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~EI~GIO VEINTURINI 

Summary .  - In  this paper we study the relationships between a class o/ distances and infinite- 
si~al metrics on real and complex mani]olds and their behavior under di]]erentiabIe and 
holomorphie mappings. Some application to ~iemannian and t~insler geometry are given 
and also new proo]s and generalizations o] some results o] lr Harris and ~ei]]en on 
Kobayashi and Carathdodory metrics on complex mani]olds are obtained. In  particular we 
prove that on every c o ~ l e x  mani]old (]inite or in]inite.dimensional) the Kobayashi distance 
is the integrated /orm o/ the corresponding infinitesimal metric. 

O. - In troduct ion .  

In this work we investigate a class of pseudodistances and pseudometrics, which 
we call admissible, on real or complex manifold modelled on open sets of a locally 
convex vector topological space, including l~iemannian and ~insler metrics on real 
manifolds and Kobayashi-type and Carathdodory pseudodistances and pseudometrics 
on complex manifolds. 

After defining the derivative of an admissible pseudodistance and the (upper 
and lower) integrated forms of an admissible pseudometric we prove that  for every 
admissible pseudodistanCe d on M the integrated form of its derivative is the inner 
pseudodistance associated to d. 

~Text we give a characterization of the derivative of a pseudodistance and of the 
lower integrated form of a psendomctric by means of an cxtremality property. We 
investigate the behavior of admissible pseudodistances and pseudometries under 
differentiable mappings; some applications to Finsler geometry are given. 

We apply these results to the study of Carath~odory and Kobayashi-type pseudo- 
distances and pseudometrics on complex manifolds. Among the Kobayashi-type 
pseudometrics an4 pseudodistances the Kob~yashi and Hahn pseudometrics an4 
pseudodistances are included. 

The main result is that  every Kobayashi-type pseudodistanee is the integrated 
form of the corresponding pseudometric and symmetrically, the Carathdodory 
pseudomctric is the derivative of the corresponding pseudodistanee, improving and 
unifying particular results of /~oyden and Harris for the Kobayashi pseudometric 
and of /~eiffen and Harris for the Carathdodory pseudometrie. 

(*) ]~ntra~a in Redazione il 20 febbraio 1988. 
Indirizzo dell'A.: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italia. 
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I t  is known that  there are manifolds for which the Caratheodory pseudodistance 
is not inner, and therefore it is not the integrated form of the relative pseudometric. 
We give here the example of a domain for which the Kobayashi pseudometric is 
not  the derivative of the corresponding pseudodistance. 

We investigate the integrability of Kobayashi-type pseudometries along curves 
on manifolds with countable base modelled on a separable Frechet space. 

~re prove similar resdlts for pseudometrics and pseudodistances arising in the 
study of projective mappings on manifolds endowed with an affine connection. 

Finally we prove tha t  a lower semicontinuous convex positive admissible metric 
on a finite dimensional connected real manifold is the derivative of its integrated 
form extending a result of Busemann and Mayer. 

w 1. - Let  E be a Hausdorff locally convex topological vector space and let M 
be a eom3ecte4 manifold modelled on open domains of E. 

For every x in M a local coordinate system at x is by definition a pair (U~ ?), 
where U is an open neighbourhoo4 of x in M and ~ ~ differentiable (holomorphic) 
homeomorphic mapping between U and an open convex balanced neighbourhood 
of the origin B in E such that  ~0(x) -= 0. 

We call E-pseudodistance, or admissible ~seudodistance on M a mapping 

d: M x M - + R + :  [0, q- oo) 

which is a pseudodistance on M (that is a mapping which is symmetri% satisfies 
the triangle inequality and verifies d(% x) -~ 0 for every x in M) such that  for every x 
in M there exist a local coordinate system (U~ ~) at % an open neighbourhood V 
of x in U and a positive constant C such that  

d(y, z)<r ~(z)), y e v ,  z e  v ,  

where p is the Minkowsky functional associated to B : ~v(U). 
We call E-pseudometrie, or admissible pseudometrie on M a mapping 

F : T M  -+ R+, 

where TM is the (real) tangent fiber bundle to M, satisfying 

an4 such that~ for every x in M, there exist (U, 9) at m, V and C as before such tha t  

where D~ is the differential of ~ and the tangent space at every poinf of B -~ ~(U) 
is naturally identified with E. 



SERGIO VENTUnINI: Pseudodistanees and pseudometries, etc. 387 

No assumption is made on the regulari ty of F.  
We call a curve u: [a, b] --> E absolutely continuous if for every  seminorm p in E 

and for every  e > 0 there  exist 8 > 0 such tha t  if (tl, s~), ..., (t,~ s,) is a family of 
pairwise disjoint intervals contained in [a, b] for which ~ ( t , - - s ~ ) <  ~, then  

u(s,)) < 
For  the general case we ca]] a curve u: [a, b] ~ M absolutely continuous if for 

every  t in [a, b] and every local coordinate system (U, ~) a t  u(t) the  curve ~ou]~_,(u): 
~-~(U)->  E is absolutely continuous in the above sense. When M = ~ the  two 
definitions of absolute cont inui ty  coincide b y  the compactness of the interval  [a, b]. 

