
Unified Boundedness, Periodicity, and Stability 
in Ordinary and Functional Differential Equations (*). 

T. A. BVRTO~ - Sn-C~IA~ ZEA~G(**) 

S u m m a r y .  - We discuss a uni]ied theory o] periodicity of dissipative ordinary and ]unctional 
di]#rential equations in terms o] uni]orm boundedness. Su]]icient conditions ]or the uni]orm 
boundedness are given by means o] Liapunov /unctionals having a weighted norm as an upper 
bowad. The theory is developed for ordin, ary di]#rential equations, equations with bounded 
delay, and equations with inlinite delay. 

1.  - I n t r o d u c t i o n .  

In  the  s tudy of existence of periodic solutions of a system of ordinary differential 
equations 

(1) x ' =  r ( t ,  x) 

the  propert ies of uniform boundedness (U-B) and uniform nl t imste  boundedness 
(UUB) f requent ly  emerge as central.  In  fact,  when (1) is periodic in t and when 
solutions are unique, then  those bonndedness properties,  together  with asymptot ic  
fixed point  theorems show tha t  (1) has a periodic solution. 

When  (1) is l inear and  wr i t t en  as 

(2) x '= A(t)x + p(t) 

with homogeneous system 

(3) x ' =  A ( t ) x  , 

t hen  UB for (3) is equivalent to uniform stabil i ty of the zero solution of (3), while 
UB and UUB for (3) is equivalent  to uniform asymptot ic  s tabi l i ty  (UAS) of the 
zero solution of (3). 

I t  has proved  to be frui tful  to show boundedness and asymptot ic  s tabi l i ty  for 
(1) and (3) using Liapunov functions. When  (1) and (2) are periodic in t the  fol- 
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lowing scheme holds. Here, functions denoted by W~ are called wedges and they  
are continuous, strictly increasing to ~ ,  and W~(O)= O. Also, for a continuous 

! 

function V, by V(1 ) we mean 

lim sup [V(t 4- h, x d- hF(t, x)) - -  V(t, x)J/h. 
h-->O + 

I) I f  solutions of (1) are unique, UB and UUB, then (1) has a periodic 
solution. 

II) I f  the zero solution of (3) is UAS, then (2) has a globally stable periodic 
solution. 

I I I )  I f  ~(t, 0) ~-- 0 and if there is a function V: [0, ~ )  •  ~--> R such tha t  

wl(l*l) < v(t, x) < w2(l~l), v,',(t, x ) < -  Ws 

then  the zero solution of (1) is UAS. 

IV) I f  there is a function V: [0, c ~ ) •  ~-->R such tha t  

! 

wl(Ixl)<V(t,x)<W2(Ixl), v<l,(t,x)<-w3([xl) + M 

then  solutions of (1) are UB and UUB. 

Thus, I) and II) indicate conditions under which there are periodic solutions, 
while I I I )  and IV) give conditions under which I) and II) hold. 

For many  years investigators have been interested in counterparts of I-IV) for 
systems of Volterra equations 

t 

(4) x'---- h(t, x) § f q(t, s, x(,)) ds 
- - o o  

and 
t 

(5) x'-= A(t)x +fc(t, s)x(s) ds + p(t), 
--r 

for systems of functional differential equations with bounded delay 

(6) x ' = / v ( t ,  z~) 

and 
t 

x ' :  A(t)x + f o(t, ,)~(s) as + p(t) , 
t - - r  
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and general  systems with infinite delay 

(s) x ' =  G(t, x(s); - ~ <  s < t ) .  

Much progress has been made. 

Under  quite general  conditions (I) has been advanced to all of these systems 
(el. AI~INO-:BURTON-HADDOCK [1]). 

Bv~TO~ [3] has obtained results extending (II) to forms of (5). Here  we extend 
(II) to (7). We, therefore,  feel t ha t  (I) and (II) axe fairly well settled. 

Pa r t  (III)  has been the  object of intensive inves'~igation for m an y  years. Using 
an L'--norm in the  upper  bound on V, BVRTO~ [6] ex tended it  to (6) and KATO [20] 
has discussed such forms extensively.  In  this paper  we ex tend  (III) to general 
infinite delay equations, again using a type  of L2-norm in the  upper  wedge on V. 

The extension of (IV) has been the  most  challenging part .  Using the  Z2-norm 
again we ex tend  par t  (IV) to all the  systems both  with bounded and infinite d e l a y .  

In  fact,  we show tha t  the  main theorems of stabil i ty by  Liapunov's  direct method  
for (1) can be advanced to equations with both  finite and infinite delay in a com- 
pletely unified way. And this provides one vehicle for achieving periodici ty results 
for these systems. 

2. - Ordinary differential  equat ions .  

This section consists of a fairly concise summary  of the technical details of the 
problems discussed in the  int roduct ion which we wish to ex tend  to  functional  dif- 
ferential  equations. We focus on 

(1) x ' =  F(t, x) 

in which F :  ( - - ~ ,  c~) •  ~ is continuous so tha t  for each (to,Xo) there  is a 
solution x(t, to, wo) satisfying X(to, to, Xo) = Xo and (1) for to<t<~to + ~ for some ~ > 0; 
if the solution remains bounded,  then  ~ = c~; if F is locally Lipschitz in x then  
it is unique. Whenever  a function x is wri t ten  without  its argument,  t ha t  argument  
is t. 

DEFINITION 1. -- Let  _F(t, 0 ) ~  0. The zero solution of (1) is: 

a) stable if for each e > 0 and toe/~ there  exists 6 > 0 such tha t  []Xo] < 6, 
t>to]  imply  ]x(t, to, Xo)] < e; 

b) uniJormly stable if if  is stable and if ~ is independent  of to; 

e) asyml~totieally stable if it is stable and if for each tot  R there  is an ~(to) > 0 
such tha t  Ixo] < ~ implies x(t, to, Xo) -> 0 as t -+ c~ i 
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d) uni]ormly asymptotically stable if  it  is uni formly  stable and if there  is an 

U > 0 and if for each # > 0 there  is an S > 0 such tha t  [to~R~ IXol < ~], t>to + S] 
imply  Ix(t, to, Xo)l < / z ;  

e) equi-asyml)totically stable if it  is stable and if ~ and  S in d) depend on t o .  

One defines stabil i ty of any  solution in a similar fashion. 

DEFI~ITI0~ 2. - Solutions of (1) are uni/orm bounded (UB) if for each B~ > 0 
there  exists B 2 >  0 such tha t  [toeR, [Xo[ < B~, t>~to] imply  tha t  Ix(t, to, Xo)] < B~. 

DEFI~ITI0~ 3. , Solutions of (1) are uni]orm ultimate bounded ]or bound B for 
(1) if for each B3>  0 there  exists K >  0 such tha t  [toe R, [Xol < Bs, t>to -4- K] imply 

t ha t  Ix(t, to, Xo)l < B. 
Under  quite general conditions most  of these definitions can be characterized 

by  Liapunov functions. Also, when certain conditions concerning Liapunov func- 
tions hold, t hen  x ~ 0 is necessarily a solution. A proof of the  nex t  result  is found 
in u [26]. 

Tm~OI~E~ 1. - Suppose there  is an open neighborhood D of x ~ 0 in / ~  and a 
continuous function V: (--0% oo)XD --> [0, oo) which is locally Lipsehitz in x. Le t  
W~ be wedges. 

(a) I f  

r(t,o) = o ,  W(Ix l )<r( t ,x ) ,  ana 

then  the zero solution of (1) is stable. 

(b) I f  

w,(lxt) < v(t, ~) < W~@l) and 

! 

Yc,(t , x) < 0  

! 

V(~)(t, x) < 0 

then  the zero solution of (1) is uni formly stable. 

(v) I f  2 is bounded,  for x bounded and  if 

v(t,  o) = 0 ,  Wl(lXJ) < wft, x) ,  v[ ,( t ,  x ) < -  W~(lxl) , 

then  the zero solution of (1) is equi-asymptot ical ly stable. 

