ is a $Q P^{m-1}$, such a geodesic hypersphere can also be considered as a tube of radius $\pi / 2-r$ over a $Q P^{m-1}$.

Example 2. - Consider $M=Q P^{k}, 0<k<m-1$, embedded as a quaternionic submanifold of $Q P^{m}$, [11]. Then if $0<r<\pi / 2$, the tube of radius r over M is a real hypersurface of $Q P^{m}$ with three distinct constant principal curvatures $\lambda_{1}=\cot r$, $\lambda_{2}=-\tan r$ and $\mu=2 \cot 2 r$ with respective multiplicities $4 l, 4 k$ and $3, l=m-k-1$.

Remark. - As any quaternionic submanifold of $Q P^{m}, m \geqslant 2$ is totally geodesic, [11], from Examples 1 and 2 it follows that if $0<r<\pi / 2$, the tube of radius r over a quaternionic submanifold of $Q P^{m}$ is a real hypersurface of $Q P^{m}$ with 2 or 3 distinct constant principal curvatures.

Examples 1 and 2 are the ones studied by Pak in [18].
Example 3. - Consider the complex projective space $C P^{m}$ embedded as a totally geodesic totally complex submanifold of $Q P^{m},[10]$. From Lemma 2.6 and Proposition 2.9, we have that if $0<r<\pi / 4$ or $\pi / 4<r<\pi / 2$, the tabe of radius r ove. $O P^{m}$ is a real hypersurface of $Q P^{m}$ with four distinct constant principal curvatures $\lambda_{1}=\cot r, \lambda_{2}=-\tan r, \mu_{1}=2 \cot 2 r$ and $\mu_{2}=-2 \tan 2 r$ with respective multiplicities $2(m-1), 2(m-1), 1$ and 2 .

3. - Focal points of σP^{m} in $Q P^{m}$.

In this section we exhibit the structure of $\varphi_{\pi / 4}\left(U\left(T^{\perp} C P^{m}\right)\right)$ in $Q P^{m}, C P^{m}$ being as in Example 3.

Suppose Q^{m+1} identified to $C^{m+1} \times C^{m+1}$ in the following way: $\left(z_{1}, z_{2}\right) \in C^{m+1} \times C^{m+1}$ is identified to $z_{1}+j_{2} z_{2} \in Q^{m+1}$. (Considering $C=R+j_{1} R$.) Under this identification, the unit sphere $\mathbb{S}^{2 m+1}$ of ${C^{m+1}}^{m}$ is embedded in the unit sphere $S^{4 m+3}$ of $Q P^{m}$ by $i: S^{S^{2 m+1}} \rightarrow S^{4 m+3}, i(z)=(z, 0)$, and the fibration $\Pi: S^{4 m+3} \rightarrow Q P^{m}$ with fibre S^{3} induces a fibration $\Pi_{1}: S^{2 m+1} \rightarrow C P^{m}$ with fibre S^{1} such that the following diagram conmutes:

\hat{i} being the standard immersion of $O P^{m}$ into $Q P^{m}$ (see [10]).

Let $p \in Q P^{m}$ and $\bar{p} \in S^{4 m+3}$ such that $\Pi(\bar{p})=p$ ．It is well known，［13］，that under the above identification if $X=\Pi_{*}(a, b) \in T_{p} Q P^{m}$ ，a local basis of the quaternionic structure of $Q P^{m}$ is given by

$$
\begin{equation*}
J_{1}^{\prime} X=\Pi_{*}\left(j_{1} a,-j_{1} b\right), \quad J_{2}^{\prime} X=\Pi_{*}(-b, a), \quad J_{3}^{\prime} X=\Pi_{*}\left(-j_{1} b,-j_{1} a\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{1}^{\prime}\left(T_{x} \partial P^{n}\right)=T_{x}\left(O P_{\dot{x}}^{m}\right), \quad J_{2}^{\prime}\left(T_{x} \partial P^{m}\right)=J_{3}^{\prime}\left(T_{x} C P^{m}\right)=T_{x}^{\perp} O P^{m}, \quad x \in C P^{m} \tag{3.2}
\end{equation*}
$$

The action of S^{3} over $S^{4 m+3}$ is the one given by $S U(2)$ ．
Let $x \in C P^{m}$ and $z \in S^{2 m+1}$ such that $\Pi_{1}(z)=x$ ．If $y \in T_{x}^{\perp} C P^{m}$ ，from（3．2），$y=J_{2}^{\prime} a_{b}$ $a \in T_{x} \partial P^{m}$ ，that is，$a=\left(\Pi_{1^{*}}\right)_{2} w$ with $\left.《 z, w\right\rangle=0$ ，where $\left.《,\right\rangle$ denotes the usual Hermitian product of C^{m+1} ．Then，from Definition 2.1 we have that $\varphi_{\pi / \&}\left(U\left(T^{\perp} C P^{m}\right)\right)=$ $=\Pi\left(M^{\prime}\right)$ ，where

$$
\begin{equation*}
M^{\prime}=\left\{(z, w) \in S^{4 m+3} /\|z\|=\|w\|, 《 z, w 》=0\right\} \tag{3.3}
\end{equation*}
$$

Clearly，from（3．3），M^{\prime} is invariant under the action of $S U(2)$ and so，$\Pi\left(M^{\prime}\right)$ is a submanifold of $Q P^{m}$ ．

Theorem 3．1．－Let $N^{*}=\Pi\left(M^{\prime}\right)$ ．Then：
i）N^{*} is a（4m－3）－dimensional quaternion $C R$－submanifold of $Q P^{m}$ ，［1］．
ii）N^{*} is minimal in $Q P^{n 2}$ ．
iii）If D is the quaternionic distribution and D^{\perp} the totally real distribution of N^{*} we have：
a）$\sigma\left(D, D^{\perp}\right)=\{0\}$ ，
b）$\sigma\left(D^{\perp}, D^{\perp}\right)=\{0\}$ ，
e）$A_{J_{k} Z}^{2} X=X, \quad k=1,2,3$ ，
for any $X \in D$ ，where Z is a unit vector field of D^{\perp} and σ is the second fun－ damental form of N^{*} in $Q P^{m}$ ．

Proof．－Let $(z, w) \in M^{\prime}$ and $(a, b) \in T_{(z, w)} M^{\prime}$ ．As the equations defining M^{\prime} are invariant by the fibration Π ，the tangent space to the fibre at (z, w) is $\$ p\left\{\left(-j_{1} w\right.\right.$ ， $\left.\left.-j_{1} z\right),\left(j_{1} z,-j_{1} w\right),(-w, z)\right\}$ ．Moreover，from（3．3），

$$
\begin{equation*}
g_{0}(z, a)=g_{0}(w, b), \quad g_{0}(z, b)+g_{0}(w, a)=g_{0}\left(j_{1} z, b\right)+g_{0}\left(j_{1} w, a\right)=0 \tag{3.4}
\end{equation*}
$$

Thus，$\xi_{1}^{\prime}=(w, z), \xi_{2}^{\prime}=(-z, w), \xi_{3}^{\prime}=\left(-j_{1} w, j_{2} z\right)$ are normal vectors to M^{\prime} at (z, w) As $\xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime}$ are orthonormal we deduce that they are a basis of $T_{(z, w)}^{\prime} M^{\prime}$ and then，

$$
\begin{equation*}
T_{\Pi(z, w)}^{\perp} N^{*}=S p\left\{\Pi_{*}\left(\xi_{1}^{\prime}\right)=\xi_{1}, \Pi_{*}\left(\xi_{2}^{\prime}\right)=\xi_{2}, \Pi_{*}\left(\xi_{3}^{\prime}\right)=\xi_{3}\right\} \tag{3.5}
\end{equation*}
$$

From (3.1), (3.4) and (3.5) we have

$$
\begin{equation*}
J_{1}^{\prime} \xi_{1}=-\xi_{3}, \quad J_{2}^{\prime} \xi_{1}=\xi_{2}, \quad J_{3}^{\prime} \xi_{1}=Z \tag{3.6}
\end{equation*}
$$

$Z=\Pi_{*}\left(-j_{1} z,-j_{1} w\right)$ being a unit vector tangent to N^{*} at $\Pi(z, w)$. This proves i).
On the other hand, having in mind that the fibres of Π are totally geodesic we can conclude:

1) If $(a, b)=\left(-j_{1} z,-j_{1} w\right)$, then $A_{(w, z)}^{\prime}\left(j_{1} z, j_{1} w\right)=\left(j_{1} w, j_{1} z\right)$ is a vertical vector. Thus $A_{\xi_{1}} Z=0$.
2) If (a, b) is orthogonal to $\left(-j_{1} z,-j_{1} w\right)$ and orthogonal to the fibre at (z, w), then

$$
\begin{align*}
& A_{(w, z)}^{\prime}(a, b)=-(b, a)+g_{0}((b, a),(-z, w))(-z, w)+ \tag{3.7}\\
&+g_{0}\left((b, a),\left(-j_{1} w, j_{1} z\right)\right)\left(-j_{1} w, j_{1} z\right) \\
&\left(A_{(w, z)}^{\prime}\right)^{2}(a, b)=(a, b)-g_{0}((b, a),(-z, w))(w,-z)- \tag{3.8}\\
&-g_{0}\left((b, a),\left(-j_{1} w, j_{1} z\right)\right)\left(j_{1} z,-j_{1} w\right)
\end{align*}
$$

therefore $A_{\xi_{1}}^{2}\left(\Pi_{*}(a, b)\right)=\Pi_{*}(a, b)$, where $A_{\xi_{1}}$ (respectively, $\left.A_{(w, z)}^{\prime}\right)$ is the corresponding shape operator of N^{*} in $Q P^{m}$ (respectively, of $M A^{\prime}$ in $S^{4 m+3}$).

Analogously we can prove that $A_{\xi_{2}}^{2} \Pi_{*}(a, b)=A_{\xi_{0}}^{2} \Pi_{*}(a, b)=\Pi_{*}(a, b)$ and $A_{\xi_{2}} Z=$ $=A_{\xi_{3}} Z=0$, for any $\Pi_{*}(a, b) \in T_{\Pi(z, w)} N^{*}, \Pi_{*}(a, b) \in D$ and we conclude the proof of iii).

Finally, ii) follows from i) and iii) having in mind the properties of quaternion $O R$-submanifolds, [1].

Remark. - It is easy to prove that N^{*} is diffeomorphic to $S U(m+1) / S U(2) \times$ $\times S U(m-1)$.

We also remark that N^{*} is the first example of proper quaternion $O R$-submanifold known until now.

4. - Tubes over a mixed totally geodesic quaternion $O R$ submanifold of codimension three in $Q P^{m}$.

Theorem 3.1 suggests to study a quaternion $O R$-submanifold M of $Q P^{m}$ which satisfies,

$$
\begin{equation*}
\sigma\left(D, D^{\perp}\right)=\{0\} \tag{4.1}
\end{equation*}
$$

where σ is the second fundamental form of M in $Q P^{m}$ and D, D^{\perp} are, respectively, the quaternionic distribution and the totally real distribution of M. Such a quaternion $O R$-submanifold is called mixed totally geodesic, [1].

