Unified Boundedness, Periodicity, and Stability
in Ordinary and Functional Differential Equations (*).

T. A. BURTON - SHUNIAN ZHANG (**)

Summary. — We discuss a unified theory of periodicity of dissipative ordinary and functional
differential equations in terms of uniform boundedness. Sufficient conditions for the uniform
boundedness are given by means of Liapunov functionals having a weighted norm as an upper
bound. The theory is developed for ordinary differential equations, equations with bounded
delay, and equations with inpintte delay.

1. — Introduction.

In the study of existence of periodic solutions of a system of ordinary differential
equations

1) o' = F(t, x)

the properties of uniform boundedness (UB) and uniform ultimate boundedness
(UUB) frequently emerge as central. In fact, when (1) is periodic in ¢ and when
golutions are unique, then those boundedness properties, together with asymptotic
fixed point theorems show that (1) has a periodic solution.

When (1) is linear and written as

(2) o= A(t)x -+ p(t)
with homogeneous system
(3) 2= A(t)x,

then UB for (3) is equivalent to uniform stability of the zero solution of (3), while
UB and UUB for (3) is equivalent to uniform asymptetic stability (UAS) of the
zero solution of (3).

It has proved to be fruitful to show boundedness and asymptotic stability for
(1) and (3) using Liapunov functions. When (1) and (2) are periodic in ¢ the fol-
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lowing scheme holds. Here, functions denoted by W, are called wedges and they
are continuous, strictly increasing to oo, and W,(0) = 0. Also, for a continuous
function V, by V,, we mean

limsup [V(t + h, 2 -+ BE(t,2)) — V(t,2)]/h.

h—>0*%

I) If solutions of (1) are unique, UB and UUB, then (1) has a periodic
solution.

IT) If the zero solution of (3) is UAS, then (2) has a globally stable periodic
solution.

III) If F(#, 0) = 0 and if there is a function V: [0, co) X B* — R such that
Wol2)) <Vt ) < Wellel) , Vil @) <— Ws(l2))

then the zero solution of (1) is UAS.

IV) If there is a function V: [0, co) X B* — R such that

Wilzl) <Vt 2) <Walll) , Vit 0) <— Wa(lal) + M

then solutions of (1) are UB and UUB.

Thus, I) and II) indicate conditions under which there are periodic solutions,
while IIT) and IV) give conditions under which I} and II) hold.

For many years investigators have been interested in counterparts of I-IV) for
systems of Volterra equations

t
4) @' = h(t, x) —}-fq(t, s, #(s)) ds
and -
t
) o = A{)e +f0(t, s)a(s) ds -+ p(t)

for systems of functional differential equations with bounded delay

(6) @'= F(t, »)
and
i
) @' = Aty +[0(t, s)a(s) ds + p(t)

-7



T. A. BURTON - SHUNIAN ZHANG: Unified boundedness, ete. 131

and general systems with infinite delay
(8) o' = G, #(s); —oco < <) .

Much progress has been made.

Under quite general condifions (I) has been advanced to all of these systems
(cf. ARINO-BURTON-HADDOCK [1]).

BurToN [3] has obtained results extending (II) to forms of (5). Here we extend
(IT) to (7). We, therefore, feel that (I) and (II) are fairly well settled.

Part (ITT) has been the object of intensive investigation for many years. Using
an L*norm in the upper bound on V, BURTON [6] extended it to (6) and KATo [20]
has discussed such forms extensively. In this paper we extend (III) to general
infinite delay equations, again using a type of L2-norm in the upper wedge on V.

The extension of (IV) has been the most challenging part. Using the L2-norm
again we extend part (IV) to all the systems both with bounded and infinite delay. -

In fact, we show that the main theorems of stability by Liapunov’s direct method
for (1) can be advanced to equations with both finite and infinite delay in a com-
pletely unified way. And this provides one vehicle for achieving periodicity results
for these systems.

2. — Ordinary differential equations.

This section consists of a fairly concise summdry of the technical details of the
problems discussed in the introduction which we wish to extend to functional dif-
ferential equations. We focus on

1) z' = F(t, x)

in which F': (—oo, co) X B* — R* ig continuous so that for each (f,, x,) there is a
solution (2, t,, #,) satisfying (%o, t,, %) = x, and (1) for ¢, <<, + « for some o > 0;
if the solution remains bounded, then « = oo; if F is locally Lipschitz in # then
it is unique. Whenever a function # is written without its argument, that argument
is 1.

DErFINITION 1. — Let F(f, 0) = 0. The zero solution of (1) is:

a) stable if for each &> 0 and ¢, R there cxists 6> 0 such that [z, < 6,
t>1,] imply |o(t, by, 20)] < €;

b) uniformly stable if it is stable and if J is independent of %,;

c) asympiotically stable if it is stable and if for each t,€ R there is an #(f,) >0
such that || < # implies x(t, %, @) — 0 as t — oco;
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d) uniformly asymptotically stable if it is uniformly stable and if there is an
7> 0 and if for each y > 0 there is an §> 0 such that [f,e R, |x| <%, t>1, -+ 8]
imply |#(2, o, %0)| < p3

e) equi-asymptotically stable if it is stable and if # and § in d) depend on f,.
One defines stability of any solution in a similar fashion.

DEFINITION 2. — Solutions of (1) are uniform bounded (UB) if for each B,> 0
there exists B, > 0 such that [t,€ R, [z,| < By, t>1,] imply that |a(, ¢, 2,)] < B,.

D EFINITION 3. — Solutions of (1) are untform ultimaie bounded for bound B for
(1) if for each B,;>> 0 there exists K > 0 such that [#,e B, |#,| < B, >+ K] imply
that |2(¢, 1y, @)| < B.

Under quite general conditions most of these definitions ean be characterized
by Liapunov functions. Also, when certain conditions concerning Liapunov funec-
tions hold, then # = 0 is necessarily a solution. A proof of the next result is found
in YoOSHIZAWA [26].

THEOREM 1. — Suppose there is an open neighborhood D of # = 0 in B and a
continuous function V: (— oo, o) X.D — [0, co) which is locally Lipschitz in #. Let
W, be wedges.

(a) If
V(0 =0, W(z)<V(t,o), and V¢, 2)<0

then the zero soluﬁon of (1) is stable.

o) It

Wl(lavl) <V{t, )< Wy(jw]) and V(¢ 2)<0

then the zero solution of (1) is uniformly stable.

{¢) If F is bounded. for # bounded and if

V(E, 00 =0, W(a)<Vt,a), Vit z)<— W),

then the zero solution of (1) is equi-asymptotically stable.
(d) If
Wi(le)) <V{t, 2) <Walll) , Voot ) <— Ws(la])

then the zero solution of (1) is uniformly asymptotically stable.
(e} If D = R~,
Wi(lo)) <V, o) < Wi(l2]) , T,

(1)

(ty o) <— Ws(la]) + M
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for some M > 0, then solutions of (1) are uniform bounded and uniform ultimate
bounded for bound B.
Many good examples have been given illustrating each part of this theorem.
The next lemma, found in CrRONIN [12], is useful in fixed point theory proving
the existence of a periodie solution of (1).