(d) I f  

w~(ixl) < v(t ,  x) < W s  ~,'l,(t, x) < -  w3(Ixl) 

then  the zero solution of (1) is uniformiy asymptot ical ly  stable. 

(e) I f  .D -= B ~, 

Wl@l) < v(t, x) < W~(lxl), v~,(t, x) < -  w3(lxl) + 
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for some M > 0, then  solutions of (1) are uniform bounded and uni form ul t imate  
bounded  for bound  B. 

Many good examples have been given i l lustrating each par t  of this  theorem.  
The nex t  lemma,  found in Cl~o~I~ [12], is useful in fixed point  theory  proving 

the existence of a periodic solution of (1). 

IJEMMA 1. -- Le t  F(t  § T, x) = F(t, x) for some T > 0 and all (t, x) and  suppose 
tha t  solutions of (1) axe uniquely de termined by  (to, xo). Equa t ion  (1) has a T-pe- 
riodic solution if and only if there  is a (to, Xo) with x(to ~- T, to, xo) -= xo. 

The nex t  result  was proved by  M. L. CA~TWtCmKT [11] for second order systems 
and a proof for n-dimensional systems is found in Y0S~rIZAWA [26]. I t  is a simple 
consequence of Browder 's  fixed point  theorem.  

THEOREM 2 .  - -  I f  ~ is locally Lipschitz in x and periodic in t and if solutions are 
uniform bounded and uniform ul t imate  bounded for bound B, then  (1) has a T-pe- 
riodic solution. 

Because of the  s t ructure  of (1), Theorem 2 asks far more than  it  appears to ask. 
We res ta te  i t  wi th  the  implications der ived f rom it. 

TtrE0~EH 2'. - I~et the following conditions hold for (1). 

1) For  each (to, xo) there  is a unique solution x(t, to, xo) of (1) defined on [to, c~). 

2) Solutions of (1) are uniform bounded and uniform ul t imate  bounded for 
bound  B. 

3) For  each v > 0 there  exists L > 0 such tha t  [xo[ < v and to t  R imply tha t  

ix'(t, to, Xo)l < ~. 

4) For  each (to, xo), x(t, to, Xo) is continuous in Xo. 

5) I f  x(t) is a solution of (1), so is x(t + T). 

Under  these conditions (1) has a T-periodic solution. 
I t  was shown ill AlCINO-BUI~TO~-HADDOCK [1] tha t  when these concepts are 

properly extended to general functional  differential equations, then  a periodic solu- 
t ion results. 

The nex t  theorem is a simple consequence of F loque t  theory.  

TH~.0~M 3. - I f  A(t  4- T) ~-- A(t), p(t § T) ---- p(t), and if the  zero solution of 
(3) is uni formly  asymptot ical ly  stable then  (2) has a globally stable T-periodic 
solution. 

Jus t  as in Theorem 2, because of the s tructure of (3), Theorem 3 asks fax more 

than  is at  first apparent .  We res ta te  it  as follows. 
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THEOREM 3'. -- Let  the following conditions hold. 

1) A(t q- T) -~ A(t) and p(t q- T) = p(t) for all t and some T >  0. 

2) All solutions of (2) are bounded. 

3) Each  solution of (2) is equi-asymptotical ly stable. 

4) The zero solution of (3) is uniformly asymptot ical ly  stable. 

Under  these condi'~ions, (2) has a globally stable periodic solution. 
I t  is of course, impor tan t  to distinguish between linear and nonlinear systems 

even in stabil i ty theory.  So f requent ly  a poor Liapunov funct ion can give just  
enough information to supplement the l inear theory  and give a strong result. 

EXAMPLE i. - Consider the linear scalar equat ion 

x" + a(t)x '  + x = p(t)  

with a and p continuous and rd-periodic, a ( t )>0  and a(t) ~ O. Then there  is a 
globally stable T-periodic solution. 

PROOF. - Write  the  equat ion as the system 

X r =  ~/ 

y'~- - - x - -  a(t)y q-p(t) 

and in mat r ix  form 

Define a Liapunov funct ion 

for the  homogeneous system 

and get 

X ' =  A( t )X  + P(t).  

V(x,  y) = ~ + y2 

x ' =  A(~)X 

V ' ( x ,  y )  ---- - -  2 a ( t ) y  ~ . 

I t  is then  evident  tha t  solutions are all bounded and converge to the x-axis. And 
fur ther  arguments  show tha t  all solutions ten4  to zero. By  Floqnet  theory  they  
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t end  to zero exponent ia l ly ;  in fact ,  the  zero solution of the  homogeneous  equat ion 
is un i fo rmly  asympto t ica l ly  stable.  Theorem 3 completes  the  proof.  

I t  would be ve ry  difficult to find a V satisfying the  conditions of Theorem 1 (d). 
Our goal is to present  paral lel  theory  for general  funct ional  differential equations.  

3.  - E q u a t i o n s  w i t h  b o u n d e d  de lay .  

We turn now to the systems 

(6) x ' =  F(t, xt) 

and 

(7) 
t 

x'= A(t)x § f r s)x(s) as § p(t) . 

I n  (7) the  fnnct ions A, p, and  C are continuous everywhere  and  r ~ 0. I n  (6), ~ 

is a continuous funct ional  defined as follows. Le t  h > 0 and  let  C denote  the  space 

of cont inuous functions ~: I - - h ,  0] - > R  ~ with []~11 =- sup l~(s)] where ].] is a no rm 
--h~s<-~O 

on R ~. Fo r  a n y  to e -~ and  a n y  cont inuous funct ion x: [ to-- h, to § A] --> R ' ,  if to < 
<~ t<to ~ A,  t hen  x , e  C is defined b y  x,(s) ~- x(t § s) for - -  h< s <O. The funct ion F 
is cont inuous in (t, ~) for - -  c~ < t < ~ and  ~ e C. ~[oreover,  _F takes  bounded  sets 

into bounded  sets. 
To specify a solution of (6) we require a toe/~ and  a funct ion ~ E C. We  then  

obtain  a solution x(to, ~) on [to, to § fi) wi th  value x(t, to, ~,) and  with  xt~ (to, ~) = ~. 
I f  F is locally Lipschitz in ~, t hen  the  solution is unique. I f  the  solution remains  

bounded,  then  fi = c~. 
Fo r  V(t, ~o) a cont inuous scalar funct ional  defined for t e//~ and  ~o ~ C we define 

V~s)(t, x,(to, ~o)) --~ lira sup (1/6){V(t ~- (~, x,+~(to, ~)) - -  V(t, x,(to, ~))}.  
(~--~ 0 + 

Detai led proper t ies  of this der iva t ive  are found in YOSmZAWA [26; pp. 186-189]. 

Corresponding to Def.  1 for (1), we have  the  following definition for (6). 

DEFINITION 4. -- Le t  E(t, 0)----0. The zero solution of (6) is 

(a) stable if for each toe R and each s > 0 there  exists ~ > 0 such t h a t  [~ e C, 

[1~11 < (~, t>to] imp ly  t h a t  Ix(t, to, ~ ) [ < e ;  

(b) uni]ormly stable if it is s table and if (~ is independent  of to; 

(e) asymptotically stable if i t  is s table and if for toe/~ there  is an ~ ) O  such 

t h a t  [q~ ~ C, Jill! < 7] imp ly  that x(t, t~, ~) --~ 0 as t --> ~ i  
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(d) uniformly asyml~totically stable if it  is uni formly stable and if there  is an 

> 0 and for each # > 0 there  exists S >  0 such t h a t  [teeth, ~ e C, II~ii < ~, t>  
>to + S] imply  tha t  Ix(t, to, 9)] < #;  

(e) equi-asymptotieaUy stable if it  is stable and if U and S in (d) depend on to. 

DEFINITION 5. -- Solutions of (6) are uniform bounded if for each B1 > 0 there  

exists B~ > o such tha t  [toe R, ~ e C, II~]] < BI, t~>to] imply  tha t  Ix(t, to, 9)1 < B~. 