Lemar 4.1. - Let M be a $(4 m-3)$-dimensional mixed totally geodesic quaternion CR-submanifold of $Q P^{m}$. Then the second fundamental form of M has the same behaviour as the one of N^{*}.

Proof. - As M is mixed totally geodesic we have, [1],

$$
\begin{array}{ll}
\left\|A_{J_{k} Z} X\right\|^{2}=1, & k=1,2,3 \\
g\left(\sigma(X, X), J_{k} A_{J_{k} Z} Z\right)=0, & k=1,2,3
\end{array}
$$

for any unit vector fields $X \in D, Z \in D^{\perp}$, where $A_{J_{k} Z}$ io the Weingarten endomorphism corresponding to $J_{k} Z$. Moreover from (4.1) we can choose an orthonormal basis of eigenvectors of $A_{J_{1} Z},\left\{X_{1}, \ldots, X_{4 m-1}, Z\right\}$ such that

$$
\begin{equation*}
A_{J_{1} Z} Z=\alpha_{1} Z, \quad A_{J_{1} Z} X_{i}=\beta_{i} X_{i}, \quad i=1, \ldots, 4 m-4 \tag{4.4}
\end{equation*}
$$

Thus from (4.3) and (4.4), $\alpha_{1} \beta_{i}=0, i=1, \ldots, 4 m-4$. Therefore using (4.2), $\alpha_{1}=0$ and we obtain that $A_{J_{1} Z} Z=0$. Now from (4.2), $\beta_{i}^{2}=1$, that is, $A_{J_{1} Z}^{2} X=X$ for any $X \in D$. Analogously it can be shown that $A_{J_{s} Z} Z=A_{J_{s} Z} Z=0$ and $A_{J_{\mathrm{g}} Z}^{2} X=$ $=A_{J_{8} Z}^{2} X=X$ for any $X \in D$, which concludes the proof.

Proposimion 4.2. - Let M be a $(4 m-3)$-dimensional mixed totally geodesic quaternion CR-submanifold of $Q P^{m}$. If $0<r<\pi I / 4$, then $\varphi_{r}\left(U\left(T^{\perp} M\right)\right)$ is a real hypersurface of $Q P^{m}$ with four distinct constant principal curvatures $2 \tan 2 r,-2 \cot 2 r$, $\cot (\Pi / 4-r)$ and $-\tan (\Pi / 4-r)$ of respective multiplicities $1: 2,2(m-1)$ and $2(m-1)$.

Proof. - Let us consider $B \in M, \xi \in U\left(T_{B}^{\perp} M\right)$. From Theorem 3.1 and Lemma 4.1 we can choose a basis in $T_{B} M$ of eigenvectors of $A_{\xi},\left\{X_{1}, \ldots, X_{4 m-4}, Z\right\}$ with $D_{B}^{\perp}=S p\{Z\}$ and such that

$$
\begin{align*}
& A_{\xi} X_{i}=X_{i}, \quad i=1, \ldots, 2(m-1) \tag{4.5}\\
& A_{\xi} X_{i}=-X_{i}, \quad j=2 m-1, \ldots, 4 m-1, A_{\xi} Z=0
\end{align*}
$$

Thus from Proposition 2.2 (1.10), (1.11), (4.5) and having in mind that $\xi=$ $=a_{11} J_{1} Z+a_{12} J_{2} Z+a_{13} J_{3} Z, a_{11}^{2}+a_{12}^{2}+a_{13}^{2}=1$, we can deduce

$$
\begin{gather*}
\left(\varphi_{\tau}\right)_{*(B, \xi)} X_{i}=\cos r(\cos r-\sin r) X_{i}+\sin r(\cos r-\sin r) \tilde{\sigma}\left(X_{i}, \xi\right) \tag{4,6}\\
i=1, \ldots, 2 m-2 \\
\left(\varphi_{r}\right)_{*(B, \xi)} X_{j}=\cos r(\cos r+\sin r) X_{i}+\sin r(\cos r+\sin r) \tilde{\sigma}\left(X_{i}, \xi\right) \tag{4.7}\\
j=2 m-1, \ldots, 4 m-4 \tag{4.8}
\end{gather*}
$$

$\left(\varphi_{r}\right)_{*(B, \xi)} Z=\cos 2 r Z$.

Moreover, if $\left\{\xi, \eta_{1}, \eta_{2}\right\}$ is an orthonormal basis of $T_{B}^{\perp} M$ such that $\eta_{k}=a_{k 1} J_{1} Z+$ $+a_{k 2} J_{2} Z+a_{k 3} J_{3} Z, k=2,3,\left(a_{i j}\right) \in S O(3)$, then from Proposition 2.2 and (1.10),

$$
\begin{equation*}
\left(\varphi_{r}\right)_{*(B, \xi} \eta_{k}=\frac{1}{2} \sin 2 r \eta_{k}, \quad k=2,3 . \tag{4.9}
\end{equation*}
$$

Consequently from (1.12), (4.6), (4.7), (4.8), (4.9) and as $0<r<\Pi / 4$, we conclude that $\bar{M}_{r}=\varphi_{r}\left(U\left(T^{\perp} M\right)\right)$ is a real hypersurface of $Q P^{m}$.

Let $\bar{B}=\varphi_{r}(B, \xi)$, from (2.5) the unit normal vector to \bar{M}_{r} at \bar{B} is given by

$$
\begin{equation*}
N_{\bar{B}}=\cos 2 r \xi+\frac{1}{2} \sin 2 r \tilde{\sigma}(\xi, \xi) \tag{4.10}
\end{equation*}
$$

Using the same notation as in $\S 2$, from (4.5) and (4.10) we have

$$
\begin{cases}A_{r} \bar{X}_{i}=\cot \left(\frac{\Pi}{4}-r\right) \bar{X}_{i}, & i=1, \ldots, 2 m-2 \tag{4.11}\\ A_{r} \bar{X}_{j}=\cot \left(\frac{3 \Pi}{4}-r\right) \bar{X}_{j}=-\tan \left(\frac{\Pi}{4}-r\right) \bar{X}_{j}, & j=2 m-1, \ldots, 4 m-4\end{cases}
$$

Now let $\alpha(t)$ be a differentiable curve on M such that $\alpha(0)=B$ and $\alpha^{\prime}(0)=Z$. Then, denoting by $\xi(t)$ the parallel displacement of ξ along α in $T^{\perp} M$, from (1.10), (1.11), (1.12), (4.5), (4.8) and (4.10) it follows

$$
\begin{align*}
&-A_{r} \bar{Z}=\left(\left.\frac{d}{d t}\left(N_{\varphi_{r}(\alpha(t), \xi(t))}\right)\right|_{t=0}\right)^{\top}=\frac{1}{2} \sin 2 r\left(-\tilde{A}_{\tilde{\sigma}(\xi, \xi)} Z\right)^{\top}= \tag{4.12}\\
&=-2 \sin 2 r Z=-2 \tan 2 r \bar{Z}
\end{align*}
$$

where ($)^{\top}$ denotes the corresponding component in $T_{R} M$.
Finally, and similarly as (4.12) we obtain

$$
\begin{equation*}
-A_{r} \bar{\eta}_{k}=\cos 2 r \eta_{k}=2 \cot 2 r \bar{\eta}_{k}, \quad k=2,3 \tag{4.13}
\end{equation*}
$$

which concludes the proof.
Remark. - Notice that from Proposition 4.2, $\bar{Z}, \bar{\eta}_{2}, \tilde{\eta}_{3}$ are eigenvectors and from (2.5) and (2.7) $S p\left\{J_{1} \xi, J_{2} \xi, J_{3} \xi\right\}=S_{p}\left\{\bar{Z}, \bar{\eta}_{2}, \bar{\eta}_{3}\right\}$, so we conclude

$$
\begin{equation*}
g\left(A_{r} D^{\prime}, D\right)=0 \tag{4.14}
\end{equation*}
$$

where D^{\prime}, D are as in $\S 1$. Thus if we take as a new local basis of $\hat{V}\left\{J_{1}^{0}, J_{2}^{0}, J_{3}^{0}\right\}$, where

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{c}
J_{1} \\
J_{2} \\
J_{3}
\end{array}\right)=\left(\begin{array}{c}
J_{1}^{0} \\
J_{2}^{0} \\
J_{3}^{0}
\end{array}\right)
$$

then the corresponding $\Pi_{k}^{0}=-J_{k}^{0} N_{\bar{B}}, k=1,2,3$, are eigenvectors with principal curvatures $2 \tan 2 r,-2 \cot 2 r$ and $-2 \cot 2 r$, respectively.

Theorem 4.3. - Let M be a ($4 m-3$)-dimensional mixed totally geodesic quaternion CR-submanifold of $Q P^{m}$. Let \bar{M} be a real hypersurface which lies in a tube of radius r, $0<r<\Pi / 4$, over M. Then \bar{M} lies in a tube of radius $r^{\prime}=\Pi / 4-r$ over $C P^{m}$.

Proof, - As $\bar{M} \subseteq \varphi_{r}(U(T \perp M)$ for some $r, 0<r<\Pi / 4$, from Proposition 4.2 and last Remark we can suppose that there exists an orthonormal basis $\left\{\bar{X}_{1}, \ldots\right.$, ..., $\left.\bar{X}_{4 m-4}, J_{1} \bar{N}, J_{2} \bar{N}, J_{3} \bar{N}\right\}$ of $T \bar{M}$ satisfying

$$
\begin{cases}\bar{A} \bar{X}_{i}=\cot \left(\frac{\Pi}{4}-r\right) \bar{X}_{i}, & i=1, \ldots, 2 m-2 \tag{4.15}\\ \bar{A} \bar{X}_{j}=-\tan \left(\frac{\Pi}{4}-r\right) \bar{X}_{j}, & j=2 m-1, \ldots, 4 m-4 \\ \bar{A} J_{1} \bar{N}=2 \tan 2 r J_{1} \bar{N}, & \bar{A} J_{k} \bar{N}=-2 \cot 2 r J_{k} \bar{N}, \quad k=2,3\end{cases}
$$

where \bar{A} is the Weingarten endomorphism of \bar{M} and \bar{N} is a unit normal vector field to \bar{M}, for some local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \hat{V}. Using Lemma 2.5 it follows that $\varphi_{r^{\prime}}: \bar{M} \rightarrow Q P^{m}, r^{\prime}=\Pi / 4-r$ has constant rank $2 m$ on \bar{M} and then (see [3]) for each point $B \in \bar{M}, \varphi_{r} \bar{M}$ is a $2 m$-dimensional submanifold in a neighborhood of $\varphi_{r}(B)$. Moreover, the distribution $T_{0}(B)=\left\{X \in T_{B} \bar{M} /\left(\varphi_{r}\right)_{*} X=0\right\}$ is integrable with $2 m$ dimensional leaves on \bar{M}. That is, there exists a neighborhood U of B in \bar{M} such that $\varphi_{r^{\prime}}(U)=V$ is a $2 m$-dimensional submanifold of $Q P^{m}$.

