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On the Optimal Control and Relaxation 
of  Nonlinear Infinite Dimensional Systems (*). 

NIKO~AOS S. PAPXG~OgalOU (**) 

Summary.  - In  tMs paper we study optimal control problems ]or infinite dimensional systems 
governed by a semilinear evolution equation. ~'irst under appropriate eonvexAty and growth 
conditions, we establish the existence o] optimal pairs. Then we drop the convex/ity hypothesis 
and we pass to a larger system known as the (~ relaxed system ,. We show that this system 
has a solution and the value o/ the relaxed optimization problem is equal to the value o] the 
original one. Next we restrict our attention to linear systems and establish two (~ bang-bang ~ 
type theorems. Finally we present some examples /rein systems governed by partial diner. 
ential equations. 

1.  - Introduct ion .  

In  this paper we s tudy  opt imal  control problems for distr ibuted parameter  con- 
trol  systems governed by  a semilinear evolution equation. We prove tha t  under  a 
s tandard  growth condition relating the vector  field with the  integrand of the  cost 
functional  (Lagrangian) and a well known convexi ty  hypothesis  on certain orientor  
field, we can guarantee the  existence of optimal controls. Then we examine what  
happens when we drop t h e  convexi ty  hypothesis  on the orientor field made earlier. 
In  this case in order to obtain opt imal  controls, we need to consider a larger system 
with the  conVrols being measure valued ((~ relaxed controls ~ or (~ generalized curves ~) 
o r ,  sliding regimes ~). For  this augmented  system ((( relaxed ~ or q convexified ~) 
system), under  the  same growth hypothesis  as before, we can establish the existence 
of opt imal  solutions. Then we tu rn  our a t tent ion to linear systems and we prove two 
(~ bang-bang ~ type  theorems for them. The first can be viewed as an (~ approximate  
bang-bang ,~ result  and says tha t  an optimal relaxed t ra jec tory  can be approximated  
in the  supremum norm by  trajectories of the original system which are generated by  
external  controls (i.e. controls which at  each t ime instant  have their  values a t  the  
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extreme points of the control constraint set, <~ bang-bang controls ~)). The second, 
is an exact  (( bung-bang ~ result and shows tha t  for any  admissible pair, there is 
another with the same ends which is (( bang-bang ~ (in the sense t ha t  the control 
t~kes values on the boundary  of the control constraint multifunction). In particular 
then this result implies tha t  for any optimal solution (if it  exists), there is also an 
optimal (~ bang-bang ~ solution. So i f  the  optimal solution is unique, then it has to 
be (~ bang-bang ~>. Finally, we close this paper with examples from control systems 
governed by  part ial  differential equations. 

Since we assume tha t  the unbounded linear operators A(t) generate a strongly 
continuous evolution operator S(t, s) and so the trajectories admit  an integral rep- 
resentation~ our results can be viewed as an infinite dimensional extension of the work 
of ANGELL [1], [2]. Also several of the ideas and key hypotheses have their  roots 
back in the fundamental  works of CESAl~I [10], [11], [12], [13]. The idea of extend- 
ing the family of admissible controls to measure valued ones goes back to the works 
of ~ o ~ G  [36] ((( generalized curves ~) FILIPPOV [21] (~ sliding regimes ,~), W~RSA [34], 
[35] ((( relaxed controls ).~) and G~OWLA-IIou~I [22] (~( commandes limites ,~). 

2 .  - P r e l i m i n a r i e s .  

Let  (/2, Z) be a measurable space and X a separable Banach space. Throughout 
this paper we will be using the following notations: 

and 

P~(~) = (A _c X:  noaempty ,  closed, (convex)} 

P(~)k(r (A _c X:  nonempty,  (w--) compact, (convex)}. 

A multifunction E:  $2- .P•  is said to be measurable if for all z e X ,  
--> d(z, E(~o)) = inf {]Iz -- xl[: x e/7(o))} is measurable. When there is a a-finite 

measure #(.) ,  with respect to which 2: is complete, then the above definition of 
measurabil i ty is equivalent to saying tha~t Gr/7 = {(oJ, x) e / 2 •  xe/7(oJ)} e 
e 2 : •  where B(X) is the Borel a-field of X (graph measurability). By  S ~ w e  
will denote the set of selectors o f /7 ( .  ) t ha t  belong in the Lebesgue-Bochner space 
LI(X) i.e. S~ ---- {1 ~ LI(X): ](o)) e/7(w)/~-a.e.}. This set may  be empty.  When 17(.) 
is measurable and co-7 [/7(w)[----sup {[lx]I: x ~/7(co)} belongs in L ~ (such an /7(') 
is said to be integrably bounded), then S~ :/: 0. Using S~ we can define a set valued 
integral iro /7(.) by  setting f /7  = {~]: ]e S~}. 