DEFINITION 6 .  - -  Solutions of (6) are uniform ultimate bounded for bound B if for 
each B~ > 0 there  exists /i: > 0 such tha t  [toe R, q~ e C, []9]] < B3, t>to  + / i : ]  imply 

t ha t  Ix(t, to, *)I < B. 
Invest igators  have given much consideration to the extension of Theorem 1 

to (6). The following is one possibility and it  gives perfect  un i ty  between (1) and (6), 

being a na tura l  counterpar t  of Theorem 1. 

Tn-E01~E~ 4. - Le t  H > 0 and let  C~c C with ~ e C, if l[qo[] < H. Suppose V: R • 
x CH --> [0, ~ )  is continuous and locally Lipschitz in c 2. Le t  the W~ be wedges. 

(a) If 

- ! 

v(t, o ) =  o, w(l~(O)l)~<v(t, 9), v,8,(t,x,)<~o 

then  the zero solution of (6) is stable. 

(b) if  

wl(l~r < v(t, v)<  w~(ii~Ji) and v[o)(t, x,)<o 

then  the zero solution of (6) is uni formly stable. 

(e) I f  _F(t, 9) is bounded for Jill[ < H and if V(t, O) = O, 

w~(I~(O)l) < v(t, ~),  v[~(t, x ~ ) < -  W~([x(t)l) 

then  the  zero solution of (6) is equi-asymptot ical ly  stable. 

(d) L e t  Ill,Ill be the E~--norm on C. I f  

W~(lr < ~(t, r  W~([~(o)[) -+- W~(l[l~llI) 

and 

! 
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then  the  zero solution of (6) is UAS. 

(e) I f  there  is an M >  0 with 
0 

<-, ( , ,  + 

- - h  

and 

! 
v,o>(t, x~) < -  w~([~(O)l) + ~s 

t hen  solutions of (6) are UB and UUB. 

PROOF. -- Par t s  (a) and (b) are classical. Pa r t  (c) can be pa t t e rned  after  the  
proof of Theorem 6.1.3 in BI~TO~ [7; p. 160]. Pa r t  (d) is a result  of BT_rRTON [6]; 

it  has a I~AZVlV~Km~ counterpar t  b y  WE~ [24]. Our contribugion is (e) which we 
n o w  p r o v e .  

Let  B ~ >  0, to>O, 9: e C with II~v[[ ~<B~ be given and le~ x(t) = ~v(t, to, ~o). In tegra te  

v'(t, x d < - -  w~(Iz(t)l) + i 

f rom t -  h to t obtaining 

t 

f w,(lx(8)l) d s<  v ( t -  h, ~_~) - -  v(~, x~) + Mh . 
t - -h  

Now, consider V(s) =- V(s, x~) on any in terval  [to, Z] for any L>~to § h. Since 
V(s) is continuous, it  has a max imum at some ~ c [to,/5]. Suppose t<to  + h; t h en  

v(t)  < v(z) < V(to) + M(Z - -  to) < W2(BI) + W~(hW,(B~)) + Mh 

and thus  

Ix(t)] < W~'[W2(B,) + W3(hWd(B1)) @ Mh] clef I:~$ 

I f  t ~ [to + h,/5], t hen  V(t - -  h) - -  V(~)<0 so tha t  

u 

f w~(lx(s)l) as< v(~--  h) --  V(i) + ~ h < Z ~ h .  
7-n 

We note  tha t  for such t, V'(~)~>0 and hence [x(t)[<W-[l(M). Thus, 
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for t E [to, L] and, therefore, 

Ix(t)[ < W;~[W~(W;~(M)) -~ Wa(Mh)] aa ~** 

Since J5 is arbitrary, B~ = max [B*, B**]. This proves the UB. 
For the UUB, let B s >  0 be given and find B4 such tha t  [to>~O, tl~II<B2, t>to] 

imply tha t  Ix(t, to, ~0) I < Bd. We determine a U >  0 so tha t  

V'(t, x t ) < - -  M < O if Ix(t)t> U .  

Since 

0 < V(t, xt) • W2(Bd) -~ W.(hWd(B,)) 

there is a sufficiently large integer s such tha t  for any  interval [t, t ~-Nh] with 
t> t . ,  then  there is some t e (t, t § 2~h) with ]x(t)I < U. Now 

t t 

(,) f w,(l~(~)l) d s < - - f  V'(s) ds § Mh = V(t - -h)  - -  V(t) § Mh for t>~to § h . 
f--h ~--h 

Consider the intervals 

I ,  - -  [to, to + ~ a ] ,  I ,  = [to + .Y~, to § 2 ~ ] ,  

I , - -  [to § (i ~ 1)~h ,  to § ilVh], ... 

, , o  

and select t~eI~ such tha t  V(t~) is the maximum on 14. In  case t ~  to-]- ( i - -1 )h rh  
with [x(t~)] ~ U then  by the choice of N, there is a first t ~  [to + (i - -  1)hrh~ to ~- ilgh] 
such tha t  

[~(i,)[ = u .  

~ow, instead of the above choice for 14, in this case we pick 

L = It,, to § i.Yh] 

and let 

V(t~) = m a x  V(s). 

Therefor% in any  case we have 

[x( t , ) ]<U, i = 1 , 2 , 3 ,  . . . .  
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~ow,  consi4er the  in~ervals 

L~ = its-- h, t2] , L3 = [to-- h, t~] , . . . ,  .L~, = I t , --  h, t,] , . . . .  

For  each i ---- 2, 3, 4, ... we h~ve two cases. 

Case 1. - V(t~) + 1 >  V(s) for all s e L~. 

Case 2. - V(t~) + 1  < V(si) for some s ~  L~. 

Note  ~hat in Case 2, s~ ~ [~ since V(t;) is the  m a x i m u m  on I~. I f  there  is no 
gap be tween I~_1 and I~, then  s~e I~_1. I f  there  is a gap and  s ~  [to + ( i - -1 )Nh~ ~], 

t hen  we have  ]x(t)[> U and  thus  V'(t)<O on [to + ( i - -1 ) /Vh,  ~]. tYence 

V(to + ( i - - 1 ) N h )  > V(s,) > V(t,) + 1 .  

In  e i ther  case we have  

V(t,) + 1 < V(ti_~) 

since V(ti_l) is the  m a x i m u m  on I~_1. 
By  the  boundedness  of V(t), there  is an  integer  N* > 0 such t h a t  Case 2 holds 

on no more  t h a n  h TM consecutive in tervals  L~. Thus, on some Lj wi th  j< lV* we have  

V(t~) + 1 > V(s) for all s e L~. 

F r o m  ( , )  wi th  $----t~ it follows t h a t  

ta 

j W4(tx(s)]) d s < V ( t j - - h ) - - V ( t j )  + Mh<.<l + Mh 
ta--h 

an4  therefore ,  

Then 

Let  

V(t~)<.WdU) + Ws(1 + M h ) .  

V(,)  = m a x  V(s) .  
8eli 

V(z) < V(tD + 1 .  

Now we claim t h a t  

V(t )<W2(U)  + W3(1 + Mh) + 1  ae_____f D* for all t > f~. 
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To see this, let  t~ be the first t > t j  with V(t~)-~D*. 
> V(t~--h) by  (*) with t = t~, yielding 

t~ 

f < Mh 
t~--h 

and so 

V(t,)< W~(U) + W~(Mh) < 1)*. 

Then notice tha t  V(t~)> 

Hence,  for t>~to ~-X*/Vh we have 

o r  

V(t) < 1)* 

ix(t)i < w~-~(1) ,) d~efB. 

Let t ing S ~ X*fCh, we obtain UUB. This completes the  proof. 

EXAMPLE 2. - Consider the scalar equation 

x ' =  - -  [a -~ (t sin t)2]x(t) -~ bx(t - -  r(t)) ~- cos t 

with a ~ 0  and constant ,  b constant ,  r'(t)<fi for some M ~ 0  and 0 ~ f i ~ l .  
I f  ]b I ~ a (1 - - f l )  and O<r(t)<v for some ~ ~ 0 then  solutions are uniform bounded 
and uniform ul t imate  bounded for bound B. 

