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Summary, — We introduce the concept of compactly lipschitzian functions taking values in a
topological veclor space F. We show that if F' is finite dimensional the Lipschitz functions
are compactly lipschitizian. We define the notions of generalized directional derivatives and
subdifferentials for such functions f taking values in an ordered topological vector space. It is
shown that this notion of subdifferential coincides with the one of F. H. Clarke when f is Lisp-
chitz and F = R. Some formulas for this subdifferential concerning the cases of finite sum,
composition, pointwise supremum and continuous sum are studied.

Introduction.

The theory of generalized gradients of real-valued locally Lipschitz functions
built up first by F. H. CLARKE has been the subject of much development; for the
results, we refer to CLARKE [6] for the finite dimensional case and AUBIN [1], CLAR-
KE [7], LEBOURG [20] and THIBAULT [40] for the infinite dimensional case. Here,
our aim is to develop a theory of subdifferentials for a class of vector valued func-
tions extending the one of real-valued locally Lipschitz functions.

In the last few years, in order to obtain optimality conditions for infinitely, many
inequality constraints many authors have investigated vector-valued functions and
defined for them a notion of directional derivative. The first ones to have considered
such functions seem to be RAFFIN [34], VALADIER [43], ToFFE and LEVIN [15] and
ZowE [46] who have extended the concepts of directional derivative and subdiffer-
ential of a convex function. In[30] J. P. PENOT has introduced the notions of upper
and lower directional derivatives of a vector-valued function and considered the
funetions for which these directional derivatives are sublinear. In [3], for a point Z
in a topological vector space F, M. S. BAzZARAA and J.J. GOODE have used vector-
valued functions f for which the mappings

v o lim (% 4 tn) — f(Z)]

t0
n—>yp

have a sense and are sublinear. P. MICHEL has investigated in [24] vector-valued
functions f such that f= g d where g is convex and d is strictly differentiable.

In this paper, after recent works, for instance, these of AUSLENDER [2], CLAR-
KE [6-9], GOLDSTEIN [10], HIRIART-UBRRUTY [12-14], LEBOURG [20], MIFFLIN [25],

(*) Entrata in Redazione il 24 aprile 1979,
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Pourciav [33], THIBAULT [40 42], which have shown that the generalized gradient
of Clarke has many important applications, we introduce a class of vector-valued
functions which contains the class of Lipschitz functions when the range space is
the real line. For these functions we define a notion of subdifferential which coincides
with the one of generalized gradient of F. H. CLARKE [6, 7] for a real-valued locally
Lipschitz function.

The first section deals with the definitions of compactly lipschitzian mappings
and strictly lipschitzian mappings. It is shown that the set of mappings of a
topological vector space into another one which are compactly lipschitzian at a
fixed point is a vector space. Properties of composition are studied and some ex-
amples are given. It is also proved that under some conditions a convex vector-
valued function is compactly lipschitzian.

In § 2 we define the directional derivative of a compactly lipschitzian mapping
which takes values in an ordered topological vector space. Some important prop-
erties of this directional derivative are studied, in particular it is shown that it is a
sublinear mapping.

The third section is concerned with the definition of the subdifferential of a
compactly lipschitzian mapping defined on a vector space E. Conditions under
which. the subdifferential at a point is a non empty convex compact subset for the
pointwise convergence of the space of continuous linear mappings of F into the
range vector space are given. It ig also proved that the convex subdifferential of a
convex compactly lipschitzian mapping coincides with the above subdifferential.

Some formulas for this subdifferential concerning the cases of finite sum, com-
position and pointwise supremum are studied in § 4. The results that we obtain
are generalizations of known results for real-valued Lipschitz functions. We also
apply the result about the composition with a positive continuous linear functional
to the study of a confinuous sum of real-valued Lipschitz functions.

§ b is devoted to the study of the subdifferential of a continuous sum of compactly
lipschitzian mappings.

Before concluding this introduction, let us indicate that all topological vector
spaces that we shall consider will be Hausdorff real topological vector spaces and
that we shall always assume that the positive cone of an ordered topologieal vector
space is closed.

1. — Compactly Lipschitzian mappings.

Throughout the following B and F will be two topological vector spaces and R
will denote the real number system.