Let  Z be a completely regular Hausdorff space and B(Z) its Borel a-field. By  
M~(Z) we will denote the sace of probabili ty measures on Z. A transit ion probabili ty 
is a function 4: / 2 •  [0, 1] s.t. for every A EB(Z), I ( . ,A)  is X-measurable 
and for every co ~/2~ ~(o~, . ) e  M~(Z). We will denote the set of all transition pro- 
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babilities from (Y2, X, #) into (Z, B(Z)), by  R(tg, Z). Following BA~])E~ [3], (see 
also Warga [35]) we can define a topology on R(t~, Z), called the weak topology. 
So let ]: Q x Z - + R  be a Carath6odory function (i.e. eo--->](cg, x) is measurable,  
x -+ ]((o, x) is continuous and ]/@, x)] g g(w)tt-a.e, with ~(. ) E L 1) and define 
/~: R(tg, Z) ~ R by  If(X) = f  f](~o, z)2(t)(dz)d#(o)). The weakest  topology on R(~9, Z) 

z z  
for which those ~ur~etionals {/ i ( ' ) :  ] = Carath6odory} are continuous, is the weak 
topology on /~(tg, Z). Note  tha t  when z9 is a singleton /~(z9, Z) = M~(Z) and the 
weak topology is the narrow topology (see DELLAC~ERIE-~EYER [16]). Final ly 
recall tha t  if Y, V are topological spaces /~: Y -+ 2v-{0} is said to be upper semi- 
continuous (u.s.e), if for all U c V open, zv+(U) = {y E Y: F(y) _c U} is open. 

3. - A n  ex i s t ence  resul t .  

Let  T = [0, b] ~ a bounded closed interval in R+, X a separable reflexive Banach 
space and Z a separable Banaeh space which whill model  the control space. 

The optimal control problem tha t  we will s tudy is the  following: 

(*) 

b 

i ~  J(x, ~) = f h ( t ,  x(t), u(t)) ,~t 
0 

s.t. ~(t) = A(t)x(t) § g(t, x(t), u(t)) 

x(o) = xo , uCt) e ty(t, x(t)) a.e. 

We will make the following hypotheses concerning ( , ) .  
H(A):  {A(t): t e T} are linear unbour~ded operators on D(A(t)) c_ X tha t  generate 

a strongly continuous evolution operator S(t, s) which is compact  for t -  s > 0. 

H(g): g: T x X X Z ---> X is a function s.t. 

(1) t -+ (t, x, u) is measurable 

(2) (x, u)-+g(t, x, u) is sequentially continuous from X xZ~ into X~ (here 
Xw, Z~ denote the  Banach spaces X, Z with the weak topology). 

(3) for every t e T, g(t , . ,  .) is bounded. 

(4) for every e > 0 there exists ~ ( . ) e  L~ s.t. 

Ilgff, x, u)il < ~ ( t )  + ~/~(t, x, u) a.e. 

H(h): h: T x X x Z  -->_~ = RU{-f- cr is a function s.t. 

(1) (t, x, u) --> h(t, x, u) is measurable 

(2) (x ,u)-+h(t ,x ,  u) is sequentially 1.s.c. on XxZ~ ,  
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H(Q): For  every ( t , x ) e T x X  the set 

Q(t, x) -~ {(/~, ~): #>h(t ,  x, u), ~ = g(t, x, u), u e  U(t, x)} 

is coi~vex. 

H(U): U: T x X - + P r o ( Z )  is a multifunction s.t. 

(1) (t, co) --+ U(t, x) is measurable and x e U(t, x) is u.s.c, from X into Z~. 

(2) U(t, x) c_ W a.e. with w e P~k~(Z). 

The growth condition H(g)(4) was first introduced by  CESA~I-LA PAL~- 
l~ism-u~A [14] in order $o establish certain compactness and closure properties. 
Since then  it became a popular tool among people working on existence theorems. 
l~or aa  interesting comparison of this growth property with others used in the 
literuture, we refer to C E s ~ I  [13] (section 10.4). Hypothesis H(Q) is the convexity 
hypothesis mentioned in the introduction and is needed to establish the lower semi- 
cont inui ty  of the cost functional J(x,  u) in an appropriate ~opology. By  a solution 
of the  evolution equation we will unders tand a mild (integral) solution. 

A pair of functions x: T - + X  and u: T - + Z  tha t  satisfy all the constraints of 
problem ( . )  is aa  ~ admissible pair ,~. I n  this case x(.) is called an , admissible tra- 
jectory ~) and u( . )  an (~ admissible control. To avoid trivialities we will need the 
following hypotheses. 

H :  System ( , )  has admissible pairs (x, u) s.t. J(x,  u ) <  q- oo. 
We can now state our existence result: 

T~o~E~ 3.!. I] hypotheses H(A),  H(g), H(h), H(Q), H(U) and H:  hold, then 
problem ( . )  admits an optimal solution (x, u) 

PROOF. -- Let  P :  T x X x X - - + 2  w be the mult ifuact ion defined by: 

P(t, x, v) = {u e v(t ,  x): v = g(t, x, u ) } .  

Also let r: T X X x X - > / ~  be the function defined by:  

r(t, x, ~7) -= inf {h(t, x, u): u ~ P(t, x, 7)} (inf 0 ~- + oo). 

Claim 1. - (t, x, 7) -~ r(t, x, ~) is measurable. 

Let  ~ ~ /2  and consider the level se~ 

L = {(t, x, 7) e T x X x X :  r(t, x, ~)_<A}. 

We will show tha t  L e B ( T ) •  Let  

L{(t, x, ~, u) ~ T X X X X x W: h(t, x, u) <__ ~ u e P(t, x, ~)}. 
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Observe that  L = pro~ Lz•215 Also note that  

L = G r P  n {(t, x, ~1, u) e T x X x X •  W: h(t~ x, u) < 2}. 