For  every  manifold M an admissible curve in M is, b y  definition, a curve 

u: [a, b] --> M 

which satisfies the  following conditions: 

a) the curve u is absolutely continuous; 

b) the  curve u is almost everywhere derivable in the interval  [a, b]. 

For  examp1% every piecewise C 1 curve is an admissible curve. 

I~,~A~K. - - I f  E is a reflexive Banaeh space condition a) implies condition b), 
bu t  there are isometries f rom the unit  interval  to the Banach space El(O, 1) which 
are not  derivable a t  any point  (for details see [4] 2.9.22, 2.9.23). 

Now we define the in tegra ted  forms of E-pseudometrics.  
Le t  ~ be an ~-pseudometr ic  on M. For  x and y in M let 

d*(x, y) = d * ( F ) ( x ,  y)  = 
*b 

= inf {f~(Du(t))dt[u: [a, b]--)- M admissible, u(a )=  x, u (b )=  y} 

d,(x, y) = d,(F)(x, y) = 
b 

inf 
J "5 

where f and f stand respectively for the upper and lower integral. 

The functions d*(F) and d,(f) are E-pseudometrics and will be called respect- 
ively the upper and lower integrated ]orm of /~. 

An E-pseudometr ie  _F is said to be weakly integrable if d*(F) and d . (~)  are equal. 
In  this case we pu t  d(_F) = d*(F) = d,()?) and call it the  integrated form of/~. 

The E-pseudometr ie  ~v is said to be strongly integrable if for every  admissible curve 
u: [a, b] --> M the funct ion ~(D(u(t))) is Lebesgue integrable on the interval  [a, b]. 



388 SF.~GIO VE~TVl~I~I: Pseudodistances and pseudometries, etc. 

Clearly every  strongly integTable /~-pseudometric is weakly integrable. 
We introduce an equivalence relation on the space of all E-pseudometrics.  ~Ve 

call two E-pseudometrics  /~ and G equivalent if for every  admissible curve 
u: [a, b] -+ M the functions t"(u(t)) and G(u(t)) are almost everywhere equal on [a, b]. 
Clearly t ha t  is an equivalence relation oJa E-pseudometrics.  

I t  is clear tha t  the npper  (lower) in tegrated forms of equivalent pscudometrics 
coincide. 

To define the  derivat ive on an E-pseudodistance we need some result f rom the  
theory  of length of curves in pseudometr ic  spaces. 

Le t  X be a set and let d be a pseudodistance on X. A mappings defined in a 
closed interval  [a, b] c R into X is said to be a curve. 1%r a curve u: [a, b] --> X 
the  length of u is the number  

L(u) = sup {Z d(u(t~+~), u(ta)Ia = t~ < . . .  < to = b } .  

The curve u: [a, b] -+ X is absolutely continuous (with respect to d) if for every  
e > 0 there  exist  ~ > 0 such t h a t  if (tz, s~)~ ..., (t~ s~) is a family of pah'wise disjoint 
intervals contained in [a, b] for which if ~ ( t , -  s~)< (3 then  ~ d(u(t~), u(s~))< e. 
For  such a curve the  following theorem holds: 

T~~ORE~ 1.1. - Let u: [a~ b] --~ X be an absolutely continuous curve. For every t 
in [a, b] put 

D*(t) : l imsup d(u(t + h), u(t))/lh] , 
h--> 0 

D.(t) -~ l iminf  d(u(t + h), u(t))/Ih ] . 
h-->0 

Then the functions D*(t) and D.(t) coincide almost everywhere in [a, b]; they are 
Zebesgue integrabIe; furthermore Z ( u ) <  + c% and 

b b 

=fD*(t)at =fD,(t)dr. 

The above definition of absolute cont inui ty  and the proof of this theorem are 
in [16] w 13 where only the  metric case is considered, bu t  the proof does holds also 

in this less restr ict ive case. 
How we define the der ivat ive of every  E-pseudometr ic  up to equivalence. 
Le t  d be an E-pseudomctr ic  on M. For  every  ~ e T M  define 

F*(~) = F*(d)(~) = l imsup  d(u(h), u(0)) i lhl ,  
h--> 0 

- ' [  / ,,~) ~_~,(d)(~) = Liminf d(u(h), u(0))/[h I , 
h-~0 
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where u is a curve in M defined in a neighbourhood of 0 in R~ which is derivable 

a t  0 and  such t ha t  u'(0) = ~. The definition does not  depend on the  choice of the  

curve u. Indeed  let  u~ and  u2 be two curves wi th  u~(0) ~ u~(0) ~ ~. P u t  x ---- u~(0) 
---- u~(0). Le t  (U, ~) be a local coordinate sys tem at  x. Since the  pseudometr ic  d 

is admissible there  exist an  open neighbourhood V of x in U and a posit ive con- 

s tant  C such tha t  for every  y and  z in V 

d(y, z) < Cp( (y) - -  

Then 

limsuopd(u~(h), u~(O))/Ihl<limsup(d(u~(h), u2(h)) + d(u:(h), u~(O)))llh]< 

< l i r a  Cp(~(u,(h)) - -  qJ(u~(h)))/]h[ -~ l imsup  d(u~(h), u2(O))/Ih ] -= 
h-->O h--r 

: l imsup  d(u~(h), u2(O))/Ihl. 
h--> 0 

In te rchanging  ul with u~ we obtain the  opposite inequahty.  By  a symilar  argu- 

m e n t  we have  

l iminf  d(ui(h), ul(O))/[h I = l iminf  (d(u2(h), u2(O)))/Ih I . 
h-e -0  h--->0 

Hence  the  functions iv* and  iv,  are well defined on the  tangent  bundle to M 

and  it  is easy to show t h a t  they  are admissible pseudometrics,  The following theo- 

rem holds: 

Tn-EORE~ 1.2. -- ivor every E-pseudodistanee d the .E-pseudometries iv* and iv, 
de]ined above are equivalent, ivor every admissible curve u: [a~ b] --> M the ]unvtion 

b b 

dt  = d r .  

a a 

where the length is eomputed with respect to the pseudodista~we d. 