Lemma 1. — Let F(t 4+ T, x) = F(t, ) for some T > 0 and all (¢, ) and suppose
that solutions of (1) are uniquely determined by (4, #,). Equation (1) has a T-pe-
riodic solution if and only if there is a (%, @) With x(t, + T, 5, %) = @,.

The next result was proved by M. L. CARTWRIGHT [11] for second order systems
and a proof for n-dimensional systems is found in YosHIzAwa [26]. It is a simple
consequence of Browder’s fixed point theorem.

THEOREM 2. — If F is locally Lipschitz in  and periodic in ¢ and if solutions are
uniform bounded and uniform ultimate bounded for bound B, then (1) has a T-pe-
riodie solution.

Because of the structure of (1), Theorem 2 asks far more than it appears to ask.
We restate it with the implications derived from if.

THEOREM 2'. — Let the following conditions hold for (1).
1) For each (f,, x,) there is a unique solution (t, t,, 2,) of (1) defined on [f;, co).

2) Solutions of (1) are uniform bounded and uniform ultimate bounded for
bound B.

3) For each » > 0 there exigts L > 0 such that || < v and f,e R imply that
@' (ty o, Wo)l < L.

4) For each (%, @), 2(%, t,, ,) is continuous in w,.

5) If () is a solution of (1), so is x(¢ + T)).

Under these conditions (1) has a T-periedic solution.

It was shown in ARINO-BURTON-HADDOCK [1] that when these concepts are
properly extended to general functional differential equations, then a periodic solu-
tion results.

The next theorem is a simple consequence of Floquet theory.

THEOREM 3. — If A + T) = A(t), p(t -+ T} = p(t), and if the zero solution of
(8) is uniformly asymptotically stable then (2) has a globally stable T-periodic
solution. ’

Just as in Theorem 2, because of the struecture of (3), Theorem 3 asks far more
than is at first apparent. We restate it as follows,
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TurEorEM 3'. — Let the following conditions hold.

1) At + T) = A@t) and p( + T) = p() for all ¢ and some T > 0.
2) All golutions of (2) are bounded.

3) Bach solution of (2) is equi-asymptotically stable.

4) The zero solution of (3) is uniformly asymptotically stable.

Under these conditions, (2) has & globally stable periodic solution.

It is of course, important to distinguish between linear and nonlinear systems
even in stability theory. So frequently a poor Liapunov funetion can give just
enough information to supplement the linear theory and give a strong result.

ExamrLE 1. — Consider the linear sealar equation

o + a(f)a’ + @ = p(t)

with @ and p continuous and 7T-periodic, a(t)>0 and a(?) = 0. Then there is a
globally stable T-periodic solution.

PrOOF. — Write the equation as the system
: oy
y'=—z—at)y +p(t)
and in matrix form
X'=AH)X + P(1) .
Define a Liapunov function
Vi, y) = o>+ y*
for the homogeneous system
X'= A@H) X
and get
Viiw,y) = —2a(t)y* .

It is then evident that solutions are all bounded and converge to the w-axis. And
further arguments show that all solutions tend to zero. By Floquet theory they
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tend to zero exponentially; in fact, the zero solution of the homogeneous equation
is uniformly asymptotically stable. Theorem 3 completes the proof.
It would be very difficult to find a V satisfying the conditions of Theorem 1 (d).
Our goal is to present parallel theory for general functional differential equations.

3. — Equations with hounded delay.

We turn now to the systems

(6) z'= F(t, x;)
and
t
M o = A(t)w +f0(t, 8)a(s) ds + p(t) .
t—r

In (7) the functions 4, p, and € are continuous everywhere and » > 0. In (6), F

is a continuouns functional defined as follows. Let A > 0 and let € denote the space

of continuous functions ¢: [— &, 0] — R with |¢| = sup |¢(s)| where |-| is a norm
—h<8<0

on Rr. For any t,€ R and any continuous function z: [{,— k, t, -+ 4] — R*, if {,<

<t<t, + A, then z,e Cis defined by #,(s) = 2(t + s) for —h<s<0. The function F

is continuous in (f, p) for —oo <t < o0 and ¢ € . Moreover, F takes bounded sets
into bounded sets. ' '

To specify a solution of (6) we require a {,€ R and a function g € C. We then
obtain a solution w(f,, ¢) on [ty, t, + B) with value z(i, ,, ¢) and with 2, (&, ¢) = ¢.
It F is locally Lipschitz in ¢, then the solution is unique. If the solution remains
bounded, then f = co. 7

For V(% ¢) a continuous scalar functional defined for € R and ¢ € C we define

V(’s)(t’ Z4(to, (P)) = Eﬁ;sup (1/6){V(t -+ 0, @yys(to, ‘P)) - V(t, Zy(ty, ‘P))} .

Detailed properties of this derivative are found in YOSHIZAWA [26; pp. 186-189].
Corresponding to Def. 1 for (1), we have the following definition for (6).
DEFINITION 4. ~ Let F(,0) = 0. The zero solution of (6) is

(@) stable if for each f,€ R and each ¢ > 0 there exists d > 0 such that [p € C,
U‘PH <9, t>t0] imply that |x(¢, 1o, @)|<e;

(b) wniformly stable if it is stable and if § is independent of i#;

(¢) asymptotically stable if it is stable and if for ¢{,€ R there is an > 0 such
that [ e C, |p] <#] imply that x(t,t,, ¢) —0 as ¢ —oo;
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(d) uniformly asymptotically stable if it is uniformly stable and if there is an
7> 0 and for each w >0 there exists S>>0 such that [t,e R, pe 0, [¢] <n,t>
>ty + 8] imply that |s(t, &, ¢)| < p;

() equi-asympiotically stable if it is stable and if n and & in (d) depend on 7,.

DEFINITION 5. — Solutions of (6) are wuniform bounded if for each B,;> 0 there
exists B,> 0 such that [t,e R, 9 0, ||¢| < By, t>14,] imply that |a(t, %, @) < Bs.

DEFINITION 6. — Solutions of (6) are uniform ultimate bounded for bound B if for
each B, > 0 there exists K > 0 such that [{,€ B, ¢ € 0, |¢| < B, t >4, + K] imply
that (¢, &, ¢)| < B.

Investigators have given much consideration to the extension of Theorem 1
to (6). The following is one possibility and it gives perfect unity between. (1) and (6),
being a natural counterpart of Theorem 1.

THEOREM 4. ~ Let H > 0 and let Cgzc ¢ with ¢ € Cy if [¢| < H. Suppose V: R x
% Oy — [0, o) is continuous and locally Lipschitz in ¢. Let the W, be wedges.

