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On the Optimal Control and Relaxation
of Nonlinear Infinite Dimensional Systems (*).

NIKOLAOS S. PAPAGEORGIOU (*¥)

Summary. — In this paper we study optimal conirel problems for infinite dimensional systems
governed by a semilinear evolution equation. First under appropriate convexilty and growth
conditions, we establish the ewistence of optimal pairs. Then we drop the convewity hypothesis
and we pass to o larger system knmown as the « relaved system». We show that this system
has a solution and the value of the relaved optimization problem is equal to the value of the
original one, Newt we restrict our attention to linear systems and establish two « bang-bang »
type theorems. Finally we present some examples from systems governed by partial differ-
ential equations.

1. — Introduction.

In this paper we study optimal control problems for distributed parameter con-
trol systems governed by a semilinear evolution equation. We prove that under a
standard growth condition relating the vector field with the integrand of the cost
functional (Lagrangian) and a well known convexity hypothesis on certain orientor
field, we can guarantee the existence of optimal controls. Then we examine what
happens when we drop the convexity hypothesis on the orientor field made earlier.
In this case in order to obtain optimal controls, we need to consider a larger system
with the controls being measure valued (« relaxed controls » or « generalized curves »
or «sliding regimes»). For this augmented system («relaxed» or «convexified »
system), under the same growth hypothesis as before, we can establish the existence
of optimal solutions. Then we turn our attention to linear systems and we prove two
« bang-bang » type theorems for them. The first can be viewed as an « approximate
bang-bang » result and says that an optimal relaxed trajectory can be approximated
in the supremum norm by trajectories of the original system which are generated by
external controls (i.e. controls which at each time instant have their values at the
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extreme points of the control constraint set, « bang-bang controls »). The second,
is an exact « bang-bang » result and shows that for any admissible pair, there is
another with the same ends which is « bang-bang» (in the sense that the control
takes values on the boundary of the control constraint multifunction). In particular
then this result implies that for any optimal solution (if it exists), there is also an
optimal « bang-bang » solution. So if the optimal solution is unique, then it has to
be « bang-bang ». Finally, we close this paper with examples from control systems
governed by partial differential equations.

Since we assume that the unbounded linear operators A(¢f) generate a strongly
continuous evolution operator S(7, s) and so the trajectories admit an integral rep-
resentation, our results can be viewed as an infinite dimensional extension of the work
of ANGELL [1], [2]. Also several of the ideas and key hypotheses have their roots
back in the fundamental works of CeEsARI [10], [11], [12], [13]. The idea of extend-
ing the family of admissible controls to measure valued ones goes back to the works
of YOUNG [36] (« generalized curves ») FILIpPov [21] (« sliding regimes »), WARGA [34],
[35] (« relaxed controls») and GHoUILA-HOURI [22] (« commandes limites »).

2. — Preliminaries.

Let (2, 2) be a measurable space and X a separable Banach gpace. Throughout
this paper we will be using the following notations:

P, = {4 C X: nonempty, closed, (convex)}
and

Piwe= {4 € X: nonempty, (w—) compact, (convex)} .

A multifunction F: Q — P,(X) is said to be measurable if for all ze X,
o — d(z, F(w)) = inf {|z — |: v € F(w)} is measurable. When there is a o-finite
measure u(-), with respect to which X is complete, then the above definition of
measurability is equivalent to saying that GrF = {(w,2)e 2xX:ve F(w)} €
€ X X B(X), where B(X) is the Borel ¢-field of X (graph measurability). By S} we
will denote the set of selectors of F(-) that belong in the Lebesgue-Bochner space
LYX) ie. 8L = {fe L}X): f(w) € F(w)p-a.e.}. This set may be empty. When F(-)
is measurable and o — |F(w)| = sup {|#]: # € F(w)} belongs in L' (such an F(-)
is said to be integrably bounded), then 8%z« @. Using S} we can define a set valued
integral fro #(-) by setting fF ={ff: fe S;}.

2 Q2

Let Z be a completely regular Hausdorff space and B(Z) its Borel o-field. By
M*(Z) we will denote the sace of probability measures on Z. A transition probability
is a function A: @xB(Z) — [0,1] s.t. for every A€ B(Z), A(-, A) is Z-measurable
and for every w e 2, Aw, -) e ML(Z). We will denote the set of all transition pro-
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babilities from (Q, Z, u) into (Z, B(Z)), by R(£2, Z). Following BALDER [3], (see

also Warga [35]) we can define a topology on R({2, Z), called the weak topology.