Pi~ooF. - Le t  u: [a, b] -+ M be an admissible curve. By  the  compactness  of the 
in terva l  In, b], the  curve u is absolutely continuous with respect  to the  pseudo- 
metr ic  d. Wi th  the notat ions  of theorem 1 we have  iv*(Du(t))= D*u(t) and 
iv,(1)u(t)) = D,u(t). The assertion follows f rom theorem 1. 

We call the  equivalence class of the  E-pseudometr ie  iv* (or iv,) the  derivative 
of the  E-pseudodis tance  d and  write iv(d) for it. By  abuse of language we cull de- 
r iva t ive  of the  E-pseudodis tunce d any  E-pseudometr ic  which is in the  equivalence 
class of iv*. 
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Let  d be an E-pseudodistance on M; for x and y in M define 

d~(x, y) -~ inf {L(u)[u: [a, b] -~ M admissible, u(a) = x, u(b) -~ y} . 

Since M is connected, every  pair  of points in M can be joined by  an admis- 
sible curve. 

A straightforward argument  shows tha t  d ~ is an admissible pseudodistance on M. 
I t  is called the  inner distance associated to d and the distance d is said to be inner 
if d = d t  The teminology is consistent since for every  E-pseudometr ie  we have 
(di)~-- - d ' .  

Theorem 1.2 implies the following theorem:  

THEOI~E~ 1.3. -- Yor every admissible pseudodistanee d on the connected manifold M 
the derivative T(d) of d is strongly integrable and its integrated form coincides with the 
inner distance assoviated to d. 

C0~OLL~:f  t .1.  - An admissible pseudodistanee on M is the integrated form of its 
derivative if, and only if, it is inner. 

Let  denote b y  lt)(M) and by  ~(~(M) respectively the set of the E-pseudodistances 

and the  E-psendometrics  on the connected manifold M. 
For  d and h in ~ (M)  set b y  definition d < h  if d(x, y)<h(x,  y) for every  choice 

of x and y in M. This relat ion is an order relat ion on ~(M) .  
For  E and G in ~(~(M) set b y  definition F < G  if for every  admissible curve 

q~: In, b]-->M, then  ~(Dq~(t))dG(Dn(t)) for almost every  t i n  the intervM [a, b]. 
This relat ion is a pre-order relat ion on the space Jit(M) and we have  F <  G and G <  F 
if, and only if, the  tT-pseudometrics F u n d  G are equivalent.  

Wi th  respect to  these order relations we have the  following characterizat ion of 
the  derivat ive of any  E-pseudodistance and of the  (lower) integrated form of any 

E-pseudometr ic :  

THEOI~EI~ 1A. - For d ~ ~)(M) and ~ ~ ~(~(M), 

(1) F (d )  = m i ~  {G e ~)C(M)Id , (G)>d},  

(2) d . (F )  = max  {h e ~ ( M ) I F ( h ) < F  }. 

PgooF.  - By  theorem 3 the  in tegrated form of the derivat ive of 8 is greater 
t han  d. Le t  G be an E-pseudometr ie  such tha t  d,(G)>d. We have  to  prove tha t  
G>2~(d). Le t  u: [a,b]-->M be an admissible curve in M. Le t  ]: [ a , b ] - ~ R  be a 
Lebesgue measurable funct ion such t h a t  1(t)<G(Du(t)) for every  t~  [a, b], and 

b b 

f1(t) d, 
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Then for every  t and s in [a, b] with t < s we  have  

8 8 

fj(t) 
t *t 

Indeed we have 

t t s 8 

f/(t)at<fG(D~(t))dt, fl!~)at<fG(.u(~))at, 
ct *a t *t 

b b 

f l(t) at< f G(Du(t)) at , 
8 *8 

t s b b 

a t s a 

b 

*a 

t s b 

*a *t *t 

and the  latter condit ions holds only  if 

8 8 

t *t 

Then, at a lmost  every  Lebesgue point  t of the  funct ion f we have  

I ~ ( g ) ( u ( t ) )  = l i ra  d(u(t + l~), u(t))/ll~r <lira ~*(V)(u(t) + J~), u(t))/lh! < 
h-->O h.e-O 

t + h  t + h  

*t t 

= f(t) < G(Du(t)). 

Hence  F(d)<  G and (1) follows. 