Let V_{1} and V_{2} be, respectively, the eigenspaces corresponding to the eigenvalues cot r^{\prime} and $-\tan r^{\prime}$. Then from (4.15) as T_{0} is integrable we have $g\left([X, Y], U_{k}\right)=$ $=g\left(\left[X, U_{1}\right], U_{k}\right)=0, k=2,3$ and then using (1.14) we can conclude

$$
\begin{equation*}
q_{2}(X)=q_{8}(X)=0, \quad g\left(X, J_{k} Y\right)=0, \quad k=2,3 \tag{4.16}
\end{equation*}
$$

for any $X, Y \in V_{1}$. By a similar reasoning applied to $\varphi_{\pi / 2-r}: \bar{M} \rightarrow Q P^{m}$ it follows

$$
\begin{equation*}
q_{2}(Z)=q_{3}(Z)=0, \quad g\left(Z, J_{k} W\right)=0, \quad k=2,3 \tag{4.17}
\end{equation*}
$$

for any $Z, W \in V_{2}$.
Thus, from (4.16), (4.17) and bearing in mind the properties of the quaternionic structure we have

$$
\begin{equation*}
J_{1} V_{1}=V_{1}, \quad J_{k} V_{1}=V_{2}, \quad k=2,3 . \tag{4.18}
\end{equation*}
$$

Moreover, from (1.16), (4.15) and (4.18) it follows

$$
\begin{equation*}
g\left(\nabla_{W} X, Z\right)=0, \quad W, Z \in V_{2}, X \in V_{1} \tag{4.19}
\end{equation*}
$$

Also, using (1.14), (1.16) and (4.15) it is easy to see that

$$
\begin{equation*}
q_{2}\left(U_{3}\right)=q_{3}\left(U_{3}\right)=2 \tan 2 r^{\prime} \tag{4.20}
\end{equation*}
$$

Now, let $\tilde{V}_{1}=S p\left\{X+\tan r^{\prime} \tilde{\sigma}\left(X, \bar{N}_{B}\right) / X \in V_{1}\right\}$ and $\tilde{V}_{2}=\left\{Z+\tan r^{\prime} \tilde{\sigma}\left(Z, \bar{N}_{B}\right) / Z \in V_{2}\right\}$. Olearly from (1.12), (2.5), (2.7), (4.15) and Proposition 2.2 it follows

$$
\begin{align*}
& T_{\bar{B}} V=\tilde{V}_{2} \oplus S p\left\{J_{2} \bar{N}_{B}, J_{3} \bar{N}_{B}\right\} \tag{4.21}\\
& T_{\bar{B}} V=\tilde{V}_{1} \oplus S p\left\{U_{1}, \cos 2 r^{\prime} \bar{N}_{B}+\frac{1}{2} \sin 2 r^{\prime} \tilde{\sigma}\left(\bar{N}_{B}, \bar{N}_{B}\right)\right\}, \quad \bar{B}=\varphi_{r}\left(B, \bar{N}_{B}\right)
\end{align*}
$$

and consequently from (4.18), (4.21) and (4.22)

$$
\begin{equation*}
J_{1} T_{\bar{B}} V=T_{\bar{B}} V, \quad J_{2} T_{\bar{B}} V=J_{3} T_{\bar{B}} V=T_{\bar{B}}^{\perp} V \tag{4.23}
\end{equation*}
$$

that is, $T_{\bar{B}} V$ is a totally complex subspace of $T_{\bar{B}} Q P^{m}$ in the sense of [10].
In the following we shall see that V is a totally geodesic submanifold of $Q P^{m}$, for which we denote by $\xi^{*}=\cos 2 r \bar{N}_{B}+\frac{1}{2} \sin 2 r \tilde{\sigma}\left(\bar{N}_{B}, \bar{N}_{B}\right)$ and $X^{*}=X+\tan r^{\prime} \tilde{\sigma}\left(X, \bar{N}_{B}\right)$ for any $X \in V_{1} \oplus V_{2}$. From (4.15) and similarly as in Proposition 2.8 it follows

$$
\begin{equation*}
A_{\xi^{*}}^{*}=0 \tag{4.24}
\end{equation*}
$$

where A^{*} is the corresponding Weingarten endomorphism of V in $Q P^{m}$. Moreover if $Z, W \in V_{2}$ and σ^{*} is the second fundamental form of V in $Q P^{m}$,

$$
\begin{align*}
& \sigma^{*}\left(Z^{*}, W^{*}\right)=\left(\tilde{\nabla}_{Z} W+\tilde{\sigma}(Z, W)-\tan r^{\prime} \tilde{A}_{\tilde{\sigma}\left(W, \bar{N}_{B}\right)} Z+\tan r^{\prime}\left(\tilde{\sigma}\left(\tilde{\nabla}_{Z} W, \bar{N}_{B}\right)+\right.\right. \tag{4.25}\\
& \left.\quad+\tilde{\sigma}\left(\tilde{\nabla}_{Z} \bar{N}_{B}, W\right)^{\perp}\right)=\left(\nabla_{Z} W+\left(1+\tan ^{2} r^{\prime}\right) \tilde{\sigma}(Z, W)-2 \tan r^{\prime} g(W, Z) \bar{N}_{B}-\right. \\
& \left.\quad-\tan r^{\prime} g\left(J_{1} W, Z\right) U_{1}+\tan r^{\prime} \tilde{\sigma}\left(\nabla_{Z} W, \bar{N}_{B}\right)-\tan ^{2} r^{\prime} g(W, Z) \tilde{\sigma}\left(\bar{N}_{B}, \bar{N}_{B}\right)\right)^{\perp}
\end{align*}
$$

Where ${ }^{\perp}$ denotes the corresponding component in $T_{\bar{B}}^{\perp} V$. Thus, from (2.12) and (4.19) $g\left(\sigma^{*}\left(W^{*}, Z^{*}\right), J_{1} \bar{N}_{B}\right)=0$. From this, together with (4.23) and (4.24) we obtain

$$
\begin{equation*}
\sigma^{*}\left(\tilde{V}_{2}, \tilde{V}_{2}\right)=\{0\} \tag{4.26}
\end{equation*}
$$

As from (1.14) and (4.15) $\sigma^{*}\left(Z^{*}, J_{2} \bar{N}_{B}\right)=\left(\tilde{\nabla}_{Z} J_{2} \bar{N}_{B}+\tilde{\sigma}\left(Z_{j} J_{2} \bar{N}_{B}\right)\right)^{\perp}=\left(q_{1}(Z) J_{3} \bar{N}_{B}+\right.$ $\left.+\tan r^{\prime} J_{2} Z-\tilde{\sigma}\left(J_{2} Z, \bar{N}_{B}\right)\right)^{\perp}=C^{\perp}$ and as $g\left(C, X^{*}\right)=g\left(C, J_{1} \bar{N}_{B}\right)=0$ for any $X \in V_{1}$, we also conclude

$$
\begin{equation*}
\sigma^{*}\left(\tilde{V}_{2}, J_{2} \bar{N}_{B}\right)=\{0\} \tag{4.27}
\end{equation*}
$$

Analogously,

$$
\begin{equation*}
\sigma^{*}\left(\tilde{V}_{2}, J_{3} \bar{N}_{B}\right)=\{0\} \tag{4.28}
\end{equation*}
$$

Finally, from (1.14), (4.10) and (4.15) it follows

$$
\begin{equation*}
\sigma^{*}\left(J_{3} \bar{N}_{B}, J_{2} \bar{N}_{B}\right)=\left(q_{1}\left(J_{3} \bar{N}_{B}\right) J_{3} \bar{N}_{B}\right)^{\perp}=0 \tag{4.29}
\end{equation*}
$$

Therefore, V is a totally geodesic submanifold of $Q P^{m}$. Thus $\left(V, J_{1}\right)$ is a Kaehler submanifold embedded in $Q P^{m}$ as a totally complex totally geodesic submanifold and then, $[10], V$ is an open set of $C P^{m}$. It is clear now that as M is connected, it lies on a tube of radius r^{\prime} over $O P^{m}$.

5. - Real hypersurfaces of $Q P^{m}$ with constant principal curvatures.

Let M be a real hypersurface of $Q P^{m}$ with unit local normal vector field N and $U_{1}, U_{2}, U_{3}, D^{\prime}$ and D as in $§ 1$.

In this section we shall classify real hypersurfaces with constant principal curvatures satisfying $g\left(A D, D^{\prime}\right)=0$

Lemma 5.1. - Let M be a real hypersurface of $Q P^{m}$. Then $g\left(A D, D^{\prime}\right)=0$ if and only if there exists a local basis of $\hat{V},\left\{J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}\right\}$ such that the corresponding $U_{k}^{\prime}=$ $=-J_{k}^{\prime} N, k=1,2,3$ are principal.

Proof. - If $g\left(A D, D^{\prime}\right)=0, A D \subseteq D$ and $A D^{\prime} \subseteq D^{\prime}$. As A is diagonalizable there exist $X_{1}, X_{2}, X_{3} \in D^{\prime}$ such that $D^{\prime}=S p\left\{X_{1}, X_{2}, X_{3}\right\}$ are eigenvectors of A. Thus there exists $P \in S O(3)$, [14], such that

$$
P\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right)=\left(\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right)
$$

If we choose as a new local basis of $\hat{V}\left\{J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}\right\}$ where

$$
P\left(\begin{array}{l}
J_{1} \\
J_{3} \\
J_{2}
\end{array}\right)=\left(\begin{array}{l}
J_{1}^{\prime} \\
J_{2}^{\prime} \\
J_{3}^{\prime}
\end{array}\right)
$$

the corresponding $J_{k}^{\prime}=-J_{k}^{\prime} N, k=1,2,3$ are principal.
The converse being trivial, this concludes the proof.
Using (1.16) we obtain, [19],
LEMMA 5.2. - Let M be a real hypersurface of $Q P^{m}$. If U_{1}, U_{2} and U_{3} are principal with corresponding principal curvatures α_{1}, α_{2} and α_{3},

$$
X\left(\alpha_{i}\right)=U_{i}\left(\alpha_{i}\right) f_{i}(X)-q_{j}\left(U_{i}\right)\left(\alpha_{i}-\alpha_{k}\right) f_{k}(X)+q_{k}\left(U_{i}\right)\left(\alpha_{i}-\alpha_{j}\right) f_{j}(X)
$$

$X \in T M,(i, j, k)$ being a cyclic permutation of $(1,2,3)$.

