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Generating Functions for a Class of q-Polynomials {*). 

H. ~d:. S~IVASTAV~ - A. K. AGA~WAL 

Summary, - Some simple ideas are used here to prove a theorem on generating/unctions /or a 
certain class o/ q-polynomials. This general theorem is then applied to derive a ]airly large 
number o /known as well as new generating/unctions/or the ]amitiar q-analogues o] various 
polynomial systems including, ]or example, the classical orthogonal polynomials o] Hermite, 
Jacobi, and  ~aguerre. A number o] other interesting consequences o] the theorem are also 
discussed. 

1. - Introduction, Notations, and the Main Result.  

A great surge of activities in the theory of q-series and q-polyaomials has been 
witnessed in recent years. Various s-extensions of well-kaow~ hypergeometrie iden- 
tities and quadratic transformations have recently been obtained by several workers. 
These q-extensions are known to have important applications in many areas of pure 
as well as applied mathematics, physics, and engineering. Workers in the field of 
q-series and q-polynomials are realizing t h e  need of extending all the important 
results involving special functions to hold true for their q-analogues. With this objec- 
tive in mind, we prove a general theorem on generating functions for an important 
class of q-polynomials, and then apply this theorem not onJy to derive q-extensions of 
several familiar generating functions, but also to deduce (for example) Jackson's 
q-Pfaff transformation [8] which AN])REWS [3, p. 527] used to prove q-analogues of 
Kummer's summation theorem and (the so-called) Gauss's second theorem, ttahn's 
S-analogue [7] of Kummer's first formula, and Jackson's q-analogue [9] of the cel- 
ebrated Pfaff-Saalschfitz theorem. 

For reM or complex q, Iql < x, let 

(~.1) 
co AqJ P~ (4; = I I  

J=o \ 1  - -  iq~+~/ 
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for arbitrary 4 and l~, so that 

(L2) 

(2~ q)o = 1; 
(4; q h  = (:~ - -  4)(1 - -  2q) ... (:~ - -  4q,~-~), 

(2; q)~ = ~I (1 - -  4qO. 

Vn z {1, 2, 3, . . . } ,  and 

Define, as usual, a generalized basic (or q - - )  hypergeometrie  function by  (el. [11, 
Chapter 3]; see also [13, p. 347, Equat ion  (272)]) 

(1.3) ~+iqS~+r q~ z 

L ~ ,  ...,  ~+~; 

A, ~' ( - -1 )~q  �89 (~ ;  q) . . . .  (~+~; q)" z" 
~=o (A;  q) . . . .  (fl~-,; q),~ (q; q),~ 

where~ for convergence, [q] < 1, and Izi < c~ when r is a positive integer, or lz] < 1 
when r = 0, provided tha t  no zeros appear  in the denominator. 

We shall also need the Gaussian polynomial  (or q-binomial coefficient) defined, 
for all non-negative integers n and k, b y  (see, e.g., [4, p. 35]) 

I~ if k = O ~  

~=1\ 1 - - q  j ] '  
0 ,  if l r  

if l ~_k~--n ,  

For a non-negative integer m, the  familiar q-binomial theorem (el. [4, p. 17~ 
Theorem 2.1]) 

] (1.5) ~ o  q, t _= ~'  (4; q)n v~= (dr; q)~ ltl < ~ Iql < 1 
~ o ( q ;  q h  (t; q)~ ' ' 

can be rewrit ten at once as 

(1.6) ~ (4; q):+~ t : =  (4; q)m (dr; q)+ it] < 1 [ql < 
~:o (q; q)~ (~t; q)m (t; q)~ ' ' ' 

which, in view of (1.2), yields (1 .5 )when  m ---- 0 (or when 4 is replaced by  4q-~). 
Making use of (1.6), we shall prove the following 

Tn:EORE~L -- In  terms o] a bounded complex sequence {S~.q}~ o generated by 

(1..7) /~(2 ,  #, q, t) = ~ o  (),/~; q)~(q;  q)o~ ' ' 
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deline a [amily o/ basic (or q--)  polynomials {]~,N(x; q)}~~ 0 by 

~n/~l[n]S~,~x~ ( n = O ,  1 , 2 , . . . ) ,  O.s) /~,~-(x; q) = y .  ~ k  
k=O 

where _N is a positive integer. 
Then 

(2; , (2t; q)o q), l~,N~x; q)t ~ --  t, q, xt ~) , 
~=o (q; (t; q)~ ~ ' "  

provided that each side exists, It] < 1, and [q[ < 1. 