From the definition of the multifunction P ( . , . ,  �9 ) we have: 

G r P  = {(t ,x,  ~, u) ~ T x X x X x W :  7 - -  g(t, x, u) = 0} (3 Gr 

where ~ :  T x X x X - - > . P ~ ( W )  is defined by ~(t, x, 7) = U(t, x). Since by  H(U)(1), 
U( ' , ' )  is measurabl% then so is U(.~.~.). Thus G r / ) e B ( T x X x X •  
-- B(T)  x B ( X ) •  •  (see Wagner [33]). Also let {x~}~>x be dense in X* 
for the Mackey topology re(X*, X). Such a set exists since X is separable (see lem- 
ma III-32 of CASTA~G-VALADIER [9]). Then because of hypotheses H(g)(1)~ and (2) 
for every n > 1, t --> ( , ,  7 -- g(t, x, u)) is measurable and (x, 7, u) -+ ( . ,  7 -  g(t, x, u)) 
is continuous from X • X x W~ into R (here W~ demotes the set W with the relative 
weak topology). Since W~ is compact metrizable (see DV~FOm)-Scn~WART} [18], 
theorem 3, 0. 434), we can apply lemma III-14 of CASTAING-VALADIEI~ [9] and get 

X ~ that  (t, x, V, u) --> ( ,,, 7 -- g(t, x, ~t)) is measurable on 

Y x X x X  x W~ ~ { ( t , x ,  7, u )~  T x X  x X x  W: 7 -  g(t,x, u) = O} = 

= gl  {(t, ~, v, n) e r x x x x x w :  (~*, ~ - g(t, x,  ~) )  = o} e 

r B(T)  •  •  xB(W=).  

But from corollary 2.4 of E])GA~ [19] we know that  B ( Z w ) =  B ( Z ) = ~ . B ( W ~ ) =  
= B(Z~) r3 W ~- B(Z) n W = B(W).  So finally we conclude that Gr P ~ B(T)  x 
xB(X)  xB(X)  xB(W). Also because of hypothesis H(h)(1) 

{(t, x, ~, u) ~ T x X  x X  • W: h(t, x, u) <__ ,~} ~ B(T)  xB(X)  xB(X)  x B ( W ) .  

Hence finally we can write that  L e B(T)  x B(X)  • B(X)}B(W).  Applying the Arsenin- 
Novikov theorem (see DELT.ACn:E~rE [15] or SAINT-BEUVE [32]), we get that  /;----- 
= pro j r • 2 1 5  e B(R) xB(X)  xB(X)  ::> r(., .,) is measurable. 

Claim 2. - For every t ~ T, (x, 7) --> r(t, x~ 7) is 1.s.c. ]rom X x X into R. 

We need to show that if (x~, 7~)_L> (x, 7) in X x X ,  then we have r(t, x, ~ ) <  
% lim r(t, x ~  ~1~). From the definition of r, for every n >  1, we can find u~e 
e U(t, x~) s.t. 
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Since u~ ~ U(t, x,~) c W ~ Pwki(Z), th rough  the  Eberliin-Smuliar~ theorem and 
b y  passing to a subsequence if necessary, we m a y  assume t h a t  u~ 2+ u in Z. Then 
~ = g(t, x,~, u,) --~ ~l = g(t, x, u) and u E w --  l im U(t, x,) 2 U(t, x) since U(t, .) is 
u.s.c, f rom X into Z~. Also exploit ing ~he sequential  lower semicont inui ty  of 

h(t, ",') (see H(h)(2)) we have :  

h(t, x, u) __<li_mm h(t, x,~, u~,) <--_ l imr( t ,  x~, ,1~). 

Because u ~ P(t, x, ~), f rom the  definition of r, we conclude t ha t :  

r(t, x, ~]) < l imr( t ,  x~, ~]~) => (x, rt) -+ r(t, x, r]) is 1.s.c. 

Claim 3. - ~ - +  r(t, x, ~) is convex. 

This follows b y  direct calculation, f rom hypothesis  H(Q). 
Now note  t ha t  if ia  *he growth eonditio~ H(g)(4), we take  s = 1, ~hen we have :  

0 <= vA(t) + h(t, x, u) a.e. ~ - -  ~,dt) < h(t, x, u) a.e. 

Recall ing tha t  ~o1(. ) ~ L I and  because of hypothesis  H :  we have  t ha t :  

- -  ~ < m = inf {J(x, ~): (x, u) is admissible} < c~. 

U "} Now let  { (x ,  ~)~>1 be a minimizing sequence of admissible pairs. We m a y  

assume wi thout  any  loss of generMity t h a t  for all n => 1 J(x~, u~) <= K, where K > m. 

Taket ,  t ' e  T, t<= t' and (z, u) e ( ( x ,  %)}~=>1. We have  

I L ~ ( t ' )  - x ( t ) I I  = 

~" t 

0 0 

t ,  

=< [l~(t ~, O)Xo- s(t, o)zoil +flIs(t', ~)!l. fig( s, x(s), u(s))[l ds -% 
t 

+f l l s ( t ' ,  8) - z(t, s)]l-I[g(s, x(s), u(8))[1 & .  
0 

We will es t imate  each of the  three  quanti t ies  of the  r ight  ha.rid side separatel iy.  
Because of the  strong eont i~ui ty  of the  evolution opera tor  given e > 0 there  exists 

31 > 0 s.t. for I t ' - -  t] < 31 we have :  

(1) ll,~(t', O)xo- s(t, O)xo'~i < ~/3. 
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Also recall t ha t  for all (t,s) e {O <_ s <<_ t <_ b}, llS(t,s)][< M and take  0 =  
= e/6M(ll%[[~@ K). Then using the  growth hypothesis H(g)(4) we have:  

t" t" 

flls(t,, 8)11. II~(+ x+, ~<~), ds_< ~f(~o+ + 0(~1+ + h(~, x+, ~+)))d8 =< 
t 

t '  t '  