So let f: QxZ —~ R be a Carathéodory function (i.e. w — f(w,#) is measurable,

@ — f(w, #) is continuous and |f(w, »)] < a(w)p-a.e, with «(-)e L) and define

I;: R(Q, Z) > R by I(4) =] [f(», 2) At)(d2) du(ew). The weakest topology on R(Q, Z)
Q7

for which those functionals {I,(-): f = Carathéodory} are continuous, is the weak
topology on R(£, Z). Note that when £ is a singleton R(Q, Z) = M}(Z) and the
weak topology is the narrow topology (see DELLACHERIE-MEYER [16]). Finally
recall that if ¥, V are topological spaces F: ¥ — 27-{0} is said to be upper semi-
continuous (u.s.c), if for all UCV open, F*+(U) = {y € Y: F(y)C U} is open.

3. — An existence result.
Let T = [0, b] = a bounded closed interval in B, X a separable reflexive Banach

space and Z a separable Banach space which whill model the control space.
The optimal control problem that we will study is the following:

b
inf J (@, u) = f h(t, o(t), ult)) dt

s.b. #(8) = AQ@)a(t) + g(t, #(2), u(t))

#(0) = @y, ult)e U(t, 2(t)) ae.

We will make the following hypotheses concerning ().
H(A): {A(%): te T} are linear unbounded operators on D(A()) € X that generate
a strongly continuous evolution operator S(i,s) which is compact for t— s> 0.

H(g): g: TXxXXZ — X is a function s.t.
1) t — (t, », ) is meagurable

(2) (x, u) — g(t, », w) is sequentially continuous from X xZ, into X, (here
X, Z, denote the Banach spaces X, Z with the weak topology).

(3) for every te T, g(t -, +) is bounded.
(4) for every &> 0 there exists y,(-)e Ll s.t.

”g(t’ Z, u) “ S%(t) _l‘ Eh(ty &, /M’) a.e,

H(h): h: TXXXZ - R = RU{+ oo} is & function s.t.
(1) @, @, u) — h(¢, 2, u) is measurable

(2) (%, w) — h(t, x, u) is sequentially ls.c. on X xZ,
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H(Q): For every (t,x)e T'xX the set
Q@ z) = {(u, n): p>hlt, », u), n = g(t, #, w), w e U, @)}
i convex.
H(U): U: TXX — P,(Z) is a multifunction s.t.

(1) (¢, ») = U{#, #) is measurable and e U(¢, #) is u.s.c. from X into Z,.
(2) U{t, ) S W a.e. with we P, (Z).

The growth condition H(g)(4) was first introduced by CESARI-LA PALM-
NisHIURA [14] in order to esbablish certain compactness and closure properties.
Since then it became a popular tool among people working on existence theorems.
For an interesting comparison of this growth property with others used in the
literature, we refer to CESARI [13] (section 10.4). Hypothesis H(Q) is the convexity
hypothesis mentioned in the introduction and is needed to establish the lower semi-
continuity of the cost functional J(», ) in an appropriate topology. By a solution
of the evolution equation we will understand & mild (integral) solution.

A pair of functions #: T — X and u: T - Z that satisfy all the constraints of
problem (%) is an «admissible pair». In this case z(-) is called an « admissible tra-
jectory » and «() an ¢admissible control. To avoid trivialities we will need the
following hypotheses.

H: Bystem (%) has admissible pairs (z, ) 8.5, J (@, #) < + oo

We can now state our existence resulb:

TueoreM 3.1. If hypotheses H(A), H(g), H(h), H(Q), H(U) and H: hold, then
problem (%) admifs an optimal solution (z, u)

Proor. — Let P: TXX xX — 2% be the multifunction defined by:
P(t, z,n) = {ue U, 2): n = g(t, ®, u)} .
Also let r: TX X XX — R be the function defined by:
r(t, @, n) = inf {h(t, ©, u): w € P@E, , )} (inf = 4+ oo0).
Claim 1. — (4, 2, n) — r{t, @, n) is measurable.
Let A B and cousider the level seb
L= {(txnelxXxX:r{,»n <i}.
We will show that Le B(T)xXB(X)xB(X). Let

L{t, m,my u) e TX X X X X W: hity @, u) < A we P(t,z,7)} .
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Observe that L = pro, Ly, x, - Also note that

L=6GPn{t,m,5,u)e TxXXXXW: h{t,s,u) < 4} .