Consider n o w  the  pseudometric  F.  B y  (1) and theorem 1.3, the derivative of the 
pseudodistance d ,  (F) is less than F. Let h be an E-pseudodistance  such that  F(h)<  F. 
We have  to  prove  that  h < d . ( F ) .  Let x and y be arbitrary in M; let u: [a, b] --~ M 
be an admissible curve such that  u(a) = x and u(b) = y. Since by  theorem 3 

b b 

h(x, y)<fF(h)(Du(t))~t < fr(D~(t))at , 
a *a 

the  fact that  the  curve u is arbitrary we have  h(x, y ) < d , ( F ) @ ,  y)~ and (2) follows. 
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w 2.  - i n  this section we describe the behavior  of pseudodistances and pseudo- 
metrics under  differentiable mappings. 

l~ix two manifolds M and N (not necessarily modelled on the same topological 
vector  space) and a family ~- of differentiable mappings f rom M to N. 

Consider an admissible pseudometrie  2~ on M weakly integrable and let d = d(/@ 
Suppose, with the  notat ions of section 1, t ha t  for every  ~ T M  we have  
~, (d ) (~)<~(~) .  

We observe tha t  by  theorem 1.3~ for every  weakly integrable pseudometric on 
M thcre  exists an equivalent  pseudometr ic  which enjoys this proper ty .  

]?or every  x and y in aY se~ 

~ ( ~ ,  y) = inf {d(~', y ' ) } ,  

where the greatest  lower bound is taken  over all pairs x'  and y'  in h r for which there  
exists ] ~ ~ such tha t  ](x') = x and ](y') = y. I f  such x ~, y '  and J cannot  be found 
then  pu t  d5(% y ) =  ~- c~. The funct ion 65 is symmetr ic  bu t  in general does not  
satisfies the  triangle inequali ty.  Hence,  for every  x and y in M, set 

~z(~ ,  y) = i ~  { ~  ~z(p.~+~, p~)l~ = p~, . . . ,  p~ = y} �9 

For  ~ e T M  pug 

zJ'~(~) = in~ {F(v)}, 

where the greatest  tower bound is t aken  over all U e Y~ r s which there  exists I c ~- 
such t ha t  D1(~7) = ~. If  such ~ and f cannot  be found then  p u t / ~ - ( ~ )  = @ c~. 

I t  is not  difficult to prove tha t  if d~(x, y) and F5(~  ) are finite for every choice 
of x and y in M and ~ in T M  then  they  are respectively a pseudodistance and a 

pseudometr ie  on f~r. 

TttEOI~E3I 2.1. - I] the pseudometrie F ~  and the pseudodistance d 5 are admissible 
the~ the pseudometric ~ 5  is weakly integrabIe and the pseudodistanee d~  is its i~- 
tegrated ]orm. 

PROOF. - Le t  h* and h,  be respectively the  upper  and lower integrated forms 

of F ~ .  We shall prove t ha t  h*~<d~ and d ~ < h . .  
To establish the  first inequal i ty  it suffices to prove tha t  h*~< @-. Le t  x and y 

in N be arbi t rary.  We can suppose tha t  d~(x~ y) < @ c~. Let  s > 0. By  definition 

of d~ there  exist x'  and y '  in M and ] ~  ~ such tha t  

d(x ~, y') < d5(x, y) + ~ . 
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Since d is the  in tegra ted  fo rm of F ,  there exists an admissible curve u: [a, b] -~ M 
joining x '  and y '  such t h a t  

*b 

f~(Du(t)) dt < d(x', y') § ~. 

We have  

*b *b 

h*(x, y)<< f~x(D(/ou)(t))dt< f~(Du(t))dt < d(x', y') § ~ < d~(x, y) + 2s . 
(% a 

The fact  t h a t  e > 0 is a rb i t r a ry  implies h*(x, y) < d5(x, y). 
Let  G ~ ~ , ( d $ ) .  I n  order to prove  t ha t  d ~ < h , ,  b y  (2) of ~heorem ~ of section 1, 

it suffices to  show t h a t  for every  $ E TiV we have  G(~)<2'5(~).  
Le t  ~ ~ T_~ and let e > 0 be  arbi t rary .  B y  definitio~ of ~ there  exists ~ 6 T M  

and f ~ ~ such t h a t  D(f)(~)= $ and. F ( ~ ) <  ~ : ~ ( ~ ) +  e. 
Le t  u be a C ~ curve in M defined in a neighbourhood of 0 such t ha t  Du(O) ---- ~. 

Then 

G(~) = l iminf  d:~(j(u(t § h)), ](u(t)) )/Ih ] <l imin~  d(u(t § h), u(t))/jh I = 
h---> 0 h--> 0 

Since s > 0 is arbi t rary ,  the  assertion follows. 

EXAmPLe. - I f  ~ - =  {f}, where f: M - ~ N  is a surjective differentiable mapp ing  
such t h a t  for every  x e M there  exist x '  ~ N such tha t  f(x') ~ x and the  mapp ing  f 
is open in a neighbourhood of x ~, then  the  hypotheses  of theorem 1 are satisfied. 

In  this case our thcorem 1 improves  a result  of [14]. 
Le t  M, IY and ~- be as before. Consider ~n admissible pseudodis tance d on N 

and let iv = ~ , (d ) .  

For  every  x and  y in M pu t  

and for every ~ ~ T M  

d (x, y) = snp{d(i(x),  l(Y))li 

= snp{f(Df( ))ff 

Also in this case it  is not  difficult to prove  tha t ,  if ds(x, y) a n d / ~ ( ~ )  are finite, 

then  they  are respect ively a pseudodistanee and a pscudometr ic  on N. 