2 .  - P r o o f  o f  t h e  T h e o r e m .  

Denote,  for convenience, the left-hand side of our assertion (1.9) b y  ~(t). Sub- 
st i tuting for ],,N(x; q) from the definition (1.8) into ~9(t), and inverting the order of 
summation,  we have 

(xt~F ~ 2" 
~, ( , q)~+N~ t~, ~(t) = ~oS~.~ (q; q)~ ~Vo (q; q); 

provided tha t  the  series involved converge absolutely. 
~Tow we sum the inner series b y  appealing to (1.6) with m = Nk,  and we find 

for It[ < 1 and [q[ < 1 tha t  

(2; q )~  S~,~ (xt~F. f2(t) -- (2t;(2; q)~ q)~ k=0 ~ (2t; q)N~(q; q)N~ 

Interpret ing this last expression by  means of the generating relation (1.7), we are 
led immediately to the theorem. 

R E ~ A R K .  -- For substantial ly more general classes of q-generating functions, and 
for their multivariable extensions, the reader should refer to Section 3 of a recent 
paper b y  SRIVASTAVA [12]. 

3 .  - A p p l i c a t i o n s .  

We begin b y  applying our theorem to derive generating functions for the  
q-anMogues of many  of the classical orthogonal polynomials. Setting 

qn(n-1) 
S~,~ = (--1) ~ (o:q; q)~ 
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in our theorem, we find f rom (1.8) tha t  

[q-~; ] 
i. ,~(x; q) ~qs~ q, x q .  (q; q)" ~, = - -  - - -  - -  L ~ ( x . q )  

Lacq ; (~q; q),~ '~ , , 

where Ll~)(x i q) denotes the q-Laguerre polynomial defined by (c]. [6]) 

(3.1) q::] - -  - -  - -  q ,  - - x  . 
(q; q), 1~e'1 L ~ / ;  

Thus our theorem yields the  following generating function for the q-Laguerre 
polynomials: 

co ,~. 
(3.2) ~' ( ' q)" ()~t; q)~o r q , - - x t  , 

.vo(~;  ~ L(:)(~; q)t.-- (t; q ) ~  q, ~t; 

which provides ~ q-extension of ~ well-known generating function for Laguerre 
polynomials [14, p. 132, Equat ioa  (5)]. 

lqext we consider the  little ~-J~cobi polynomials defined by (el. [6]) 

(3.3) p~,~)(x; q) - 

(aq; q)~ 
(q; q). 

~ 1  q~ x , 
:r ; 

and our theorem with N = 1~ and 

8 . ~  = (--:L ).q~.(,~-. (~flq; q)" 
. ( a q ;  q ) ,  ' 

gives us the generating function: 

2" ( , q ) ,  .~o .. (2t;q)= 
(3.4) ~ - -  - -  ~ ,p~- ~tx, ~. q ) t ,  

~=o (~q, q), (t; q)= 

2, o:fiq ; ] 

- -  ~cIa 2 q, xqt  . 

Laq, 2t ; 

For 2 = 0~ (3.4) reduces immediately to 

(3.5) ~ p ( : ,~ - " ) ( xq . ;  q) - _ ~ ~ q, xq t  , 
,=o (~q; q). (t; q)~ k~q ; 

which is a q-extension of a known generating function for Jacobi polynomials ([1, 
p. 159~ Equat ion (3.5)]; see also [14, p. 170~ Problem 19 (i)]). 
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Setting 

Sn,~= (--1)~q ~~(~-~) (~flq; q),~(vq[x; q),~ 
(fiq; q)~(vq; q)~ ' 

we observe from (1.8) that  

(~-~; q)-------~ Q~(ax; ~q-~, fl, vlq ) /~,~(x; q) -- (flq; q)~ 

in terms of the q-Hahn ]?olynomi~ls defined by 

(3.6) Q~(x; ~, ~, vlq) = ~ 

or, equivalently, by 

(3.7) Q~(x; ~, fl,,,Iq) = (t~q; q)~ , rol~ -~, 
(1/~q,~; q),, s 

t 

[ q-~, @q~+~, x; ] 
q, q 

L ~q, vq ; 

~flq~+~, vq/x; "] 
q, X] 

fiq, ~q 

Our theorem when applied to the q-Hahn polynomials yields the generating function: 

(,~; q),~(~-~; q),, [4, cr ~q/x; 

(flq; q).(q; q)~ Q~(x; aq -~, fl, vlq)t ~ (,~t; q)~ 3q~ (3.8) 

L vq, ; 

Similarly, for the q-Meixner polynomials defined by 

(3.9) 

we obtain the generating function: 

qn+l 

()'; q)~ Mn(x; fl, 7tq)t ~ (Xt; q)~ ~bz (3.10) ,~=o~ (fl; q)=(q; q),~ -- (t; q)~ 

In particular, (3.10) with ~ = fi yields 

(3.11) 

[ 4, x ; ~ ]  

fl, ~t; 

,=0 (q; q)~ (t; q)~ 1~1 , 
t; 
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which provides a q-extension of a known generating function for the Meixner poly- 
nomials [57 p. 225, Equat ion 10.24 (13)]. 