1.1. DEFINITIONS.

1) Let f be a mapping of F into F and let ¥ be a point in E. We shall say
that f is compactly lipschitzian at the point Z if there are a mapping K of F into the
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set Comp (F) of nonempty compact subsets of ¥ and a mapping r of 10, 11X EXE
into ¥ which verify the following properties:
a) limr(t, z; ») = 0 for each vec E;
e
b) for each v& F there exist a neighborhood 2 of Z in E and a real number
ne]0, 1] such that
v t—l[f(x—}—tv (@)]e K@) Fr(t,z;v) for all zeQ and te10,7].

2) f will be locally compactly lipschitzian on I, if it is compactly lipschitzian
at every point e H.
Let us also note that for a lot of mappings f that we shall encounter in the
sequel, there are mappings K and ¢ and neighborhoods 2 of T and V of zero in E
satisfying:

a') limr(i, x; v) = 0 for each ve V and limv(f, z; v) = 0;

t}0 0
=T a->7
v->0

b') for all zeQ,veV and te]0,1]
1@+ to) — f(#)] € K(v) +r(t, ;) ;

¢') K(0)= {0} and the multifunction K is upper semi-continuous at the
origin (that is for each neighborhood W of K(0) in F there is a neigh-
borhood U of zero in E verifying K(v)c W for every ve U).

We shall say that these mappings are strictly lipschitzian at the point Z.

REMARK. —~ It is not difficult to see that a mapping which is strictly lipschitzian
at a point is compactly lipschitzian at.this point.

Before proceeding to the definition of the subdifferential of a compaetly lipschitzian
mapping, we shall give some properties and some examples..

The first one will be that a mapplng which is strietly lipschitzian at a point %
is Lipschitz at Z in a certain sense.” -

In order to deal with let us recall the followmg definition.

If U is a closed, cireled neighborhood of the origin in a topological vector space X
the gauge of U is the real-valued function g, defined by

ou(@) =1inf{t> 0w ctU} for every zeX.

It is easy to see that the function g, is positively homogeneous and continuous at
the origin with ¢,(0)=0 and that e U if and only if g(x)<1

11 - Annali di Matematica
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1.2. PROPOSITION. — If f is a mapping of K into F which is strictly lipschitzian
at T, then f is Lipschilz at X in the sense that for every closed, circled neighborhood W
of the origin in I there are a closed, circled neighborhood U of the origin in E and a
neighborhood X of T in E such that

ow(f(y) — @) <ouly—o) for all m,yeX .

Proor. — Let W be any closed, circled neighborhood of the origin in F. Con-
sider a neighborhood & of ¥ and a neighborhood V of zero in E defined by condi-
tion (a’) in definition 1.1 and choose a neighborhood W, of zero in F verifying
Wi+ W,c W. The definition of a strictly lipschitzian mapping implies that there
exist a circled neighborhood U of zero in E and a positive real number v < 1 such
that

UcV, Z+UcQ
and

K@wyc W, and r(t,z;0)eW,
for all t€10,9], €%+ U and ve U. Then, by condition (b') we have
f(@+w) — f(x) e tW

for all #eZ+ U, wetlU and 7€]0,y]. Choose a neighborhood X of # satisfying
X~—~Xc2wU. If @ and y are two points in X and if 1 is any real number verifying

poly — &)< A< 27y,
then we have
1) — f@) = fe+ (y — @) — fle) e AW,
for y—2€lU and A<y. So §ve have

ow(f(y) — f(@)) <A

and hence

ow(f) — f@)) <ouly—w). O

ReMARK. - If F and ¥ are two normed vector spaces it is an easy matter to verify
that the definition of Lipschitz mappings given above in terms of gauges is equivalent
to the usual definition. ' '

As a consequence of the above proposition we have the following property.
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1.3. COROLLARY. — If a mapping f of K into F is strictly lipschitzian at Z, then
it is continuous at T.

REMARK. — A mapping f which is compactly lipschitzian at a point Z is not
necessarily continuous at this point. For instance, let B be the space of all sequences
of real numbers (x,),qy With «,% 0 only for a finite number of integers n endowed
with the norm |2 = max |z,|. Define a real-valued function f on F by putting

fo)=ai+ S nw, for o= ()4 -
n2>0

Then f is compactly lipschitzian and non-continuous at the origin (and hence
non strictly lipschitzian at this point).