(a) If
V(t,00=0, W(eO))<Vlte), Vet 2)<0
then thev zero solution of (6) is stable.
| (b) If | |
Wi(lp(O)) <Vt p) < Wollgl)  and  Vig(t, @) <0
then the zero solution of (6) is uniformly stable.
(¢) If F(t, p) is bounded for ||| < H and if V(t, 0) =0,
W.(lp@)) <V @), Vilt, @) <— Wa(l(®)))

then the zero solution of (6) is equi-asymptotically stable.

(@) Let_ |[|-|| be the L*norm on C. If

W.([9(0)]) < V(& @) < Wa(j9(0)) + Wa(llelh)
and

V(’s)(t) @) <— Wy(|2(t)])
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then the zero solution of (6) is UAS.
(e) If there is an M > 0 with

Wol(p0)) <Vt ) < Wallp(©))) ~ W[ [Wallo(s)) ds]

and

!
V(G)

(t, z) <— Wa(lp(0)]) +~ M

then solutions of (6) are UB and UUB.

Proor. — Parts (a) and (b) are classical. Part (¢) can be patterned after the
proof of Theorem 6.1.3 in BURTON [7; p. 160]. Part (d) is a result of BURTON [6]1;
it has a BAZUMIKHIN counterpart by WEN {24]. Our contribution is (¢) which we
now prove.

Let B, >0, >0, ¢ € C with ||¢| < B, be given and let #(f) = x(t, t,, ). Integrate

V'(t, mey<— W(la@®)]) + M
from ¢t —h to 7 obtaining

fW4(|m(s)|) ds<V(t—hy @) — V(t,w) + Mh.

t—h -

Now, consider V(s) = V(s, w,) on any interval [t;, L] for any L>t,+ k. Since
V{(s) is continuous, it has a maximum at some ?elt,, L]. Suppose i<t -+ h; then

VO <VEA < V(L) + ME—1t) < Wy(B,) + Ws(hW4(B1)) + Mh

and thus
[2(t)| < W[ Wa(By) 4 Ws(hWo(By)) + Mh] % By .

If tety+ h, L}, then V(I—h) — V()< 0 so that
3
f W.(jo(s)]) ds<V(E—h) — V(F) + Mh<Mh .

t—h

We note that for such #, V'(f)>0 and hence [#(f)|< W, '(M). Thus,

Wi(le®)]) < V@) < VE < Wo(WH (M) + Wo(Mh)
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for telt,, L] and, therefore,

jw(t)] < W [Wo(Wik(M)) + Wo(MR)] & B

Since I is arbitrary, B, = max [BF, B¥*]. This proves the UB.
For the UUB, let B;> 0 be given and find B, such that [#,>0, |¢] <Bs, t>1,]
imply that |#(3,%,, )| < B,. We determine a U > 0 so that

Vit o)<—M<0 if [w(#)|>U.
Since
0<V(ty o) < Wy(B,) -+ Wa(hW4(B4))

there is a sufficiently large integer N such that for any interval [¢, { -+ Nh] with
t>1,, then there is some {e (¢, ¢ + Nk) with |#()] < U. Now

t 11
(%) fW4([m(s)]) ds<-fV'(s) ds 4+ Mh = V{E—h)— V(&) +~ Mh  for t>t,+ h.

t—h 1=
Counsider the intervals

I, =t t, -+ Nbl, I,=I[t,+Nh, t,-+2Nk], ..,
Iiz[to‘l‘(i“‘l)Nh;to‘{"@.Nh];

and select t;e I, such that V(¢,) is the maximum on I,. In case {,=1t,+ (1 —1) Nk
with |#(¢;)| > U then by the choice of N, there is a first #,€ [t, + (¢ — 1) Nb, t, + iNh]
such that

Now, instead of the above choice for I,, in this case we pick
I, =&, t + 1Nh]
and let

V(Z;) = max V(s).

seli

Therefore, in any case we have

@) <U, 4=1,2,3,..
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Now, consider the intervals
L2: [tz-‘h; tg], L3: [t3——h, t3], ey L= [ti—hy tz‘],

For each i = 2, 3, 4, ... we have two cases.

Case 1. -~ V(1,) +1>V(s) for all se L,.
Case 2. — V(i) +1< V(s,) for some s, L,.
Note that in Case 2, s.¢ I, since V(¢;) is the maximum on I,. If there is no

gap between I, , and I,, then s,el, ;. If there is a gap and s,e{t,+ (¢ —1)Nh, 1],
then we have |#(f)|>U and thus V'()<0 on [f, + (i —1)Nh,i,]. Hence

V(te+ (1 —1)NB) > V(s,) > V(t;) + 1.
In either case we have
V(g +1 <Vt )

since V(f,_;) is the maximum on I, ,.
By the boundedness of V(¢), there is an integer N* > 0 such that Case 2 holds
on no more than N* consecutive intervals L;. Thus, on some L, with j < N* we have

V) +1>V(s) for all selL,.

From (*) with ¢ = ¢, it follows that
ty
f Wllo(s)]) ds< V(t,— h) — V(t;) + Mh<1 + Mh
t;—h

and therefore,
Vit,) <Wo(U) + Wy(1 + Mh).
Let
V(t) = max V{(s).

3el,;

Then
Vit)y<V{;) +1.

Now we claim that

V)< Wo(U) + Wy(l + Mh) +1% D*  for all t>1,.
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To see this, let 4, be the first ¢ >4, with V() = D*. Then notice that V(,)>
>V(t,— k) by (%) with ¢ =1¢,, yielding

ip
fW4(|m('s)[) ds< Mh
and so -

V(t,) < Wy(U) + Wo(Mh) < D* .
Hence, for ¢>1%, + N*Nk we have

V()< D*
or

[o(t)| < WH(D¥) def B,
Lstting 8§ = N*Nh We obtain UUB. This completes the proof.
H

ExAMPLE 2. — Consider the scalar equation
¥ = —[a + (¢tsint)*]@(t) + ba(t — r(t)) + cost

with >0 and constant, b constant, »'(1)<f for some M >0 and 0<f<1.
If |b] < a(ld—p) and 0<r()<v for some » > 0 then solutions are uniform bounded
and uniform ultimate bounded for bound B.

Proor. —~ Define
t

Vit, @) = |oft)| + k[la(s)] ds
t—r(t)

for ¥ = |b|/(1 —pB). Then

V'(t, ) <—[a + (Esint)?lw]| + b||elt —r@)] + 1 + klz| — kot — r())] (1——r ) <
<[—a + k]| + [plla(t —r@)] +1—bllo@—rE)<
<[—a+ Ko +1=—uplz| +1.

Thus, by Theorem 4 (¢) the result follows.

REMARK. — Much effort has gone into development of results along the line of ().
The classical result is found in YosHIZAWA [26; p. 206] which has a very restrictive
condition on the wedges.