=< Mfwo(8)d8 + /0([1~ol]1, § K)~=< Mfwo(8)d8 + ~/6 . 

t t 

t" 

We can find (~ > 0 s.t. if It-- t'[ < ~ ,  then Mfwo(8 ) & < s/6. Thus finally 
we have:  t 

(2) f ll~(t', s)ll " llg(s, x(8), u(s)) II & < ~/3 . 
t ' -  

Finally let e~ > 0 (to be chosen more precisely in the sequel) and consider: 

t 

0 

t - e ~  t 

<=f ll~(t', s ) -  s(t, s)11" tlg(s, x(s), u(s))I[ ds +flls(t', s ) -  N(t, s)!l [lg( s, x(s), u(s))1[ ds . 
0 t - - e  z 

F r o m  proposit ion 2.1 of [28], we know tha t  because of the compactness hypo- 
thesis on S(t~ s) for t -- s > O, we have tha t  t ~ S(t, s) is continuous in the operator  
norm, uniformly for all s s.t. t -  s. is bounded away f rom zero. Thus .we can fi~d 
da > 0 s.t. for It' --  t I < 3a we have I[~(t', s) - S(t, s)l[ < e/6(IlwlF]l + K) for all s e T 
s.t. t - -  s > e l >  0 and so we get tha t  

0 
g- -E  1 

-<(~/6(11~,I1: + K ) ) f G +  + h(8, x<8), ~(8))) dS < 
0 

b 

< ~/6((II~,tl, + x))f(~,(8) + h(8, x+, ~<8))) d8 < ~/6. 
0 

Fur thermore  if 0 ' =  e/24M([ly,~l[lq-K), we have 

t 

f llS(t', s) - S(t, s)l I Ilg(8, x(s), u(s)) l[ & =< 

t t 

=< 2~f(~o,<8)+ 0,(~,+ + ~,(8, x+, ~<8)))) ~8_< 2~f~o.<8)~ + ~0(lI~lI~ + K). 
t - - ~  t - - ~  
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t 

So ff s~> 0 is s.t. 2M[y~e.(s)ds< s/12, we have that: 

flls(t', s)- s(t, s)[l, fig(s, x(s), u(s))tl ds < ~/12 -t- ~/12 = 8/6, 

Hence finally we have tha t  

(3) f ]t ~(t', s) - S(t, s)[I" Jig( s, x(s), u(s))H egs < ~/6 -+- ~/o.  
o 

3 
From [1), (2) and (3) above, we coRclude tha t  for It' -- t t < min ( k)k=l we have 

for all x e {x.(.)},>~l 

::]x(t ~) -- x(t)[I < s/3 ~- e/3 -4- e/3 = s ==> {x.( ')},~l is equicont inuous.  

Also note tha t  for all n > 1 and all t ~ T we have:  

lix.(t)]] = ]IS(t, O)xo + fs( t ,  s)g(s, x(s), u(s))dsI] 
0 

f 

_-< + 
0 

b 

Milxo] ] + M f ( w ( s  ) + h(s,x(s), u(s)))ds~= iitxoH -~ Mt[Wl[x ~, M K - =  M .  
0 

Thus if B(O, J-f) is the closed ball in X of radius 2tTr, centered at  the origin, we ha 

for all n > 1 and all t ~ T :  

g(t, x~(t), u~(t)) e g(t, B(O, /1I), W) w = V(t). 

Because of hypothesis H(g)(3), for every t e T, V(t) is bounded (in fact relatively 
w-compact since X is reflexive). F rom hypotheses H(g)(1) and (2), we deduce tha t  
for every n > 1, t ~ g(t, xn(t), un(t)) is weakly measurable and since X is separable, 
by  Pett is  theorem (see DIESTEL-UHL [17], theorem 2, p. 42), is measurable. So from 
theorem 4.2 of W A G ~  [33], we get tha t  t --> Vl(t) = cony {g(t, x(t) ,  u~(t))}~>l is 
measurable and V~(t) c_ cony V(t) e Pwk~(X). Thus s --~ S(t, s) Vl(s) is measurable 
and P~(X)-valued. Invoking Riidstrom's embedding theorem (see HIAI-Um~- 
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aAKI [24]) we get tha t  fS(t, s) Vx(s) as ~ .P~JX). 
0 

So for a l l n ~ l a n d  a l l t e T  

t 

x.(t) ~ ,~(t, o),~.-r-f,s(t, s) v~(s) as ~ P~o(x) . 
0 

Now the Arzela-Ascoli theorem tells us that  {x.}._~ is relatively compact in 
O(T, X).  

Next let g.(t) = g(t, x.(t), u.(t)) e s We have already seen that  for all t e T, 
V~(t) e P ~ J X ) .  So t --> V~(t) is a Pwkr integrably bounded multifu~ction. 
Hence theorem 4.2 of [29] tells us that  S~ is w-compact in Z~(X) and by Eberlein- 
Smulian theorem sequentially w-compact. Since g. ~ S~,, by passing to a subse- 
quence if necessary, we may assume that  g ~  y e S ~ in Z~(X). Consider the Vl 

multifunetion 

~r = (~ e w :  ~ e P(t,  x(t), y(t)), h(t, x(t), u) < ~(t, ~(t), y( t ) )} .  

~irst we will show that  for every t e T, N(t) =/: O. From the definition of r we 
know that  for every m ~ 1 we can find u~ ~ U(t, x(t)) s.t. 

h(t, x(t), ,t),~ < ~.(t, xCt), y(t)) + 1/m and y(t) = g(t, ~,(t), ~,~) . 