Let now M be a real hyporsurface of $Q P^{m}$ with constant principal curvatures and such that $g\left(A D, D^{\prime}\right)=0$. From Lemma 5.1 we choose a local basis of \hat{V}, $\left\{J_{1}, J_{2}, J_{3}\right\}$ such that,

$$
\begin{equation*}
A U_{1}=\alpha_{1} U_{1}, \quad A U_{2}=\alpha_{2} U_{2}, \quad A U_{3}=\alpha_{3} U_{3} \tag{5.1}
\end{equation*}
$$

Now, we distinguish the following cases:
Case I. - At least, two among α_{1}, α_{2} and α_{3} are equal.
We can suppose that $\alpha_{1}=\alpha_{2}$ and as they are constant, we consider

$$
\begin{equation*}
\alpha_{1}=\alpha_{2}=2 \cot 2 r, \quad 0<r<\frac{\pi}{2} \tag{5.2}
\end{equation*}
$$

From Lemma 2.5, $\varphi_{r}: M \rightarrow Q P^{m}$ has constant rank q, and from the Inverse Function Theorem, [3], for any $B \in M$ there exists a neighborhood U of B in M such that $\varphi_{r}(U)=V$ is a q-dimensional submanifold embedded into $Q P^{m}$. Moreover the distribution T_{0} given by:

$$
\begin{equation*}
T_{0}=\left\{X \in T_{B} M /\left(\varphi_{r}\right)_{*} X=0\right\} \tag{5.3}
\end{equation*}
$$

is integrable with ($4 m-q-1$)-dimensional leaves.
Consider the map $\eta: U \rightarrow T^{\perp} V$ given by

$$
\begin{equation*}
\eta(B)=\cos 2 r N_{B}+\frac{1}{2} \sin 2 r \tilde{\sigma}\left(N_{B}, N_{B}\right) \tag{5.4}
\end{equation*}
$$

that is well-defined.
Lemma 5.3. - With the above notations and under the above conditions, we have
i) $\operatorname{rank} \eta_{*}=4 m-1 \quad$ if $\alpha_{3} \neq-2 \tan 2 r$,
ii) rank $\eta_{*}=4 m-2$ if $\alpha_{3}=-2 \tan 2 r$.

Proof. - Let $\left\{X_{1}, \ldots, X_{4 m-4}, U_{1}, U_{2}, U_{3}\right\}$ be an orthonormal basis of eigenvectors of A such that $A X_{i}=\gamma_{i} X_{i}, i=1, \ldots, 4 m-4$. Thus from (1.12), (5.4) and the formulas of Gauss and Weingarten it follows

$$
\begin{array}{r}
\eta_{*}\left(X_{i}\right)=-\left(\gamma_{i} \cos 2 r+\sin 2 r\right) X_{i}+\left(\cos 2 r-\sin 2 r \gamma_{i}\right) \tilde{\sigma}\left(X_{i}, N\right) \tag{5.5}\\
i=1, \ldots, 4 m-4
\end{array}
$$

Clearly, from (1.12) and (5.5) $\eta_{*}\left(X_{1}\right), \ldots, \eta_{*}\left(X_{4 m-4}\right)$ are linearly independent. From (1.12), (2.7), (5.1) and the formulas of Gauss and Weingarten

$$
\begin{equation*}
\eta_{*}\left(U_{k}\right)=\left(-\cos 2 r \alpha_{k}-2 \sin 2 r\right) U_{k}, \quad k=1,2,3 \tag{5.6}
\end{equation*}
$$

Therefore $\eta_{*}\left(U_{k}\right)=0$ if and only if $\alpha_{k}=-2 \tan 2 r$. As $\alpha_{1}=\alpha_{2}=2 \cot 2 r$, from (5.5) and (5.6) we conclude that rank $\eta_{*}=4 m-1$ if and only if $\alpha_{3} \neq-2$ tan $2 v$ and rank $\eta_{*}=4 m-2$ if and only if $\alpha_{3}=-2 \tan 2 r$.

Lemma 5.4. - If rank $\eta_{*}=4 m-1$, then $\alpha_{2}=\alpha_{3}$ and M is an open subset of either
i) a geodesic hypersphere, or
ii) a tube of radius r over $Q P^{k}, 0<k<m-1$.

Proof. - From the definition of η if we denote by Ψ_{r} the tube of radius r over V, then $\Psi_{r}(-\eta(B))=B$. Thus η has a left inverse and as rank $\eta_{*}=4 m-1, \eta$ is a diffeomorphism onto an open subset $\eta(U)$ of $O\left(T^{\perp} V\right)$. Then, denoting by $U_{\eta(B)}\left(T^{\perp} V\right)$ the fibre of $U\left(T^{\perp} V\right), \eta(U) \cap U_{\eta(B)}\left(T^{\perp} V\right)$ is open in $U_{\eta(B)}\left(T^{\perp} V\right)$ and contains a basis of $T_{\varphi_{r}(B)}^{\perp} V$ spanned by $\left\{\eta(C) / C \in V_{1} \subseteq V\right\}$. From this and Proposition $2.2 T_{\varphi_{r}(B)}^{\perp} V$ is invariant under J_{1} and J_{2}. But then it must be invariant under J_{3} and as $g\left(\left(\varphi_{r}\right)_{*} U_{3}\right.$, $\left.J_{3} \eta(B)\right)=\left(\frac{1}{2} \sin 2 r \alpha_{3}-\cos 2 r\right) g\left(U_{3}, U_{3}\right), \alpha_{3}=2 \cot 2 r$. That is, U is a real hypersurface of $Q P^{m}$ with constant principal curvatures, U_{1}, U_{2}, U_{3} are principal with the same principal curvature and $\varphi_{r}(U)=V$ is a quaternionic submanifold of $Q P^{m}$.

By a similar reasoning as the one used in [5], U lies on the tube of radius r over V.
The proof follows from Examples 2 and 3 , the fact that the principal curvatures are constant and the connectedness of M.

Lemma 5.5. - If rank $\eta_{*}=4 m-2, M$ lies on a tube of radius r over a complex projective space $O P^{m}, 0<r<\pi / 4$ or $\pi / 4<r<\pi / 2$.

Proof. - By the assumption and from Lemma 5.3, $\alpha_{3}=-2 \tan 2 r$, then $r \neq \pi / 4$. Now (5.1) can be written as

$$
\begin{align*}
A U_{k}=2 \cot 2 r U_{k}, \quad & k=1,2 \tag{5.7}\\
& A U_{3}=-2 \tan 2 r U_{3}, \quad 0<r<\frac{\pi}{4} \text { or } \frac{\pi}{4}<r<\frac{\pi}{2} .
\end{align*}
$$

Let $\gamma_{1}, \ldots, \gamma_{p}$ be the distinct principal curvatures corresponding to eigenvectors in D. We distinguish:

Case I1. $-\gamma_{t} \neq \cot r$, for any $t \in\{1, \ldots, p\}$.
From Lemma 2.5, $\varphi_{r}(U)=V$ is a $(4 m-3)$-dimensional submanifold of $Q P^{m}$, and from (2.7), (5.4) and (5.7), $\left\{\eta(B), J_{1} N_{B}, J_{2} N_{B}\right\}$ are orthogonal to V at $\varphi_{r}(B, N)$. Thus $T_{\varphi_{r}(B, N)}^{\perp} V=S p\left\{\eta(B), J_{1} \eta(B), J_{2} \eta(B)\right\}$ for any $B \in U$, that is $\varphi_{r}(U)$ is a $(4 m-3)$ dimensional quaternion $O R$-submanifold of $Q P^{m}$.

As in the proof of Proposition 2.8, $\varphi_{r}(U)$ is mixed totally geodesic and Lemma follows in this case from Theorem 4.3,

CASE I2. $-\gamma_{t}=\cot r$ for some $t \in\{1, \ldots, p\}$.
Suppose $t=1$ and let V_{s} be the eigenspace corresponding to the eigenvalue γ_{s}, $s=1, \ldots, p$. As T_{0} is integrable, from Lemma 2.5 and (5.7) we have for any $X, X \in V_{1}$,

$$
\begin{equation*}
g\left([X, Y], U_{3}\right)=g\left(\left[X, U_{1}\right], U_{3}\right)=g\left(\left[X, U_{2}\right], U_{3}\right)=0 \tag{5.8}
\end{equation*}
$$

and from (1.16),

$$
\begin{equation*}
(\cot r I-A)[X, Y]=2 \sum_{k=1}^{3} g\left(X, J_{k} Y\right) U_{k} \tag{5.9}
\end{equation*}
$$

I denoting the identity antomorphism of $T M$.
From (1.14), (5.8) and (5.9), $g\left(X, J_{3} Y\right)=0$ and $q_{1}(X)=q_{2}(X)=0$, for any X, $Y \in V_{I}$. That is,

$$
\begin{equation*}
J_{3} V_{1} \subseteq V_{1}^{\perp}, \quad q_{1}\left(V_{1}\right)=q_{2}\left(V_{1}\right)=\{0\} \tag{5.10}
\end{equation*}
$$

On the other hand, if we take $X, Y \in\left\{U_{1}, U_{2}, U_{3}\right\}$, from (1.14), (1.16) and (5.7),

$$
\begin{equation*}
q_{1}\left(U_{1}\right)=q_{2}\left(U_{2}\right)=2 \cot 2 r \tag{5.11}
\end{equation*}
$$

From Lemma 5.2 it follows $0=U_{3}(2 \cot 2 r)=(2 \cot 2 r+2 \tan 2 r) q_{2}\left(U_{1}\right), 0=$ $=U_{3}(2 \cot 2 r)=-(2 \cot 2 r+2 \tan 2 r) q_{1}\left(U_{2}\right)$, then,

$$
\begin{equation*}
q_{2}\left(U_{1}\right)=q_{1}\left(U_{2}\right)=0 \tag{5.12}
\end{equation*}
$$

Taking in (5.9) the scalar product with $U_{k}, k=1,2$, we obtain,

$$
\begin{equation*}
g\left([X, Y], U_{k}\right)=2 \cot r g\left(X, J_{k} Y\right), \quad k=1,2, \tag{5.13}
\end{equation*}
$$

for any $X, Y \in V_{1}$.
Now, from (1.3), (5.10), (5.11), (5.12) and (5.13),

$$
\begin{align*}
4 g\left(X, J_{i} Y\right)=\left(d q_{i}+q_{j} \wedge q_{k}\right)(X, Y)=-q_{i}([X, Y]) & = \tag{5.14}\\
& =-4 \cot r \cot 2 \operatorname{rg}\left(X, J_{i} Y\right)
\end{align*}
$$

$i=1,2$, for any $X, Y \in V_{1},(i, j, k)$ being a cyclic permutation of $(1,2,3)$. Thus,

$$
\begin{equation*}
J_{1} V_{1} \subseteq V_{1}^{\perp}, \quad J_{2} V_{1} \subseteq V_{1}^{\perp} \tag{5.15}
\end{equation*}
$$

If $X \in V_{1}$, from (5.15), there exisis $Z \in V_{t}, t \neq 1$ such that $g\left(X, J_{i} Z\right) \neq 0, i=1,2$. From (1.16) applied to X and Z,

$$
\left(y_{t} I-A\right) \nabla_{X} Z-(\operatorname{cotr} I-A) \nabla_{Z} X=\sum_{k=1}^{3} 2 g\left(X, J_{k} Z\right) U_{k}
$$

Therefore,
(5.16) $\quad\left(\gamma_{t}-2 \cot 2 r\right) g\left(\nabla_{X} Z, U_{1}\right)-(\cot r-2 \cot 2 r) g\left(U_{1}, \nabla_{Z} X\right)=2 g\left(X, J_{1} Z\right)$.

As $g\left(X, J_{1} Z\right) \neq 0$, from (1.14) and (5.16) we conclude that $\gamma_{t}=\cot r$ for some $t \neq 1$. Thus $\gamma_{1}, \ldots, \gamma_{p}$ are not distinct and the proof follows.