PROOF. - Define 
t 

v(t, x~) = ]x(t)[ + ~j [x(s)E ds 
t-r(O 

for k :  ]bl/(1--fl). Then 

V'(t, xs)<~-- [a + (t sin t)2Jlx ] ~- ]bl]x(t - -  r(t)) ] ~- 1 ~- k[x] - -  k]x(t - -  r(t)) ](1 - -  r'(t)) 

< [ -  a + ~]Ixl + [b]Ix(t-  r(t)) I + 1 - IbrIx(t - ~(t)) I < 

< [ - a  + ~]lxi + 1  = - ~ ] x l  + 1 .  

Thus, by  Theorem 4 (e) the result  follows. 

I~EMARK. -- ~ u e h  effort has gone into development  of results along the  line of (e). 
The classical result  is found in YOSmZAWA [26; p. 206] which has a ve ry  restrict ive 

condition on the  wedges. 
The following result, pa t t e rned  after  Lem m a  1 of Cronin for differential equa- 

tions, is well known. 
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THE0~E~ 5. -- Le t  F be locally Lipschi~z in ~ and _F(t ~ - / ' ,  ~) ~ P(t,  ~) for all 
(t, q~)~ R • C. Equat ion  (6) has a / ' -periodic solution if and only if there  is a (to, 
~) e / ~ •  with x(t Jr / ' , to ,  q~) ---- q~(t) for t o - - h < t < t o .  

The nex t  result  is a consequence of Horn ' s  fixed point  theorem.  A proof m ay  
be found in HALE and LOPES [17], AI~INO-BUICTON-HADDOOK [1], or in ]~CRTON [8]. 
I t  is the  counterpar t  of Theorem 2. 

TIIEORE)[ 6. -- Le t  _F be locally Lipschitz in ~ and F(t ~- / ' ,  ~) ---- F(t, ~) for all 
(t, ~) ~/~ • C. If  solutions of (6) are UB and UUB for bound B, then  (6) has a T-pe- 
riodic solution. 

We now consider a l inear Volterra sys tem 

t 

(7) x '=  A(t)x + f c(t, s)x(s) ds + p(t) 

and the unper turbed  system 

t 

(9) - x ' =  A(@:v +fC(t ,  s)x(s) ds 
t - - f  

with A,  C, and p continuous, with A and p being / '-periodic, and with C(t -t-/ ' ,  
s + ~)  = r  s). 

The nex t  result is the  counterpar t  of Theorem 3 as amplified in Theorem 3'. 

T~EO~E~ 7. - Suppose tha t  the zero solution of (9) is UAS and tha t  the  solu- 
tio~ x(t, 0, 0) of (7) is bounded an4  equi-asymptot ical ly  stable at  t ---- 0. Then  (7) 
has a globally stable / ' -periodic solution. 

P~ooF. - Since (7) and (9) are linear, the  difference of two solutions of (7) is a 
solution of (9). By  the  assumption of UAS of (9), all solutions of (7) converge uni- 
formly to  a solution ~ of (7). We now claim th a t  (7) has at  most  one bounded  solu- 
t ion on (--c~, c~). In  fact,  suppose tha t  there  are two dist inct  bounded solutions 
of(7) o n ( - - c %  co), say ~ and % ~f ~ % Then there  must  be a t*~/~  and  k > 0  
with [~(t*)--~(t*)] : k. Le t  ~ : sup [w(t)--~(t)[.  Note  t h a t  ~ ( t ) - -~ ( t )  is a solu- 

- -  c o < t <  co  

t ion of (9), so tha t  by  the  UAS, for e----k/2, there  is a J > 0  such t h a t  ( t i e R ,  
]~(t) - -  ~(t)] <v  on [tl--r,  t~], t > t l  ~- J} imply tha t  ]~(t) --~(t)]  < s ---- k/2. I f  we 
pick tl with t~ ~ - J <  $*, we obtaill a contradiction.  Thus, (9) has at  most  one 
bounded solution on (--c% ~ ) .  

Next ,  we prove tha t  there  is a bounded solution of (9) on (--c~, c~). Suppose 
tha t  x(~)---- x(t, 0,0)  is the  solution of (9) on [0, c~) with x ( t ) :  0 if - - r < t < 0 .  
Define a sequence of solutions of (9) on [ - -aT ,  ~ )  b y  x~(t) ---- x($ + aT,  0, 0) for 
$ > - - n T ,  n a positive integer.  Now x(t) is bounded on [0, c~), so there  is a constant  
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M >  0 with ]x.(t)[<<.M on [ - -nY ,  c~). Therefore,  we have 
t 

]$'(t)I < IA(t)tM -~ M f  IC(t , s)[ ds ~- Ip(t)I < B  

on [0, ~ ) .  ~5oreover, by  our assumptions x~(t) is also a solution of (9) and 

/ t l x . ( ) [ < B  on ( - - n T ,  ~ )  

B y  the  equi-asymptotie s tabil i ty of x(t, 0, 0), for u = M and for each s > 0, there  
is a P1 such that 

o r  

Ix(t, O, O) - -x ( t  § nT, O, O)j < s if t > P x T  and n > l  

tx(t + _PT, o, O) - - x ( t  4- P T  + n2,  O, O)l < s 

if t>~O, P>~-Pl, and n > l .  Thus, if n, m > P1 then 

Ix(t + nT, 0, 0) - - x ( t  -~ mT,  O, 0)[ < s for all t ~> 0 ; 

tha t  is, {x.(t)} is a Cauchy sequence converging uni iormly  on [0, ~ ) .  Also, for 
every  fixed integer k we have  

[x(t + (n + k) T, o, o) - x(t + (m + k) ~, o, o) 1 < s 

on [ - - k T ,  c~) so tha t  {x.(t)} converges uni formly  on compact  subsets o f /~  to some 
continuous funct ion z(t). Certainly, z(t) is bounded. 

We now show tha t  z(t) satisfies (9) on (--cr  c~). Consider the  derivat ive of 
z(t). We have 

t 

~:~t) = A(t)x~(t) + f @ ,  ~)x~(8) a8 + p(t) 

for  t > - -  n T  and x.(t) =- 0 for - -  n T - -  r <~ t < - -  nT. Let  [a, b] be an a rb i t ra ry  com- 
pac t  subset of _R. Le t  (~ > 0 be given and find N such tha t  n, m > 2r and a - - r  < 
< s < b  imply Ixn(s)-xm(s)I < (~ and - - I Y T <  a. Then for n, m > h  T and t e  [a, b] 

we have 
$ 

/ ( t )  - -  x." (t)l < IA(t) Ilx.(t) - -  x~(t)] + ] [  C(t, s)Hx~(s ) - -  xm(s)] ds <<. 
t--~" t 

This shows tha t  {xj(t)} is a Cauchy sequence converging uni formly  on compact  sub- 
sets of R. As the  x'(t) are continuous, it  follows tha t  the  xJ(t) -+ z'(t) on all of /~. 
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Since I C(t, s)x~(s)l < M IC(t, s)I for t > - -  nT, by  the  Lebesgue dominated convergence 
theorem,  on any  fixed in terval  [--15, c~), w e  m ay  take  he l imit  as n - - ~  in 

t 

~'~(t) = A(t)..v.,(t) + f r as + p(t) 

to obtain 
t 

z'(t) : A(t)z(t) §  z)z(s) ds + p(t) . 

That  relat ion holds on every  in terval  [ - - L ,  oo) and hence on (--c% c~). Thus, 
z(t) is the  one and only bounded solution of (9) on (--0% c~). Note  tha t  z(t ~-T)  
is also a bounded solution and so z(t) = z(t § T). This completes the proof. 

4.  - E q u a t i o n s  w i th  u n b o u n d e d  delay.  