The following result, patterned after Lemma 1 of Cronin for differential equa-
tions, is well known.
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THEOREM 5. — Let F be locally Lipschitz in ¢ and F(t - T, ¢) = F(t, ¢) for all
(t, 9) € RXC. BEquation (6) has a T-periodic solution if and only if there is a (%,
@) e RxC with «(t + T, 1, ¢) = @) for {,— a<t<t,.

The next result is a consequence of Horn’s fixed point theorem. A proof may
be found in HALE and LoPrs [17], ARINO-BUrTON-HADDOCK [1], or in BURTON [8].
It is the counterpart of Theorem 2.

THEOREM 6. — Let F' be locally Lipschitz in ¢ and F(t + T, ¢) = F(t, ¢) for all
(¢, ) € B X (. 1If solutions of (6) are UB and UUB for bound B, then (6) has a T-pe-
riodie solution.

‘We now consider a linear Volterra system

£
W) o' = A}z +[ O, 9)a(s) ds + p()

t—r

and the unperturbed system

t
(9) - o= A +f0(t, s)a(s) ds

t—r

with A, C, and p continuous, with 4 and p being T-periodic, and with C(t + 7,
s + T) = Oft, s).
The next result is the counterpart of Theorem 3 as amplified in Theorem 3’.

THEOREM 7. — Suppose that the zero solution of (9) is UAS aund that the solu-
tion, (¢, 0, 0) of (7) is bounded and equi-asymptotically stable at ¢ = 0. Then (7)
has a globally stable T-periodic solution.

Proor. — Since (7) and (9) are linear, the difference of two solutions of (7) is a
solution of (9). By the assumption of UAS of (9), all solutions of (7) converge uni-
formly to a solution ¢ of (7). We now claim that (7) has at most cine bounded solu-
tion on (—oo, co). In faect, suppose that there are two distinet bounded solutions
of (T) on (— oo, ), say ¢ and ¢, v # ¢. Then there must be a #*c R and ¥ >0
with [p(t*) — @(t*)] = k. Let » = sup |yp(?) — ¢(?)|. Note that v(f) — ¢(t) is a solu-

—oo<{<oa

tion of (9), so that by the UAS, for ¢ = k/2, there is a J > 0 such that {{,e R,
lp(t) —@@)|<v on [t,—r, t], t>t, + J} imply that |p(t) —e() <e=Fk/2. If we
pick ¢, with t, + J < ¥, we obtain a contradiction. Thus, (9) has at most one
bounded solution on (— oo, o).

Next, we prove that there is a bounded solution of (9) on (—oo, o). Suppose
that x(1) = (¢, 0, 0) is the solution of (9) on [0, c0) with x(t) =0 if —r<i<0.
Define a sequence of solutions of (9) on [—nT, co) by @,(f) = «(t + »T, 0, 0) for
t>—nT, n a positive integer. Now «() is bounded on [0, o), so there is a constant
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M >0 with |#,()|<M on [—nT, co). Therefore, we have
i
=0 <A + M[|0, 9)] ds + ()] <B
b~
on [0, o). Moreover, by our assumptions z,(t) is also a solution of (9) and

l.@#)|<B on (—aT, ).

By the equi-asymptotic stability of x(¢, 0, 0), for y = M and for each &> 0, there
is a P, such that

|2, 0,0) —a(t +2T,0,0)|<e if t>P,7T and n>1
or

lw(t + PT,0,0) —a@ + PT'+ nT,0,0)|<e
it t>0, P>P,, and n>1. Thus, if », m > P, then

l@(t + nT, 0,0) — (@ +mT,0,0)| <e for allt=0;

that is, {w.(f)} is a Cauchy sequence converging uniformly on [0, co). Also, for
every fixed integer & we have

lz(t + (n + k)T, 0,0) —a(t + (m + k) T,0,0)| <e

on [— kT, co) so that {x,(t)} converges uniformly on compact subsets of R to some
continuous funetion z(f). Certainly, #(f) is bounded.
We now show that 2(t) satisfies (9) on (—oco, co). Consider the derivative of

2(t). We have
¢

2l\) = At)w,(t) + f Ot, 8)wa(s) ds + p(t)
t—r
for t > —aT and x,(t) = 0 for —nT —r<t<—nT. Let [a, b] be an arbitrary com-
pact subset of B. Let 6 > 0 be given and find N such that n, m >N and a —r<
<8<b imply [#.(8) —@n(s)] <6 and — NT < a. Then for n, m>N and {€[a,b]
we have

2L(t) — wha()] < |A(D)][a() — @m(t)] + f |0ty 9)][2a() — Zu(s)| ds <

t—r

<(]A(t); +f|o(t, 9| ds)a.
f~r

This shows that {wﬂ'(t)} is a Cauchy sequence converging uniformly on compact sub-
sets of E. As the 2 (t) are continuous, it follows that the w;(t) —2'(¢) on all of E.
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Since |C(¢, s)@.(s)| < M|C(t, s)| for {>—nT, by the Lebesgue dominated convergence
theorem, on any fixed interval [— L, co), we may take he limit as # —oo in

. ¢
m(t) = A(Ww,(1) + [0, 5)2.(5) ds + (1)
t—r

to obtain

£
o) = A@)a(t) - f C(t, 2)2(s) ds + p(t) .

b7

That relation holds on every interval [— L, o) and hence on (—oo, oo). Thus,
#(t) is the one and only bounded solution of (9) on (—oo, o). Note that 2z(t + T)
iz also a bounded solution and so 2z(t) = 2(¢ + T). This completes the proof.

4. — Equations with unbounded delay.

In this section we consider a system of functional differential equations

(8) ¥ = G, »(s); a<s<t), —oo<a<0.

To specify a solution of (8) we require a #,>o and a bounded continuous function
@: [, ] — R"; we then obtain a continuous solution #(i, 1,, @) satisfying (8) on an
interval [f,, 1, -~ 8) with @(t, %, ) = @) for a<i<it,. To prove the existence of
such a solution we need a bit more than just the requirement that when y: [«, co) — E»
is continuous, then G(t, v(-)) is continuous. We also need to ask that if t>1,, if
@: [o, 8] - R, and if {y.} is a sequence of bounded continuous functions y,: [«,
t] — B* with y,— ¢ in the supremum norm, then

Gt va(+)) — Gt 9(*))| =0 as n —>oo.

If, in addition, @ satisfies a local Lipschitz condition in #, then the solution is
uniquely determined by the initial function p. For details see DRIVER [13] or BUR-
TON [7; Chapter 8].

We will shortly be requiring unbounded initial functions, but so much more is
required for existence, uniqueness, and continuity in initial functions that separate
treatment is advisable. To make the presentation here parallel that for finite delay
equations, for each ¢ > « we consider the function space C(f) with ¢ € O(t) if ¢: [«,
#] — R» is bounded and continuous. The norm used is the supremum norm, |-|.
Thus, for any ?,> o, our initial function is some ¢ € C(f,) and our definitions of
stability and boundedness coineide with the ones for bounded delay. A Liapunov
functional is denoted by V'(t, «(-)). We then have the following result which is the
counterpart of Theorem 1 for ordinary differential equations and Theorem 4 for
finite delay equations.
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TuHEOREM 8. — Let H >0 and for each #,> a let Cy(t,) c O(f,) with ¢ € Cu(ty)
if |lp] < H. Suppose that for each #,> « the function V: [t,, o0) X Cx(t;) — [0, o0)
is econtinuous and locally Lipschitz in ¢. Let the W, be wedges.