CASE II. $-\alpha_{1} \neq \alpha_{2} \neq \alpha_{3} \neq \alpha_{1}$.
Let $\gamma_{1}, \ldots, \gamma_{p}$ be the distinct principal curvatures corresponding to eigenvectors in D. Denote by $V_{1}, \ldots, \nabla_{p}$ the corresponding eigenspaces. From (1.16) it follows:

$$
\begin{equation*}
\left(\alpha_{k} I-A\right) \nabla_{X} U_{k}-\left(\gamma_{j} I-A\right) \nabla_{U_{k}} X=-J_{k} X, \quad k=1,2,3 \tag{5.17}
\end{equation*}
$$

for any $X \in V_{j}$.
As U_{1}, U_{2} and U_{3} are principal, from the formulas of Gauss and Weingarten, $\nabla_{D^{\prime}} D \subseteq D$. Thus from (1.14) and (5.17) we have

$$
\begin{equation*}
q_{n}(X)=0, \quad k=1,2,3 \tag{5.18}
\end{equation*}
$$

for any $X \in D$.
Now, from (1.14) and (5.18), we get,

$$
\begin{equation*}
\nabla_{x} U_{k}=J_{k} A X, \quad k=1,2,3, \quad X \in D \tag{5.19}
\end{equation*}
$$

From Lemma 5.2, $U_{j}\left(\alpha_{i}\right)= \pm\left(\alpha_{i}-\alpha_{j}\right) q_{k}\left(U_{i}\right),(i, j, k)$ being a cyclic permutation of $(1,2,3)$ and the fact that $\alpha_{i} \neq \alpha_{i}$ if $i \neq j, i, j=1,2,3$, gives:

$$
\begin{equation*}
q_{k}\left(U_{i}\right)=0, \quad k \neq i, k i=1,2,3 \tag{5.20}
\end{equation*}
$$

Take $X \in V_{j}$ and suppose that for some $k=1,2,3, J_{k} X$ has components in V_{n} and $V_{m}, n, m \neq j$. Let $Y \in V_{n}, \bar{Y} \in V_{m}$ such that $g\left(X, J_{k} Y\right) \neq 0$ and $g\left(X, J_{k} \bar{Y}\right) \neq 0$. From (1.16) applied respectively to X, Y and X, \bar{Y}, it follows that

$$
\left(\gamma_{n} I-A\right) \nabla_{X} Y-\left(\alpha_{j} I-A\right) \nabla_{Y} X=2 \sum_{k=1}^{3} g\left(X, J_{k} Y\right) U_{k}
$$

and

$$
2 \sum_{k=1}^{3} g\left(X, J_{k} \bar{Y}\right) U_{k}=\left(\gamma_{m} I-A\right) \nabla_{X} \bar{Y}-\left(\alpha_{i} I-A\right) \nabla_{\bar{Y}} X
$$

Then from (5.19) it follows:

$$
\begin{equation*}
\left(\gamma_{n}-\alpha_{k}\right) \gamma_{j}+\left(\gamma_{j}-\alpha_{k}\right) \gamma_{n}=2=\left(\gamma_{m}-\alpha_{k}\right) \gamma_{j}+\left(\gamma_{j}-\alpha_{k}\right) \gamma_{m} \tag{5.21}
\end{equation*}
$$

From (5.21), $\left(\gamma_{n}-\gamma_{m}\right) \gamma_{j}+\left(\gamma_{n}-\gamma_{m}\right)\left(\gamma_{j}-\alpha_{k}\right)=0$. If $n \neq m, \alpha_{k}=2 \gamma_{j}$: From this and (5.21), $2+2 \gamma_{j}^{2}=0$. Thus $n=m$, that is,
(*) «If $J_{k} V_{j} \subseteq V_{j}^{\perp}$ for some $k=1,2,3, j \in\{1, \ldots, p\}$, there exists $n \neq j, n \in$ $\in\{1, \ldots, p\}$ such that $J_{k_{k}} V_{j} \subseteq V_{n}$ 》.

Theorem 5.6. - There exist no real hypersurfaces with constant principal curvatures of $Q P^{m}$ such that U_{1}, U_{2} and U_{3} are principal with principal curvatures $\alpha_{1}, \alpha_{2}, \alpha_{3}$ respectively, and $\alpha_{1} \neq \alpha_{2} \neq \alpha_{3} \neq \alpha_{1}$.

Proof. - Suppose that $\alpha_{i}=2 \cot 2 r_{i}, 0<r_{i}<\pi / 2, r_{i} \neq r_{j}, i \neq j, i, j=1,2,3$. We distinguish two cases:

CASE II1. - $\gamma_{t} \neq \cot r_{k}$ for some $t=1, \ldots, p$ and some $k=1,2,3$.
Suppose $t=1, k=1$. Considering $\varphi_{r_{1}}: M \rightarrow Q P^{m}, \varphi_{r_{1}}$ has constant rank q. Thus for any $B \in M$ there exists a neighborhood W_{1} of B in M such that $\varphi_{r_{1}}\left(W_{1}\right)$ is a q-dimensional submanifold of $Q P^{m}$ and the distribution $T_{0}^{1}(B)=\left\{X \in T_{B} M /\left(\varphi_{r_{1}}\right)_{*} X=0\right\}$ is integrable with ($4 m-q-1$)-dimensional leaves in M. Then, from Lemma 2.5 it follows

$$
\begin{equation*}
g\left([X, Y], U_{2}\right)=g\left([X, Y], U_{3}\right)=0, \quad X, Y \in V_{1} \tag{5.22}
\end{equation*}
$$

and from (1.16), $\left(\gamma_{1} I-A\right)[X, Y]=2 \sum_{k=1}^{3} g\left(X, J_{k} Y\right) U_{k}$. Thus, from (5.22) we get,

$$
\begin{equation*}
J_{l_{0}} V_{1} \subseteq V_{1}^{\perp}, \quad k=2,3 \tag{5.23}
\end{equation*}
$$

But from (5.21), if $J_{1} V_{1}$ had a component in some $V_{n}, n \in\{1, \ldots, p\},\left(\gamma_{n}-\alpha_{1}\right) \gamma_{1}+$ $+\left(\gamma_{1}-\alpha_{1}\right) \gamma_{n}=2$, and as $\alpha_{1}=2 \cot 2 r_{1}$ and $\gamma_{1}=\cot \gamma_{1}, \gamma_{n}=\cot r_{1}=\gamma_{1}$. Thus

$$
\begin{equation*}
J_{1} V_{1}=V_{1} \tag{5.24}
\end{equation*}
$$

From $(*)$ and (5.23) there exist $m, n \in\{2, \ldots, p\}$ such that $J_{2} V_{1} \subseteq V_{n}$ and $J_{3} V_{1} \subseteq V_{m p}$ and now $J_{1} V_{1}=V_{1}$ implies $J_{2} V_{1}=J_{2} J_{1} V_{1}=J_{3} V_{1} \subseteq V_{m}$, that is, $n=m$. Therefore there exists $n \in\{2, \ldots, p\}$ such that

$$
\begin{equation*}
J_{2} V_{1} \subseteq V_{n}, \quad J_{3} V_{1} \subseteq V_{n} \tag{5.25}
\end{equation*}
$$

Finally from (5.21) and (5.25) it follows

$$
\begin{align*}
& \left(\gamma_{n}-\alpha_{2}\right) \cot r_{1}+\left(\cot r_{1}-\alpha_{2}\right) \gamma_{n}=2 \tag{5.26}\\
& \left(\gamma_{n}-\alpha_{3}\right) \cot r_{1}+\left(\cot r_{1}-\alpha_{3}\right) \gamma_{n}=2
\end{align*}
$$

From (5.26), $\gamma_{n}=\cot r_{1}=\gamma_{1}$, thus $\gamma_{1}, \ldots, \gamma_{p}$ cannot be distinct. Thus this case is not possible.

CASE II.2. $-\gamma_{t} \neq \cot r_{k}, k=1,2,3$ for any $t \in\{1, \ldots, p\}$.
In this case, from (1.16) if $X, X \in V_{t}$ we have

$$
\begin{equation*}
\left(\gamma_{t} I-A\right)[X, Y]=2 \sum_{k=1}^{3} g\left(X, J_{k} Y\right) U_{k} \tag{5.27}
\end{equation*}
$$

From (5.27) it follows that $\left(2 \gamma_{t}\left(\gamma_{t}-2 \cot 2 r_{k}\right)-2\right) g\left(X, J_{k} Y\right)=0$ for any X, $Y \in V_{t}, k=1,2,3$. As $2 \gamma_{t}\left(\gamma_{t}-2 \cot 2 r_{k}\right)-2=0$ if and only if either $\gamma_{t}=\cot r_{k}$ or $\gamma_{t}=-\tan r_{k}$, and $\gamma_{t} \neq \cot r_{k}$ and we can also suppose that $\gamma_{t} \neq-\tan r_{k}, k=1,2,3$ (if not, we apply Case II. 1 to the tube of radius $\Pi / 2-r_{k}$), we have

$$
\begin{equation*}
J_{k} V_{t} \subseteq V_{t}^{\frac{\perp}{t}}, \quad t=1, \ldots, p, k=1,2,3 \tag{5.28}
\end{equation*}
$$

and then there exist $n, m, q \in\{2, \ldots, p\}$ (we suppose $n=2, m=3, q=4$) such that

$$
\begin{equation*}
J_{1} V_{1}=V_{2}, \quad J_{2} V_{1}=V_{3}, \quad J_{3} V_{1}=V_{4} \tag{5.29}
\end{equation*}
$$

From (5.29) having in mind (1.1) we obtain.

$$
\begin{equation*}
J_{2} V_{2}=V_{4}, \quad J_{1} V_{3}=V_{4} \tag{5.30}
\end{equation*}
$$

From (1.3), (1.14), (5.18) and (5.29)

$$
\begin{align*}
& 4 g\left(X, J_{1} Y\right)=\left(d q_{1}+q_{2} \wedge q_{3}\right)(X, Y)=-q_{1}([X, Y])= \tag{5.31}\\
& \quad=-g\left([X, Y], U_{1}\right) q_{1}\left(U_{1}\right)=-\left(\gamma_{1}+\gamma_{2}\right) g\left(X, J_{1} Y\right) q_{1}\left(U_{1}\right)
\end{align*}
$$

for any $X \in V_{1}, I \in V_{2}$. Then from (5.29) and (5.31)

$$
\begin{equation*}
q_{1}\left(U_{1}\right)=-\frac{4}{\gamma_{1}+\gamma_{2}} \tag{5.32}
\end{equation*}
$$

It is easy to prove in a similar way that

$$
\begin{equation*}
q_{2}\left(U_{2}\right)=-\frac{4}{\gamma_{1}+\gamma_{3}}, \quad q_{1}\left(U_{1}\right)=-\frac{4}{\gamma_{3}+\gamma_{4}}, \quad q_{2}\left(U_{2}\right)=-\frac{4}{\gamma_{2}+\gamma_{4}} \tag{5.33}
\end{equation*}
$$

Thus from (5.32) and (5.33) $\gamma_{1}+\gamma_{2}=\gamma_{3}+\gamma_{4}$ and $\gamma_{2}+\gamma_{4}=\gamma_{1}+\gamma_{3}$. This implies that $\gamma_{1}=\gamma_{4}$ and this case is not possible. This concludes the proof.