1.4. PROPOSITION. — Assume that F is a dual Banach space, that is the topological
dual of a Banach space. If a mapping f of B into F is Lipschitz at T with respect to
the strong topology of F, then f is stricily lipschitzian at Z with respect to the weak star
topology of F.

Proor. — If f is Lipschitz at Z, there are a closed circled neighborhood U of the
origin, a neighborhood X of Z in Z verifying

If(y) — f(@)| < guly —®) for all y,» in X .

Choose a neighborhood 2 of Z and a circled neighborhood V of zero in E verifying
Q-4 VcX and take :

r=0 and K(v)= gy(v)B(0,1)
where B(0,1)= {#ze F||2]|<1}. Since B(0,1) is weakly star compact in F' and
that gy is positively homogeneous and continuous at the origin, the mappings K
and r and the neighborhoods 2 and V satisfy the conditions of the definition of a
strictly lipschitzian mapping. O

1.5. CoROLLARY. — If F is a finite dimensional vector space, then a mapping f
of B into F is strictly lipschitzian at o point if and only if it ¢s Lipschitz at this poind.

Proor. — It is a simple consequence of propositions 1.2 and 1.4.

1.6. PROPOSITION. — Assume that f and g are two mappings of H into F compacily
lipschitzian at T e B, that B (resp. A) is a continuous affine mapping of a topological
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~ weetor space Hinto B (resp. a continuous linear mapping of F into a topological vector
space @) and that By =%, then the following assertions hold:

i) f-+ g is compacily lipschitzian at the point T;

ii) AofoB is compactly Wpschitzian at the point .

Proor. — Consider a mapping K, (resp. K,) of E into Comp (F') and a mapping r,
(resp. r,) of 10, 11X EX E into F verifying the above conditions for the mapping f
(resp. g) and the point Z. It is easily seen that the mappings K, K, and 7,47,
satisfy conditions (a) and (b) of definition 1.1 for the mapping f+ ¢ and the point Z.
Now, let v be a point in H. Write B=b-- B where be F and B is a linear map-
ping of H into E. There exist a neighborhood £ of Z and a real number 5 €10, 1]
such that

t-[f(w -+ tBv) — f(x)] € K,(Bv) - r,{t, z; Bv)  for each (i, #)€10,7]xX K.

If we choose a neighborhood W of § with B(W)c £ and if we put K(z)=
= A(K,oB(z)) for each z€ K and r(t,y;v) = A(rs(t, By; Bv)), then we have

t-{AofoB(y+tv) — AofoB(y)le K(v)+r(t, y;v) for each (¢, y)€l0,n]xX W,

and the proposition is proved. 0O

REMARK. ~ Similar results also hold in the strictly lipschitzian case.
Let us give some other examples of compaetly lipschitzian mappings.

1.7. EXAMPLES.

a) If a mapping f of a normed vector space E into a topological vector space ¥
is strietly differentiable at a;point Ze H, that is if there is a continuous linear
mapping Vf(x) of E into F such that

lim [f(x) — f(y) — V/(@) (@ —y)[|le —y| =0 (see [4]),

e

TFY
then f is strictly lipsehitzian at Z. Indeed, if we put K(v) = {Vf(Z)-v} and »(t, 2; v) =
= {~[f(x -+ tv) — f(x) — t V{(Z) -v] it is an easy matter to verify that the mappings K
and r satisty the conditions of the definition of a strictly lipschitzian mapping.

b) Suppose that F is an ordered topological vector space in which the order
intervals [2, 2] = {#€ F |3, <2<2} are compact. Let h be a mapping of E into F
which is positively homogeneous, that is, h(tv) = th(v) for all 1>0 and ve E. If f
is a mapping of ¥ into F and if there exists a neighborhood Q of a point Ze F such
that f(z) —f(y)<h(z —y) for all xe 2 and ye Q, then f is compactly lipschitzian
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at 7. Indeed, it is easily seen that f(ac —fy)el—hly—x), b y)] for all xeQ
and ye Q. If we put K(v) = [— h(— ), h(v)], the elements K and r = 0 satisfy the
conditions of definition 1.1 for the mapping f and the point Z.