From the definition of the multifunction P(-, -, -) we have:
GrP={(t,w,n, W) e TXXXXXW:5— gt,z, u) = 0} N Gr U

where U: TXX x X — P, (W) is defined by U(t, #, ) = U(t, z). Since by H(U)(L),
U(-,*) is measurable, then so is U(+,,"). Thus Gr U eB(ITXXXXXW)=
= B(T)x B(X) X B(X) X B(W) (see Wagner [33]). Also let {#},-; be dense in X*
for the Mackey topology m(X*, X). Such a set exists since X is separable (see lem-
ma II1-32 of CASTAING-VALADIER [9]). Then because of hypotheses H(g)(1), and (2)
for every n =1, t — (7, n— (¢, , u)) is measurable and (z, 5, u) - (xF, n— g(t, x, u))
is continuous from X X X X W, into R (here W, denotes the set W with the relative
weak topology). Since W, is compact metrizable (see DUNFORD-SCHWART} [181,
theorem 3, 0. 434), we can apply lemma III-14 of CASTAING-VALADIER [9] and get
that (¢, @, 7, u) — (a7, n — g(t, », u)) is measurable on

ITXXXXXWy={tt,w,n, u) € TXX XX XW: 09— glt, @, u) = 0} =
= {tyw, n,u)e TXXXXXW: (a%, n— g(t, x, u)) = 0} €

nz=1

€ B(T)xXB(X)xB(X)xB(W,) .

But from corollary 2.4 of Epear [19] we know that B(Z,) = B(Z) = B(W,) =
= B(Z,)N W = B(Z) "W = B(W). So finally we conclude that Gr P e B(T)X
X B(X) X B(X) x B(W). Also because of hypothesis H(h)(1)

{t, @, m, u) € TXX XX X W: hit, 5, u) < A} € B(T)x B(X) x B(X) X B(W).

Hence finally we can write that L € B(T) x B(X) x B(X )}B(W). Applying the Arsenin-
Novikov theorem (see DELLACHERIE [15] or SAINT-BEUVE [32]), we get that L =
= Projr, x«x L € B(R) X B{(X)x B(X) =r(+,*,) is measurable.

Claim 2. — For every t€ T, (z, 1) — r(t, %, n) is Ls.c. from X XX into R.

We need to show that if (,,7.) -3 (¥, %) in X x X, then we have r(t, , ») <
< lim »(t, #,, %,). From the definition of r, for every n=1, we can find u,e
e U{¢, »,) s.t.

h(ty @ny wa) < (8 @y ) + 1m0,
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Since u,€ U(t, ©,) C W—»Pwk;(Z), through the Eberliin-Smulian theorem and
by passing to @ subsequence if necessary, we may assume that u, ~> % in Z. Then
D= Gt Buy ) =1 = g(t, #, w) and wew—lim U(t,»,) C U(t,«) since U(t, -) is
m.s.c. from X into Z,. Also exploiting the sequential lower semicontinuity of
ht, +,+) (see H(R)(2)) we have:

h(ty @, w) SHW Bty 24y w,) < M7 (E, 24, 1) -
Because u € P({, #, n), from the definition of », we conclude that:

r(t, ) < imr(t, ., 5.) = (2, ) —r(i, 2, ) is Ls.c.

Olaim 3. — n — r(t, ®, n) 98 convex.

This follows by direct calculation, from hypothesis H(Q).
Now note that if in the growth condition H(g)(4), we take ¢ = 1, then we have:

0 < u,(t) -+ h(t, x, ) ae. =— p(t) < h(l, @, w) a.e.
Recalling that u,(-) € L* and because of hypothesis H: we have that:

— oo < m = inf {J (@, u): (w, u) is admissible} < co.

Now let {(#,,u,)},», be a minimizing sequence of admissible pairs. We may
agsume without any loss of genera]ity that for all n= 1 J(#,, 4,) < K, where K > m.
Taket,t' e T, t< ¢ and (2, u) € {(,, u,)},>,- We have
|2(@") — 2()] =

— st, 0)m0+("8(t', $)g(s, #(s), u(s)) ds — S(t, 0)a —fSt 8)g(s, (s), dsH<
< |8(t, 0)z— 8(;, 0)a,] +qut' ) lg(s, a(s), wis) ] ds +

+ {18, ) = Stt, 9)1 - Lgts, a(s), u(s)) ] ds

We will estimate each of the three quantities of the right hand side separateliy.
Because of the strong continuity of the evolution operator given e > 0 there exists
8, > 0 s.b. for [’ — t| << 6, we have:

(1) 18(t', 0)aw,— S, 0)xo]| < &f3.
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Also recall that for all (f,s)e{0<s<t<b}, |8 s)|< M and take 0 =
= g/6M(|y.]:+ K). Then using the growth hypothesis H(g)(4) we have:

j 18, 5)]- lg(s, ls), u(s) | ds < Mf (wols) + 0(wa(s) + 1(s, a(s), u(s)))) ds <
.
< M’fw(s)ds + M8(Ip)s+ K) < Mf polo) ds + o/6 .

We can find 62>0 8., if {t—t|<62, then Mfy)e(s ds<e/6 Thus ﬁna,lly
we have:

@ [ 18, )11+ 196s, a(5), w(s)) | ds <3 .