In  this section we eo::sider a system of functional  differential equat ions 

(8) 

To specify a solution of (8) we require a to>~ and a bounded continuous funct ion 
~: [~, to] ->/~'~; we then  obtain a continuous solution x(t, to,9~) satisfying (8) on an 
in terval  [to, to § fl) with x(t, t0, ~ ) =  q(t) for ~ < t < t o .  To prove the  existence of 
such a solution we need a bi t  more than  just  the  requi rement  tha t  when 9:  [~, oc) -->/~ 
is continuous, t hen  G(t, ~0(.)) is continuous. We also need to ask tha t  if t>t0 ,  if 
~: [g, t] -> R ~, and if {~} is a sequence of bounded continuous functions ~ :  [~, 
t] --> R" with ~p~--~ ~0 in the supremum norm, then  

[G(t, 9 . ( ' ) )  - G(t,  0 as  - *  

H, in addition, G satisfies a local Lipsehitz condition in x, t hen  the  solution is 
uniquely  determined by  the initial funct ion ~. For  details see DRIVEI~ [13] or Btm- 
mo~ [7; Chapter  8]. 

We will short ly be requiring unbounded  initial funct ions ,  bu t  so much more is 
required for existence, uniqueness, and cont inui ty  in initial functions t h a t  separate 
t r ea tmen t  is advisable. To make the presentat ion here  parallel  t ha t  for finite delay 
equations, for each $ > ~ we consider the  funct ion space C(t) with ~ e C(t) if ~: [~, 
t ] - >  R" is bounded  and continuous. The norm used. is the  supremum norm, ]]" II. 
Thus, for any  t o>  ~, our initial  funct ion is some ~ e C(to) and our definitions of 
s tabil i ty and boundedness coincide with the  ones for bounded delay. A Liapunov 
functional  is denoted  by  V(t, r )). We then  have the following result which is the  
counterpar t  of Theorem 1 for ordinary differential equations a n d  Theorem 4 for 

finite delay equations. 
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THE0ttE~ 8. -- Let  H > 0 and for each to> ~ let C,(to)c C(to) with W e Ca(to) 
if Ug]] < H.  Suppose tha t  for each to>  ~ the  function V: [to, oo)xCn(to)->[0,  oo) 
is continuous and locally Lipschitz in ~. Le t  the  W~ be wedges. 

(a) If  

V(t, 0) = 0 ,  W(I~(t)l) < V(t, ~( . ) )  , V~,,(t, x(.)) < o 

t hen  the  zero solution of (8) is stable. 

(b) I f  

w~(I~(t)]) < v(t, q~(.)) < w~(tI~!l), v,'.,(t, . ( . ) )  < o 

then  x = 0 is uniformly stable. 

(e) Let  G(t, x(.)) be bounded whenever x e U~(t). If  

and 

Wx(l~(t)[) < V(t, of(.)), V(t, o) = o,  

V,',,(t, ~(. )) <--W,(lx(t)l)  

then x ~ 0 is equi-asymptotically stable. 

(d) If  there is a bounded continuous ~ :  [0, co) -~ [0, ~ )  which is Z~[0, c~) 
with 

and 

t 

v{o,(~, x(.)) < -w~(Ix (Ol )  

then  x = 0 is uniformly asymptotical ly stable. 

(e) Le t  M >  0, H = ~ ,  �9 be as in (d) with ~ ' ( t )<0 .  I f  
t 

wl(r (t)l) < v(t, + es] 

and 

v,'8,(t, ~(.)) < -  w,(l~(t)I) + M 

then  solutions of (8) are uniform bounded and  uniform ul t imate  bounded for bound B. 

P~OOF. - Par ts  (a)-(e) axe classical (cf. DmVE~ [13]). The UB of (e) extends 
work of BURTON-HUANG-YZAHFOUD [10]. Our proof of (d) requires a lemma from 
Bo~oN [6]. 
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I m ~  2. - L e t  {x.} be  a sequence  of cont inuous  func t ions  wi th  con t inuous  
der iva t ives ,  x~: [0, 1] -~ [0, 1]. L e t  g: [0, oo) -+ [0, c~) be  cont inuous ,  g(0) = 0, 

g(r) > 0 if r > O, and  le t  g be  nondecreas ing.  I f  t h e r e  exists  ~, > 0 wi th  fx,,(t) dt>~ 
1 0 

for  all n, t h e n  t he r e  exists  /3 > 0 wi th  fg(x,(t)) dt>~fi for  all  n. 
0 b 

W e  remaxk  t h a t  t he  l e m m a  is ce r t a in ly  val id  if x~: [a, b] -> [e~ d] w i th  fx~(t) t i t>jr 
b a 

imp ly ing  t h a t  fg@.(t)) dt>fi. 
a 

We now p rove  pa r t  (d). Le t  s > 0 bo given.  I f  t o ~  a n 4  ~o e C~(to) with  ~ < s, 
t h e n  for  x(t, to, cf) = x(t) we h a v e  

to 

~(t~(t)l) < v(~, ~<.)) < r(~o, ~(.))< w~(~) + w~(w~+)f+<to- ~) ~8) = 

0 0 

if  (3 is small  enough.  This  p roves  t he  u n i f o r m  s tabi l i ty .  
Fo r  s = H find (~ of u n i f o r m  s tab i l i ty  ann  le t  (3 ~ ~/. L e t  v > 0 be  given.  We  

mus t  f ind T > 0 such t h a t  [ to>~, ~ E C~(to), t>~to -f- T] i m p l y  t h a t  Ix(t, to, q~)l < v. 
F o r  th is  v >  0, f ind 0 >  0 such t h a t  

w~[w~(o/J)] + w~(20) < w,(v), 

where  we le t  qs(t)<<.J for  t~>0. Now,  f in4 r > 1 wi th  

c o  

W, Ce)fr au < O . 

I f  q ~ C~(to), t o>~ ,  t~>to -f- r, t hen  for  x(t) = x(t, to, q) we have  

t 

w~(l~it)[) < vit, ~,)< w~(I~/t)l) + w ~ [ f + i t -  8)w,(ix+l) ds] < 
t - - r  

t - -e  
t - -~  t 

r t - - ~  
t 

r t - - r  

t - - r  
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We will  f ind a t~ wi th  [x(tD] < W-J(O/Jr)a~j~ and fw,(Ix(s)l) ds<O/J. 
will mean that t,-~ 

This 

w~(Ix(t)l)<V(t,x~)<v(t~,%)< w~(w;~(o/Jr)) + w~(2o) < w~(,) ~or t > t , .  

Because v'(t,x(.))<-W~(lxl), there is a T~>~r such that Ix(t)l>~W;~(O/Jr)= ~ 
fails for some value of t on every in terval  of length T~. Hence,  there  exists (t~} --> oo 

such t ha t  lx(t~, to, cf)[ < s~. In  part icular ,  we choose 

t~ ~ [to 4:- (n ~ 1)T~, to ~- nY2] for n = 2, 3, . . . .  

The length of the  intervals  is independent  of to and ~ e G,(to). 
lgow, consider the  sequence of functions {z,(t)} defined by  

xk(t) = x(t, to, q~) for t ~ - - r  < t  <t~ . 

Examine  those members  satisfying 
t~  

( , )  fJwd(lx(~)l) a~ > o 
t ~ - - ~  

so that by  Lemma  2 we have 

for some fl > 0. 
Next ,  

O , - - r  

~o " oo  

cr 0 

is a positive mlmber  independent  of to>~ and independent  of ~ ~ C~(to). Now, for 

t ~ t2~ We have 

re(t, ~(.)) < -  w~(l~[) 

so that 
t t ~  

-f "f V(t,x(.))<.<V(to, cf) Ws([x(s)l ) d s < # - - i ~  1 W s ( I x ( s ) [ ) d s < # - - n f i <  0 
t o t~.~-r 

if n>~#/fi. (Here, we have in tegrated over a l ternate  intervals  to  be sure the  intervals  
axe disjoint.) Hence,  if n > #/fl, then  t~ fails to exist with ( . )  holding. We choose n 

as the  smallest integer greater  than  lu/fi and we t h en  have 

I~(t,,, to, r < s, 
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and 

Thus,  if 

~n 

f Jw,(lx(~)[) a~ 
t n - - r  

< 0 .  

T = 2nT2 

t h e n  t > to § T implies  Ix(t, to, q~)] < ~,. This comple tes  t he  proof  of (a). 