The definitions (3.3) and (3.9) imply the following relationship between ff-~eixaer 
polynomials and the little q-Jacobi polynomials: 

(3.12) i . ( x ;  ~7 rlq) = (q; . ~  ~,~1, 

which cart be used to show tha t  the generating functions (3.4) and (3.10), and indeed 
also (3.5) and (3.11)7 are essentially the same. 

:Now we t a r a  to the q-Chartier polynomials defined by  

(3.13) G(x; zclq ) = _~  

for which our theorem with N = 1, and 

S.,~= q'~"("+l)(x; qh ,  

readily yields the generating function: 

2, x ; 

2t, 0 ; 

~, --~' �9 

In  its special case when 2 : 07 (3.14) reduces immediately to 

(3.~5) ~ : ~ , & ~ l ~ )  t~ 1 ~ q , -  , 
~:o (q;~)~ (t;q)= 

O; 

which is a g-extension of a known generating function for Charlier polynomials 
[57 p. 226, Equat ion  10.25 (6)]. 

Setting 

the definition (1.8) assumes the form: 

LAx; q) - -  (x ;  q ) . ,  
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and our theorem immediately yields t h e  identity: 

(3.16) ~ 1  q, t  -- lq51 q, xt , 

L 0 ; L;,t; 

which is, in fact, contained i n  Jackson's formula (3.27) below. 
On the other hand, in view of Heine's transformation (v]. [4, 10.19, Corollary 2.3]; 

see also [13, 10. 348, Equation (275)]) 

(3.17) 2~bl (b; q)~o(az; q)~r  q, b 
q,z = (c; q)Az; q)~ 

L c  ; L a z ;  

the first member of (3.16) can also be ex10ressed as 

(3.18) ~q~ q, t = (x; q)o~(2t; q)_~ ~q~ q, x . 

L o ; (t;q)~ [ 2 t ;  

Com10aring (3.16) and (3.18), we readily obtain [7, 10. 374, Equation (10.2)] 

(3.19) 2~1 - -  q, CtZ , 
; q,z ( z ; ~  ~ L b ; 

which is a q-extension of Kummer's  first formula for the confluent hy10ergeometric 
function [10, lo. 125, Theorem 42]. 

The orthogonal q-10olynomials (5(~)r ~ ~ ,  q) studied by AL-SALA~ and CAgLImZ [2, 
1o. 48, Equation (1.11)] are 10recisely the 10olynomials defined by (1.8) with N = 1, and 

%,.~ = (~; q). .  

Thus our theorem yields the following generating function for ~b(~)(x i q): 

(3.20) 
(2t; q)~ [2, ~; ] 

(2;q). ~b(~)(x; q ) t . ~ = - - - 2 ~ l  q, x t  , 
~o(q ;  q)~ (t; q),  L ;,t ; 

which, for 2 = 0 ,  reduces to the following result due to Al-Salam and Carlitz [2 ,  

13. 48, Equation (1.13)]: 

t,, (~xt; q)~ 
( 3 . 2 1 )  q)  - 

~=o (q; q)~ (t; q)~(xt;  q)~" 
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Setting g = 0 in (3.20) and then applying (3.19), we have [,i ] 
!2; q) .  i_i.(x; q)t~ - ( f t ; q ) :  ~q)~ q, 2xt , 

(3.22) ~--o (q; q)~ (t; q)~(xt; q)r 2t; 

where H.(x ;  g) denotes the  ff-Hermite polynomial defined by  (#. [15]; see also 
[4, p. 49]) 

(3.23) ~C(~; ~)= ~ [~] ~ 
k = O  ~; 

Formula  (3.22) may  be compared with a divergent generating function for the  clas- 
sical Hermi te  polynomials (see, e.g., [14, p. 138, Equat ion  (7)]). On the other hand,  
a further  special case of (3.21) when ~ ---- 0 [that is, (3.22) with A = 0] is ~ well- 
known result [4, p. 49, Example  3]. 