(a) If
Vit,00=0, W(e®)) <Vt e(-), Vgt a(-)<0

then the zero solution of (8) is stable.
(by If
Wl(lfp(t)]) < V(t’ ‘P()) < Wz(”‘p”) ’ V(Is) (t7 @( )) <0

then @ = 0 is uniformly stable.

(¢) Let G(t,#(-)) be bounded whenever » € Cy(t). If

Wille®) <V e(4),  V(E,0)=0,
and
Vio(ty 2(+)) <— W)

then o = 0 is equi-asymptotically stable.
(d) If there is a bounded continuous @: [0, c0) — [0, co) which is I:[0, oo)
with
i
Wollp(®l) <Vt 9() < Wallo)l) + W[ [ @10 — ) We(lp(o)) ds]
and

Vit a()) <— Wi(J=(2)])

then # = 0 is uniformly asymptotically stable.
() Let M >0, H=o0, @ be ag in (d) with @'(t)<0. If

Wo(lp®)) < V(6 o) <Wallg)) + Wil [0t —5) Wa(lp®)) ]

&

and

Vi (t 2(+)) <— Wa(le(®)]) + M
then solutions of (8) are uniform bounded and uniform ultimate bounded for bound B.

PROOF. — Parts (a)-(¢) are classical (cf. DBIVER [13]). The UB of (¢) extends
work of BuUurRTON-HUANG-MAHFOUD [10]. Our proof of (d) requires a lemma from
BurTon [6].
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LeMma 2. ~ Let {z,} be a sequence of continuous functions with continuous
derivatives, #,:[0,1]->[0,1]. Let g¢: [0, 00) —[0,c0) be continuous, g(0) = 0,

gir)>01if » > 0, and let g be nondecreasmg If there exists » > 0 with f z,(t) dt>v
for all n, then there exists >0 with Jg( t)) dt>p for all n.

‘We remark tha.t the lemma is certamly valid if ,: [a, b] —> [¢, d] with fm,, di>v»
implying that f 9(w.(t)) dt=>p.

‘We now prove part (d). Let ¢> 0 be given. If {,>« and ¢ e C;(1,) with 0 <,
then for (t,t,, ¢) = =(f) we have

Wl(lw(t)])<v(t? w(-))gV(to,(p('))<W2( “’f‘ Ws( f@ —8 ) =

to—&

= W.(6) + Wo( Wa3) [ @) du) < Wy(3) + Wi Wi(9) f (w) du) < Wife)
0 0

if § is small enough. This proves the uniform stability.
For ¢ = H find ¢ of uniform stability and let é = . Let v > 0 be given. We
must find 7' > 0 such that [f,>a, @€ On(to), t>t, -+ T} imply that |=(t, &, @) < ».
For this »> 0, find 6> 0 such that

WIWH6/T)] + Wa(20) < Wy(»)
where we let @(t)<J for 1>0. Now, find » > 1 with

W.(e) f B(u) du <0 .

If ¢ € C,(t), to>, t>%, + 1, then for x(t) = «x(, t,, ¢) we have

¢

Wa(|2(0)]) <Vt ) < Wa(lo@)) + Ws[ [oe—sW(s)) as] <
<W, ) + Wa[ Dt — 8) Wyle) ds +fd5(t—s ) Wo(l(s)]) ds]
& fa
< Wu(|lz(8)) + Wa(W4 e)f@ uw) du 4—JJW4 |(s)]) ds)
r —r

<Willo®)]) + Ws(W4 e)fq) du +J f Wa(jo(s)]) ds)
(

<W,(l2(t)) + Wa(0 +wa4 l(s) ]ds).
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ta
We will find a ¢, with |o(t,)] < W;X(0/J7) % e, and fW4(lm(s)l) ds<0/J. This
will mean that ti-r

Wi(lo)]) <Vt 0) <V, @) < Wo( W 0)T7) + Wa(20) < Wi(v)  for t>1,.

Because V'(f, #(-)) <— W;(|2}), there is a T,>r such that |#(t)|> W' (0)Jr) = &
fails for some value of ¢ on every interval of length T,. Hence, there exists {f,} — oo
such that [®(t,,%,, ¢)| < &. In particular, we choose

telto+ (n—1)T,, t,+nT,] forn=23,...

The length of the intervals is independent of t, and @ € C,(%).
Now, consider the sequence of functions {z,()} defined by

2, (8) = @(t, &, @)  for ¢, —r<II, .
Examine those members satisfying

23
() [TW(lats)) as>0

te—

s0 that by Lemma 2 we have

tx
[Wilats)) ds>p

tx—

for some S > 0.
Next,

oo

V(te, @) < Wale) + Ws[j?qj(to_‘ 8) W;(é) ds] < Wyle) + Wa(m(a) f D(u) du) L

o 0

is a positive number independent of # >« and independent of ¢ € C,(t,). Now, for
t>1,, we have

V(¢ @(+)) <— Ws(l«])
so that

b2

t
V{t, 2(+)) < Vo, @) —jﬂ@(]w(s)]) ds<p— ‘i We(lz(s)|)ds<p—nf< 0
to

tgi_r

if n>u/B. (Here, we have integrated over alternate intervals to be sure the intervals
are disjoint.) Hence, if #n > u/f, then i, fails to exist with (%) holding. We choose n
as the smallest integer greater than u/8 and we then have

Im(tﬂ; toy (P)] < &1
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and

tn
J’JW4(1m(s)[) ds <0 .
tn—1r

Thus, if
I =2nT,

then ¢ > ¢, + T implies [#(f, %, ¢)| <». This completes the proof of (d).
We now prove (¢). Let B,>0 be given and suppose ¢ € Cp (¢) for arbitrary
to>o. Let o(t) = 2t &, @) and V() = V(#, 2(-)). For t,<s<t<oco we have

V() Bt — 5) <[— Wa(la(s)]) + M]D(t— )

so that

fm le(s)]) Dt — 5) ds<—fV'(s B — s) ds +Mf<p(t—s ) ds —
t~1t,

[V(s) (t—s)|; fV(s t——s)ds] +qu5(u ) du<
<=V (@) D(0) + V(L) (t—to)+V(T)[q§(0)— (t—1)] + MJ

where f,<T<? and J zfdi(u) du
¢

Suppose there is.a ¢ with V(t)>V(s).for t,<s<?. Either t=1, or V'(f)>0. If
t = t, we have ‘

to
Wi(la(t)) < V(t, o)) < Vo, @) < Wa(Bo) + W[ [Blts— 5) Wu(By) ds] <

< Wy(B,) + Wa(W4(Bl)J)
so that '

(1) < Wi [Wo(By) + Wo(Wy(B,)d)] & BE .
If V'(t)>0 then |x()]< W, (M) and

¢

f W(ja(s)]) Bt — s) ds< Vi(ty) Dt —ty) + MJ
g0 that at the maximum of V we have
Wi(la(h) = V(6 () < W(W(aD)

+ W3[ f Bt — 5) Wo([g(s)]) ds + Vt,) Dt —1,) + MJ] <
WA (WMD) + W WeB)T + {Wa(By) + Wy Wa(B)J) L B(t — ) + MT]
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or
o) < W{Wo(W(M) + Wo[Wu(B)I +
+ {Wu(B)) + Wo(Wi(B.)J)} D(0) + MJI]]| &£ By* .

