
Annali di Matematica pura ed applicata 
(IV), Vol. CLIV (1989), pp. 83..90 

On the Homogeneous Ideal of Projectively Normal Curves (*). 

EDOARDO BALLICO 

S u m m a r y .  - Fix integers 1~, d, g with 

g > 0 ,  d > g + 3 ,  /~>0,  2k< (d--g),  d $ , ( g ( b % l ) / k ) + k + l .  

Here we prove that ]or a general curve X o/genus g and a general T~ e Pic~(X), L is normally 
presented. 

A very ample line bundle L on a smooth, complete curve X is called normally 
generated (cf. [15] ) i f  hL(X) is projectively normal, where hL: X - + P ( H ~  *) 
is the embedding associated to X. Z is called normally presented if it is normally 
generated and the homogeneous ideal of hL(X) in P(H~ is generated by  
quadrics. Here we prove the following result. 

THEO~E~ 1. - Fix  integers k, d, g with g~O, d>~g ~- 3, k ~ 0; assume either 

(a) 2k-~ l < d - -  g, d>~(g(k + l ) / k )  -~ k + 1, or 

(b) 2k ~- 2 < d - -  g, d~> (g(k -~ 2)/(k -]- 1)) -~ k -~ 2. 

Then/or  a general curve X of genus g and a general L e Pie ~ (X), L is normally presented 
(over any algebraically dosed field). 

B. SAI~T-DONAT [16] and T. FUJITA [4] proved that  for every d>2g  + 2, for 
every smooth curve X of genus g, every L e P i c  ~ (X) is normally presented. 
~ .  GI~EEN ([5], [6]) generalized this statement to higher syzygies and to higher 
dimensional varieties, developing a very useful general framework for this kind of 
problems; the notion of finite presentation for a very ample line bundle is now only 
the first case, N1, of the problem N,  about the p-th step of a minimal free resolution. 
For related work, see F. Oo SCna~EYE~ ([17], [18]). In [12] LANGE and !~IAI~TENS 
proved the statement of t:heorem 1 under the assumption that d>(3g  + 4 + 
+ (8g + 1)�89 Theorem 1 is stronger. If for example (2g)�89 is an integer k, theorem 1 
works if d > g  + 2 + 2(2g)~ which is not too far from the conjectural bound 
(~ d > g  + 1 + (3g + 1)~ ~), which, if true, would be sharp. 

Note that  the thesis in theorem 1 is just a statement about linearly normal cur- 
ves of degree d, genus g in T : =  P ' ,  r = d -  g, which are arithmetically Cohen- 

(*) Entrata in Redazion6 il 5 maggio 1987. 
Indirizzo dell'A.. Dip. di Matematica, Universit~ di Trento, 3.8050 Povo (Trento), It~li~. 
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Macaulay, with non special hyperplane section and with homogeneous ideal gen- 
erated by quadrics. In w 4 it will be constructed a reducible curve C c T satisfying 
these conditions and apply a result of Sernesi [19] or Hartshorne-Hirschowitz [9] 
to show tha t  C is smoothable. Then the thesis will follow by semicontinuity (see 
w 2 for more details). 

To prove that  C has the properties we want, it is sufficient to look at a hyper- 
plane section C n V of C, V hyperplane of T, and see that  the homogeneous ideal 
of C (~ V in V is generated by the right number of quadrics. I n  w 3 we will find a 
configuration of points S c V whose homogeneous ideal in V is generated by the 
right number of quadrics. In w 4 we will find by elementary means a suitable curve 
C c T with C n V -~ S. The proofs in w 3 use the results of w I on the elementary 
transformations of a vector bundle on V along a divisor of V (cf. [13]). The idea 
of using <( simple points )) (see w l) for proving results about syzygies is due to 
Hirschowitz ([10]) who refined the general method introduced by t tA~SEO~E and 
H~scHowx~z in [8]. For much more on this method, see the thesis of ~ .  Ids [11]. 

l .  - Elementary transformations and simple points. 