As before, we may assume that  u~ 2+ ~t e U(t, x(t)). Then we get: 

h(t, x(t), u) < llm h(t, x(t), u,~) < r(t, x(t), y(t)) ::> u e N(t) =z-N(t) # O for all t e T .  

Next observe that :  

Gr y = {(t, u) e Gr P ( . ,  x( . ) ,  y( . ) ) :  q(t, u) < p(t)} 

where p(t) = r(t, x(t), y(t)) and q(t, ~t) = h(t, x(/), u). 
Note that  

P(t,  ~(t), y(t)) = (~ ~ v(t ,  xCt)): y(t) - g(t, ~(t), u) = k(t, u) = 0 } .  

Because of hypothesis H(U)(1), Gr U(' ,  x(-)) e B(T) • while (t, u) ~ k(t, u) 
is clearly measurable. 

Thus 

GrP ( . ,  x(.), y(.)) = {(t, u) e Gr U(., x(.)): k(t, u) = 0} e B(T) •  

Since P( 'b  q( ' , ' )  are clearly measurable, we conclude that  G r ~  B(T)XB(W) .  
Apply Aumann's selection theorem (SAI~-BEWE [31], theorem 3), to get u: T -+ W 
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measurable s.t. u(t) ~ N(t) for all t e T. Then from the definition of N(.  ) we have tha t  

y(t) -~ g(t, x(t), u(t)),  u(t) e U(t, x(t)), 

~(t, x(t), u(t)) < r(t, x(t), y(t)) . 

Since r(t, x, .) is coavex aad  X is reflexive, we can apply theorem 4 of CASTinG- 
CLAVZVR~ [8] and get tha~ 

b b 

< f r ( t ,  x(t), y(t)) dt < limfr(t,_ x~(t), g.(t)) dt < lira J ( x . ,  u.) =- J (x ,  %) m .  

o o 

But  we saw above tha t  (x, u) is admissible, So J(x ,  u) = m =~ (x, u) is the  de- 
sired optimal solution. Q.E.D. 

4 .  - R e l a x a t i o n .  

Scrutinizing the proof of theorem 3.1, we see t ha t  hypothesis H(Q) played a key 
role. Namely it gave us the convexity of r(t, x, �9 ) (claim 3) and then  through tha t  
property, we were able to extablish the lower semicontinuity of the cost functional 
and so obtain an optimal pair. In  this section we are going to see what  happens if 
we drop hypothesis H(Q). In  this case, in order to get optimal pairs, we need to pass 
to a larger system with measure valued controls known as the (~ relaxed system ~. 
This new augmented system has the following form: 

(**) s.t. 

b 

0 g  

- ~  A(t)x(t) § fg(*, x(t), z) 
X' 

x(O)=xo, ~ e ~  

here X(t) : (). ~ M~(Z): ),(U(t)) : 1} and S z dermtes the set of all trartsition pro- 
babilities which are selectros of X(-). 

I~  this section, T ~ [0, b], X is a separable Banach space and Z is a compact  
Polish space. 

We will need the following hypotheses. 

H(A)i:  the same us H ( A )  
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H(g)l: g : T x X x Z - + X  is ~ function s.t. 

(1) t-+g(t, x, z) is measurable;  

(2) (x, z) -~ g(t, x, z) is continuous; 

(3) for every t e T, g(t, . , . ) i s  bounded~ 

(4) for every e > 0, there exists ~p~(.)e L ~ s.t. 

Hg(t, x, z)][ < ~(t)  + eh(t, x, z) a.e. 

H(h)~: h: T X X x Z --> R+ is a function s.t. 

(1) t -> h(t, z, z) is measurable;  

(2) (x, z) --> h(t, x, z) is continuous; 

(3) h(t, x, z) g a(t) a.e., wish ~(.) e Z ~. 

H(U)~: U: T->_Pf(Z) is a measurable multifunction. 

As before by  a solution of the relaxed evolutioI1 equatio~ w e  understand a mild 
(integral) solution. Again we will make a hypothesis quaraateeiag tha t  our problem 
has content.  This hypothesis (as well as hypothesis H )  can be viewed as control- 
labil i ty type  hypotheses.  

Hal :  There exist admissible relaxed pairs (x, t )  for which we have J.(x, 4) < -}- oo. 
We will denote the value of original problem by  m and the value of the  relaxed 

problem by  m~. 

Tm~O~E~r 4.1. - I] hypotheses H(A)I , H(g),, H(h),, H(U4 and Ha~ hold, then 
problem (**) admits an optimal solution (x, 2) ~nd furthermore m----m..  

P:aoo~. - Let  { (x ,  2.)),> 1 be a minimizing sequence of problem ( .) .  Workirig 
as in the proof of theorem 3.1 we can show tha t  {xn}~> 1 is relatively compact in 
C(T, X). Also from theorem IV-2 of CASTAI~G-VALADIEI~ [9] we kuow tha t  {ln}n> 1 
is relatively  '(C(Z)))-compact. Since Z is compact, C(Z) is separable 
and then so is I~I(C(Z)). Thus theorem 1, p. 426, of DU~FOI~D-SOn~VAI~TZ [18] tells 

us tha t  {2.}~ x is metrizable in the w*-topology. Hence b y  passing to  a subsequence 
if necessary, we may  assume tha t  (x~, 4~) ~*~*.~ (a, 2) ia C(T, X)XZ~ B y  
identifying the space of CarathSodory integrands with Z~(C(Z)), we can see tha t  
2~--> 2 irt R(T, Z ) w i t h  the  weak topology. Applying theorem 3.1 of JAWEA~ [25] 
to the  Carath6odory integrands h and a -  h, we get tha t  

b b 

O Z  O Z  

--  J,(x, 2).  
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If  we can show tha t  (x~ 2) is an admissible relaxed pair~ we will have tha t  (x~ 2) 
is the desired optimal pair. By  definition we have:  

t 

xo(t) = s(t, o)~~ + f  fg(~, x.(~), ~)2.(~)(d~) ~ .  
0 Z  

Again using the result of 5awhar [25], we have tha t  

t t 

O Z  O Z  

t 

O Z  

x is a mild solution of the relaxed evolution equation 

(x, 2) is admissible relaxed pair. 