TttEORE~ 2.2. - I] the pseudometric ~ and the pseudodistance d ~ are admissible 
then the pseudometric E y is the derivative of the pseudodistanve d ~. Thus ~ is strongly 
integrable and its integrated form is the inner pseudodistance associated to d ~. 
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P~oo~.  - Le t  G = E.(ds~). :First we show t h a t  for every  ~ e  T M  we have  
~5 (~ )<G(~) .  Le t  ~ ~ T M  and let e > 0 be a rb i t ra ry .  B y  definition of / v~- there  

exists f ~ 9- such that .F(D](~)) > _~(~) -- e. 
Le t  ~e be  a C ~ curve in M defined in a neighbourhood of 0 such t ha t  Du(O) : ~. 

Then 

G(~) = l in inf  d:Y(u(t + h), u(t))/ih I > l i m i n f  d(l(u(t -1- h)), ](~(t)) )/lh ] : 
h.-+O h<--O 

= F ( D / ( ~ ) )  > F z { u ( $ ) )  - -  ~ .  

Since e > 0 is a rb i t r a ry  the  assert ion ~ollows. Le t  h be  the  lower in tegra ted  

forms of E ~'. 
I n  order to  p rove  t h a t  F Y > G ,  b y  (1) of theorem 4 of section, it suffices to show 

t h a t  for every  choice of x and  y in M we have  h(x, y)>dX(x,  y). 
L e t  x and  y in M be a rb i t r a ry  and  let e > 0. B y  definition of d5  there  exist 

l ~ 5- such t h a t  

d(l(x), ](y)) > d5(x, y ) -  e . 

Since h is the  lower in tegra ted  fo rm of F y there  exists an admissible curve 

u: [a, b ] - +  M joining x and y such t h a t  

We  have  

b 

h(x, y) > f l~X(Du(t)) d~ -- 

b 

y) dt-- 
*a 

b 

e> fF(D(]ou)(t)) dt--  e>d(](x), ](y)) -- e>gX(x ,  y ) -  2e .  
a 

Since e >  0 is a rb i t r a ry  we have  h(x, y ) > g  (x,y) ,  and  the  assert ion follows. 

E X A ~ E .  - Le t  E be topological  vector  space and let V c E be a linear subspace 
with  the  topology induced b y  E.  Le t  M be a manifold  modelled on E and let  N 

be a submanifold  of M modelled on V. Let  d be an admissible pseudodis tance on M. 
]Jet E be the  der iva t ive  of d, G be the  restr ict ion of E to 2Y and h be  the  restr ict ion 
of the  pseudometr ic  d to 2V. Then  the  in tegra ted  fo rm of G on N coincides wi th  the  

inner distance associated to h. Indeed,  we have  h ----- d~- and G = F~-, where 9- is 
the  fami ly  containing only the  inclusion m a p  i:  N--~  M. Since the  hypotheses  of 
theorem 2.2 in this ease are d e a r l y  satisfied, then  the  assertion follows. 

w 3. - I n  this section we shall deal with the  Kobayash i ,  t I a t m  and Carath6odory 
pseudodistances and  pseudometr ics  on complex manifolds. 

We recall some definitions. Le t  A be the  open unit  disc in C. Consider the  
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Poincar4 metric 

<~>o = Ivl/(]-- I~P), z ~ A ,  v e C ,  

and the corrisponding distance 

where 

~o(z, ~ ) -  ~- log((:[ + I~(~, ~)1)/(]-- I~(~, ~)1)), 

~(z, w) = ( z -  w)/(z  - z ~ ) .  

Let M be a complex manifold. 
The Carath~odory pseudodistance c~ is defined for every x and y in M by 

e~(x, y) ~- sup (o)(](x), /(y)) t] e Hol (M, /I)) , 

and the relative pseudometric 7~ by 

~ ( ~ )  = sup (<D/(~)):(,,t/e Eol (~, a ) }  

for every ~ in the tangent space at x in M. 
Let P be a family of holomorphic mappings from A to M containin all injective 

holomorphic mappings. 
For Y ---- Hol (A, M), the family of all holomorphiCmappings from A to M, the 

function d~ and ~ 5  are respectively the Kobayashi pseudodistance kM and pseudo- 
metric UM on M; for ~- the family of all injective holomorphic mappings, the func- 
tion d5 a n d / v $  are respectively the Hahn pseudodistance h~ and pseudometrie ~M. 

Let 5 c Hol (A, M) be an arbitrary family. Since the family $ contains all holo- 
morphic injective mappings then 

and 

We claim that  d~- is an admissible pseudodistance and that  ff~- is an admissible 
pseudometric. By the previous inequMities it is enough to prove this fact for the 
Hahn pseudodistance and the Hahn pseudometric respectively. In this case our 
claim follows from the following proposition: 

I>~0P0SITION 3.1. -- Zet D c E be a convex balanced neighbourhood of the origin in E 
and let p be its Minkowsky junctional. Then 

(1) VD(X, V) <p(V) / (1  --  p(X)). 

(2) ha(x, y) <p(x -- y)/(1 -- max (p(x), p(y)). 
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P1r - For  x e s  and  r > 0  pu t  B ( x , r ) =  { y E E ] p ( y - - x ) < r }  and B ( r ) =  
= B(0, r). B y  an H a h n - B a n a c h  type  argument ,  as in [5] (IV.1.8 and  V.1.5) we have  

for every  x ~ B(r) and v e E 

~B(~)(0, v) = r - lp(v) ,  

h~(~)(O, x) = ~(o, r-~p(x)) . 