Finally let ¢, > 0 (to be chosen more precisely in the sequel) and congider:

[186¢, 9)— 80, )1 Igts, o(6), ) 145 =

t—ey ' : £
<[18, 5)— 8t )] lg(s, o), w(e))1 ds + [15(, 9) — 50, 9)] - g(s, als), u(s)) | ds

0 t—ey

From proposition 2.1 of [28], we know that because of the compactness hypo-
thesis on 8(t, s) for #— s> 0, we have that ¢ — 8(, s) is continuous in the operator
norm, uniformly for all s s.t. {— s.is bounded away from zero. Thus we can find
05> 0 s.t. for [t' — | < &; we have |S(t,s) — 8(, s)| < e/6(|y:],+ K) for all se T
8.6 I— s=¢>0 and so we get that
i—ey

[187, 91— 56, 91 -Ig(s, ale), u) s <

0

t—ey

<(e/6(lps] .+ K)) f (wuls) + h(s, a(s), u(s))) ds <

b
<el6((Ipdu+ B ( [ () + (s, 2(6), u(s))) ds < ¢6
0
Furthermore if 0’ = ¢/24 M(|y, |, + K), we have
i

[18w, 9~ 8¢, )1 1966, 2(5), uis) ] ds =

t—ey

i

¢
= 2Mf(zpoz(s) - 0’(1/}1(8) + h(s, (s), u(s)))) ds < 2Mfwgr(s)ds + 2MO(|y|,+ K) .

b—gy i~y
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t
So if &> 0 is s.b. 2M[yq(s) ds < £/12, we have that:

f~8,
fl}S(i’, s) — 8(t, 8)[ - 19(s, (), u(s)) | ds < &/12 + £/12 = ¢&[6 .
t—&y

Hence finally we have that

&

(3) f 18(t, 5) — 8(, 8)| - |g(s, #(s), u(s))] ds < £/6 + &6 .

9

From [1), (2) and (3) above, we conclude that for [t — #| < min (4,);., we have
for all we {w,(* )},

(@) — #(t)| < /3 + /3 + &/3 = & = {,(-)},»; Is equicontinuous .

Also note that for all » > 1 and all te T we have:

l2a®)] = 18, 0)as -+ [8(, 5)g(s, a(s), uls)) ds| <

¢
< Miao] + M (i) + h(s, a(s), u(s)) ds =

IIA
=
B
+-
=,
=
+
=
5
kY
A
s
)
+
IS
3
=
=
S

Thus if B(0, i) is the closed ball in, X of radius M, centered at the origin, we ha
for all n» > 1 and all e T':

w

g(t, 2.(1), (1)) € g(t, BO, A, W) = V(t).

Because of hypothesis H(g)(3), for every i€ T, V(t) is bounded (in fact relatively
w-compact since X is reflexive). From hypotheses H(g)(1) and (2), we deduce that
for every n > 1, t = g(t, #.(t), u.(t)) is weakly measurable and since X is separable,
by Pettis theorem (see DIESTEL-UHL [17], theorem 2, p. 42), is measurable. So from
theorem 4.2 of WAGNER [33], we get that ¢ — V,(t) = conv {g(t, ©,(t), %,(®))}nz: 18
measurable and V,(f) C conv V() € Puw(X). Thus s —> 8(f, 3)Vi(s) is measurable
and P, (X)-valued. Invoking Ridstrom’s embedding theorem (see HIAT-UME-
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GAKI [24]) we get that fS(t, 8)Vy(s)ds € P (X). So for all n =1 and all teT
0

t
(1) € S(t, 0), - f 8(t, 5) Va(s) ds € Py (X) .
0

Now the Arzela-Ascoli theorem tells us that {x},-, is relatively compact in
o, X).

Next let g.(t) = g(t, #4(t), ua(t)) € LY(X). We have already seen that for all i e T,
Vi(t) € Pypo{X). So t —V,(#) is & Py(X)-valued integrably bounded multifunction.
Hence theorem 4.2 of [29] tells us that S} is w-compact in LX) and by Eberlein-
Smulian theorem sequentially w-compact. Since g, €8}, by passing to a subse-
quence if necessary, we may assume that g, % ye 8} in LY(X). Consider the
multifunction

N(t) = {ue W: ue P@, o), y(t)), b(t, (), w) < r(¢, x(2), y()} .

First we will show that for every te T, N(t) = §. From the definition of r we
know that for every m =1 we can find w, e U(t, #(t)) s.t.

h(ty %(t), u)m = r(t, 2(t), ?/(t)) +1/m  and y(f) = g(ty ©(t), “m) .
As before, we may assume that w, ~> u € U(t, #(f)). Then we get:
h(t, z(t), w) < Um h(t, (1), ua) =< r(t, 2(1), y(t)) =>ue N(@)=>N(E) %0 forallteT.