Set V : ~  P~. Fix homogeneous coordinates xo, ..., x~ on V. Consider the dual 
of the Euler's sequence ([7] Ch. II,  w 8): 

(1) o ~/2v(t)  -+ (n + 1)o~(~-  1) ~ o~(t) -+ o 

where i is defined by /((so, ..., s~)) = XoSo+ ... + x~s~. 
Let H be a hyperplane of V. We have /2v[H ~ / 2 , 0  0,(--  1) and this isomor- 

phism defines a surjective morphism h: /2v -* /2 , .  Set Fv,. = Ker (h). By definition 
we have an exact sequence 

(2) 0 -~ J~, ,  -~/2v -~ /2 ,  -~ 0.  

By (13) Ev,, is a rank n vector bundle on V. The following two lemmas are known 
to the specialists (by definition of specialists), but, as far as we know, not published. 
Since we need them, we will give complete proofs of them. 

L n ~ i  1.1. - I]  dim ( V ) ~  2, their Ev , , (2 )~  2Or. 

P~ooF. - By (1) and a twist of (2), we obtain 

he(V,  ~v , . (2 ) )  = 2 ,  he(V, Fv , . (1 ) )  = o . 

Hence Fv,,(2) has a section s vanishing at most in codimension 2. SinGe cl(Fv,,(2)) 
e~(2'v,,(2)) -~ 0 by (1), (2), s cannot vanish at all and Fv,~(2) is a direct sum of 

two trivial line bund!es. Z 
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L E ~ A  1.2. - We have 1 ~ , , ( 2 ) ~  nov. 

P~ooF. - By  induction on n. First  we assume tha t  for one hyperplane R in V, 
t~ :/= tl, F~,,IR ._~ FR,,~RO OR(-- 2). Then by induction/~v,z(2)lR is trivial. By  [1] 
Cor. 1.7 (which holds over any algebraically closed base field) I Fv, d2) is trivial. 
Hence we assume tha t  for all hyperplanes R with R # 1t, /~,~(2)c~ F~, .~a |  0R(-- 2). 
Take a hyperplane R I R # H. Set L = H (3 R. F rom (2) and tP~[R ---~ ~9~| 0~(-- 1), 

we obtain s diagram with exact rows: 

(3) 
o -~/~v,.[/r --~ ~Q~ | OR(- 1) - ~  ~Q~| 0~( -  1) -+o 

o -~ ~'~,~| o ~ ( - 2 )  ~ t 2 ~ |  On(- 1) -~  ~ |  o~ ( -  1) ~ o .  

~ o t e  tha t  

H e m  (QR, Or.(-- 1)) ~__ H e m  (n~l~l o~(-  1)) =~ H e m  (/2~@ 0L(-- 1)1 0L(-- 1)) .  

We have 

dim ( tIom (0L(-- 1), OL(-- 1))) = 1 ,  

dim (I tem (~9LI 0L(-- 1))) = ho(L t TL(-- 1)) = dim (L) + 1 (Euler's sequence),  

H e m  (0~(-- 1)i tPj~-- 1)) ---- H e m  (0L(-- 1), 9L(--1)) -~ 0 by  (1); 

dim (Hem (~QL, ~QL)) ~ 1 because ~9L is stable. Hence the map a in (3) is given by  
n -5 1 constants (A ; al, ..., a~-i; e) ; A :/: 0 since a is surjective. By  definition the 
map b in (3) is given by the n + 1 constants (1; 0, ... I 0; 1). I f  e # 01 we may  find 
in (3) an isomorphism h which makes commutat ive the right square; hence/Tv,,IR ~_ 
~_ FR,~O 0~(-- 2) I contradictiom Hence for all R r 111 the corresponding constant  e 
vanishes. We m a y  construct a diagram (3)' similar to (3) with ~PR(-- 1)G 0R(-- 1) 
instead of FR,L| 0R(-- 2) and with a very different b: b ---- (1; 11 ...I 1; 0) i.e. bl/2~ 
is the restriction map, blOR ( -  1) = 0. Since e = 01 we may  find h making commu- 
tat ive (3)' and obtain Fv,,IR __~ 12R(-- 1) Q 0~(-- 1). Since n > 2, any line in V is 
contained in s hyperplane R with R ~e H. Hence Fv,,, would be a uniform vector 
bundle of splitting type  (-- 3 , -  2, ... I - -  2 , -  1). By  [2] (and Ein [3] in positive 
characteristic), Fv, ,  is a direct sum of line bundles, contracting Fv,nIR ---~ ~9R(-- 1) @ 
@ o~(- 1). �9 

