Annali di Matematica pura ed applicata
(IV), Vol. CLIV (1989), pp. 99-109

Generating Functions for a Class of ¢-Polynomials (*).

H. M. SRIvAasTAVA - A. K. AGABRWAL

Summary. — Some simple ideas are used here to prove a theorem on generating functions for a
certain class of g-polynomials. This general theorem is then applied to derive a fairly large
number of known as well as new generating functions for the familiar q-analogues of various
polynomial systems including, for example, the classical orthogonal polynomials of Hermite,
Jacobi, and Laguerre... A number of other inferesting comsequences of the theorem are also
discussed.

1. - Introduction, Notations, and the Main Result.

A great surge of activities in the theory of g-series and g-polynomials has been
witnessed in recent years. Various g-extensions of well-known hypergeometric iden-
tities and quadratic transformations have recently been obtained by several workers.
These g-extensions are known to have important applications in many areas of pure
as well as applied mathematics, physics, and engineering. Workers in the field of
g-series and g¢-polynomials are realizing the need of extending all the important
results involving special functions to hold true for their g-analogues. With this objec-
tive in mind, we prove a general theorem on generating functions for an important
class of g-polynomials, and then apply this theorem not only to derive g-extensions of
several familiar generating functions, but also to deduce (for example) Jackson’s
g-Pfaff transformation [8] which ANDREWS [3, p. 527] used to prove g¢-analogues of
Kummer’s summation theorem and (the so-called) Gauss’s second theorem, Hahn’s
g-analogue [7] of Kummer’s first formula, and Jackson’s g-analogue [9] of the cel-
ebrated Pfaff-Saalschiitz theorem.

For real or complex ¢, lg] < 1, let
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for arbitrary A and u, so that

(Z; (1)0 =

A @)n=1—A1—2g)...(1—2¢Y, Vrnell,2,3,..}, and
(2 Q=[] (1 —2¢7).

=0

(1.2)

Define, as usual, a generalized basic (or ¢ —) hypergeometric function by (ef. [11,
Chapter 3]; see also [13, p. 347, Equation (272)])
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where, for convergence, |g] <1, and [2] < co when 7 is a positive integer, or || <1
when # = 0, provided that no zeros appear in the denominator.

We shall also need the Gaussian polynomial (or ¢-binomial coefficient) defined,
for all non-negative integers » and k, by (see, e.g., [4, . 35])

1, k=0,
" k 1___qn—1+1 .
(1.4) [L]: LI( ) it1gk=n,
0, iftk>n.

For a non-negative integer m, the familiar g-binomial theorem (cf. [4, p. 17,
Theorem 2.1])
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can be rewritten at once as

S 43 Dmtn yy (25 @) (A5 )

(1.6 —
(1.6) 2 GO, D, GO
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which, in view of (1.2), yields (1.5) when m = 0 (or when A is replaced by Ag—).
Making use of (1.6), we shall prove the following

THEOREM. — In terms of o bounded complex sequence {8, .}, generated by

o0 (Z.,Q)um
. Foly iy 45 8) = 2, o =0
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Sudt,
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define o family of basic (or q—) polynomials {f, y{(w; O, by

n/N1] n
(1.8) o ) =3 | | e = 0,2,2,0,
where N is a positive integer.
Then
2 (25 On e (A5 9), »
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provided that each side ewists, |t} <1, and |g| < 1.

2. — Proof of the Theorem.

Denote, for convenience, the left-hand side of our assertion (1.9) by £(f). Sub-
stituting for f,y(2z; q) from the definition (1.8) into Q(¢), and inverting the order of
summation, we have

)
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provided that the series involved converge abselutely.
Now we sum the inner series by appealing to (1.6) with m = Nk, and we find
for J{|<1 and |g| <1 that

M5 9)e € (45 Qs .
0= T3 0 20 0 elas
Interpreting this last expression by means of the generating relation (1.7), we are
led immediately to the theorem.

REMARK. — For substantially more general classes of ¢-generating functions, and
for their multivariable extensions, the reader should refer to Section 3 of 2 recent
paper by SRIVASTAVA [12].

3. — Applications.