¢) Let @, E be two normed vector spaces and let ¥ be an ordered topological
vector space. Consider a mapping g of G into E which is Lipschitz at a point Z, a
mapping f of B into F such that there exist a neighborhood W of ¢(¥) and a point %
in the positive cone ¥, = {zeF|¢>0} of F which satisfy the following relation:

fly) — fye) <92 — 9| % for all yye W and y,e W.

It we suppose that the order intervals of ¥ are compact, then the mapping fog
is ecompactly lipschitzian at the point Z. Indeed, since g is Lipschitz at Z, there
exist a real number «>0 and a neighborhood £ of Z such that ¢(2)c W and
[g(wy) — g(2.) | <o|y— @] for all #,€ Q2 and z,€£2. Therefore, it follows that

fog(@) — fog(ws) <llg(w:) — g(s) [k < ol — @y || B
for all #;€ 2 and z,€ 2. Define a mapping h of G into F by h(v) = a|v| % for each
ve . Then we see that the mapping b and the neighborhood £ of % satisfy the
conditions of example (b) for the mapping fog and the point .
If, in addition, the positive cone F_ iy normal (see 1.8), then fog is strictly
lipschitzian at Z. ’
Before making some remarks, we recall the following definitions.

1.8. DrriNiTIONs. — The positive -cone F. of an ordered topological vector
space F' is normal if there exists a neighborhood basis {V}, of the origin in ¥ such that

=(V+F)N(V—F,).

We say that an ordered topological vector space F 1s normal if the positive
cone ¥ is normal.

Let us note that if ¥, is normal and if (#;),c;, (¥;);ers (%;);e; are three nets in F
veritying x; <y, <z; for all jéJ and ljierglw,-:}ierpz,-s 0, then we have ljie{]ny,»zo
(see [32]).

REMARKS.

1) Let F be a strongly closed subspace of the dual of a Banach space. Suppose
that ¥ is equipped with the topology induced by the weak star topology and that 7
is ordered by a strongly closed convex cone F_. If the positive cone F', is normal
for the norm topology of F, then the order intérvals [2;, 2;] are bounded in F (s66 [32]),
hence compact in ' for the weak star topology. For instance, if 4 is a positive meas-
ure on a tribe X of a set S, the space L?(8, X, u) of all equivalence clagses of real-
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valued u-measurable functions f such that [f|» is u-integrable if 1<p <4 oo or
u-essentially bounded if p = 4 co verify these assumptions for its natural positive
cone.

2) If F = Li(8, Z, ), the order intervals of F' are weakly compact in F' since
they are equi-integrable subsets of Li(S, Z, ).

3) If p is a positive integer and F =17, the space of all sequences (w,),.y

such that Y |#,[*< co endowed with the norm [],= [z |w,,|1’]1’1’ and its natural
neN nelN
order, it is an easy matter to verify that the order intervals are compact.

Now we are going to study the case where f is a convex vector-valued function
which is continuous on a neighborhood of Z in E.
Let us recall that for a topological vector lattice (see [32]) the lattice operations

z+>sup{z,0) and «—in(z,0)

are continuous and the positive cone is normal.

1.9. PROPOSITION. — Assume that F is an ordered topological vector lattice for which
the order intervals are 6-compact, where 0 is a vector topology on F which is coarser than
the topology of F. If f is a mapping of B into F and if % is a point in E for which
there exists an open convex set U with Ze U and such that the restriction of f on U
is convex and continuous, then f is strictly lipschitzian at % with respect to the 6-topolology.