Fv.,(t) is called the elementary transformation of Qv(t) by the surjection 

9~(t) ~ 9 . (0 .  
Let F be a vector bundle on a variety S. By definition a simple point t for F is 

a point t e P(F).  The support of the simple point t is the image of t under the prokec- 
tion map P(F)  -> S. On P(F)  there is the tautological line bundle 0p(F)(1) with the 
property t ha t  H~ 0e(F)(1)) ---- H~ F). 
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Fix  a projective space V and a hyperplane H of V. In  this paper we will con- 
sider only a particular type  of simple points for the vector bundle/~v,,(t). We write 
$(t) or ff instead of P(~v.z(t)). The splitting s _~ 9n(t)| Oz(t--1),  the defi- 
nition of ~v,n(t) and the commuta t iv i ty  of elementary transformations ([13], 
prop. 2.2) give the following exact sequence: 

(4) o ->  9 ~ ( t  - 1) ~ r v , . ( t ) .  ~ '  > o a t  - 1) ~ o .  

Fix  a point P ~ H .  The surjection u t in (4) induces a surjeetion at(P): lJ~.z(t)lP -+ 
--> OR(t--1)IP , hence a simple point tF of ~V,z(t); tp will be called <( a simple point 
for Fv,n(t) with respect to O~( t -  1) ,> or a (( simple ,> point for Fv, n(t), for short. F ix  
a hyperplane B of V, R v~ H,  with _P 6/~. By  the commutat iv i ty  of elementary 
transformations ([13], prop. 2.2) it  is ~n harmless ~buse of notations to say tha t  tp 
is a (~simple)> point for lxv. ,( t)@JRm_~v,n(t--1).  A subset J of e ((simple>> 
points for/~v,s(t) imposes independent conditions to H~ if h~ 0e(!) G 3j, e) = 
= h~ O.e(1))-  e. Take s e H~ ~v(t)) and assume tha t  s induces the zero sec- 
tion on ~Qn(t). Then s induces s'eH~ For  any  P e r t ,  s(P)-~ 0 if and 
only if the section of Oe(1 ) induced by  s I vanishes on re; in this case we will say 
often that s' vanishes on t~. 

2. - Sketch of  the proof and preliminaries. 

Fix  integers n, m with 2 < m < n .  In  w 3 we will construct for every integer d 
wi th  0 < d<m(n -- m ~- 2) a subset S : =  S(d, m) c V:= P~ card (S) ---- d, such tha t  
the restriction m~p ram(k): H~ Or(k)) ~ H~ Os(k)) is surjective if k = 2 (hence 
if k > 2 by  Castelnuovo-lV[umford's lemmg [14], p. 99) and the homogeneous ideal 
of S in V is generated by qnadiics. 

Set r ~ n + l ~  k = m - - 2  ~nd think V as a hyperplane in T : = P ~ .  In  w 
we will find tha t  if either (a) 2k ~- l < r < d < r  + k(r-- 21c-- 1), or (b) 2k + 2< 
< r < d < r - ~  (k ~- 1)(r--  2k- -  2), there is a curve C c  T with H~(C, 0c(1)) = 0, 
c reduced and oo neoted, C spa=ing  r linea,ly normal (i.e. = 0), 
C intersecting transversally V and with C n V = S(d, k + 2). Note tha t  such s 
curve has ~rithmetic genus  d - - r ;  hence setting g : =  d - - r  the conditions (a), (b) 
are exactly the conditions (a)~ (b) in the s ta tement  of theorem 1. The exact se- 
quence on T 

0 - >  gs(t  - 1) A> go(t) ~ gs(~,k+2),~.(t) - >  o 

(where h is the multiplication by the equation of V in T), and the linear normali ty 
of C show t h a t  C is ari thmethical ly Cohen-Macaulay ~nd tha t  the homogeneous 
ideal of C is generated by quadrics. C is not  smooth. Indeed C is built in the fol- 
lowing way. Start  from a suitable curve C / of degree r and arithmetic genus 0, 
C' spanmng T; C' is connected~ with only ordinary double points, and every irre- 