~Te now p rove  (e). L e t  B ,  > 0 be  g iven  a n 4  suppose  ~ ~ C%(to) for  a rb i t r a ry  

to>~.  Let x(t) = x(t, to, ~) and V(t) --~ V(t, x(. )). For to< S<t < oo we have 

v ' ( s ) ~ ( t  - s ) < [ -  w.(lx(.)[) + M] ~ ( t - -  s) 

so that 
t t t 

to to t q t~ to  

to 0 

< -  v( t )  q)(o) + V(to) r - to) + v(~)[~(o) - -  ~(t - to)] + M J  

oo 

where  to<,:<t a n d  J =fq)(u) au. 
0 

Suppose  the re  is a t wi th  V(t )>V(s) for  t ,<s<t .  Ei the r  t = to or V'(t)>~O. I f  

t = to we  h a v e  
to 

o~ 

< W,(BI) + Ws(W4(B~)J) 
so t h a t  

Ix(t) I < W;![W~(B~) + W3(W4(BdJ)] a~_~ B*. 

I f  V'(t)>O ~hen ]x(t)[< W-~l(M) and 

t 

f w4(Ix(8)I) r - s) a s <  V( to l~( t  - to) + i J  
to 

so t h a t  a t  t he  m a x i m u m  of V we have  

~v1(lx(t)]) < v(t, x(. )) < w~(w;~(~)) + 
t.  

<W4W?(M) ) + W~[W~(~I)J + {W~(B~) + W~(W~(B~)J)}e(t--to) + i a ]  
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o r  

lx(t)l < WV[WdW-J(M)) § W,[WdB,)J § 
§ {W~(B~) § Wa(Wd(B~)J)}qS(O) § MJ]] dej B**. 

We then have 

[~(t)l <B2 = max [B*, B**], 

and this is uniform boundedness. 
To prove the  CUB, choose U > 0 so tha t  Ix]> U implies V'(t, x ( . ) ) < "  Wd(]x]) + 

+ M < - - I .  Let  B 3 >  0 be given and find B, such tha t  [ t o ~ ,  ~ e  C(to), ]tT[I<B3, 
c ~  

t>to] imply tha t  Ix(t, to, q~)] < B,. Find T > e with Wd(B,)fq)(u) du < 1. For  to>~a 
r T 

and ~(t) = ~v(t, to, q~) with [l~vn <<.B3, if t>~to § T and if fq~(u) du = J, then  
o 

t t t 

t--T t--T t-T 
t 

t - -T  

= --  V(t) ~(0) § V(t --  2') ~ (2)  § V(r)[~(O) - -  ~(T)] § M J  

where V(~) is the maximum of V(s) on [ $ -  T, t]. This yields : 

t 

(,) f +<t- s) w,(l,~(s)t) as<-  vy)q~(o) + v(~)~(o) + ~ J .  
t - -T  

Consider the intervals 

A = [t - -  T ,  t] , A = [ % t + T ] ,  1 3 = [ t + T , t + 2 T ] ,  . . .  

and select t~e L such tha t  V(t~) is the maximum of V(s) on I~, unless t~ is the left 
end-point of I~ with ]x(t~)] > U; in the exceptional case we determine a point  t~ > t~ 
such tha t  ]x(~)] = U and V'(t) < 0 on [t~, ~]. To accomplish this we may  suppose T 
is so large tha t  such a t~ exists on I~ because 

(**) V(t) < W~(B,) § W3(1 § W~(B,)J) 

and V ' ( t ) < - - I  if Ix[> U. Wow, replace I i  by  the interval  having ~ as its left  end- 
point and t § ( i -  1)T as its right end-point. Call the exceptional interval I~ again 
and select ti in I~ with V(t~) the maximum on L .  
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Now, consider the intervals  

s  = [ t 2 - 2 ' ,  t~] ,  . ~  = [ t ~ - 2 %  t~] ,  . . . .  

Note  t ha t  when V(t,) is the max imum on L ,  then  V' ( t i )>0 so [x(tJ]<U. Next ,  

consider each i: 

Case 1. - Suppose V(t~) + 1 >  V(s) for all s e Li .  

Case 2. - Suppose V(tJ § 1 < V(sJ for some s ic  L, .  

Note  tha t  in Case 2 we m ay  conclude t h a t  s, eli_1 and V(tJ + 1 < V(ti_~). 
(This is t rue  because V(tJ is max imum on L,  so si e L_~; in the  exceptional  case 
where we selected ti, if st is in (tt, ti), (note here  tha t  ti is the  original one!) t hen  
st = ti also qualifies because V decreases on (t,, t,) and t i e  I,_~.) This means tha t  
if Vi = sup V(t), t hen  Vt -[- 1 < Vt_~. Because of (**),  there  is an integer  /)  such 

tG/~ 

t ha t  Case 2 can hold on no more than  P consecutive intervals.  
Thus, on some L~. with ] < P  we have V(tj) + 1>~ V(s) for all s e L~.. This means 

tha t  if V(v) is the  max imum of V on L~, t hen  V(~)<V(tj)  + 1  so tha t  f rom ( . )  

we have (for t = t~) 

t 

fq~(t-- s)W,([x(s)]) as<-- [V(t~) + 1]qs(0) + V(~)q~(0) ~- MJ + r  + qs(0). 
~--T 

Now, recall  t ha t  [x(tj)l<U so V(t~)<W~(U) -~ W3(1 + q~(0) § MJ) and at  the 
max imum of V, V(~), we have V(w)< V(t~) + 1. We claim tha t  

V(~) < W2(U) + W3(1 -q- ~b(O) q- MJ) q- 1 

for all t>$j ;  to  see this, le t  t, be the first t > tj with V(t~) : V(z). Then notice tha t  
V{t~) is the  max imum of V on [ t , - - T ,  t~]. For  t = t~ this yields 

fw,(lx(s)l) ~(t~-s)as<-v(t~)~(o) + v(t~)~(o) + MJ---- MJ 

so that 

V(t~) < W2(U) + W3(1 -[- MJ) ,  

as required. Moreover, if there  is a t > t~ with V(t) = max V(s), then  the same 
bound holds, t~<8<t 

t tenee ,  for t>~l + T + PT we have 

W,(l~l)<<. v(t)<w~(vl + w~(~ + r + i g )  +1  
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o r  

Ix(t)]<W-[~[W~(U) 4- W3(1 + q)(0) -~ MJ) ~- i] d_efB. 

This completes the proof of UB and UUB. In  fact,  this completes the  proof of the 
theorem.  

EX~PLE 4. - Consider the scalar equat ion 

t 

~ =  - x. + f c ( t -  s)v(s, x(s)) ~8 + m) 

c o  

where C, J, and v are continuous, C eL~[0, oo) and  ~b(t)=f[C(u)]dueL~[O,  oo), 

t/(t)l<P, Iv(t, x)I<~ + #x ~ with v, fl, and P positive constants. Then solutions are 

UB and UUB. 

P~ooF. - Le t  f :  ( - -oo ,  t,] -~ R be a bounded continuous initial funct ion and 

x(t) = x(t, to, q~). Define 

t c o  

v(t,x(.)) = Ix[ + ~f f Ic(~-8)I e~.(~)e8 
- - c o  t 

so that, after a calculation, we find 

v'(t, x(.)) < -  ]x"I + Clx 2 + Q < -  ~x~ + 

for some positive numbers  5 a n d / s  The result now follows from Theorem 8 (e). 

In  par t  (e) of Theorem 8 we can replac e ~b(t , 8 )  bY a more general ~b(t, 8) as 
follows. 

THEO~E~ 8 (e)'. -- Le t  V be as in Theorem 8 and suppose there  is a continuous 
scalar function ~(t, s) defined for ~.<~s<t < o% ~ ( t ,  s)/~s~O, O<~(t, s)<-<J for some 

t 
constant  J > 0, and f~ ( t ,  s) de</5  for all t > ~  and some constant  .15. Suppose also 

or 

t ha t  for some M > 0 we have 
t 

(i) Wl(ix(t)l) <- V(t,x('))<~ W~(]x(t)[) -k w.[f~(t,8)w,(Ix(8)l) es] 
t~  

~nd 

(if) V(',i (t, x(. )) <~-- W4 (Ix(t)]): -k M .  