Next observe that:
Gr¥N = {(t; u) e GTP(" 2(*), ?/()) q(t, u) §P(t)}

where p(f) = r(¢, x(t), y(t)) and q(t, ») = h(t, m(t),lu).
Note that

P(t, #(t), y(t) = {we U, 2(t)): y() — g(t, #(t), w) = k(t, w) = 0} .
Because of hypothesis H(U)1), Gr U(-,»(-)) € B(T)xB(W), while (¢, u) — k(t, u)
is clearly measurable.
Thus
Gr P(-, »(-), y(*)) = {(t, u) € Gr U(+, 2()): k(, u) = 0} € B(T) x B(W).

Since p(-), q(-,*) are clearly measurable, we conclude that Gr N e B(T)xB(W).
Apply Aumann’s selection theorem (SAINT-BEUVE [31], theorem 3),toget u: T > W
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measurable s.t. u(f) € N(f) for all t € T. Then from the definition of N(-) we have that

y(t) = !](ty x(t), u(t)) y u(t) € U(t7 m(t)) )

Since #(t, #, ) is convex and X is reflexive, we can apply theorem 4 of CASTAING-
CLAUZURE [8] and get that

But we saw above that (v, u) is admissible, So J(z, u) = m = (», ) is the de-
sired optimal solution. Q.E.D.

4. ~ Relaxation.

Scrutinizing the proof of theorem 3.1, we see that hypothesis H(Q) played a key
role. Namely it gave us the convexity of 7(¢, #, ) (claim 3) and then through that
property, we were able to extiablish the lower semicontinuity of the cost functional
and so obtain an optimal pair. In this section we are going to see what happens if
we drop hypothesis H(Q). In this case, in order to get optimal pairs, we need to pass
to a larger system with measure valued controls known as the «relaxed system ».
This new augmented system has the following form:

inf J,.(x, u) h(t, (t), 2) A(t)(dz) dt
jf
sk 8.5, .
(a2) B) = A@alt) + f g(t, alt), 2) A(0)de)
2(0) =@, A€,
here X(f) {} e Mi(Z): W(U)) = 1} and 8, denotes the set of all transition pro-
ba,blhmes which are selectros of 2(-).
In this section, 7 == [0, 5], X is a separable Banach space and Z is a compact

Polish space.
We will need the following hypotheses.

H(A);: the same as H(A)
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H(g): 90 TXxXxZ — X is a function s.t.

(1) t — g(t, », 2) is measurable;

2) (», 2) = g(t, , 2) is continuous;

(3) for every te T, g(t, -,-) is bounded;

(4) for every &> 0, there exists u,(-) e L* s.t.

la(t, 2, 2) ][ = #’e(t) =+ ¢eh(t, », 2) a.e.

Hh): b: TXX XZ — R, is a funetion s.5.

(1) ¢ — h{t, z, 2) is measurable;
(2) (», 2) = h(, », 2) is continnous;
(3) h(t, 7, 2) < «(t) a.e., with «(-)e Lt

H(U),: U: T — Py{Z) i3 & measurable multifunction.

As before by a solution of the relaxed evolution equation we understand a mild
(integral) solution. Again we will make a hypothesis quaranteeing that our problem
has content. This hypothesis (as well as hypothesis H,) can be viewed as control-
lability type hypotheses.

Hey: There exist admissible relaxed pairs (z, 1) for which we have J,(x, 1) << -+ oo.

We will denote the value of original problem by m and the value of the relaxed
problem by m,.

ToaroREM 4.1. — If hypotheses H(4),, H(g),, H(h);, H(U), and Ha, hold, then
problem (%#) admits an optimal solution (x, A) and furthermore m = m,.

Proor. — Let {(#,, 4,)},>; be a minimizing sequence of problem (). Working
a8 in the proof of theorem 3.1 we can show that {r,},., is relatively compact in
(T, X). Also from theorem IV-2 of CASTAING-VALADIER [9] we know that {1 },-,
is relatively w( *(M(Z)), LI(O(Z)))-eompact. Since Z is compact, C(Z) is separable
and then so is L*(C(Z)). Thus theorem 1, p. 426, of DUNFORD-SOHWARTZ [18] tells
us that {2}~ is metrizable in the w*-topology. Hence by passing to a subsequence
if necessary, we may assume that (s, 4,) 2> (v, 1) in O(T, X) x L(M(Z)). By
identifying the space of Carathéodory integrands with L'(C(Z)), we can see that
An—> 2 in R(T, Z) with the weak topology. Applying theorem 3.1 of JAWHAR [25]
to the Carathéodory integrands A and «— h, we get that

b

b
nmf f h{t, 24(t), 2) A(t)(de) @t = m, = f f h(t, alt), 2) A@)(de) dt = J,(x, ) .