Let  x ~ D. Then D' = B(x, 1 -- p(x)) c D, and therefore,  for every  v ~ s we have  

v.(x, v ) < w , ( x ,  v) = n,(,_~(,))(x, v) = p(v)/(1 - p(x)) ,  

and (1) follows. 
Le t  x and y be in D and let  S be the  segment  joining x to y. I f  a----max (p(x), p(y)), 

then,  b y  the  convexi ty  of D, for every  z ~ S we have  B(z, 1 -  a)c  D. Fix  s > 0. 

Le t  n e N be so large t h a t  

G(o)(o, ( y -  x)ln) < (1 + ~ ) p ( ( y -  x ) l n ) / ( 1 -  a) . 

I t  is a lways possible to find such an ~, since the  der ivat ive  of the  funct ion w(0, t) 

a t  t = 0 is equal  to 1. 
Fo r  k = 0, ..., n pu t  zk= x + k(y--  x)/n. Then we have  

G(x, y ) <  U G ( G  z'~+~)< 8 G(~,o)(G z~+~) = F G(~)(0, (y - x)/n) = 

= U(1 + s)p((y- x)/n)/(1- a) = (1 + e)p(y- x ) / ( 1 -  a ) .  

Since s > O is a rb i t r a ry  the  proof is complete.  
B y  theo rem 2.1 it follows t h a t  for every  fami ly  5 c Hol  (A, M) containing all 

injective holomorphic  mappings  the  pseudodis tance d 5 is the  in tegra ted  fo rm of 

the  p s e u d o m e t r i c / ~ .  
Choosing Y = Hol  (A, M) (resp. 9 r = {] e Hol  (d, M)! ] injective} we obtain  the  

following theo rem:  

THEOKE~ 3.1. -- For every complex manifold M the Kobayashi (resp. Hahn) pseudo- 
metric is weakly integrab~e and its integrated form is the Kobayashi (resp. Hahn) 
pseudodistance. 

t~E~A~K. -- This theorem is p roved  for the  Kobayash i  case in [17] for finite 

dimensional  complex manifolds and  in [8] for domains in no rmed  spaces. I n  the  cases 
considered i~ [17] and  in [8] also the  s trongly integrabiHty of the  Kobayash i  pseudo- 
met r ic  is p roved  (as a consequence of the  semicont inui ty  p rope r ty  of the  lat ter) ,  
bu t  only piecewise C 1 curves are considered as admissible. ~o reove r ,  the  me thod  

used there  cannot  be ex tended  in a nat~lral way  to the  H a h n  case, (contrary  to  wha t  
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is asserted in [6]), since the l~oyden extension theorems do not hold for injective 
ho]omorphic mappings but only for holomorphic embeddings. Moreover~ the upper 
semicontinuity of the Hahn pseudometric is an open question. For results concern- 
ing the strong integrability for the Kobayashi and Hahn metric which avoid the 
extension theorems of l~oyden and Sin see the next section. 

For every complex manifold the Carath6odory pseudodistance c~s and pseudo- 
metric y~ are respectively the pseudometrics d ~ and F~-~ where ~--~ Hol (M, A)~ 
the family of all holomorphic mappings from M to A. 

Since the Poincar6 metric is the derivative of the corrisponding distance by 
theorem 2.2 we have the following: 

Tmso~n~ 3.2. - For every complex maul/old M the Carathgodory pseudometriv yM 
is the derivative o/ the Carathdodory pseudodistance cM and hence the pseudometrie yM 
is strongly integrable and its integrated/orm is the inner distance associated to CM. 

RE~A~K. - Actually~ it can be proved that  the Carath6odory pseudodistance is 
continuous on TM (and Lipshitzian for Banach manifolds) and the definition (1) 
and (2) of section 1 of the derivative of a pseudodistance for the Carath6odory case 
coincide with the Carath6odory pseudometric, and theorem 3 can be proved as in [8]. 
We have given this less precise statement to show the symmetry of this case with 
the result stated in theorem 3.1. 

Henc% for every complex manifold the Kobayashi pseudodista~ce is the inte- 
grated form of the corresponding pseudometric and the Carath6odory pseudometric 
is the derivative of the corresponding pseudodistance. I t  is known that  for the domain 

D =  {zec~:l< 1~1<2, n > l }  

the Carath6odory distance is not inner, and hence for such a domain the Carath6odory 
distance is not the integrated form of the corresponding pseudometrie. 

We now give an example of a bounded domain for which the Kobayashi distance 
is not the derivative of the corresponding metric. 

Let D ---- {(z, w) eC2: Izl <1 ,  Iwl <1, Izwl < aS}, 0 < a <  ~. 
The domain D is a complete circular pseudoconvex domain. Let p be its Min- 

kowsky functional. By [1] the Xobayashi metric ~ at 0 coincides together with p 
and is not difficult to prove that  ~D is continuous on the tangent vectors at 0, Yore- 
over~ for (11, wl) and (z~, w~) with [z~ I < a S and [w~ I < a S, we have 

~o((~, ~), (~, ~ ) )<  ko((~, ~,), (~, ~)) + ~~ ~,), (~, ~)) _- ~(~, ~) + ~o(~,, ~) .  