ProoF. — Choose a neighborhood £ of Z and a circled neighborhood V of zero
in E verifying 2+ V c U. Since the restriction of f on U is convex, it is easily
seen that, for all t€10,1],2€ 2 and ve V, we have

— f@ — v)+ f(@) < f(w + W) — f(@)) <fle+v) — f(@) .
For each ve F and each wxe E put
a(v)=—f(Z—0)+f(Z) and bv)=fZ+v)— @)

and

n(@, v) = inf (0, — f(z — v) + f(@) + {(& — v) — {(Z))
(@, ©) = sup (0, f(@+v) — f(&) — f@+v) + /() -

Then, since F is a vector lattice, according to corollary 1.4, chap. 1 in [32], we have

[a(v) +n(2, v), b(v) + p(#, v)] = [a(v), b(v)]+ [(2, v), p(=, v)]
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and hence there exist, for each £€]0, 1], each xe £ and each veV, an element
a(t, ; v) e[n(, v), y(#, v)]
such that
t=4(f(w +10) — f(2) € [a(v), b(v)]+ d(t, 23 v) .

Define a mapping K of E into Comp (F,) and a mapping r of 10, 11X EXE
into F by setting

K(v)={[a(v), b(v)] for each vekF,
and
r(t,x;v)=d(t,w;v) if 2 and veV
r(t,x;0) =10 otherwise .
Since the mapping f is continuous on. U, that the lattice operations are contin-

uous for the topology of F and that the positive cone F_ is normal, it is not
difficult to verify that the multifunction K is upper-semicontinuous with K(0)= {0},

limr(, ¢; v) =0 for each ve V and limr{t,z;v) = 0.

140 t0
*—>% L~
v—>0

So conditions (a'), (b') and (¢') of definition 1.1 are verified, and the proposition
is proved. 0O

REMARK. — The above proof shows that the proposition still holds if the map-
ping @+ sup (, 0) of F into F, is continuous and if the positive cone F is normal
with respect to the 0-topology.

2. ~ Generalized directional derivative of a compactly Lipschitzian mapping.

In this section and the following ones we shall denote by E a topological vector
space and by F an ordered topological vector space. We shall agsume that F' is also
an order-complete vector lattice for its order structure, that is, sup(z, y) exists
for all #, y € F and sup M exists for each nonempty subset M of F which is bounded
above in F (see [32]).

By F'= FU {4 co} we shall mean the order space F' with the adjunction of a
supremum - oo, It follows that every nonempty subset of F has a supremum in F°.
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Let f be a mapping of E into F which is compactly lipschitzian at a point Ze .
Consider the following mapping

0: 10, + o[ XEXE T
4ty @3 v) = (@ to) — (2]

For every subset M of F we shall denote by el, (M) the closure of M in F.
We shall put: v
Dy(@; v) = () elplg,(10, e[ X W3 0)],

&, W

where W is a neighborhood of Z in  and ¢ is a positive real number.

We remark that D,(F; v) is also the set of limits of all convergent nets (g,(t;, %;; v));es
such that (%);.; is a net of positive real numbers converging to zero and (#;);c, is a
net in F converging to Z.

Hence, we may write

Dy(&; v) = {lim q,(¢;, @5 0)|t;> 0, lim ¢, = 0, lim &, = 7} .
feJ jeJ jeJ

Since f is compactly lipschitzian at 7, it is easily seen that D,ZF; v) == @ for every
ve B,

2.1. DEFINITION. —~ The mapping fo%; -) of E into F* defined by fo(@;v) =
= sup Dy(Z; v) for every ve F will be called, following Clarke’s terminology, the
generalized directional derivative of f at the point Z.

REMARK. — It is easily seen that, if F is a normed vector space and if f is a real
valued funection which is Lipschitz at a pomt z, f“ (%5 - eoineides with Clarke’s direc-
131ona1 derivative (CLARKJJ [6 .- o . '

2.2. PROPOSITION, — Let 4 be a nonnegative real number and let f, g be two map-
pings of E into F which are compactly lipschitzion ot a point Z. Then for every ve E,
the following assertions hold:

a) (A)Z; v)= AfT; v);
b (= f)(w V=PEF =05 o L
S o) f+-g x; v) < f(w v)+9°(w v) '

PROOF. — Making use of the obvmus relatlons q”_ 24y and Grjg= qf—]— g,, we
get the followmg '

Dyy(®;0) = AD,&; v)  and Dy, (F; 0) CDy(T; v) + Dy(@; v) .
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Hence, the assertions (a) and (¢) are verified. Let us observe now that we have:

g-+(t, @; v) = — [ f(x 1 tv) — f(2)]
=t f{(w 4 tv) +t(—v)) — f(@ 1+ t0) ]
= q(t, v+ tv; —v).