Yet  ~nother interesting application of our ~heorem with x-~/3/o~, N = 1, and 

S ~ =  (--1)~q ~(~-~) (~; q)" 
, (/3; q ) . '  

leads us to the generating function:  

(3.24) ~ (2; q)____~ 2~1 q, - q t. - -  ~ 
.=o (q; q).  (t; q)= 

L fi ; fi, 2t; 

In  view of the q-summation formula [11, p. 97, Equat ion  (3.3.2.6)]: 

(3.25) 2(01 
0 q, -~ q" (e/b; q)~ 

(e; q)~ ' 

the  generating function (3.24) can be rewrit ten fairly easily as 

(3.26) ~: (2; q),,(~l~; ~)~ t, ,-  ~tq)= ~+2 ~, 
,,=o (q; q)n(/3; q)n ( ;  q)= 

/3, 2t; 

or, equivalently,  as Jackson 's  q-Pfaff t ransformation [8, p. 145, Equat ion (4)] 

(3.27) r ] [ ] a, b; _ (az; q)~ ~q)~ q, bz . 
;01 q, z (z; q)+ 

L e ; c, az ;  
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Formula (3.27) is the main lemma of Andrews [3] which he used to derive q-analogues 
of Knmmer's summation theorem and ( the so-called) Gauss's second theorem. 

Finally, we set x = 7(~/5fl, 2V = 1, and 

S~,~-- (--1)~q ~(~-~) (5; q)~(fl; q)~ 
(r; q)~(8; q)~' 

and our theorem yields the generating function: 

(3.28) ~ (~; q)~ 3q5~ q, ~ (~t; q)~ a~53 q, 
,~o(q;q)~ ~- f lq l t~= (t;q)~ 5 i l l "  

L y, 8 ; 8,,~t; 

The 3q5~ occurring in (3.28) can b e  transformed 
identity: 

by  appealing to the familiar 

ed (e/a; q)~ ~ q, q , 
(3.29) 8q~ q' ~ q  -- (e; q)~ Laq~-'~/e, d ; 

L c,d ; 

which incidentally is involved in the equivalence of (3.6) and (3.7), and we thus 
find from (3.28) that  

(3.30) (~; q)~(7/5; q). 
q--, 5, 8/~; ] 

q, q t~ _-- 

L sq~-~/~,, ~ ; 

_ (~t; q)~ 
(t; q)~ 3q~3 q, 

7 8, ,~t; @ J  

In its special case when 7 =: fl, the right-hand side of (3.30) becomes identical 
with the right-hand side of (3.26) with, of course, fl replaced by  8. Equating the 
coefficients of t ~ in the first members of (3.26) and (3.30), in this special case, we 
obtain the q-summation formula: 

(3.31) aqS~ ]q-~" 
5, 8Ifl; 

Lsq1-~/fl, ~ ; 
or, equivalently, 

(3.32) 

(8; q).(8/a; q). 
q' q - (8; q)~(f l /~;  q)~ 

I 
n, b, q-~ ; ] 

8q~ q, q = 
Le~ abql-~/e; 

(c/a; q)~(c/b; q). 
(c; q),,(e/ab; q)= ' 
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which is Jackson's  q-analogue of the celebrated Pfaff-Saalschiitz theorem (v]. [9, 
p. 111, Equat ion (B)]; see also [11~ p. 97~ Equat ion (3.3.2.2)]). Conversely, setting 
y ~ fi in (3.30) and summing the resulting 3~5~ series by appealing to Jackson's  result 
(3.32), we shall arrive at  (3.26) or (3.27). Thus our formula (3.30) may  also be 
looked upon as ~ generalization of the principul result employed by  Andrews [3, 
p. 527]. 

We conclude by  remarking tha t  m a n y  of the q-generating functions considered 
in this section can alternatively be deduced from the following consequence of our 
theorem (see ~lso [12, Section 3]): 

(3.33) ~ (2;q), m [ q-~ '~l ' ' ' ' '~;  ] 

[ )o~ ~i~ ...~ ~ ;  ] 

, u l ~  ) . t , ~ ,  , ~ ;  

which provides ~ q-analogue of ~ well-known hypergeometric generating function 
(el., e.g, [14, p. 138, Equat ion (8)]). Formula  (3.33) can indeed be specialized also 
to derive generating functions for a number  of q-hypergeometric polynomials in 
addition to those t ha t  are considered here. 
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