EDOA~D0 B~L~C0: Homogeneous ideal 87 

ducible component of C' is a line. C is the union of C t and d - - r  lines Di, 
i -~  1, ..., d - - r ,  each D~ intersecting C' exactly at two smooth points. By the 
results of Sernesi [19] or Hartshorne-Hirschowitz [9], C is smoothable. By semi- 
continuity we may find a projeetively normal curve X c T, X of degree d and genus g, 
whose homogeneous ideal is generated by quadrics; the last assertion will be obvious 
after we will recall (see below) a cohomological interpretation of the fact that  the 
degree 3 part of the homogeneous ideal of X is generated by the degree 2 part; it 
was very well-known ([15], [14], p. 99) that  the homogeneous ideal of u projectively 
normal curve with non-special hyperpla.ne section is generated by its degree 2 ~nd 
degree 3 part. By the dual of the Euler's sequence (i.e. by (1)) the degree 3 part of 
the homogeneous ideal of a scheme Z in a projective space T is generated by its 
degree 2 part if HI(T,  ~r(3)~)3z, T)----0. The last condition is also necessary if 
H~(T, 3z.r(2)) (hence if Z = C). Thus we can use semieontinuity for the condition 
about the degree of the generators of the homogeneous ideal of C and X (for 
general X). 

3. - The homogeneous  ideal for a suitable configuration of  points. 

Fix integers n, m wit]h 2<m~<n. Here we construct for every integer d with 
0 < d < m ( n -  m ~ 2) a subset S : ~  S(d, m) c V := P~, such that  the restriction 
map rz,v(2): H~ 0v(2)) -~H~ Os(2)) is surjective, card ( S ) =  d, and the ho- 
mogeneous ideal of S i a  V is generated by quadrics. 

L ~ A  3.1. - Let J be the union of n (~ simple ~ points on H ]or Fv,.(2) (with respect 
tO 0It(1)) with support S spanning H. Then no non zero section o[ /~v,T~(2) vanishes on J. 

P~oor. - Note that  h~ Fv,R(2))----n by 1.1, 1.2. Hence the lemma means 
that  J imposes independent conditions for H~ Fv,,(2)). Assume that  this is not 
true. Then we find s e H~ Fv,,(2)), s =~ 0, s inducing 0 on 0,(1). Hence by (4) 
s induces s"eH~ 9v(1)), s"=/: 0, contradicting (1). [] 

LE~M2a_A 3.2. -- Fix integers m, n with 2 < m < n .  Take m hyperplanes VI, ..., V,~ 
01 V and let V ~ be the intersection o/ every hyperplane V~ with jv~ i. Assume 
dim (V~(~ V ~) ~ n - - m .  Take subsets E i c  V ~ ( V ~  [71), l <~i<m, with the points 
in each E~ linearly independent ]or every i. Zet ~ be the union o] all the -E2s. Then 

(i) H~(V, 3z,v(2)) = 0; 

(ii) H~(V, ~v(3)(D 3z,v) ---- O (hence the homogeneous ideal o] S in V is generated 
by the right number o] quadries). 

P~ooF. - We use induction on n, the case n ~ 2 being obvious. 
Set W : :  V1 and E :== El. 
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(i) Consider the exact sequence 

(5) 0 -~ J~,v(1) -+ Jz,~(2) -+ ~(sN~),w(2) --> 0 .  

Since the points in /~ are linearly independent,  we have 11~(V, 3s ,v(1) )=  0. By 
induction we have 11~(W, 3(sNs),(2)) = 0, hertee the thesis follows from (5). 