We then have
[2(8)] < B, = max [B¥, B¥*],

and this is uniform boundedness.
To prove the UUB, choose U > 0 so that |¢|> U implies V'(t, () <— Wy(l|) +
+ M < —1. Let By> 0 be given and find B, such that [to>oc, @ € O(t,), |9 <Bs,

i>1,] imply that |e(t, ty, )| < B,. Find T > o with Wy(B,) f@ du<<1. For t,>x
and «(t) = x(t, %, ¢) with ¢ <B,, if t>4, -+ T and if f@ du = J, then

£
fqﬁ(t—s) W([2(s)]) ds<——fv'(s)@(t—s) ds + Mfcp(t——s) ds —
[

t—-T t—T
i

= — [V(s)fﬁ(t——s)lé,T +fV(s)q5'(t—s) ds] 4+ MJ =

i—T

= —V({5)P(0) + V(i —T)D(T) + V()[P(0) — D(T)] + MJ

where V(v) is the maximum of V(s) on [t— 7T,¢]. This yields
s

(%) f Bt — 5) Wy(|n(s)]) ds <— V(1) DO) + V(z)D(0) + MJ .

-7

Consider the intervals
Li=[—T,4, L=[t-T), I=I[t+Tt42T],

and seleet 1;€ I; such that V(¢;) is the maximum of V(s) on I;, unless ?; is the left
end-point of I, with |#(¢;)] > U; in the exceptional case we determine a point ;> ¥;
such that |#(f;)] = U and V'(f) < 0 on [{,,?,]. To accomplish this we may suppose T
is 8o large that such a ?, exists on I, because

(%%) V($) < Wo(Bs) + Wi(1 + Wu(By)J)

and V'())<—1 if |#|> U. Now, replace I, by the interval having ; as its left end-
point and t - (¢ —1) T as its right end-point. Call the exceptional interval I; again
and seleet {; in I, with V(f,) the maximum on I,
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Now, consider the intervals
Lzz[tz_Ty tz]y Lsz[ts——T, ts]’

Note that when V({;) is the maximum on I,, then V'(1,)>0 so |x({,)|< U. Next,
consider each ¢:

Case 1. — Suppose V(t,) -+ 1> V(s) for all s L,.
Case 2. — Suppose V(i) + 1< V(s;) for some s,e L,.

Note that in Case 2 we may conclude that s,e I, ; and V(i) + 1< V(i)
(This is true because V(f;) is maximum on I;, so s;€ I, ;; in the exceptional case
where we selected #;, if s; is in (¢, ;), (note here that f, is the original one!) then
$;={; also qualifies because V decreases on (,, i) and t;€ I, ;.) This means that
if V,= Sg]él}) V(t), then V,+1< V,_,. Because of (%), there is an integer P such
that Case 2 can hold on no more than P consecutive intervals.

Thus, on some L; with j<P we have V(t;) 4 1> V(s) for all s € L;,. This means
that if V(z) is the maximum of V on I;, then V()< V{({;) 41 so that from (%)
we have (for ¢ =1))

t
f@(t— 8) Wa(jm(s)]) ds<— [V(t;) + 11D(0) + V() D(0) + MJ + P(0)< MJ + D(0) .

t—T

Now, recall that [o(t;)|<U so V(t,)< Wy(U) + Wy(1 + ©(0) - MJ) and at the
maximum of V, V(z), we have V(z)<V(t;) + 1. We claim that

V(t)< Wo(U) + Wo(l + D(0) + MJ) +1

for all t>1;; to see this, let ¢, be the first ¢ > ¢, with V(f,) = V(z). Then notice that
V(t,) is the maximum of V on [¢,—T,?,]. For ¢ =1, this yields

tp
f Woll(s)]) Dty — 8) ds<— V(t,) B(0) + V(5,) D(0) + MJT = MJ

T
so that
V(E) < Wo(U) + W,(1 + MJ),
as required. Moreover, if there is a ¢ >, with V() = max V(s), then the same

bound holds. tr<s<t
Hence, for t>%, + T + PI we have

Wy(J2]) < V(t) < Wo(T) + Wa(l + B(0) + MJ) +1
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or

[2(t)| < W[ Wy(U) + Ws(L + @(0) + MJ) +1] ¥ B.

This completes the proof of UB and UUB. In fact, this completes the proof of the
theorem. '

ExAawvprLe 4. — Consider the scalar equation

t
& = — b +f0’(’t — s)v(s, #(3)) ds -+ f(2)

where C, f, and v are continuous, €€ L'[0,c0) and D(f) =f[0(u)|duel}1[0, 00),
: ¢

If(t)| <P, |v(t, )| <v + P with v, B, and P positive constants. Then solutions are

UB and UUB.

Proo¥. ~ Let ¢: (—oo,t,] — R be a bounded continuous initial funetion and
z(t) = o(t, %, ¢). Define .

V(e o(-)) = |»| + ,Bf f[()(u—s)l du x?(s) ds

— oo ¢

g0 that, after a calculation, we find
V't o) <— %] + Cra® + Oy b0® + K

for some positive numbers 6 and K. The result now follows from Theorem 8 (e).
In part (¢) of Theorem 8 we can replace @(f—s) by a more general D(t, s) as
follows. ' : -

THEOREM 8 (¢)’. — Let ¥V be as in Theorem 8 and suppose tliere is a continuots

sealar function D(f, 5) defined for o <s <t < o0, 0P(¢, §)/05 >0, 0L D(t, 8)<J for some
[

constant J > 0, and f D(t, s) ds< L for all t>« and some constant L. Suppose also

that for some M > 0 we have
t

0 Wallo)) <Vt o)) < Wlla(t))) + Ws | [@(t, 9) We(la(s)) ds]

&

and

(i) Vil o) <— Wa(le)]) + M .
Then solutions of (8) are UB and UUB.