From Lemma 5.1, Case I and Case II we obtain the following
Theorem 5.7. - Let M be a real hypersurface with constant principal curvatures of $Q P^{m}$ such that $g\left(A D, D^{\prime}\right)=0$. Let s be the number of distinct principal curvatures of M. Then $s \in\{2,3,4\}$ and
i) If $s=2, M$ is an open subset of a geodesic hypersphere.
ii) If $s=3, M$ is an open subset of a tube of radius $r, 0<r<\Pi / 2$ over $Q P^{k}$, $0<k<m-1$.
iii) If $s=4, M$ is an open subset of a tube of radius $r, 0<r<\Pi / 4$ or $\Pi / 4<$ $<r<I I / 2$ over $O P^{m}$.

6. - Real hypersurfaces of quaternionic projective space with two distinct principal curvatures.

In this section we shall determine those real hypersurfaces of $Q P^{m}, m \geqslant 3$, having two distinct principal curvatures at any point.

Theorem 6.1. - Let M be a real hypersurface of $Q P^{m}, m \geqslant 3$, with two distinct principal curvatures, λ and μ, at any point of \mathcal{M}. Then there exists a local basis $\left\{J_{1}^{\prime}\right.$, $\left.J_{2}^{\prime}, J_{3}^{\prime}\right\}$ of \hat{V} such that the corresponding $U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}$ are prinoipal with the same principal curvature.

Proof. - Let T_{λ} and T_{μ} the eigenspaces corresponding respectively to λ and μ. As $T M=T_{\lambda} \oplus T_{\mu}$ we can suppose that

$$
\begin{equation*}
U_{k}=a_{k} X_{k}+b_{r b} V_{k}, \quad k=1,2,3 \tag{6.1}
\end{equation*}
$$

for certain unit vector fields $X_{k}^{j} \in T_{\lambda}$ and $V_{k} \in T_{\mu}, k=1,2,3$.
I. - Suppose that $a_{k}, b_{k} \neq 0, k=1,2,3$ on an open set of M. Let now $\Sigma=$ $=\left\{X \in T_{\lambda} / g\left(X, X_{k}\right)=0, k=1,2,3\right\}$ and $\Omega=\left\{V \in T_{\mu} / g\left(V, V_{k}\right)=0, k=1,2,3\right\}$. As $m \geqslant 3$, either Σ or Ω must have dimension $\geqslant 2$. Suppose $\operatorname{dim} \Sigma \geqslant 2$ (if not, we would proceed with Ω). If X, Y are orthonormal vector fields in Σ, from (1.16) we have

$$
\begin{equation*}
(\lambda I-A)[X, Y]+X(\lambda) Y-Y(\hat{\lambda}) X=2 \sum_{k=1}^{3} g\left(X, J_{k} Y\right) U_{k} \tag{6.2}
\end{equation*}
$$

and taking the inner product of (6.2) and X (respectively, Y) we obtain $X(\lambda)=$ $=Y(\lambda)=0$. That is, (6.2) is

$$
\begin{equation*}
(\lambda I-A)[X, Y]=2 \sum_{k=1}^{3} g\left(X, J_{k} Y\right) U_{k}, \quad X, Y \in \Sigma \tag{6.3}
\end{equation*}
$$

From (6.3) we obtain the following homogeneous linear system whose variables are $g\left(X, J_{k} Y\right), k=1,2,3$

$$
\begin{align*}
& 0=a_{1} g\left(X, J_{1} Y\right)+a_{2} g\left(X_{1}, X_{2}\right) g\left(X, J_{2} Y\right)+a_{3} g\left(X_{1}, X_{3}\right) g\left(X, J_{3} Y\right) \\
& 0=a_{1} g\left(X_{1}, X_{2}\right) g\left(X, J_{1} Y\right)+a_{2} g\left(X, J_{2} Y\right)+a_{3} g\left(X_{2}, X_{3}\right) g\left(X, J_{3} Y\right) \tag{6.4}\\
& 0=a_{1} g\left(X_{1}, X_{3}\right) g\left(X, J_{1} Y\right)+a_{2} g\left(X_{2}, X_{3}\right) g\left(X, J_{2} Y\right)+a_{3} g\left(X, J_{3} Y\right) \ldots
\end{align*}
$$

This system has trivial solution if and only if X_{1}, X_{2}, X_{3} are linearly independent. So we distinguish the following cases:
I.1. $-X_{1}, X_{2}, X_{3}$ are linearly independent.

From (6.4), $g\left(X, J_{k} Y\right)=0, k=1,2,3$, for any $X, Y \in \Sigma$. Thus

$$
\begin{equation*}
J_{k} X \in T_{\mu} \oplus S p\left\{X_{1}, X_{2}, X_{3}\right\}, \quad k=1,2,3, \quad X \in \Sigma \tag{6.5}
\end{equation*}
$$

On the other hand taking $X_{k}, k=1,2,3$ and a unit $X \in \Sigma$, from (1.16) we get $(\lambda I-A)\left[X, X_{k}\right]+X_{k}(\lambda) X=\sum_{k=1}^{3}\left\{\left(-f_{i}\left(X_{k_{k}}\right) J_{i} X-2 g\left(J_{i} X, X_{r_{k}}\right) U_{i}\right\}, k=1,2,3\right.$. Taking the inner product of this expression and $X, X_{k}(\lambda)=0, k=1,2,3$, thus the above expression is

$$
\begin{equation*}
(\lambda I-A)\left[X, X_{k}\right]=\sum_{k=1}^{3}\left\{-f_{i}\left(X_{k}\right) J_{i} X-2 g\left(J_{i} X, X_{k}\right) U_{i}\right\}, \quad k=1,2,3 \tag{6.6}
\end{equation*}
$$

From (6.6) we obtain

$$
\begin{align*}
& 0=a_{1} g\left(X_{1}, J_{1} X\right)+a_{2} g\left(X_{1}, X_{2}\right) g\left(X_{1}, J_{2} X\right)+a_{3} g\left(X_{1}, X_{3}\right) g\left(X_{1}, J_{3} X\right) \\
& 0=a_{1} g\left(X_{1}, X_{2}\right) g\left(X_{1}, J_{1} X\right)+a_{2} g\left(X_{1}, J_{2} X\right)+a_{3} g\left(X_{2}, X_{3}\right) g\left(X_{1}, J_{3} X\right) \tag{6.7}\\
& 0=a_{1} g\left(X_{1}, X_{3}\right) g\left(X_{1}, J_{1} X\right)+a_{2} g\left(X_{2}, X_{3}\right) g\left(X_{1}, J_{2} X\right)+a_{3} g\left(X_{1}, J_{3} X\right)
\end{align*}
$$

and similar systems changing X_{1} by X_{2} (respectively, by X_{3}). As X_{1}, X_{2} and X_{3} are linearly independent we have

$$
\begin{equation*}
g\left(J_{k} X, X_{i}\right)=0, \quad i, k=1,2,3 \tag{6.8}
\end{equation*}
$$

and thus $0=g\left(J_{k} X, D_{i}\right)=a_{i} g\left(J_{k} X, X_{i}\right)+b_{i} g\left(J_{k} X, V_{i}\right)=b_{i} g\left(J_{k} X, V_{i}\right), k=1,2,3$. From this and (6.5),

$$
\begin{equation*}
J_{k} \Sigma \subseteq \Omega, \quad k=1,2,3 \tag{6.9}
\end{equation*}
$$

If V_{1}, V_{2}, V_{3} were also linearly independent, $J_{k} \Omega \subseteq \Sigma, k=1,2,3$ and then $\operatorname{dim} \Sigma+\operatorname{dim} \Omega$ would be even, but if this is the case, $\operatorname{dim} M=\operatorname{dim} \Sigma+\operatorname{dim} \Omega+6$
is also even and M cannot be a real hypersurface of $Q P^{m}$. Thus V_{1}, V_{2} and V_{3} must be linearly independent.

From (6.9) there exist two orthonormal vectors V, W in Ω and from (1.16) we have

$$
\begin{equation*}
(\mu I-A)[V, W]=2 \sum_{k=1}^{3} g\left(V, J_{k} W\right) U_{k} \tag{6.10}
\end{equation*}
$$

If we apply $(\lambda I-A)$ to (6.10) having in mind that the only principal curvatures of M are λ and μ, it follows $0=2 \sum_{i=1}^{3} g\left(V, J_{k} W\right)(\lambda I-A) U_{k}$ and from (6.1)

$$
\begin{equation*}
0=b_{1} g\left(V, J_{1} W\right) V_{1}+b_{2} g\left(V, J_{2} W\right) V_{2}+b_{3} g\left(V, J_{3} W\right) V_{3} \tag{6.11}
\end{equation*}
$$

From (6.9) we can choose V and W in $\left\{J_{1} X, J_{2} X, J_{3} X\right\}, X \in \Sigma$, and from (6.11) we have

$$
\begin{equation*}
V_{1}=V_{2}=V_{3}=0 \tag{6.12}
\end{equation*}
$$

which concludes the proof in this case.
I.2. $-X_{1}, X_{2}, X_{3}$ are not linearly independent.

If V_{1}, V_{2}, V_{3} were linearly independent the result would follow as in Case I.1. Thus we suppose that V_{1}, V_{2}, V_{3} are not linearly independent. Then (6.4) admits a nontrivial solution, that is, for any orthonormal $X, Y \in \Sigma, g\left(X, J_{k} Y\right) \neq 0$ for some $k=1,2,3$. Suppose that $k=1$. Applying $(\mu I-A)$ to (6.3) and having in mind (6.1) we have $0=\sum_{k=1}^{3} a_{k} g\left(X, J_{k} Y\right) X_{k}$, that is,

$$
\begin{equation*}
X_{1}=\frac{a_{2} g\left(X, J_{2} Y\right)}{a_{1} g\left(X, J_{1} Y\right)} X_{2}-\frac{a_{3} g\left(X, J_{3} Y\right)}{a_{1} g\left(X, J_{1} Y\right)} X_{3} \tag{6.13}
\end{equation*}
$$

and taking $\vec{U}_{1}=U_{1}+\left(g\left(X, J_{2} Y\right) / g\left(X, J_{1} Y\right)\right) U_{2}+\left(g\left(X, J_{3} Y\right) / g\left(X, J_{1} Y\right)\right) U_{3}$ from (6.1) and (6.13) we have

$$
\begin{equation*}
A \bar{U}_{1}=\mu \bar{U}_{1} \tag{6.14}
\end{equation*}
$$

Taking as a new orthonormal basis of $D^{\prime}\left\{U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}\right\}$, where $U_{1}^{\prime}=\bar{U}_{1} /\left\|\bar{U}_{1}\right\|$ and if $O \in S O(3)$ is the matrix of change of basis,