(if) By  induction we have H~(W, Dw(3 ) @ 3(sNs).r/) = 0. Let  J be the union of 
the <( simple ~ points for _~we(3) with support ( S \ E ) .  I t  is sufficient to prove tha t  
E W J imposes n(card (E)) @ card (J) independent conditions for H~ Fv.w(3)). 
Set P : =  P(Fv,w(3)); for any  subset A of V, let A' be its couaterimage in P u~der 
the projection from P to V. We have to check tha t  H~(P, 0e(1)@ J/~'t~J) ----- 0. Let  / 
be the union of the (~simple)) points with support in E~ and R ~ hyper- 
plane containing N with 2 J ~ n R  = 0; for instance take R ' =  P(Fv.w(3)lR ). By 
3.1 the  composition of the restriction maps 11~ 0e(1))-->H~ 0 M 1 ) ) - >  
-~Ho(E' ,  0~,(1)) is surjective. Hence to prove tha t  11~(P, 0e.(1)@ 3~,~) = 0, i t  is 
sufficiem to note tha t  11o(P, 0e(1)@ J~,)~_11~ Fv,~(2)) and apply 3.1. Le t  e~ 
be the union of the (( simple ~ points for /~v.w(3) with support in El:  Note t ha t  
E ~  V~----0, bu t  /iJ k).E~c V~. Using Va and the same trick, we obtain tha t  
E '  W e~ k) e~ imposes n(eard (E)) ~- card (E9 ~ card (E~) independent conditions to 
Ho(V, ~Vv,w(3)). After m -  3 steps, we obtain the thesis, n 

4. - End of  proof of  theorem 1. 

Recall tha t  it  is sufficient to find a curve C c T : = P ' ,  r = n d - 1 ,  C as des- 
scribed in w 2, with C r V = S(d, k @ 2), V hyperplaae of T, S(d, k -4- 2) described 
in the s ta tement  of 3.2. V will be a hyperplane of I '  : =  P~. 

LEN3~A 4.1. - f f ix two hyperplanes H, 1~ oJ a projective space V, H ~ R. Set 
L = 11 (3 R. Zet U be a hyperplane o[ H, U :/: L. Take points _P ~ U',,,.5~ Q ~ R \ L  
and lines D, !)' in r with D '  n V = { P } ,  D n V = {Q}, l )  n D ' :  0. a finite 
number o/hyperplanes U{ of U, L~ oJ L. Then there are points r ~ U, y ~ L, and lines 
.E,_F' in T such that: 

1) x ~  U~ for every i; y~ .L j  for every j; F (3  V =  {x}, / ~ ' n  V :  {y}; 

2) 1< ~ n D ~ 0, /~' r D' # 0, F r F '  :/: 0. 

PRoog. - For a general point m ~ U, the linear space I : =  <x, D, D'} spanned 
by x, D and D', has dimension 4. Take a general y e I n Z,, y e U. In  I the planes 
(x, D} and (y, D'} must  intersect, say at  a point z. Set /~ : =  (x, z}, F':---= (z, y}. 
To show tha t  we may  satisfy the condition on y, we reverse the construction. Start  
with a general y ~ L .  Set J : =  ( y , D , D ' }  and take a general x e J r h  U. Take 
z ~ (x, D}( n (y, D'} and set E = (x, z}, E '  = (z, y) .  m 
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The sume proof gives the following lemmu. 

L E ~ A  4.2. - Fix  two hyperplanes H, R o] V, H =/= R, a hyperplane U o] H, a 
hyperplane U r o] R (both di]]erent from L : :  H (5 R), a point P E U"..(U (5 J)), a 
point Q~ U~\(U'  (5 L). Ta/6e two lines D, D' in T with D(5 D ' :  O, D' (~ V :  {P}, 
D ~ V : {Q}, and a ]inite number of hyperplanes U i Of U, Lj Of L. Then there are 

! 

points x ~ U, y ~ U', x ~ U~, y ~ U~ for every i, ~, and lines F, ~v, in T with {x} = 
v, {y} : F n  v, Dn r D ' n F ' r  0, 