:*-J~(x, 2) = m~.  

Now we will show tha t  m ~ m~. 
Let  (x~ 2) be the optimal relaxed pair obtained above. Using corollary 3 of 

Balder [3]~ we know tha t  we can find measurable selectors u,( .  ) of U(. ) s.t. ~(u.) -+ 
ia  R(T, Z). Le t  x~(.) be an admissible t ra jectory corresponding to u~(.). Such 
trajectories exist by  hypothesis H ~ .  Then we have:  

x~(t) = act, o)xo §  s)g(s, x.(s), u.(s)) ds = 
0 

t 

= ~(t, 0)xo +~ ~s(t, ~)g(~, ~.(~), ~1 ~(~(8))(d~)e~. 
0 Z  

Once again we have t h a t  

t 

O Z  9 Z  

x.(t) -> x(t) . 

So as above we have tha t  J~(x~, ~(u,~)) -> J~(x, 2) -~ m~ => m~ >-= m.  On the other 
hand  it  is clear t ha t  m~ _~ m. So we conclude tha t  m ~--m~. Q.E.D. 
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5 .  - ~( B a n g - b a n g  ~ r e s u l t s .  

I~ the  section we tu rn  our a t tent ion to  linear systems and we obtain (~ bang- 
bang ~> properties of the trajectories of such systems. The first result  is aa  <~ approxi- 
mate  bang-bang ~) result,  while the second is an exact  (~ bang-bang )~ result. 

We consider the  following two systems: 

(,)' { ~ ( t )  = A(t)x( t)  + B(t)u(t)  

x(O) = xo , u e ,9~ 

and 

(**)' ~(t) = A(t)x(t) + B(t)u(t) 

x(o) = Xo, u e ~ .  

Denote  the  set of admissible trajectories of ( , ) '  by/~(Xo) and the  set of admis- 
sible trajectories of (**) '  by  P,(xo). We want  to relate those two sets. 

We will need the  following hypotheses.  
H(A)2: (A(t): t e l ' }  are uabou~de4 liaear operators on D(A(t)) c_ X, t h a t  gen- 

erate a strongly continuous e~(olution operator  0 ~ s G f ~ b. 
H(B) :  B e 35r176 Z(X)).  

H(U)~: U: T -->2z~(O) is graph measurable with t -+ [U(t)[ ~- sup {Ilzll: z e  U(t)} 
belongs in L x + .  

I a  this case the  state and control spaces X~ Z are two separable Banach spaces. 

Tm~ol~E~ 5.1. - I] hypotheses H(A)2, H(B), H(U)~ hold then P(xo)= P~(xo) 7 
the  closure taken  in the strong topology of C(T, X). Also the  set is convex. 

PROOF. -- Le t  x( . )  e P~(xo) and ~ > 0. Pick (~ > 0 s.t. for A _c Y Lebesque meas- 

urable with 2(A) < ~ (2 = Lebesgue measurable), we have fHB(s)ll'lU(s)lds < 
A 

.< e/dM~ where I]S(t~ s)l I ~ M for all 0 --< s ~  t_< b. Such a set exists because of the  
absolute cont inui ty  of the  Lebesgue ii~tegrM. Le t  0 = to < tl < ... < tn = b be ai1 
equipart i t ion of the interval  Y s.t. Its-- tk-l[ < ~ k e  {1~2~ ..., n}. By  definition 
we have:  

x(t~) e ,9(tl, O)xo + q~(t~) 

where q~(tl) efs(tl, s)B(s) cony U(s)ds. F r o m  theorem 3.1 of [26] (see also eorol- 
0 
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lary 4.3 of H~I-U~moAKI [24]), we know that 

clfS(t~, s) B(s) - -  
0 

con-v- U(s) ds = e l fS ( t l ,  s)B(s) U(s) ds . 
0 

So we c~n find % e S~ s.~. 

' q~(t,)--fS(t,, s)B(s)u~(s)d~ ] < (~' 
0 

with 0 < 3' _~ s ' / ~  M ~-1 an4 s' = mia (e/2, e/2M). 
k = l  

Set 

t 

y~(t) = S(t, O)xo + fS(t, s)B(s)ux(s) ds 
0 

t e [0, t l] .  

T h e n  clearly we have t h a t  [ly~(t~)- x(t~)I[ < (Y. 

~ e x t  we pass to the subinterval [t~,t2]. Again we have: 

$(t~) = S(t~, t~)x(t~) -~ q~(t~) 

where q,(t~)~t!S(t~, s)B(s)eeoc; U(s)ds. As above we can find u s e  S~ s.t. 