Let W be a neighborhood of Z in ¥ and let ¢ be a positive real number. We
claim that W-10,¢[v is a neighborhood of Z in E. Indeed, since the mapping
(z,t)>x-4tv of EXR into E is continuous, there exists a real number 7 with
0 < n< ¢ and a neighborhood U of Z in K such that

U—10,nlvc U+ 1—n,nlvc W.
Therefore, we have
UcWH 10, 5{vc W10, ¢[w .

Using this fact and the definition of D_,(Z; v), we see that the following inclusion holds:
D_y(@; v)c DAZ; —v) .

By symmetry we obtain that the reverse inclusion holds too. Hence, we may conclude
that we have:

(— N)®; v) = sup D_;(T; v) = sup Dy(F; —v) = foT; —v). O

The following proposition gives a very important property of the generalized
directional derivative.

2.3. PROPOSITION. — If f is compactly lipschitzian at a point T € B, then the map-
ping f°x; +) of E into F* is sublinear.

PROOF. )
1) If A=0, it is obvious that fo(%; Av) = Af°(T; v) for every ve E. Let 1 be

a positive real number and let » be a point in B. Since ¢{, »; v) = };_qf(/'lt x; v)
if we denote by LB(Z) the set of neighborhoods of ‘%, we have: ‘ :

Dy&; M) = () olp[g;(J0, e[ X W; 4v)]
P;:Q)c('_)

= 4N s [g(l0, le[xW v)]

. >0 -
‘WeB(T) .

=20 c]F[qf(]O e[XW v)]
W:ezi?m) ”

= AD/{Z; v) .

Thus, we have fo(Z; Av) = Af(Z; v).
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2) Let v and @ be two points in E. Choose a mapping K of ¥ into Comp (F)
and a mapping r of 10, 1]X EX E into F verifying the propertles of definition 1.1,
and note that we have

qs(ty @5 v+ w) = ¢(%, 3 v) 4 ¢:(8, 2 4-1v; w)

for every positive real number { and for every xeX. Now consider a point
1161}1 qe(t;y 2;3 v+ w) in Dy(%; v+ w). There exists an element j,edJ such that
: .

qs(t;, %55 0) — (2, @55 v) € K(v) ,
and

qi(ts, 2,105 w) — 1y, 244,05 w) € K(w)

for every jedJ verifying j>j,. Hence, making use of the relation hm'r(t z;2)=0
for every ze E, we can find two convergent subnets AR

(@5Cays Zas Dier 308 (Gyltagys Bayt La?5 @))ier -
Therefore, we may conclude that -
DA(E; v+ w) C DZ; v) + DA(ZT; w)
and
f@; v+ w) <fZ; v)+ @ w) . O

In order to give a class of mappings for which the generalized directional derivative
is a continuous mapping, we congider the following lemma.

2.4. LEMMA. — Assume that the positive cone F . is normal. If s is a sublinear
mapping of E into F which is continuous at the origin, then s is continuous on E.

PrOOF. — Let z, be a point in B. Noting that — s(z,— &) < s(x) — 8(2,) < s{® — @)
for every # € and using the normality of the positive cone F_ and the equalities

lim s(z — @,) = lim[— s(@,— #)]= 0,

LTy B>Lo

we may conclude (see 1.7) that lim s(x) = s(z). O

2.5. DEFINITION. — A mapping f of a topological vector space E into an ordered
topological vector space ¥ will be said to be order Lipschitz at a point Z € B if there
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exist two mappings k and k of E into F and a mapping r of 10, 11X EX E into ¥
such that

a) h(v)<h(v) for all ve B and limh(») = 0;

v—>0
b) limr(t, z; v) =0 for all ve E;
£40
T->F

¢) for each veF there is a neighborhood £ of % in F and a real number
n €10, 1] for which - :

i72(f(e + ) — f(2)) € [1(v), B(@)]+ (2, w; v)
for all £€]0,7] and z€ L.