Since the proof is so similar to that of Theorem 8 (¢) it will not be given here,
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As a companion to Theorems 3 and 7 we mention the following result which
appears in Burron [3]. Consider again

t
(5) @' = Ao + [0, $)(s) ds + p(t)

with A(t + T) = A(@t), p(t + T) = p(t), and C@¢ + T, s + T) = Oft, s) for some T > 0.
This means that if #(t) is a solution so is =(t + 1.

THEOREM 9. — Suppose that flCt s)| ds is continuous on (— oo, oo).and that

for each § > 0 there exists 8§ >0 such that ¢t — ¢, >8 implies that f 101, s)| ds < 4.
Suppose also that:

{i) If (5) has a solution satisfying (5) on (— oo, oo) which is bounded, then
it is uniformly asymptotically stable.

(ii) The solution (¢, 0, 0) of (5) is bounded on [0, co) and is equi-asymptotically
stable at ¢, = 0.

Under these conditions (5) has a 7-periodic sclution.

Many other results on the existence of periodic solutions of functional differential
equations with infinite delay are found in ARINO-BURTON-HADDOCK [1], BURTON ([2],
(3], [4], [5], [8]), FuruMocHI ([14], [15]), LANGENHOP [21], WANG [23], and WU-Li-
WaNG [25].

5. — Unbounded initial functions.
In this section we consider a system with infinite delay
(10) o= F(t, n(s); —o0<s<t), >0.

Such systems have been discussed extensively in recent years aud there are several
formulations of axioms for the state space. (Cf. HALE and KaTo [16], KAMINOGO [18],
KAPPEL and SCHAPPACHER [19], and SAwANo [22].) Those treatments tend to ask
that exponentially unbounded initial functions be allowed and there would seem
to be some shortage of motivation for the unbounded initial functions.

There are at least two urgent reasons for unbounded initial functions. First,
they form a foundation for establishing compact subsets of initial functions; and
this is essential for the use of many fixed point theorems, particularly in the search
for periodic solutions. One needs a weighted norm for compactness, but then one
needs continuity in initial functions in the weighted norm which automatically
admits unbounded initial functions. The second reason is that when we apply a
translation operator (Poincaré map), we can not map a solution back into its initial
funection set unless the initial funetion set is unbounded. Details are found in ARINO-
BurToN-HADDOCK [1].
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But the point which is missed so often in the axiomization process is that the
differential equation itself provides the guide for the permissible growth of the initial
function. 'We consider, for example, the secalar linear convolution equation

o = Az —l—fC(t—— s)a(s) ds

in which O e L0, o) and continuous. We require a continuous initial function
@: (—oo, ] — R such that ?O(t — s)p(s) ds is edn_.tinuous for ’t>t'o; it is then possible
to prove thab‘there is a uﬁﬁue solution @(t, %, @) satisfying the equa,tion for t>1,
and with z(t,t,, ¢) = ¢(t) for t<t,: For simplicity we take {,= 0. Now f]O t—s)| ds =
= f [C(u)| dw and it is shown in BURTON-GRIMMER [9] that there is a continuous
inereasing function g: [0, co) — [1, oo} with ¢g(0) = 1 and g(r) — co a8 r — oo such
that T{C’(u)]g(u) du << co. If we take ¢:(—oo,0] — R with |p(f)|<vg(—1), then
f(](to—-s)(p(s) ds will be continuous.

To completely develop the material of existence, uniqueness, and continual de-
pendence of solutions on initial conditions using unbounded initial functions requires
muech space. And this has been done in ARINO-BURTON-HADDOCK [1], BURTON ([4],
[8]), HALE and KATO [16], KAPPEL and SCHAPPACHER [19]. Thus, for our purposes
here we suppose that there is a continuous decreasing function g: (— oo, 0] — [1, co)
satisfying g(0) = 1 and g(r) - co ag # — —oo and we consider the Banach space

(X’ l.’ ’g)
of continuous functions ¢: (— oo, 0] — R* for which
lply = su sup lp®)ligt)

exists.

DEFINITION 7. - We say that a set ¥ c X is proper with regpect to (10)if pe Y
implies that there is at least one solution a(f, 0, @) satisfying (10) for 0<# << for
some f > 0, #(%, 0, p) = @) for <0, and if whenever x(f, 0, ¢) remains bounded
then f = oo. _ ,

We remark that for the system (4), if h and ¢ are continuous and if ¢ € X implies

0
»f q(t, 5, @(8)) ds is continuous for ¢>0 then X is proper with respect to (4).

DEFINITION 8. — Let Y be proper with respect to (10). Then solutions depend
continuously on initial functions in Y relative to |-| if for each ¢ € ¥, for each J > 0,
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and for each ¢ > 0 there exists ¢ > 0 such that (¢, 0, ¢) is defined on [0, J] and if
pe Y with |p —y|, < d, then

lot, 0, @) —a(t, 0, w)| <& for O<i<d .

DEFINITION 8. — Solutions of (10) are g-uniform bounded if X is proper with
respect to (10) and if for each B, > 0 there is a B,> 0 such that [p e X, |p|,<B;,
t>0] imply that [=(¢, 0, ¢)| < B,.

DEFINITION 9. — Solutions of (10) are g-umiform ulttmate bounded for bound B
if X is proper with respeet to (10) and if for each B,;> 0 there exists K > 0 suoh
that [peX, |pl,< B;, t>K] imply that [z(f, 0, ¢)| < B.

THEOREM 10. — Let (X, |-],) be given and let X be proper with respect to (10).
Let V(t, #(+)) be continuous and locally Lipschitz in #. Suppose also that there
exists @: [0, oo) —> [0, o) with @ € LY[0, co) and D'(t)<0 such that:

(i) f Bt — 5) Wa(vgls)) ds % H(t, )

is continuous and @(u) W (vg(— u)) € L'[0, oo) for each » > 0;

v i
(i) Wallo®]) < Vit o)) < Wa(|o(0)]) + W[ [ @6 — ) Wi(lats)]) as]

whenever ®: (— oo, co) — R* ig continuous and » restricted to (— oo, 0] is in X;
(1) , Vit 2(+)) <— Wa(le(@®)l) + M .

Under these conditions solutions of (10) are g-uniform bounded and g-uniform ul-
timate bounded for bound B.

Proor. — Given ¢ € X we consider z(t) = »(¢, 0, ¢) and notice that so long as
the solution is defined we have

Wallo(0)]) <V @(-)) <V (0, (+)) + Mt

so that |x(?)] is bounded for ¢ bounded and so z(t) exists on [0, oo).