We begin by applying our theorem to derive generating functions for the
g-analogues of many of the classical orthogonal polynomials. Setting

nin—-1)
x4

Soa= " oo
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in our theorem, we find from (1.8) that

"
fn,1(w5 q) =9, 4, —x¢"| = (’i?—,jg)—; Ljf‘)(w; q),
“q ; Q’ q n

where L{¥(w; q) denotes the g-Laguerre polynomial defined by (cf. [6])

q "
(3.1) IO(w; q) = LD g 4y — g
(45 Dn . )

'OCQ 3

Thus our theorem yields the following generating funection for the ¢-Laguerre
polynomials:

;L ’
(3.2) S B0 10; = Wi l= g, ¢, —at],
w=0(2%45 q)n H Q)co “q, Z,t;

which provides a g-extension of a well-known generating function for Laguerre
polynomials [14, p. 132, Equation (5)].
Next we consider the little g-Jacobi polynomials defined by (f. [6])

qa-, “ﬂqm‘l;
(ag; ¢)n
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and our theorem with N =1, and
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gives us the generating function:
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For A = 0, (3.4) reduces immediately to
- i . 1
3.5 (o, BE™) (g « == - ] g, 2qt
52 e ] I
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which is a g-extension of a known generating function for Jacobi polynomials ([1,
p- 159, Equation (3.5)]; see also [14, p. 170, Problem 19 (i)]).
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Setting

(apq; Qulvg[r; q),
(825 Dn(vq; @)

H

85,0 = (—1)rgino=

we observe from (1.8) that

(@75 )
(845 On
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in terms of the ¢-Hahn polynomials defined by

g, afqrt, @;
(3.6) Qn(wy o, /37 V]Q) = 9, q9,9
aq, vq )
or, equivalently, by
g, afqrtt, vy s
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Our theorem when applied to the ¢-Hahn polynomials yields the generating function:

2y 4B, vqlx;
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Similarly, for the g-Meixner polynomials defined by
97" %3

qn+1
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B

we obtain the generating function:

Ay
21 (25 )n (45 q) qt
3.10 — e M (2 "= 2.0 q9,—
G102 B g o, T B0 = R g

B, 7t;
In particular, (3.10) with A = g yields

5
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which provides a g¢-extension of a known generating function for the Meixner poly-
nomials [5, p. 225, Bquation 10.24 (13)].

The definitions (3.3) and (3.9) imply the following relationship between ¢-Meixner
polynomials and the little ¢-Jacobi polynomials:

(3.12) M (x5 B, vig) = (¢; q)npslﬁ/a,m/ﬁqn)(%) ,

which can be used to show that the generating functions (3.4) and (3.10), and indeed
also (3.5) and (3.11), are essentially the same.
Now we turn to the g¢-Charlier polynomials defined by

q=", &3
n+1
(3.13) Gn(m; aiq) == 2@1 q; - o
0
for which our theorem with N = 1, and
Sue= @ 0(@; @)ns
readily yields the generating function:
Ay 85
(45 @) (2t q) at]
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In its special case when A = 0, (3.14) reduces immediately to

@;

i 1 gt
=" ] g, — —
G0, o) ° Tl
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(3.15) 2. ou(@; alg)
n=0

which is a g-exfension of a known generating function for Charlier polynomials
[B, p. 226, Equation 10.25 (8)].
Setting

Sn,a = (" 1)ﬁqén(n—l) ’
the definition (1.8) assumes the form:

fn,l(m5 Q) = (w; Q)nr
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and our theorem immediately yields the identity:

A, 3 A

ﬂ»t'
(3.16) B, gt =HiDe g

t.
0 ; ( 7Q)oo )Lt;

q, %t

?

which is, in fact, contained in Jackson’s formula (3.27) below.
On the other hand, in view of Heine’s transformation (ef. [4, p. 19, Corollary 2.3];
see also [13, p. 348, Equation (275)])

o, b; (bs ) ) 2z, ¢/b;
. 2| = 2 Dol?5 §)or b
(347) P B (€ 0023 1), 20" Lo
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the first member of (3.16) can also be expressed as

;u, i , ; t, 07
(3.18) B, g,1| =& Dl Do g

0 ; e it ;
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Comparing (3.16) and (3.18), we readily obtain [7, p. 374, Equation (10.2)]

a, 0; ) bla;
(3.19) Dy §, 2] = P, 7,821,

R 1
b ; (27 Q)oo b ;

which is a g¢-extension of Kummer’s first formula for the confluent hypergeometric
funetion [10, p. 125, Theorem 42].