0 Z
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If we can show that (x, 1) is an admissible relaxed pair, we will have that (@, A)
is the desired optimal pair. By definition we have:

¢
@) = 8, 0)au-+ [ [g(s, 24(8), 2) 22(s)(de) ds
0 Z

Again using the result of Jawhar [25], we have that
¢

fg 8, X,(8 8)(dz) ds »ffg 8, w(s) #) A(s)(dz) ds

QO Z
¢
= a(t) = 8¢, 0)a, + f f a(s, ©(s), 2) Ms)(de) ds
0z

=g i8 a mild solution of the relaxed evolution equation
= (x, A} is admissible relaxed pair.
=J.{x, 1) = m,.

Now we will show that m = m,.

Let (2, 1) be the optimal relaxed pair obtained above. Using corollary 3 of
Balder [3], we know that we can find measurable selectors u,(-) of U(+) s.t. d(u,) = A
in R(T,Z). Let w.(-) be an admissible trajectory corresponding to u,(-). Such
trajectories exist by hypothesis H, . Then we have:

i
za(t) = 8¢, 0)a, —{-f:S'(t, 8)g(s, @n(s), Uq(s)) ds =
o
1
= 8(t, 0)a0+ [ [S(t, 8)9(s, w2(s), #) 8(un(s)) (@) ds
0Z

Once again we have that

t

fS(t, 8)g(8, 2a(8), 2) 8(ua(s))(d2)ds ~—>J fﬂt 5)9(s, (s), 2) A(s)(dz) ds = w,(t) — a(t) .
8z 0z

So as above we have that J,(2,, 6(%.)) — J(x, 1) = m, =>m, = m. On the other
hand it is clear that m, << m. So we conclude that m =m,. Q.E.D.
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5. — « Bang-bang » results.

In the section we turn our aftention to linear systems and we obtain « bang-
bang » properties of the trajectories of such systems. The first result is an « approxi-
mate bang-bang » result, while the second is an exact « bang-bang » result.

We consider the following two systems:

oy B(t) = A@)a(t) + B)u()
20)=w,, wuel}
and
[ #(1) = A(t)a() + BH)u()
(%)’
z(0) =@, welSi_, .

Denote the set of admissible trajectories of (%) by P(#,) and the set of admis-
sible trajectories of (%) by P.(x,). We want to relate those two sets.

We will need the following hypotheses.

H(A),: {A(t): te T} are unbounded linear operators on D(A(f))C X, that gen-
erate a strongly continuous evolution operator 0= s =<¢<b.

H(B): Be L~(T, L(X)).

H(U)y: U: T —2°\{0} is graph measurable with ¢ — |U(t)] = sup {|2|: 2€ U@)}
belongs in L}.

In this case the state and control spaces X, Z are two separable Banach spaces.

TeEoREM 5.1. — If hypotheses H(A),, H(B), H(U), hold then P(z,) = P (=,),
the closure taken in the strong topology of C(T, X). Also the set is convex.

Proow. - Let #(+) € P,(%,) and ¢ > 0. Pick § > 0 s.. for A C T Lebesque meas-
urable with A(4)<d (24 = Lebesgue measurable), we have f IB(s)| - |U(s)|ds <
A

< &/4M, where |S(t,s)| < M for all 0 < s<t<b. Such a set exists because of the
absolute continuity of the Lebesgue integral. Let 0 = t,<<t, < ..<t,=1b be an
equipartition of the interval T s.t. [t — 64| <6 ke {l,2,..,n}. By definition
we have:

@(8,) € 8(ty, 0)a, + ¢,(%1)

ts
where ¢,(,) ef 8(t;5 s) B(s) conv U(s)ds. From theorem 3.1 of [26] (see also corol-
0
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lary 4.3 of HIA-UMEGAKI [24]), we know that
£y by
el f S(t,, s)B(s) conv Uls)ds — cl f S(t1, $)B(s) U(s)ds .
[ 0
So we can find u, € S} s.b.

0t — fhé*(tl, $) B(s)ua(s) ds|| < &

H
|

w
with 0 < ¢ = &'/> M*™ and & = min (¢/2, /2M). Set
k=

1
i
nlt) = 8, 0)a0+ 8¢, ) B@)mE)ds  te[0,1].
0

Then, clearly we have that |y.(f,) — a(t)] < &'
Next we pass to the subinterval [4,, ¢,]. Again we have:

@(t;) = Sty t)w(ty) + ¢.()

ta
where ¢,(,) € f 8(t,, 8)B(s) ccov U(s)ds. As above we can find u, e 8} s.t.
iy E

0:) — 8, &) Bls) (o) ds|| < &
2%
Sebt yy(t) = S(&, 8w (ty) —}—ﬁS’(tE, 8)B(s)uy(s)ds for te[t,1,]. Hence
21

=

ts
a0t — (t)] = ||ty 6)3(0) + [0, ) Blo)a(s) ds — B(t, b)) — gl
by

< M§ -+ 8 =§(M+1).

s

< 18 8- fath) — 2] + || [S, ) B6)usls)ds — (6
5

Continuing this way we get u, € S} and define for ¢ € [t #;]

te
8.5, Yult) = e, tems) Yrsltos) + f 8(ts, ) B(s)wels) ds .