ReEMARK. — Consider a normed vector space F and a normed vector lattice F.
Assume that f is a2 mapping of ¥ into F and % is a point of F such that there
exist a point ke ¥, and a neighborhood £ of % satisfying

fo)—fy)<|e—y[k

for all , y in 2. If we denote by |- | the absolute value mapping of ¥, then we have

f@) — fy) | < Jo —y| &

for all #, y in £2. Then the mapping f is Lipschitz at the point %, since we have

lf@) = f@) < k] - le—yl
(in a normed vector lattice the inequality |z;]|<< 2| implies [z ] < [2.], see[32]).

2.6. PROPOSITION. — Assume that the positive cone F . is normal and that the order
intervals are compact in F. If fis order Lipschitz at a point T € B, then f is compactly
lipschitzian at & and fYZ; -) is a continuous sublinear mapping of E into F.

PROOF. — Choose a mapping % of E into F such that %1_133 h(v) = 0 and a mapping »
of 10, 11X EX E into F verifying the conditions of definition 2.5. It is obvious that f
is compactly lipschitzian since the order intervals are compact in P

If v is a point in F and if ljiel}a g:(%;, @;; ) is a point in D,(%F; v), then with the
help of the above facts it is easily seen that ljielglq,(tj, x;5 v)<h(v). Hence we have
—h(—v)<f(; v)<h(v) for every veH. Therefore, the normality of F, and the
relation 39):(01 h(v) = 0 imply that f*(%; -) is continuous at the origin. Making use of
the above lemma we conclude that fo(x; -) is continuous on E. [I

As a consequence of the above proposition we have the following result.
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2,7. PROPOSITION. — Under the assumptions of the above proposition, the mappmg
f&; -) of E into F is order Lipschitz on E.

ProoF. — In the proof of the preceding proposition we have seen that the relation
fo@; -)<h holds. Therefore, if we assume that v and w are two points in E, we
conclude that we have:

(T 0) — @5 w) <fo&Z; v —w)<h(v—w). O

REMARK. — More generally, every continuous sublinear mapping is order lipschitz
on E. It is obvious that the continuity of the mapping fo(%; +) is very important.
So we introduce the following definition.

2.8, DEFINITION. — We shall say that a point Z is regular for a mapping f of F
into F if f is compactly lipschitzian at # and if f°(Z; -) is a confinuous mapping of E
into F. Sometimes we shall say that f is regular at Z.

REMARKS.

1) Obviously, if # is a regular point for f, the mapping f°(Z; -) is then convex
and continuous.

2) If the cone F'_ is normal and if the multifunction K in definition 1.1 is
bounded above on a neighborhood of zero, then it is easily seen that Z is a regular
point for f.

3. — Subdifferential of a compactly Lipschitzian mapping.

L{H, F) will denote the vector space of all continuous linear mappings of E into I
and L,(E, ) this space endowed with the topology of pointwise convergence.

3.1. DEFINITIONS. — Let f be a mapping of F into F which is compactly lipschit-
zian at a point Ze H.  An element T e L(H, F) will be called a subgradient of f
at ¥ if the following relation holds: "

T(w) <f°(§- v) for allve F.

The set of all subgradlents of f at T will be called the subdlfferentlal of f at Z and
denoted by 8;f
REMARKS.
1) The subdifferéntial 0f(Z) can be empty "It is the case it fis a noneontmuous
linear mapping since f°(%; v) = f(») for all ve E. '

) If f is a real-valued funetion which is Lipschitz at z and if B is normed,
then the above subdifferential is exactly the one of CLARKE[6, T].
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3.2. PROPOSITION. — Assume that F_ is a normal cone and that % is a regular point
for the mapping f. Then the subdifferential 0f(Z) of f at % is the set of all linear map
pings T of E into F such that T(v)<fYT;v) for all ve E.

Proor. — Suppose that T is a linear mapping of E into F verifying the above
assumption. Since f*(%; -) is a sublinear mapping of F into F, we have — f(Z; — v) <
<T(v)<f%;v). Using the normality of ¥, , we conclude that %1_1)101 T(v)=0, and
hence T is continuous on H. [

REMARK — The relation T(v)e[— f*(Z; —»), f°(Z; v)] for every T € of(Z) implies
that 2f(F) is an equicontinuous subset of L(H, I') when the assumptions of the above
proposition are verified. Indeed, let W be any neighborhood of the origin in F ver-
itying W= (W4+F )N (W —F,). Since the mappings v+>—f%; —v) and v+—
»» f9(%; v) are continuous, there exists a neighborhood V of the origin in # for
which we have — f0(Z; — v) e W and f(Z; v)e W for every v V. Thus we may con-
clude that T(V)c W for all T € 0f(Z)

Below we shall make use of a generalization of the analytical form of the Hahn-
Banach Theorem (see[21] or [32]).