Let f: A --~ M be the holomorphic mapping defined by 

/ g )  = (a~', a~) ,  
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let  y:  R -~ A be the  l%icmannian geodesic such tha t  ~(0) ~ O and y'(0) ~ 1 and let u 
be the  restrict ion of ] to the  real axis. 

Since the  mapping f preserves the  Kobuyashi  metr ic  at  0, and this metric is 
continuous a t  0, for every  e > 0 there  exists ~ > 0 such tha t  for every  t, with ltl < ~, 

we have  

u'(t ) )  > : [ -  

Shrinking ~ if necessary, by  the above inequality,  we have 

F(u(t), < 2 a ( 1  - a2t < 2a + 

Hence, having chosen a < �89 the  Kobayashi  metric of the  domain D is not  the 

derivat ive of the Kobayashi  distance. 

w 4. - I n  this section we investigate the strongly integrabil i ty of Kobayashi  

type  pseudometrics on complex manifolds. 
l~ecall t ha t  a Polish space is a topological space homeomorphie  to a separable 

complete metr ic  space. A Suslin subset of a Polish space X is a subset of X which 

is the  image by  ~ continuous mapping of a Polish space. 
A subset of a Polish space X is a Polish space for the  induced topology if, and 

only if, i t  is a G~ set in X ( that  is, a countable intersection of open sets in X) (see 
e.g., [3]). Hence every  open or closed subset of X is a Polish space. 

A Hausdorff  topological space X with countable base such tha t  every  point  x ~ X 

has a Polish neighbourhoo4 is a Polish space ([3]). 
I f  T is a locally compact  Hausdorff  space with countable base and X is a Polish 

space then  the  space C(T, X) of all continuous ftmctions f rom T to X endowed with 

with the  compact  open topology is a Polish space ([9]). 
I f  X is a Polish space the  family of the Suslin subsets of X is closed under  

countable union and intersection. 
I f  f~ X - >  Y is a Borel  mapping between Polish spaces, then  for every  Suslin 

subset A r X the  set ] (A) r  Y is a Suslin subset of Iz and for every  Suslin subset 

B r Y the  set ] - I (B )c  X is a Suslin subset of X.  
I f  X and Y are Polish spaces and A ~nd B are Suslin subsets respectively of X 

and Y, then  X • Y is a Polish space and A • B is a Suslin subset of X • Y. 

A Suslin subset of R is Lebesgue measurable ([4]). 
Fo r  these and other properties of Polish spaces and Suslin sets see [7]. 
Le t  E be a complex separable Fr~chet  space and M a connected /~-manifold 

with countable base. Then the  manilold M is a Polish space and the space t lo l  (A, M), 
being u closed subset of C(A, M) is a Polish space. 

Tn-EO~E~ 4.1. - Let E and M be as above. Let 57 c Hol  (A, M) be a family con- 
taining all injective mappings and suppose that ~ is a Suslin subset of t to l  (A, M). 
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Then~ ]or every a :> 0 the set 

A(a) = {~ e TMI/~ (~ )  < a} 

is a Suslin subset o/ TM and henve the pseudometric ~:~ is strongly integrable. 

PRoof.  - Let  X = H o l ( A , M ) x C ,  let V : X - - > T M  and W:X-->R+ be the  
continuous functions defined on (1, v ) e X  respectively by V(], v ) ~  ]'(O)(v) and 
W(], v ) ~  [el. By definition for every ~ e  TM we have 

(i) ~z (~ )  = inf {wff ,  v)lr(] ,  v) = ~ and f e  ~-}. 

Let A and B be the epigraphs of the funct ions _F$ and W respectively, tha t  is 

A = {(~', t) e T M  xR+I.Y%-(~-) > t } ,  

B = {((1,  v), t) e X x R + I W ( I ,  v) > t} .  

By ( 1 ) A =  V * ( B n ( 5 x R + ) ) ,  where V * : X x R + - - > T M x R +  is the function 
defined on (], v ) e X  and t e R +  by  V*((], v), t)----- (V(], v), t). Hence the set A, as 
image of a Suslin set under a continuous function, is a Suslin subset of TM. 

For  every a > 0 we have 

A(,~) = =({A n ( T M  x {t e R+lt < a}}) ,  

where z :  T M •  T M  is the natural  projection. By  the stabili ty properties of 
Suslin sets, A(a) is a Suslin subset of TM, and the first part  of the theorem is proved. 

Le t  u: [a,b]-->M be an admissible curve. Then the function t-+Du(t) is a 
Borel function (see e.g., [4]) and hence for every a > 0 the set 

(t e [~, b]IF~(D~(t)) < ~} - -  (Du)-l(A(a)) 

is a Sustin subset of [a, b], thus Lebesgue measurable. 
I t  follows tha t  the function t F-> ~:~(Du(t)) is Lebesgue measurable, tha t  is, by  

the arbitrariness of the admissible curve, the pseudometrie ~v5 is strongly integrable. 

C0~0LLA:aY 4.1. - ~Let F_, and M be as above. Then the Kobayashi and the Hahn 
pseudometries o] M are strongly integrable pseudometries. 