PR00P OF TttE01~EhI: 1. -- (a) :Fix integers r,/6 with /6 > 0, r > 2/6. In  T : =  P~ 
t~ke /6 + 1 hyperplunes V, W~ ..., WT~ und two hyperplanes H , R  of V; set 
L : : R C ~ H .  Let  W ~ be the intersection of ~ll Wj with ] v a i ;  set V i =  W~ n  V 
V i =  W ~ V. Assltme d i m ( Z ~  Wk(5 W ~) --- r -  3 -  /6. Set U : : H ( 5  W~:(SW k, 
U' : =  1~ (5 Wk (~ W ~; (hence in. V we h~ve u configttrution of k + 2 hyperpluaes us 
in 3.2). :Fix ~ general point 2 e U  ~ d  ~ line D c W ~ c ~ W  ~ with D(5  V :  (P}. 
For  euch j, j = 1, ...,/6, fix u generul point 2 j  e L (5 W~. Assume Pj  6 W~ for every ] 
und in purticulur 2 j 6  U w U'. Let Dj, ~ : 1, ...~/6, be disjoint lines with D~c W j, 
D~ intersecting D and P~ e 1)~ (hence D~ r W~). Assume Dj (5 V = (P~) for every ~. 
Let  /~ ,  . . . ,R~ be disjoint lines with ] ~ n  D~ve 0, R~ intersecting V at ~ point 
Q~ e ( U ' \ L ) .  In  purtieul~r R~ c W~. We m~y ussume tha t  the points Q~, ... ,Q~ ure 
]ineurly independent (here we use tha t  r >  2/6). We ~pply 4.1 to D und R, in W ~ 
f o r d = l , . . . , / 6  (with respect to V ( 5 W  ~ , H ( 5 W  ~ , R ( S W  ~ n d  U:----H(5 W ~ n W  ~ 
as hyperplane of H (5 W~); we muy ~pply 4.1 /6 times simultaneously because ~he 
conditions of linear independe~ce in the thesis of 4.1 ~re <( open )) conditions, t teace  
by 4.1 we find ~ line A~, ~ point Bx:= (A~(5 V)~ U, ~ncl lines 2~ ,  j-----1, ...,/~, 
with L~ intersecting A~ and ~%, L~ r V, with B ~ : :  L~ (5 V i a  L (5 W j ~nd with 
B~va P, B~va P~; hence L ~ r  W j. Since B~e W~(5 W ~r und D c  W~(5 W ~, we h~ve 
A~ c (W~o (5 W~). Then we upply ~guin this construction r -- 2/6 -- 2 times. Aguin 
by 4.1 we find lines A.,  ..., A~_~_~ in W~ (5 W ~ with, for i > 1, A~ intersecting A~_, 
~nd containing ~ point B ~  U, lines L~, l ~ i < ~ r - - 2 / 6 - - 1 ,  1 < ~ / 6 ,  with Li~ inter- 
secting beth  A~ and R~, uud intersecting V u t ~  point B ~ Z  (5 W ~, B , ~  V~. By  
4.1 we may  ~ssume thut  P,  B,,  ..., B,_,~_~ ure linearly independent and thut  for 
every j with j = 1, ...,/6~ the points P~, B , ,  l < i < r - - 2 1 6  t ,  ~re linearly inde- 
pendent  in L ( S W  ~'. Let  C' be the union of D,A~ for ~ < i < r - -  2/6--1, D~,R~, 
1<]</6. Let C be the ration of C' ~nd d - - r  of the lines L~.  We muy  tuke the 
points P,B~, l < i < r - -  2/6--1, P~,Q~, 1~<j</6, spunning V. Hence by 3.2, w 
und [19] or [9], C is the curve we were looking for. 

(b) Eow ~ssume r>~2/6 + 2. Tuke nnother line R~+~ intersecting D und inter- 
secting V ut ~ poinf Q~+~ e ( U ' \ L ) .  Assume tha t  the points Q~, ..., Q~+~ are linearly 
independent. By  4.1 und ~.2 we m~y find lines A~, ..., A~.-~z~-~, L , ,  l<~i<r- -  2 /6 -  2 
1 < ~ </6, s~tisfying fhe previous conditions, und lines _~, ..., F~_~_,, such thut  for 
every i, l < i < ~ r - - 2 / 6 - - 2 ,  2~ intersects A~ and R~+~, F~ intersects V ~t ~ point 
Zi ~ U '~L;  by 4.2 we m~y ussume tha t  the points Z.,  ..., Zr-,~:-~, Q~, ..., Q~r ure 
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linearly independent.  We tuke ~s C the union of D, _A_ i for l < i < ~ r - - 2 1 c - - 2 ~  E~ 

for l K y < / ~  q - 1 ,  Z- for l ~ u ~ k ,  and d - - r  of the lines L~,  2w~, l < i < r - - 2 1 ~ - - 2  
l < i < k ,  m 
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