The orthogonal g-polynomials &{(z; q) studied by ArL-Saram and CARLITZ [2,
p. 48, Bquation (1.11)] are precisely the polynomials defined by (1.8) with ¥ = 1, and

Sn,q: (0.’,; Q)n .
Thus our theorem yields the following generating function for &' (z; ¢):

Ay o
@1 Q7 xt ]

which, for 1= 0, reduces to the following result due to Al-Salam and Carlitz [2,
p. 48, Equation (1.13)7:

00 in (amt-q)
(3.21) D) (3 ¢ = Il R
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Setting o = 0 in (3.20) and then applying (3.19), we have

(2]

e 2 {43 (A5 q)o,
3.22 P (ﬁ q ;uﬂ?t
(3.22) g q,q)n 5 0= Gt 0, it ’ ’
]

where H,(z; q) denotes the g¢-Hermite polynomial defined by (cf. [15]; see also
[4, p. 49])

(3.23) Hyw; ) =3 m .
k=0 K

Formula (3.22) may be compared with a divergent generating function for the clas-
sical Hermite polynomials (see, e.g., [14, p. 138, Equation (7)]). On the other hand,
a further special case of (3.21) when « = 0 [that is, (3.22) with A = 0] is a well-
known result [4, p. 49, Example 3].

Yet another interesting application of our theorem with # = f/¢, ¥ =1, and

(o5 @
Sn = —1)» (n—1)
o= T
leads us to the generating funetion:
97" & }-7 oy
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In view of the g-summation formula [11, p. 97, Equation (3.3.2.6)]:
g " b;

[
(3. O) 2@]_ q; b q (0; q)n

’
¢
the generating function (3.24) can be rewritten fairly easily as

Ay &3

e / . . t
(43 OnlBles @)n P (4 @)o @, p

3.26 == 2 y
(3.26) w0 (45 DnlBs Da 5 9o b

B, A;
or, equivalently, as Jackson’s ¢-Pfaff transformation [8, p. 145, Equation (4)]

a, b; a, ¢fb;
. (625 9)o
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Formula (3.27) is the main lemma of Andrews [3] which he used to derive g-analogues

of Kummer’s summation theorem and (the so-called) Gauss’s second theorem.
Finally, we set # = pdfaf, N =1, and

(25 @)n(B5 @)n

anz —1)ngina-1)
W= A 8 0,

and our theorem yields the generating function:
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The 4P, occurring in (3.28) can be transformed by appealing to the familiar
identity:

o bs q", @, dfb;

NoA 9,91,
ag*-fe, 4 ;
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which incidentally is involved in the equivalence of (3.6) and (3.7), and we thus
find from (3.28) that

g o, 6/B;
) }.. n . n
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In its special case when y == f§, the right-hand side of (3.30) becomes identical
with the right-hand side of (3.26) with, of course, 8 replaced by §. Equating the
coefficients of ¢» in the first members of (3.26) and (3.30), in this special case, we
obtain the g-summation formuls:

g, o, O[B;
(3.31) D, S ¢, q| = B3 Dnl0/2; 0)n
g8, 8 ; (05 D)nlBlos @)
or, equivalently,
a, b, g ;
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which is Jackson’s g-analogue of the celebrated Pfaff-Saalschiitz theorem (ef. [9,
p. 111, Equation (B)]; see also [11, p. 97, Equation (3.3.2.2)]). Conversely, setting
y = f in (3.30) and summing the resulting ,®, series by appealing to Jackson’s result
(3.32), we shall arrive at (3.26) or (3.27). Thus our formula (3.30) may also be
looked upon as a generalization of the principal result employed by Andrews [3,
p. 527}

We conclude by remarking that many of the ¢-generating functions considered
in this section can alternatively be deduced from the following consequence of our
theorem (see also [12, Section 3]):

% (1
(3.33) E£ ) “a P q, 2q | ¢ =
B By ooy B
Jy & o
(M5 9) e
- Wwﬁl(pﬂ-f‘l g, 1 ’ Itl <1, IQI <1,
! @ ;ut,ﬁl,...,ﬁp;

which provides a g-analogue of a well-known hypergeometric generating function
(¢f., e.g., [14, p. 138, Bquation (8)]). Formula (3.33) can indeed be specialized also
to derive generating functions for a number of g-hypergeometric polynomials in
addition to those that are considered here.
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