Then solutions of (8) arc UB and UUB. 

Since the  proof is so similar to tha t  of Theorem 8 (e) it  will not  be given here. 



T. A. BUgTO~ - SHU~IA~ ZHA~G: Uni/ieg boundedness, etc. 151 

As a companion to Theorems 3 and 7 we ment ion the following result which 
appears in BV~TO~ [3]. Consider again 

$ 

(5) x '= A(t)x + f C(t, s)x(s) ds + p(t) 
- -  c m  

with A(t § T) = A(t),p(t ~- T) = p(t), and C(t ~,- T, s + T) = 0($, s) for some T >  0. 
This means tha t  if x(t) is a solution so is x(t + T). 

t 

THEOREI~ 9. -- Suppose tha t  f]C(t~ s)] ds is continuous on ( - - co ,  oo) and tha t  
- -oo  ~i 

for each 6 > 0  there  exists S >  0 such t h a t  t--t~>~S implies tha t  fIC(t,s)] ds<~. 
Suppose also tha t :  - ~ 

(i) If  (5) has a solution satisfying (5) on ( ,  co, co) which is bounded,  then  
it is uni formly  asymptot ical ly  stable. 

(if) The solution x(t, 0, 0) of (5) is bounded on [0, co) and is equi-asymptot ieal ly  
stable at to = 0. 

Under  these conditions (5) has a T-periodic solution. 
Many other  results on the  existence of periodic solutions of funct ional  differential 

equations with infinite delay are found in A~I~O-BInzTo~-}tA~)DOCK [1], BVaTO~ ([2], 
[3], [4], [5], [8]), FIraUlViOCHi ([14], [15]), LANGENHOP [21], WA~G [23], and Wu-LI-  
WAnG [25]. 

5. - U n b o u n d e d  i n i t i a l  f u n c t i o n s .  

In this section we consider a sys tem with infinite delay 

(10) x ' =  2~(t,x(s); _ o o  < s < t ) ,  t > 0 .  

Such systems have been discussed extensively in recent  years and there  are several 
formulat ions of axioms for the  state space. (Cf. HALE and KATe [16], KA~I~OGO [18], 
KAPPEL and S C ~ A P P ~ C ~  [19], and SAwA~o [22].) Those t r ea tmen t s  t end  to  ask 
tha t  exponent ia l ly  unbounded  initial  functions be allowed and there  would seem 
to be some shortage of mot iva t ion  for the unbounded  init ial  functions.  

There are at  least two urgent  reasons for unbounded  initial  functions.  First ,  
they form a foundWdon for establishing compact  subsets of initial  functions;  and 
this is essential for the use of m an y  fixed point  theorems,  par t icular ly  in the  search 
for periodic solutions. One needs a weighted norm for compactness,  bu t  then  one 
needs cont inui ty  in initial  functions in the  weighted norm which automat ical ly  
admits  unbounded  initial functions.  The second reason is t ha t  when we apply  a 
t ranslat ion operator  (Poinc~,~ map), we can not  map a solution back into its initial 
funct ion set unless the  initial  funct ion set is unbounded.  Details are found in A~I~O- 
B I / t ~ T O N - H A D D O O K  [i]. 
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But  the point  which is missed so often in the axiomizat ion process is t ha t  the 
differential equation itself provides the guide for the permissible growth of  the initial 
function. We consider, for example,  r scalar l inear convolution equation 

t 

x ' =  Xx + tC(t  - -  s)x(s) ds 

in which C e LI[O, c~) and continuous. We require a continuous initial funct ion 
to 

~: ( - -co,  t 0 ] ~  R such ~hat f c ( t -  s)~(s) ds is continuous for t> to ;  i t  is then  possible 
- - o o  

to prove tha t  there  is a unique solution X(t, tol ~) satisfying the equation for t>to 
o 

and with x(t, to, ~) -~ ~(t) for t <to: l%r simplicity we take t0----- O. Now f i e ( t -  s)] as - -  
co - - o o  

= f[C(u)] du and it  is shown in BURTOI~-GI~I]K~ER [9] t ha t  there  is a continuous 
t 

increasing funct ion g: [0, co) -~ [1, ~ )  with g(O) = I and g(r) -~ oo as r --> co such 
c ~  

t ha t  flC(u)lg(u)du< ~ .  If we take q~: (--  c~, O] --> ~ with ]cf(t)l<vg(--t), then  
0 0 

f c ( t - - s )~ ( s )  ds will be continuous.  

To completely develop the material  of existence, uniqueness, and continual  de- 
pendence of so!utions on initial conditions using unbounded  initial  functions requires 
much space. And this has been done in A~I~o-BU~TO~-t~IaDDOCK [1], Bm~TON ([4], 
[8]), t t ~ E  and KiTO [16], KA1)~EL and Sc~.~I)PAcm~ [19]. Thus, for our purposes 

here we suppose tha t  there  is a continuous decreasing function g: (--c~, 0] ~ [1, c~) 
satisfying g(0) = 1 and g(r) -+ oo as r ~ - -  co and we consider the  Banaeh space 

(x,  I' I~) 

of continuous functions ?:  ( - - co ,  0] -~/~n for which 

exists. 

I~I~ = sup [v(~)l/g(t) 
- - ~ < $ ~ < 0  

:DEFISTITION 7. -- We say tha t  a set I7 c X is proper with respect to  (10) if ~ e 1 r 

implies tha t  there  is at  least one solution x(t, 0, ~) satisfying (10) for 0 < t  < fi for 
some fl > O, x(t, O, ~) -~ ~(t) for t < 0, and if whenever  x(t, 0, ~) remains bounded 

then  fl = c~. 
We remark  tha t  for the system (4), if h and q are continuous and  if ~ e X implies 

o 
fq(t, s, ~(s)) ds is continuous for t > 0  then  X is proper  with respect  to (4). 

- - o o  

DE~NITION 8. Le t  I7 be proper  with respect  to (10). Then solutions depend 
continuously on initial/un~ions in :Y relat ive to 1" [g if for each T e :Y~ for each J > 0, 
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and for each e > 0 there  exists ~ > 0 such tha t  x(t, 0, ,~) is defined on [0, J ]  and ii  
V ~ ~ with I~ - -  ~P]~ < c5, then 

Ix(t, o, ~) --x( t ,  o, W)] < e for 0 < t < J .  

DEFI~I~O~ 8. - Solutions of (10) are g-uni]orm bounded if X is proper  with 

respect  to (10) and if for each B~>  0 there  is a B 2 >  0 such tha t  [? e X ,  ]~[~<B1, 
t > 0 ]  imply  tha t  Ix(t, O, ~)] < B~. 

DwFINITIO~ 9. - Solutions of (10) are g-uni]orm ultimate bounded ]or bound B 
if X is proper  with respect  to (10) and if for each B3 > 0 there  exists K > 0 such 
tha t  [~ ~ X ,  I~I~< B~, t>K]  imply tha t  Ix(t, O, ~)] < B. 

TtLEOI~E~ 10. -- Le t  (X~I. ]g) be given ~nd let X be proper  with respect  to (10). 
Le t  V(t, x(.))  be continuous and locally Lipsehitz in x. Suppose also t h a t  there  
exists r  [0, o o ) - *  [0, co) with r cL l [0 ,  oo) and ~b'(t)<0 such tha t :  

0 

f r  --  s) w,(~g(s)) ds do~ H(t, ~) (i) 

is continuous and ~b(u) Wd(vg(-- u)) c Ll[0, co) for each v > 0 ; 

t 

(if) Wl([x(t)])< V(t, x ( . ) ) <  W~([m(t)]) + w~[f~(t- s)wd(lx(s)]) as] 
- - c o  

whenever  x: ( - -co,  oo) -> R" is continuous and x restr icted to ( - -co,  0] is  in X;  

(iii). vd,(t,  ~(. )) < -  w,( lx!t) l )  § M . 

Under  these conditions solutions of (10) are g-uniform bounded and g-uniform ul- 
t imate  bounded for bound B. 