7Y
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k
Tor this we will have that [y.(t) — @(t.)| < 6’ > M™.
) ’ r=1

n
If we seb 4= 2 Xy, W% Wo seb that we 8} and
k=1

¢ n
() = 8, 000+ [8t, ) BE)8s)ds = 3 i, 1a02,0)

is a solution of (%) i.e. ¥(:) € P:(x). Furthermore from our construction we have
that [y(t) — 2(t)| < & for all ke {1,...,n}.

Next let te T arbitrary. Then ¢ € (4, fx] for some ke {0, 1, .., n— 1}.

Let ue 8 be the control generating x(-). We have:

i
l9(t) — o] = |[8t, 89t + [0, 9) Bls) (s) ds —
tx
te
— 8, )ty — f S, s)B(s)u(s)ds” < M min (ef2, &2 M) + M2/4M — 5.
e

Since ¢t € I' was arbitrary we conclude that:

ly — 2l < & = Plag) = Py(a0) -
Clearly P.(z,) is convex. Q.E.D.

REMARK. — An important special case of the above theorem is when U(l) =
= ext V() (the extreme points of V(t)), where V(-) is a Py, (X)-valued, integrably
bounded multifunction. From Benamara [6] we know that U(-) is graph measurable
and so the theorem applies. Hence every trajectory generated by a control in S}
can be approximated by trajectories generated from extremal controls (« bang-bang »
controls). Thus theorem 5.1 can be viewed as an approximate « bang-bang » theorem.
Our result extends the analogous ones by Hermes-LaSalle [23] (X = E*) and Fat-
torini [20] (infinite dimensional but with time independent control constraint set).

Next we will present an exact « bang-bang » theorem, For this we will need
to following set of hypotheses.

H(A);: The same as H(A).

H(B);: The same as H(B),.

H(U);: U: T — Py(X) is integrably bounded.
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THEOREM 5.2. ~ If hypotheses H(4),, H(B); and H(U); hold and if (x, u) is an
admissible pair for (*)’ then there exists another admissible pair (£, 4) s.t. £(0) = =,
£(b) = () and 4()ebdU(?) a.e

Proor. ~ By hypothesis we have:

b

2(b) = 8(b, 0)z, -+ fS(b, 8)B(s)u(s) ds
9
M —
e8(b, 0)xy + | S(b, ) B(s) conv U(s)ds

0

b
S(b, 0)x, f (b, 8)B(s convde(s)ds
9
= 8(b, 0), —‘g—fconv 8(b, s)B(s)bdU(s)ds (from the corollary in p. 188 of [30])
= 8(b, 0)&, + elfS(b, $)B(s)bdU(s)sds (from theorem 3.1 of [26]) .
L]

But from hypothesis H(4);, S(b, s) is compact for 0 < s < b, while B(s)bdU(s)
is bounded. So 8(b, s)B(s)de(s) is compact. Then from Ridstrom’s embedding

theorem we know that f S(b, s)B(s)bdU(s)ds is compact. Hence finally we can
write that:

b
2(b) € 8(b, 0)z, -+ f 8(b, ) B(s)bdU(s)ds
0

This, from the definition of the set valued integral, menas that there exists
%€ 8y 8.5

b
£(b) = S(, 0)w, + f 8(b, s) B(s)d(s) ds
0

i
Setting £() = 8(f, 0)x, + f S(t, s)B(s)%(s)ds, we see that (£ #) is the desired
: .

new admissible pair. Q.E.D.
REMARK. ~ In a time optimal control problem, if (», ) is an optimal pair, then

there is another time optimal pair (£, 4) for which 4(s) € bdU(s). In particular if
the time optimal pair is unique, then the control is « bang-bang » u(t)ebdU(t) a.e.
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6. — Examples.

In this section we present some simple examples of control systems governed
by partial differential equations, to which the results obfained in the previous
sections apply.

Exampre 1. — Let T = [0, 5] and W be a bounded, open domain in R* with
smooth boundary I'= ¢W. We consider the following control system defined on
TxW:

aw(atz ?) _ Ax(t, 2) - 1(t, 2, x(t, 2)) ult, 2)
(%) 2(0, 2) = ®y(2) on {O} XW

2(t,2)=0 on TxI

lult, 2) < @(2) a.e.

The cost functional has the following form:
b
ffh(t, 2, o(t, 2), u(t, 2)) dzdt .
ow

We will make the following hypotheses.