~2 

Q 

~2 

Set y~(t)= S(t~, t~)y~(tl)~-fS(t~, s)B(s)u2(s)ds for t e [tl, t2]. 
tx 

Eenee 

t~ 

tl  

t2 

_-< IfS(t~, t~)lt �9 lly,(t~)- x(tl)tl § fs(t~, s)B(s)u~(s)ds- q,(t~) ~= M(5'+ (~'= ~'(M-~ 1} .  
t~ 

C o n t ~ u i n g  this way we get u k e S~ and define for t e [tk-1, t~] 

s.t. y~(t) = S(t~, t~-l) y~-l(t~-l) + f s(t~, s) 13 (s) u~(s) ds . 
~lz- l 
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k 

For  this we will have tha t  lIy~(tk) -- x(t~)[] < ~' ~ M "+~. 
v = l  

If  we set 4 = i gEt~_,,t~]u~ we set t ha t  u e S~ and 
k = l  

t 

y(t) ----- S(t, O)xo-~--fS(t, s)B(s)4(s)ds = ~ gEt~_,,t~(t)y~(t) 
k = l  

0 

is a solution of ( . ) '  i.e. y(.)eP~(x0). Furthermore from our construction we have 
that l]y(t~)-- x(t~)][ < ~' for an ~ e  {1, . . . ,  ~} .  

Next let t e T arbitrary. Then t e (t~, t~+~] for some k e (0, 1, ..., n --  1}. 
Let  u e S L -  be the control generating x(-). We have:  

ocnv~r 

t 

[]y(t) -- x(t) ll = ~(t, t~)y(t~) + fS(t, s)B(s)a(s) ds -- 
t~ 

- -  sCt, t~)xCtk)--fS(t, s)BCs)u(s)ds ~ M rain (e/2, e/2M) + M2s/4M 
t~: 

Since t e T was arbi trary we conclude tha t :  

][y - -  x][ ~ _-_ ~ ~ / ~ ( X o )  = / ~ , ( X o )  �9 

Clearly P~(xo) is convex. Q.E.D. 

REi~ARK. -- An important  special case of the above theorem is when U(t)-= 
= ext  V(t) (the extreme points of V(t)), where V(.) is a P~o(X)-valued, integrably 
bounded multifunetion. F rom Benamara [6] we know tha t  U(" ) is graph measurable 
and so the theorem applies. Hence every t rajectory generated by  a control in S~ 
can be approximated by  trajectories generated from extremal controls ((~ bang-bang ~> 
controls). Thus theorem 5.1 can be viewed as an approximate (( bang-bang >> theorem. 
Our result extends the analogous ones by Hermes-ZaSalle [23] (X----R ") and Fat-  
torini [20] (infinite dimensional but  with t ime independent control constraint set). 

Next  we will present an exact ~( bang-bang >~ theorem1 For  this we will nee4 
to following set of hypotheses. 

H(A)3: The same as H(A). 
H(B)a: The same as H(B)~. 
H(U)s: U: T -+ P ~ ( X )  is integrably bounded. 
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TH~01~E~ 5.2. - l ]  hypotheses H(A)~, H(B)s and H(U)3 hold and if (x, u) is an 
admissible pair for (*)' then there exists another admissible pair (~, 4) s.t. ~(0) = xo 
~(b) = x(b) and 4( t )e  bdU(t) a.e. 

PR00F. - By  hypothesis we have:  

b 

x(b) = S(b, O)xo -~ fS(b, s)B(s)u(s) ds 
O 

b 

sS(b, O)xo + j  S(b, s)B(s) cony U(s) ds 
0 

b 

= S(b, O)xo +fS(b, s)B(s) cony b dU(s) ds 
0 

b 

= S(b, O)x. +fc-~-vnvS(b, s)B(s)b dU(s) ds 
0 

b 

= S(b, O l x o +  olfS(b, s)B(s)bdU(s)sds 
0 

(from the  corollary in p. 188 of [30]) 

(from theorem 3.1 of [26]). 

Bu t  from hypothesis H(A)~, S(b, s) is compact for 0 ~ s < b, while B(s)bdU(s) 
is bounded. So S(b,s)B(s)bdU(s) is compact. Then from R~dstrom's embedding 

b 

theorem we know tha t  fS(b,s)B(s)bdU(s)ds is compact. Hence finally we can 
write tha~: o 

b 

x(b) ~ S(b, O)xo + fS(b, s)B(s)b dU(s)ds . 
0 

This~ from the definition of the set valued integral, menas t ha t  the re  exists 
1 u ~ Nba ~ s.t. 

b 

= O)xo + f (b, s)B(s)4(s)as . 
0 

g 

Setting k(t) = S(t, O)x.+fS(t, s)B(s)4(s)gs, we see tha t  (k, 4) is the desired 
0 

new admissible pair. Q.E.D. 

RE~AI~K. -- In  a t ime optimal control problem, if (x~ u) is an optimal pair, then  
there is another t ime optimal pair (&, 4) for which 4(s)e  bdU(s). In  particular if 
the t ime optimal pair is unique, then  the control is ~( bang-bang ~ u(t)e b d U(t) a.e. 
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6.  - E x a m p l e s .  

In  this section we present some simple examples of control systems governed 
by  part ial  differential equations, to which the results obtained in the previous 
sections apply. 

EXAMPLE 1. -- L e t  T = [0, b] and W be a bounded, open domai~ in 2 "  with 
smooth boundary  /~ = 8W. We consider the following control sysgem define4 ca  
T x W :  

Ox(t, z) _ Ax(t, z) §  z, x(t, z))u(t, z) 
bt 

(,)~ x(O, z) = xo(z) on {0} x W 

x(t, z) ---- 0 on T x / '  

[ u ( t , z ) _ ~ ( z )  a.e.  