$$
O\left(\begin{array}{l}
J_{1} \\
J_{2} \\
J_{3}
\end{array}\right)=\left(\begin{array}{c}
\bar{J}_{1} \\
\bar{J}_{2} \\
\bar{J}_{3}
\end{array}\right)
$$

is a new local basis of \hat{V} such that the corresponding ${U_{k}^{\prime}}_{\prime}=-\bar{J}_{k} N, k=1,2,3$ verify

$$
\begin{equation*}
U_{1}^{\prime}=U_{1}^{\prime}, \quad U_{2}^{\prime}=a_{2}^{\prime} X_{2}^{\prime}+b_{2}^{\prime} V_{2}^{\prime}, \quad U_{3}^{\prime}=a_{3}^{\prime} X_{3}^{\prime}+b_{3}^{\prime} \nabla_{3}^{\prime} \tag{6.15}
\end{equation*}
$$

where $U_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ are unit vector fields in T_{μ} and $X_{2}^{\prime}, X_{3}^{\prime}$ unit vector fields in T_{λ}.
If $U_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ were linearly independent, the proof would finish as in I.1. Suppose thus that $U_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}$ are linearly dependent, $g\left(U_{1}^{\prime}, U_{k}^{\prime}\right)=0, k=2,3$, implies that if $b_{k}^{\prime} \neq 0, k=2,3, g\left(U_{1}^{\prime}, V_{k}^{\prime}\right)=0, k=2,3$ and then $V_{3}^{\prime}=\gamma \nabla_{2}^{\prime} \gamma$ being a real valued function defined on some open subset of M. Moreover if $V_{3}^{\prime}=\gamma V_{2}^{\prime}$ from (6.15) it follows that $-\left(b_{3}^{\prime} / b_{2}^{\prime}\right) \gamma U_{2}^{\prime}+U_{3}^{\prime}=a_{3}^{\prime} X_{3}^{\prime}-\left(b_{3}^{\prime} / b_{2}^{\prime}\right) \gamma a_{2}^{\prime} X_{2}^{\prime} \in T_{1}$, that is, there exists a vector field $\bar{U}_{2} \in D^{\prime} \cap T_{\lambda}$. (Notice that if $b_{k}^{\prime}=0$ for some $k=2$, 3 , either $\bar{U}_{2}^{\prime} \in T_{\lambda}$
 new orthouormal basis of $D^{\prime}\left\{U_{1}^{\prime \prime}, U_{2}^{\prime \prime}, U_{3}^{\prime \prime}\right\}$ where $U_{1}^{\prime \prime}=U_{1}^{\prime}, U_{2}^{\prime \prime}=\bar{U}_{2} /\left\|\bar{U}_{2}\right\|$ and if $O^{\prime} \in S O(3)$ is the matrix of change of basis,

$$
C^{\prime}\left(\begin{array}{l}
\bar{J}_{1} \\
\bar{J}_{2} \\
\bar{J}_{3}
\end{array}\right)=\left(\begin{array}{c}
J_{1}^{\prime} \\
J_{2}^{\prime} \\
J_{3}^{\prime}
\end{array}\right)
$$

is a new local basis of \hat{V} such that $U_{1}^{\prime \prime}=-J_{1}^{\prime} N \in T_{\mu}$ and $U_{2}^{\prime \prime}=-J_{2}^{\prime} N \in T_{\lambda}$. Thus (6.1) can be written as

$$
\begin{equation*}
U_{1}^{\prime \prime}=U_{1}^{\prime \prime}, \quad U_{2}^{\prime \prime}=U_{2}^{\prime \prime}, \quad U_{3}^{\prime \prime}=a X^{\prime}+b V^{\prime} \tag{6.16}
\end{equation*}
$$

where $U_{2}^{\prime \prime}, X^{\prime} \in T_{\lambda}$ and $U_{1}^{\prime \prime}, V^{\prime} \in T_{\mu}$ are unit vector fields. From (6.16) we obtain

$$
\begin{align*}
& (\lambda I-A)[X, Y]=2 \sum_{k=1}^{3} g\left(X, J_{k}^{\prime} Y\right) U_{k}^{\prime \prime} \tag{6.17}\\
& (\lambda I-A)\left[X, X^{\prime}\right]=-f_{3}(X) J_{3}^{\prime} X-2 g\left(J_{3}^{\prime} X, X^{\prime}\right) U_{3}^{\prime \prime} \tag{6.18}
\end{align*}
$$

for any orthonormal vectors $X, Y \in \Sigma$. From (6.17) and (6.18) we get either $J_{2}^{\prime} \Sigma \subseteq \Sigma^{\perp}$, $J_{3}^{\prime} \Sigma \subseteq \Omega$, or $a=0$. If $J_{2}^{\prime} \Sigma \subseteq \Sigma^{\perp}, J_{3}^{\prime} \Sigma \subseteq \Omega, \operatorname{dim} \Omega \geqslant 2$ and we also obtain either $J_{1}^{\prime} \Omega \subseteq \Omega^{\perp}, J_{3}^{\prime} \Omega \subseteq \Sigma$ or $b=0$. But $\operatorname{dim} M=\operatorname{dim} \Sigma+\operatorname{dim} \Omega+\operatorname{dim} \mathbb{S} p\left\{U_{1}^{\prime \prime}, U_{2}^{\prime \prime}, a X^{\prime}\right.$, $\left.b V^{\prime}\right\}$, and then either $a=0$ or $b=0$. Suppose that $b=0$ (the case $a=0$ is similar) From (6.16) we have

$$
\begin{equation*}
A U_{1}^{\prime \prime}=\mu U_{1}^{\prime \prime}, \quad A U_{2}^{\prime \prime}=\lambda U_{2}^{\prime \prime}, \quad A U_{3}^{\prime \prime}=\lambda U_{3}^{\prime \prime} \tag{6.19}
\end{equation*}
$$

and from (6.14) it follows

$$
\begin{equation*}
J_{2}^{\prime} \Sigma \subseteq \Omega, \quad J_{3}^{\prime} \Sigma \subseteq \Omega, \quad J_{1}^{\prime} \Omega \subseteq \Sigma \tag{6.20}
\end{equation*}
$$

From (1.1) and (6.20), $J_{2}^{\prime} \Sigma=J_{1}^{\prime} J_{3}^{\prime} \Sigma \subseteq J_{1}^{\prime} \Omega \subseteq \Sigma$, which contradicts (6.20) and proves the Theorem in this case.
II. - If either $a_{k}=0$ or $b_{k}=0$ for some $k=1,2,3$, the proof follows from Case I.2.

Theorem 6.2. - Let M be a rea hypersurface of $Q P^{m}, m \geqslant 3$. Then M has two distinct principal curvatures if and only if M is locally an open subset in a geodesic hypersphere.

Proof. - From Theorem 6.1, U_{1}, U_{2} and U_{3} are principal with the same principal curvature α for some local basis of \hat{V}. From Lemma 5.2α is locally constant and we can suppose that $\alpha=2 \cot 2 r, 0<r<\pi / 2$. If λ denotes the other principal curvature of M and V is the set where $\lambda \neq \alpha, V$ is clearly open. Taking the maximum rank between φ and $\varphi_{I I / 2-r}$, there exists an open subset U of V where φ_{r} has constant rank q and using the Inverse Function Theorem, $\varphi_{r}(U)$ is a q-dimensional submanifold of $Q P^{m}$. Reasoning as in Lemmas 5.3 and 5.4 , rank $\eta_{*}=4 m-1$ over U and $\varphi_{r}(U)$ is a quaternionic submanifold of $Q P^{m}$. The result follows from Examples 1 and 2. The converse is trivial.

7. - On the Ricci tensor of a real hypersurface of $Q P^{m}$.

Definition 7.1. - Let M be a real hypersurface of $Q P^{m}$. If the Ricci tensor of M satifies,

$$
\begin{equation*}
S X=a X+b \sum_{k=1}^{3} f_{k}(X) U_{k} \tag{7.1}
\end{equation*}
$$

for any $X \in T M$, where a and b are constant, we shall say that M is a pseudoEinstein real hypersurface of $Q P^{m}$. If the Ricei tensor of M satisfies,

$$
\begin{equation*}
S X=a X+b \sum_{k=1}^{s} f_{k}(A \cdot X) U_{k} \tag{7.2}
\end{equation*}
$$

for any $X \in T M$, where a and b are constant, we shall say that M is an almost Einstein real hypersurface of $Q P^{m}$.

From Definition 7.1 and (1.15) it follows

$$
\begin{equation*}
\left(A^{2}-h A+\lambda\right) X=\theta \sum_{k=1}^{3} f_{k}(X) U_{k}, \quad X \in T M \tag{7.3}
\end{equation*}
$$

for a pseudo-Einstein real hypersurface and

$$
\begin{equation*}
\left(A^{2}-h A+\lambda\right) X=-b \sum_{k=1}^{3} f_{k}(A X) U_{k}-3 \sum_{k=1}^{3} f_{k}(X) U_{k}, \quad X \in T M \tag{7.4}
\end{equation*}
$$

for an almost-Einstein real hypersurface, where $\lambda=a-(4 m+7)$ and $\theta=-(b+3)$.

Lemma 7.2. - Let M be an almost-Einstein real hypersurface of $Q P^{n}, m \geqslant 2$, or a pseudo-Einstein real hypersurface of $Q P^{m}, m \geqslant 3$. Then there exists a local basis $\left\{J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}\right\}$ of \hat{V} such that the corresponding $U_{k}^{\prime}=-J_{k}^{\prime} N, k=1,2,3$ are principal and at least two among them have the same principal curvature.

Proof. - Case I. - Suppose that M is a pseudo-Einstein real hypersurface of $Q P^{m}, m \geqslant 3$. Let $T=A^{2}-h A$. From (7.3), we have,

$$
\begin{equation*}
T X=(4 m+7-a) X, \quad T Z=(4 m+4-(a+b)) Z, \tag{7.5}
\end{equation*}
$$

for any $X \in D, Z \in D^{\prime}$.
Let $\left\{X_{1}, \ldots, X_{4 m-1}\right\}$ be an orthonormal basis of $T M$ of eigenvectors of A. From the definition of $T,\left\{X_{1}, \ldots, X_{4 m-1}\right\}$ are also eigenvectors of T. Then we have:
a) $b \neq-3$. From (7.5), D and D^{\prime} are invariant under T and T^{\prime} has $4 m+7-a$ as an eigenvalue for any vector of D and $4 m+4-(a+b)$ for any vector of D^{\prime}. Then there exists an orthonormal basis of $D^{\prime},\left\{X_{1}, X_{2}, X\right\}$ such that $T X_{1}=$ $=(4 m+4-(a+b)) X_{k}, k=1,2,3$. Thus $g\left(A D, D^{\prime}\right)=0$ and from Lemma 5.1 there exists a local basis $\left\{J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}\right\}$ of \hat{V} siuch that the corresponding $J_{k}^{\prime}=-J_{k}^{\prime} N$, $k=1,2,3$, are priacipal. Moreover, in this case, from (7.5) at least two among them have the same principal curvature.
b) If $b=-3$, from (7.5), M has at most two distinct principal curvatures at each point and from Theorem 6.1, there exists a local basis $\left\{J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}\right\}$ of \hat{V} such that $U_{k}^{\prime}=-J_{k}^{\prime} N, k=1,2,3$ are principal with the same principal curvature.