P~ooF. - For  the Kobayashi  pseudometrie the assertion follows immediat ly 
from the above theorem. For  the Hahn  pseudometric i t  is enought to prove tha t  
the family ~- of all injective holomorphic mappings is a Suslin subset of Hol (4, M). 

We shall even prove tha t  ~- is a a~ set in Hol (A, M). This fact  is a consequence 
of the following general s ta tement:  
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P~OP0SITI0~ 4.1. -- Let X and T be Hausdor// spaces and let T be locally compact 
with countable base. Then the ]amily g of all continuous in]ective mappings ]rom T 
to X is a G~ set in C(T, X). 

P~ooF. - Le t  % L =  {U~}.+N be a countable  base of T such t ha t  U ~ c c T  for 
every  n e N. Then 

where 

= N {A(m, n)[U~ c~ U~ ---- ~} 

A ( m ,  n)  = {I e C ( r ,  n t(U ) = 0} 

is open for every  choice of m and n in N, and the  assert ion follows. 

w 5. - I n  this section we app ly  the  results of section 1 to pseudodistances and  
pseudometr ics  genera ted  b y  project ive  mappings .  

Le t  M be a connected n-dimensional  real  differentiable manifold  and let /1 be 
a torsionfree affme connection on M. 

Consider on the  in te rva l  I the  Riemannian  metr ic  

ds~= du~/(L-- u~) ~ 

and let @ be the  associated distance. 
Le t  9- be the  fami ly  of all project ive  mappings  f rom I to M (for references 

see [19]). The distance PM on M constructed as in section 3 f rom the  family  ~- and  
the  distance @ were in t roduced in [13] 7 whereas the  analogous psendometr ic  PM 
was in t roduced in [19]. 

B y  the  local existence Sheorems of geodesics it  is not  difficult to  prove  t h a t  PM 
and P ~  are respect ively  an admissible pseudodistance and  pseudometr ie  on M. 
t Ienee ,  t heo rem 2.1 yields: 

TEEOlCE~ 5.1. -- The pseudomet~ic PM is weakly integrable and its integrated 
]orm is p~. 

RE~A~x. - In [19] it  is p roved  t h a t  the  pseudometr ic  PM is upper-semicont inuous,  

hence it is actual ly  s trongly integrable.  I n  [19] it  is also p roved  theorem 5.17 bu t  
there  only piecewise C 1 curves are considered admissible. 

w 6. - Le t  M be a real  connected manifold,  t h a t  is a manifold modelled on open 

domains  of a real topological  vector  space. I n  section 1 we have  character ized inner 

admissible psendodis tances  as the  ones which coincides wi th  the  in tegra ted  fo rm 

of thei r  derivat ives.  
Call inner pseudometr ie  on M a s trongly integrable pseudometr ie  _F which coin- 

cides (up to  equivalence) together  wi th  the  der ivat ive  of i t s  in tegra ted  form. B y  
theorem 1.3 the  hypothesis  of s t rongly integrabi l i ty  on • is not  restrictive.  



SERGI0 VENTUI~INI: Pseudodistanees and pseudometries, etc. 401 

B y  the  definition of der ivat ive  is not  difficult to prove  t h a t  for an inner pseudo- 

metr ic  F there  exists a pseudometr ie  F '  which is convex~ t ha t  is, for every  x e M 
and every  choice of ~ and  ~ in T M  we have  F'($~ ~ ~ ) < F ' ( $ ~ ) - ~  F($~). 

EXAMPLES. - -  E v e r y  Riemannian  metr ic  on a finite dimensional manifold  is inner;  

the  Carath~odory pseudometr ie  on every  complex manifold is inner;  there  are com- 
plex manifold  whose Kobayash i  metr ic  is not  inner (see section 3). 

A pseudometr ic  F on M is posit ive if for $ e T M ,  the  condition G($) = 0 implies 
$ -~ 0; if t h a t  in the  ease, we s imply ca l l /~  a metric. 

I n  [2] BUSE~AN~ and MAYEl~ show tha t  on a finite dimensional connected rea l  
manifold every  continuous convex metr ic  is inner. 

We improve  this result  weakening the  cont inui ty  hypothesis .  

THEOI~EM 6.1. - Zet M be a ]inite dimensional real connected maul]old. Every 
admissible lower semicontinuous convex metric is inner. 

P~ooF.  - Le t  F be a metr ic  satisfying the  hypotheses  of the theorem. I t  is no t  
difficult to show t h a t  there  exists a non decreasing sequence of continuous convex 
met r ics  F~ such tha t  for every  ~ e T M  we have  F ( ~ ) ~  sup F~(~). Then the  as- 

ser t ion is a consequence of the following general proposit ion:  

P~0POSITION 6.1. - .Let M be an arbitrary maul]old and let _P~ be a sequence o] inner 

pseudometric. For every ~ E T M  de]ine 

F(~) = sup F~(~).  

I]  ~ is an admissible pseudometrie then it is an inner pseudometric. 

Pn0PF. - Le t  dn and d be respect ively the in tegrated forms of F~ and F, and 
let G be the  der ivat ive  of d. We have  to  show tha t  G and F are equivalent .  

By  theorem 1.4 G < F .  
Conversely, for every  n we have  d > d , .  Then it  follows tha t  for every  n, = G 

= F(d)>F(d~)  = F , ,  and hence G>~F. 
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