The cost functional has the following form: 

b 

O W  

We will make the following hypotheses. 

A) ]: T x W x R - - > R  is a function s.t. 

(1) (t, z) -+/(t, z, x) is measurable; 

(2) $ -> ](t, z, x) is continuous; 

(3) given e > 0 and M > 0, there exists ~o,,~(., �9 ) e L~(T x W) s.t. 

I/(t, z, x ) q  < w~.~(t, z) § ~h(t, z, x) a.e. 

for all [u] g M 

B) h: T x R " x R x R  -->R = R U { §  c~} is a function s.t. 

(1) (t, z, x, u) -+ h(t, z, x, u) is measurable; 

(2) (x, u) -+ h(t, z, x, u) is 1.s.c. ; 

(3) u --> h(t, z, x, u) is convex; 

(4) h(t z x u)<= o:(t, z ) §  b(t, z)]x] a.e. with ~(. , . ) ,  b ( . , . ) E Z ~ ( T x  W) 

e) ~( . )  e z~(s  

D) xo(.) ~ z~ (w) .  
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I~et A ----- A, with D(A) : H~(W) n H~(W). I t  is well known (see for example 
PAV~L [27], theorem 5.2, p. 214), t ha t  A generates a compact semigroup of con- 
tractions on X = L~(W). 

Le t  v :  T • X • X -+ X be the  Iqemitsky operator associated to 1(.,. )(.). 
Then we have:  

[F(t, x)u](z) = ](t, z, x(z)) u(z) . 

Our claim is t ha t  (x, u) --> F(t, x)u is sequentially continuous from X •  
into X~. So let (x~, u~) ~• (x, u) in Z~(W) • Then for every y~(.) e L~(W) 
w e  ~ a v e :  

<v, ~(t, ~.)~.> =fv(~)(F(t, x.)~.)(.)e. =fv(~) ](t, ., ~.(.))~.(~1,~. 
W W 

By passing to a subsequence if necessary, we m a y  assume tha t  x.(z) ---> x(z) a.e. 
Then: 

-~f  V(z) l(t, z, x(z)) u(z) dz = <V, F(t, x)u}  
W W 

=>.F(t, x.)u~ __%. F(t, x)u. 

Also, f rom Fubini 's  theorem, we have tha t  t -+ (% F(t, x.)u.} =f~p(z)](t, z, x.(r)). 
w 

.u.(z)dz is measurable an4 then so is t ~ <%F(t, x)u}. Since L2(W) is separable, 
we conclude tha t  t--> E(t, x)u is measurable. 

Final ly note tha t  for M = I]~0H2 we have 

[IF(t, x)uI]2~ ~,~1(t) + eh(t, x, u) 

for an [u] =< M ~ a  with r = i[~.~(t, ")ll~ ann ]~(t, x, ~) = f~( t ,  z, 
W 

Now rewrite system ( . )  as the following abstract  evolution equation: 

( , ) i  
I ~(t) = Ax(t) + ~v(t, x(t))u(t) 

x(O) = xo, l[ult ~ M .  

Because of hypothesis B(4) and using the growth assumption A(3) with e = 1, 
we see tha t  h(t,. ,  x, u) is L2(W)-bounded. So if x . - ~  x and u ~ - ~  u in X, from 
theorem 2.1 of Balder [4] we conclude tha t :  

.lira ~(t, x . ,  u.) = limfh(t, z, x~(z), u.(z))dz 
w 

>fh(t,  z, x(z), u(z)) = h(t, x, u) ~ (x, u) -~ h(t, x, u) 
w 

is 1.s.c. on X•  
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Furthermore, because of hypothesis B(1), we have that ~t(.,-,.) is measurable. 
Also because the control enters linearly in the system, it is easy to check that  

the orientor field Q(t, x) has convex values for every (t~ x) e T •  
Finally set B(O, M) = (veZ~(W): ]]vlI2~ []~]]~= M}. This is a weakly compact 

convex subset of X. 
Therefore all hypotheses of theorem 3.1 are satisfied So according to that theorem 

there exists an admissible pair (x~ u) of (*)1 s.t. it minimizes 

b 

J(x, u) =f~( t ,  x(t), u(t)) dt .  
0 

EXAMPLE 2. - In system (*)1 instead of the Laplacian, consider the operator 
V,(p(z)V,x(t, z)) with p: W-+ R+ continuously differentiable. Set A x  ---- V~(p.V x), 
with domain D ( A ) =  H~o(W)n H~(W). Then from the compactness criterion of 
Brezis [7] (see also PiVET, [27], p. 214)~ we know that A is an unbounded linear 
operator generating a compact linear semigroup of operators defined on X -= Z~(W). 
The rest are as in example 1 analysed above. 

EXAMPLE 3. - For the controlled heat equation 

(*)8 

3x(t, z) = Ax(t, z) + u(t, z) 

x ( t , z ) = O  on T x F  

x(O, z) = Xo(Z) on {0} • W 

lu(t, z)l ~ q~(z) with q~(.) e L~(W) 

the (~ bang-bang i) result obtained in section 5 (theorem 5.2) holds. So we can find 
a (~ bang-bang i) time optimal control for system (*)3. 

:REMARK. - -  We can also treat boundary control problems, which, following the 
techniques of Barbu [5], we can transform to abstract evolution equations on a 
Hilber~ space, that  admit mild (integral) solutions. For details we refer to Barbu [5]. 
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