Case II. - Suppose now that M is an almost-Einstein real hypersurface of $Q P^{m}$, $m \geqslant 2$. From (7.4) we have

$$
\begin{align*}
& \left(A^{2}-h A\right) X+b \sum_{k=1}^{3} g\left(A X, U_{k}\right) U_{k}=(4 m+7-a) X \tag{7.6}\\
& \left(A^{2}-h A\right) Z+b \sum_{k=1}^{3} g\left(A Z, U_{k}\right) U_{k}=(4 m+4-a) Z \tag{7.7}
\end{align*}
$$

for any $X \in D, Z \in D^{\prime}$.
From (7.6) we have $g\left(\left(A^{2}-(h-b) A\right) X, Z\right)=0$ for any $X \in D, Z \in D^{\prime}$ and then, taking the tensor $T=A^{2}-(\hbar-b) A$, we obtain

$$
\begin{equation*}
g\left(T D, D^{\prime}\right)=0 \tag{7.8}
\end{equation*}
$$

From (7.7), $T Z=(4 m+4-a) Z+b(A Z)^{\top}$, for any $Z \in D^{\prime}$, denoting by $(A Z)^{\top}$ the component of $A Z$ in D. Now, from (7.8),

$$
\begin{equation*}
b(A Z)^{\top}=0 \tag{7.9}
\end{equation*}
$$

If $b \neq 0$, from (7.9), $g\left(A D, D^{\prime}\right)=0$ and from (7.6), (7.7) and Lemma 5.1, there exists a local basis $\left\{J_{1}^{\prime}, J_{2}^{\prime}, J_{3}^{\prime}\right\}$ of \hat{V} such that the corresponding $V_{k}^{\prime}=-J_{k}^{\prime} N$, $k=1,2,3$ are principal and at least two of them have the same principal curvature.

If $b=0$, from (7.4), M is pseudo-Einstein and $b \neq-3$. Now the result follows from Case I a).

Theorem 7.3. - Let M be a real hypersurface of $Q P^{m}$. Then:

1) If M is almost-Einstein and $m \geqslant 2, M$ is an open subset of one of the following:
1.1) A geodesic hypersphere.
1.2) A tube of radius r over $Q P^{n}, 0<k<m-1,0<r<\pi / 2$ and $\cot ^{2} r=$ $=(4 k+2) /(4 m-4 k-2)$.
1.3) A tube of radius r over $C P^{m}, 0<r<\pi / 4$ or $\pi / 4<r<\pi / 2$ and $\cot ^{2} 2 r=$ $=1 /(m-1)$.
2. - If M is pseudo-Einstein and $m \geqslant 3$, then M is an open subset of either 1.1 or 1.2 .

Proof. - Suppose that M is an almost-Einstein real hypersurface of $Q P^{m}$. From Lemma 7.2, we can suppose that $U_{k}=-J_{k} N, k=1,2,3,\left\{J_{1}, J_{2}, J_{3}\right\}$ being a local basis of \hat{V}, are principal (on the open set where $\left\{J_{1}, J_{2}, J_{3}\right\}$ are defined) and, at least two among them have the same principal curvature. Thus we suppose,

$$
\begin{equation*}
A U_{1}=\alpha_{1} U_{1}, \quad A U_{2}=\alpha_{1} U_{2}, \quad A U_{3}=\alpha_{3} U_{3} \tag{7.10}
\end{equation*}
$$

We shall distinguish two cases:
Case I. $-\alpha=\alpha_{1}=\alpha_{3}$, then from Lemma $5.2, \alpha$ is locally constant and from (7.4) as a and b are constant, there exists an open subset U of M such that U is a real hypersurface of $Q P^{m}$ with constant principal curvatures such that $g\left(A D, D^{\prime}\right)=0$. Then, from Theorem 5.7 and having in mind that M is connected, M is an open subset of either a geodesic hypersphere or a tube over a $Q P^{k}, 0<k<m-1$, $0<r<\pi / 2$. Among all these tubes only the one appearing in 1.2) is almost-Einstein.

Case II. - Suppose that $\alpha_{1} \neq \alpha_{3}$ at some point B. Then from the continuity of α_{1} and α_{3}, there exists a neighborhood V of B such that $\alpha_{1} \neq \alpha_{3}$ on V and such that J_{1}, J_{2} and J_{3} are defined on V. Suppose that

$$
\begin{equation*}
A U_{k}=\alpha_{k} U_{k}, \quad k=1,2,3, \alpha_{1}=\alpha_{2} \neq \alpha_{3} \text { on } V \tag{7.11}
\end{equation*}
$$

Then from Lemma 5.2,

$$
\begin{equation*}
Y\left(\alpha_{1}\right)=Y\left(\alpha_{3}\right)=U_{1}\left(\alpha_{1}\right)=U_{2}\left(\alpha_{1}\right)=0 \tag{7.12}
\end{equation*}
$$

for any $Y \in D$.
II. a) If $\alpha_{1} \neq 0$, from (7.5), $q_{2}\left(U_{3}\right)=q_{1}\left(U_{3}\right)=0$, thatis, $\nabla_{U_{3}} U_{3}=0$. As $g\left(\nabla_{X} \operatorname{grad} \alpha_{3}\right.$, $Y)=g\left(\nabla_{Y}\right.$ grad $\left.\alpha_{3}, X\right)$, from (1.14) we have, $X(\beta) f_{3}(Y)+g\left(\nabla_{X} U_{3}, Y\right)=Y(\beta) f_{3}(X)+$ $+g\left(\nabla_{Y} U_{3}, X\right)$, for any $X, Y \in T M$, where $\beta=U_{3}\left(\alpha_{3}\right)$. Taking $X=U_{3}$ or $Y=U_{3}$ it follows,

$$
\begin{equation*}
\beta g\left(\nabla_{x} U_{3}, Y\right)=\beta g\left(\nabla_{Y} U_{3}, X\right) \tag{7.13}
\end{equation*}
$$

Finally, from (1.14) and (7.13) we have $\beta g\left(\left(J_{3} A+A J_{3}\right) X, Y\right)=0, q_{2}(X)=$ $=q_{1}(Y)=0$, for any $X, Y \in D$. But from the equation of Codazzi $J_{3} A+A J_{3} \neq 0$ on D. Thus $\beta=0$. From this and (7.12), α_{3} is locally constant on V and we can suppose that is constant on V.

From (7.7) $\alpha_{1} \alpha_{3}=a-(4 m+4)$, thas α_{1} is also constant and then from (7.4) and (7.11), V is a real hypersurface with constant principal curvatures such that U_{1}, U_{2} and U_{3} are principal and exactly two among their corresponding principal curvatures are equal. Thus from (7.4) and Theorem 5.7, as M is connected, M must be an open subset of 1.3), because this is the one almost-Einstein tube over σP^{m}.
II.b) If $\alpha_{1}=0, \alpha_{1}=2 \tan 2(\pi / 4)$. Taking the tube of radius $\pi / 4$ over V and denoting by Σ a connected open subset of V over which $\varphi_{\pi / 4}$ has maximum rank, we conclude as in $\S 5$ that as $\alpha_{3} \neq-2 \tan 2(\pi / 4)$, $\operatorname{rank} \eta_{*}=4 m-1$, that is, $\alpha_{1}=$ $=\alpha_{2}=\alpha_{3}$ on Σ. But this is a contradiction and we conclude the proof in this case

If \boldsymbol{M} is pseudo-Einstein, the proof is similar.
Corollary 7.4. - M is an Einstein real hypersurface of $Q P^{m}$ if and only if M is an open subset of a geodesic hypersphere of $Q P^{m}$ of radius r, with $\cot ^{2} r=1 / 2 m$.

Proof. - This is the only Einstein real hypersurface of $Q P^{m}$ appearing in Theorem 7.3.

Acknowledgement. - The authors wish to thank Prof. A. Gray and Prof. F. G. San tos for their valuable suggestions.

REFERENCES

[1] M. Barros - B. Y. Chen - F. Urbano, Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J., 4 (1981), pp. 399-417.
[2] M. Berger, Sur les variétés compactes, C. R. III Réunion Math. Expression Latine, Namur, (1965), pp. 35-55.
[3] W. M. Bоотнву, An introduction to differentiable manifolds and Riemannian geometry. Academic Press, New York, 1975.
[4] E. Cartan, Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces sphériques, Math. Zeit., 45 (1939), pp. 335-367.
[5] T. E. Cecil - P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269 (1982), pp. 481-499.
[6] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973.
[7] B. Y. Chen, Totally umbilical submanifolds of quaternion-space-forms, J. Austral. Math. Soc. (Series A), 26 (1978), pp. 154-162.
[8] B. Y. Chen, On the first eigenvalue of Laplacian of compact minimal submanifolds of rank one symmetric spaces, Chinese J. Math., 11 (1984), pp. 259-273.
[9] A. Fralkow, Hypersurfaces of a space of constant curvature, Ann. of Math., 39 (1938), pp. 762-785.
[10] S. Funabasmi, Totally complex submanifolds of quaternion Kaehler manifolds, Kodai Math. J., 2 (1979), pp. 314-336.
[11] A. Gray, A note on manifolds whose holonomy group is a subgroup of $\mathrm{Sp}(\mathrm{m}) \cdot \mathrm{Sp}(1)$, Michigan Math. J., 16 (1969), pp. 125-128.
[12] A. Gray, Weak holonomy groups, Math. Z., 123 (1971), pp. 290-300.
[13] S. Ishihara, Quaternion Kählerian manifolds and fibred Riemannian spaces with Sasalian 3-structure, Kodai Math. Sem. Rep., 25 (1973), pp. 321-329.
[14] S. Ishihara, Quaternion Kählerian manifolds, J. Differential Geometry, 9 (1974), pp. 483-500.
[15] G. R. Jensen, Einstein metrics on principal fibre bundles, J. Differential Geometry, 8 (1973), pp. 599-614.
[16] E. Martinelli, Modello metrico reale dello spazio proiettivo quaternionale, Ann. Mat. Pura Appl., 49 (1960), pp. 73-90.
[17] H. F. Munzer, Isoparametrische Hyperflächen in Sphären, I, Math. Ann., 251 (1980), pp. 57-71; II, Math. Ann., 256 (1981), pp. 215-232.
[18] J. S. PaK, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kodai Math. Sem. Rep., 29 (1977), pp. 22-61.
[19] J. D. Perez - F. G. Santos, On pseudo-Einstein real hypersurfaces of the quaternionic projective space, K Jungpook Math. J., 25 (1985), pp. 15-28.
[20] K. Sakamoto, Planar geodesic immersions, Tohoku Math. J., 29 (1977), pp. 25-56.
[21] S. Tar, Minimal imbeddings of compact symmetric spaces of rank one, J. Differential Geometry, 2 (1968), pp. 55-66.

[^0]: (*) Entrata in Redazione il 26 luglio 1985.
 Indirizzo degli AA.: Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain,