Note that by (iii) there is a U > 0 such that V('w)(t, x(-)) < 0 for |z| > U. Now,
let B;> 0 be given and let ¢ € X with |¢|,<B;. Suppose there is a #> 0 with
V(t) = max V(s), where V(t) = V(t, #(-)). Then for 0<s<? we have the relation

08 s

V'(s) @t —s8)< [— W4(|m(s)|) + M] Dt — )
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so that
i 1
f@(t — 8) Wy([ox(s)]) ds<—fV’(s) D(t—s)ds + MI<V(0)D(0) + MJ <
0 0

<D0 Wu(B,) + W,(H(0, B)]) + M,
where J =7@(8) ds. Now if V(#) is the maximum on [0, #] with ¢ > 0, then V'(t)>0

50 |ao(t)] <0U and this yields
¢
V(O <W(T) + W(HO, B) + [0t~ 5) Wija(s)) ds) <
<Wa(U) + Wy(H(0, B)) + P(O0)[Wa(By) + Wo(H(0, B)))] + MJ) & 7,,.
Thus, for all t>0 we have
Wx(lw(t)!) < V(ty 37()) <V(0) + V.<Wy(B,) + Wa(H(O: Bl)) + V., ¥ Wi(B,)

proving g-uniform boundedness.
To prove the g-uniform ultimate boundedness we first note that

0 [ oo
Hit,v) = f Ot — ) Wi(vgls)) ds = f B(u) W(vg(t — ) du< f B(u) W, (rg(— ) du
— o0 1 13

and this tends to zero as ¢t — co.
Now, given B,> 0, if |p[,<B;, then there is a B, as a bound on |z(Z, 0, ¢)|.
Then for T>0 and ¢> T we have

¢

f Bt — ) Wa(|2(s, 0, ¢)]) ds< f B(t — 5) Wo(Byg(s)) ds +

-—

t—T ¢ oo
T f ®(t— 5) Wy(B,) ds + f B(t — 5) Wa(jo(s, 0, ¢)]) ds< H(t, B;) + f () W,(B,) du +
0 t—T T

t :
+J.¢(t—‘ §) Wa(|z(s, 0, @) ds < 1 ‘f‘f@(t — 8) Wy(|a(s, 0, @)]) ds
=7 o ST

if T' (and, hence, ?) is sufficiently large. The remainder of the proof is identical to
that of Theorem 8 (e).

Now, corresponding to Theorem 2’ there is the following result of ARINO-BURTON-
HADDOCK [1] whose conditions can frequently be verified by means of our Theorem 10,
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THEOREM 11. — Let (X, [-|,) be fixed and suppose that X is proper with respect
to (10). Suppose also that the following conditions hold:

1 TFor each ¢ € X there is a unique solution (%, 0, ¢) of (10) defined on [0, o).
2 Solutions of (10 are ¢g-UB and g-UUB for bound B.
3

For each » > 0 there exists L > 0 such that |¢|,<v and {,€ R imply that
lm,(t’ 0,9 <L

4 Solutions of (10) are continuous in ¢.

14

If #(t) is a solution of (10) so is #(t + 1'). Under these conditions (10)
has a T-periodie solution.

‘We remark that some really good Liapunov functionals have been constructed
for (4), but their application has awaited Theorem 10. The following is an example.

ExampLE 4 (Revisited). ~ Let f(t + 1) = f(f) for some 7 >0 and all ¢, and
v(s + T, x) = v(s, x) for all s and ». Consider the V once more with @ —s) =

= f [Cu)| duw and W,(r) =% According to BURTON-GRIMMER [9] we can find a
functlon g with g(¢ f {C(u | dw € L0, oo). Condition (i) of Theorem 10 is satisfied

and the equation of Example 4 has a T-periodic solution by Theorem 11. Continuity
of #(t, 0, ) in ¢ is proven in BURTON [8].

We now present a far more interesting example. To this point we have treated
the integral as a perturbation; here, we obtain the boundedness from the integral.

ExampPLE 5. — Consider the scalar equation

t
(11) o= f C(t — s)a(s) ds + p(t)

— oo

in which € and p are continuous on [0, oo) with f [C(u)| du < oo, f 1C(w)| du € L]0, o),
p bounded, say [p(t);<P. Write (11) as 0

(12) o' = — 0o + (ddt) f G(t — s)a(s) ds + p(t)

where G'(u) = C(u). If G(0) >0, f]G(u )| du < oo, f]G(u )| du € L0, co), |G(t)|'< 0, and

if 2G(0) > [2G(0) —i—l]f]G | du +1 then solutlons of (11) are UB and UUB for
bound B.

ProoF. — Construct a funetional

V(t, z(+)) ( ——J‘Gt—s ds) +kf f|G | dux?(s) ds

—oco {—8
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Let () = «(t, 0, ¢) be a solution of (12). Then

o0

t
Vit a(-) = 2(9: —f Gt — ) 2(s) ds) [— G(0)z + p#)] + k| [Gw)] dua?—
—0 0

t [
—k f |Gt — 8)|a2(s) ds <— 26(0) a2 -+ G(0) f |Gt — 8)|[2%(s) -+ w2(8)] ds +

3
—|—f|G(t—s [[2(s) 4 p2(t)] ds 4 22p(t) kf}G(u )| duz?— kf{G(t——s)W(s) ds<

0 — oo
< [— 26(0) +1 + (2640) + 1)f]G(u)1 du] L pz(t)f[G(u)I du + p(t)
0 2
with £ = G(0) - 1 so that
| (13) V(Ilz)(t w(: )) <—ow?4 M

for some o> 0 and M > 0.
Next, we establish an upper bound on V. We have

i

: i 11 =<3
C V(t, 2(0)) = #*— 20| Gt — s)z(s) ds + UG(t—s)w(s) ds]2 + kf f[G(u)[ duma(s) ds <

— 0 —0o0 (-3

¢
<wZTJIG(t—s][w(s - ]ds—[—f]Gt—s]ds |6t — s)|[2*(s)] ds +

—_ 00

+ kf f]G )| duz(s) ds<[1 +f[G(u du]w2 +

—oots

+ f [l6e—s)] + f [[160) au] 6 —s)) + kf 6] aula(s) ds
— o0 0 t—s

so that

t
(14) Tt o(+)) <Az f Bt — s)a(s) ds .

_ 00

We seem unable to get a lower wedge for V and so we resort to the following
technique. Define a new functional

W, #(-)) = a* —}—f f]C’ )| dux?(s

—~oa f{—8
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and compute W' along a solution of (11) (which is also (12)):

t
W’(t,m(-)):2x Ot — 8)@(s) ds -+ 2zp(t) +f[0 duw~—f]0t——s]w 8) ds <

<f|0’t~—s I[z2(s) + a%(2)] ds + 2|a)|p(t) J—f]O ]dumZ—fIOt—s]m 8 <
\[2f[0 u)] du] ©* + 2|l P<Ja® + R

for some J >0, B> 0.
Then define a functional

@, o(-) = V{E, o(+) + («f2d) W(t, 2(+))

80 that

(15) (/2 )2 <T'(t, 2(+))

and

(16) It 2(+)) <— («/2)a* + («Rj2J) + M .

Moreover, I" has an upper bound of the form of (14). Hence, by Theorem 8 solutions
are UB and UUB.

CoROLLARY. — If, in addition to the conditions of Example 5, p(t + T) = p(?),
then solutions are ¢g-UB and g-UUB and there is a Z-periodic solution.
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