P~ooF. - Given ~ e X we consider x ( t ) =  x(t, O, qJ) and notice t h a t  so long as 
the  solution is defined we have 

Wl(tx(t) l) < V(t, x(.))  < V(0, ~(. )) + Mt 

so tha t  Ix(t)] is bounded for t bounded and so x(t) exists on [0, co). 
f 

:Note tha t  by  (iii) there  is a U >  0 such tha t  Vi1o)(t , x(.))  < 0 for Ix I > U. :Now, 
let  B l >  0 be given and let  ~ E X  with ]~]g<B1. Suppose there  is a t > 0  with 
V(t) = ma, x V(s), where V(t) = V(t, x(.)).  Then for 0 < s < t  we have the  relat ion 

O~<s~< ~' 

v'(s) ~(t - 8) < [ -  w~(lx(s)l) + i ]  r  ~) 
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so that 

t 

f~(,-~)w,(l~(~)I) a~<-f  r'(~)r ~) a~ § M J  < V(0)r § MJ < 
0 0 

< qS(0)[W2(B~) § W3(H(O, B~)]) § MJ,  

r �9 

where J =fq~(s) ds; ~ o w  if V(t) is the  max imum on [0, t] with t > 0, then  V'(t)>O 
0 

so ix(t)I < U and this yields 

t 

V ( t ) <  W 2 ( U  ) -~" W 3 ( . ~ ( O  , B 1 )  - ~ f { ~ ) ( t - - 8 ) W , t ( ] x ( 8 ) ]  ) ~ 8 ) <  

0 

< W2(U) + W3(H(0, B~) -[-- q~(0)[W2(B~) + W3(H(0, B~))] + MJ) ae_f Vm. 

Thus, for all t ~  0 we have 

Wx([x(t)I ) <V(t, x(.)) <V(O) + V,,<W2(B 0 + Ws(H(0, B~)) + V~ def W~(B,) 

proving g-uniform boundedness. 
To prove the g-uniform ul t imate boundedness we first note t ha t  

0 oo oo 

- - ~  t t 

and this tends to zero as t - 7  r 
Tow, given B~>  0, if ]~[~<B~, then  there is a B4 as a bound on Ix(t, O, q~)[. 

Then for T> 0 and t > T we have 

0 

r  ~) w~(I.(., 0, ~)j) d~ < f r - ~) W.(B~g(~)) d~ + 
--oo --co 

t --T t c~ 

0 t--T T 
t t 

+ f ~ ( t -  ~) w.(lx(~, o, ~I) a~ < x + f r  ~) w.(Ix(~, o, ~)1) a~ 
t--T t--T 

if T (and, hence, t) is sufficiently large. The remainder of the proof is identical to 
t ha t  of Theorem 8 (e). 

Tow, corresponding to Theorem 2' there is the following result of ARI~o-B~TO~- 
HADDOCK [1] whose conditions can frequently be verified by  means of our Theorem 10. 
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T~EO~E~ 11. - Le t  (X, [. I,) be fixed and  suppose t ha t  X is proper  wi th  respect  
to (10). Suppose also t h a t  the following conditions hold: 

1 For  each q~ ~ X there  is a unique solution x(t, O, q~) of (10)defined on [0, co). 

2 Solutions of (10 are g-UB and g-UUB for bound  B. 

3 For  each ~ > 0 there  exists Z >  0 such t h a t  [~vI~<v and t0~R imply  t h a t  

[~'(t, o, v I < L. 

Solutions of (10) are cont inuous in % 

5 I f  x(t) is a solution of (10) so is x(t + T). Under  these conditions (10) 
has a T-periodic solution. 

We  r e m a r k  t h a t  some real ly  good L iapunov  funct ionals  have  been constructed 

for (4), bu t  thei r  appl icat ion has  awai ted  Theorem 10. The following is an  example .  

EXAMeLE 4 (Revisited). - Le t  J(t + T) = ](t) for some T >  0 and  all t, and 
v(s + T , x ) = v ( s , x )  for all s and  x. Consider the  V once more wi th  r  

oo 

=f[C(u)l du and  W~(r)----r 2. According to BUI~:r0~-GR~MEI~ [9] we can find a 
t - - S  c o  

funct ion g with g(t)flc(u Idu e LI[0, ~).  Condition (i) of Theorem 10 is satisfied 
t 

and  the  equat ion  of E x a m p l e  4 has  a T-per iodic  solution by  Theorem 11. Cont inui ty  

of x(t, 0, (p) in ~ is p roven  in B ~ : o ~  [8]. 
We now present  a far  more interest ing example .  To this  poin t  we have  t r ea ted  

the  in tegral  as a pe r tu rba t ion ;  here,  we obta in  the  bonndedness  f rom the  integral .  

EXAMPLE 5. -- Consider the  scalar equat ion  

t 

(11) x' = f  c(t - -  s)x(s) ds @ p(t) 
- - o o  

r  o o  

in which C and  p are cont inuous on [0, c~) with flC(u) l du < co, f lc(~)I a~ ~ zi[o, ~r 
0 t p bounded,  say Ip(t)i<P. Wri te  (11) as 

t 

(12) x ' =  --  G(O)x + (dldt)f G(t - -  s)x(s) r + p(t) 

where G'(u) = r If G(O) > O, fie(u)[ a u <  ~ ,  fle(~)l au e~l[o, cob le(t)l'<o, and 
0o 0 t 

if 2G(O) > [~G(O) + 1]fIO(u)l gu + 1, then sohttions of (11) are UB and UUB for 
bound  B. o 

P~ooF. - Construct  a funct ional  
t t co  
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L e t  x(t) = x(t~ 0, ~) be  a solut ion of (12). Then  

t oo  

, ( _ f  ) f V(~)(t,x(.)) = 2 x G(t--s)x(s)as [--O(0)x +p(t)] +1~ [O(u)ldux ~-- 
- -  o o  0 

t t 

- kflO(t --  ~)I~(~1 as <- -  2a(o)~'- + O(o)f ]O(t -- ~)t[x~(~) + ~(t)] as + 
- -~ ' - -  - - c o  c o  t 

+ r i o ( t -  8)l[x=(~) + p~(t)] e~ + 2xp(t) + kf la( )t aux,- kf [o(t- ~)lx~(8) 
- - o o  0 - - o o  

oo  oo  

0 2 

wi th  k = 6(0) + 1 so that 

(13) 
! 

V(~,(t, x(. )) < - ~ x ~  + 

for some ~ > 0  an4 M > 0 .  

Next ,  we establish an upper bound on V. W e  h a v e  

t t t c o  

- - c o  - - c o  - - c o  t - -  S 

t t t 

<x~ + f  lo(t-s)l[x~-(e) § x2(t)] we + r i o ( t - s ) l  aef lo(t-sllix~(e)l as + 
- - o o  - - o o  - - o o  

$ t c o  

- -  o o  t - - s  0 
t c o  c o  

- - r  0 t - - s  

so t h a t  

(14) 
t 

V(t, x(.)) <Ax'- + f  q~(t-  s)x~(s) as. 
- - o o  

We seem unable to get a lower wedge for V u.nd so we resort to the following 
technique. Define ~ new functional 

oo 

- - o o  t - - 8  
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and  compute  W' along a solution of (11) (which is also (12)): 

t c o  t 

t --z~ 0 zo --oo t 

- - ~  0 o o  - - c ~  

0 

for some J > 0 ,  R > 0 .  
Then define a funct ional  

so t ha t  

(15) 

~nd 

F(t, x(.)) = v(t, x(.)) + (~/2J) w(t ,  x(. )) 

(:r <F(t ,  x(" )) 

(16) /~'(t, x(.))  < - - ( g / 2 ) x  2 + (~R/2J) + M .  

~oreove r ,  F has ~n upper  bound  of the  fo rm of (14). Hence,  by  Theorem 8 solutions 

are UB ~n4 UUB.  

COROLLA~Y. -- If,  in ~ddition to  the  conditions of E x a m p l e  5~ p(t + T) =- p(t), 
t hen  solutions ~re g-UB and  g-UUB und there  is a T-periodic solution. 
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