A) f: TXW xR - R is a function s.t.
(1) (¢, 2) - f(t, 2, ) is measurable;
(2) # —> (1, 2, #) is continuous;
(3) givene > 0 and M > 0, there exists y, ,(-, *) € L*(T X W) s.t.
[ty 2, 2yul = v, 4, 2) 4 eh(t; 2, ) a.e.
for all [u|< M

B) h: TXR"XRXR — R = RU{+ oo} is a function s.t.
(1)
@)
@)
(4) bt 2 & u) < aft, 2) + b(t, 2)|x| a.e. with «f-,-), b(-, )€ LT X W)

0) ¢(-)e LX(T).

D) wy(-) e L (W).

t, 2, @, u) — h(t, 2, v, ) is measurable;
(w, u) — R(t, 2, 2, u) is Ls.c.;

% — h(t, 2, @, u) Iy convex;
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Let A = A, with D(4) = HY{W) N HW). 1t is well known (see for example
PAvVEL [27], theorem 5.2, p. 214), that A generates a compact semigroup of con-
tractions on X = L} W).

Let F: Tx X xX ~»X be the Nemitsky operator associated to f(-,-)(*).

Then we have:

[F(t, x)u)(z) = f(t, 2, @(2)) u(?) .

Qur claim is that (z, #) — F(t, 2)u is sequentially continuous from X XX,
into X,,. So let (@,, u,) —=%> (v, w) in L2(W) X L3(W). Then for every y(-) e L¥(W)
we have:

Qpy Bty @n) )y = f w(E)(F (¢ ©a)wa)(2) de —fip 1(t, 2, @a(2)) wa(e) dz .

By passing to a subsequence if necessary, we may assume that x,(z) — x(2) a.e.
Then:

f V(@) 12, 2, 70(2)) ua(e) d2 -»J'zp(z) 1(t, 2, 2(@)) w(z) do = <y, F(t, )uy =
w
= F(¢, %)t — B, 2)u

Also, from Fubini’s theorem, we have that i — (v, F(t, ©,) %) f () f(t, 2, 2a(r)) -

a(2) dz is measurable and then so is { — {y, F'(t, #)u). Since L2(W) is separable,
we conclude that ¢ — F(t, #)# is measurable.
Finally note that for M = [¢|, we have

|12, w)ul = ¢, M(t) eh(t, @, u)
for all [u|< M and with ¢, ,(t) = [y, (% )], and h(t, z, u) fht 2, w(2), w(z)) dz
Now rewrite system (%) as the following abstract evolutlon equation:

Z() = A=(t) + P(t, x(t)) u(t)

(*)i
2(0) =z, |uf=M.

Because of hypothesis B(4) and using the growth assumption 4(3) with ¢ = 1,
we see that A, -, », u) is L*(W)-bounded. So if w,->> # and u, = v in X, from
theorem 2.1 of Balder [4] we conclude that:

lim A2, @, u,) — lim f h(t, 2, ,(2), Uun(2)) dz =
w

gfh(t, & @(2), u(2)) = ht, @, u) = (2, u) = h(t, @y u) is Ls.c. on XX Xy,
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Furthermore, because of hypothesis B(1), we have that f(-,-,-) is measurable.

Also because the control enters linearly in the system, it is easy to check that
the orientor field Q(t, ) has convex values for every (t,z)e T xX.

Finally set B(0, M) = {ve LA(W): |v|;< |@lls= M}. This is a weakly compact
convex subset of X.

Therefore all hypotheses of theorem 3.1 are satisfied So according to that theorem
there exists an admissible pair (», #) of (%), s.t. it minimizes

b
I (@, u) = f hit, a(t), u(t)) dt .
0

ExAMPLE 2. — In system (%), instead of the Laplacian, consider the operator
V. (p()V,2(t, 2)) with p: W— R, continuously differentiable. Set Az = V,(p-V ),
with domain D(4) = H}(W) N H*W). Then from the compactness criterion of
Brezis [7] (see also PAVEL [27], p. 214), we know that 4 is an unbounded linear
operator generating a compact linear semigroup of operators defined on X = L(W).
The rest are as in example 1 analysed above.

Exampre 3. — For the controlled heat equation

ox(t, 2)
ot

— An(i, 2) + ult, 2)

(%)s z(t,2) =0 on TxI

2(0,2) = wy(z) on {0}x W

[u(t, 2)| < @(2)  with @(-) e L*(W)

the « bang-bang » result obtained in section 5 (theorem 5.2) holds. So we can find
% « bang-bang » time optimal control for system. (%),.

REMARK. — We can also treat boundary control problems, which, following the
techniques of Barbu [5], we can transform to abstract evolution equations on a
Hilbert space, that admit mild (integral) solutions. For details we refer to Barbu [5].
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