3.3. LEMMA. — Let s be a sublinear mapping of a real vector space X into an order
complete vector lattice Y. If T is a linear mapping defined on a vector subspace H of X
with range in Y verifying the relation T'(x) < for all weH then T can be extended
to o linear mapping T of X into Y such that T(x)<s(z) for all ze X.

3.4. PROPOSITION. — Under the assumptions of proposition 3.2, the subdifferential
Of(Z) is & nonempty convex closed subset of L (E,F) and

f(%; v) = max {T(v) [T €df(@} for all vekl.
Moreover, 0f(x) is a compact subset of L,(E, F) if the order intervals are compact in F.

PROOF. — We may assume that E = {0} and let v be an element of E different
from the origin. The linear mapping 7' of R-v into F defined by T(tv) = {f%(Z; v)
for all R verifies the relation T(fv)<f(Z; tv). If ¢ is non-negative, the inequality
is obvious. Suppose that ¢ is negative. Since the relation 0<f(Z;v)-+ f(Z; —
holds, we have: '

T(tv) = (— t)(— f(x; v))
< —1f(®; —v)
= fZ; tv) .

The above lemma asserts that there exists a linear mapping 7 of E into F ex-
tending 7' such that T(y) <f*(%; y) for all y € E. Proposition 3.2 implies that 7' € of(Z)
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Therefore, we have of(Z) @ and fo(T; v)= max {4(v)|4 € 8f(Z)}. To prove that 0f(%)
is a closed subset of L,(Z, F), consider for each »e E the mapping I of L(E, F)
into F' defined by 1,(T)= fo(¥; v)+ T(—w»). It is continuous. Since ¥, is a closed

subset of F, 0f(%) = ﬂl,,‘ YF,) is a closed subset of L,(E,F). As the convexity
: vel
of 0f(%) is obvious, it remains to show that of(Z) is a compact subset of L (H, F) if

the order intervaly are compact in F. Since 0f(Z) is equicontinuous, it suffices to
note that we have T'(v) e[— fo(Z; — v), f*(Z; v)] for all T € Jf(X) and ve F to conclude
that 0f(%) is relatively compact in L,(#, F) hence compact. O

REMARKS.

1) The above arguments are close to the ones used by VALADIER in [43]. Simi-
lar results have been also obtained by IorrE and LEvIN [15] and Zowx [45] for
convex functions and PeNoT [30] for nnscarped, tangentially convex functions.

2) By the Ascoli theorem, instead of the pointwise convergence topology, we
may also consider the compact or precompact convergence topology on L(¥, F) in
the above results. ’

3) If F is a semi-reflexive locally convex space and if the positive cone F
is normal, the order intervals are weakly compact in F since they are bounded and
closed convex subsets of F'.

The following proposition gives an expected result.

3.5. PROPORITION. — Let f be a mapping of E into F which is compactly lipschitzian
at & point Te H. If the point & is a local minimum for the mapping f, then we have
0 € of(Z).

ProoF. — Choose K and ¢ verifying the conditions of definition 1.1. We may
assume that f(%) <f(x) for all ze 2, where Q2 is a neighborhood of Z in E.

Consider a point ve B and a net (i), ; of 10,17 converging to zero. For some
joed we have ¢.(i;, T; v) —r(l;, Z; v) e K(v) and Z-+t;0€ 2 for all j>7§,. Also, there
exists a convergent subnet (45(tx¢y» T3 ©));er- Therefore, the inequalities

0 <Iim g,(tuyy ; 0) <f(Z; 0)

are verified, and hence we conclude that 0e0f(®). O
The subdifferential has the following property.

3.6. PROPOSITION. — Let f be a mapping of E into F which is compactly lipschitzian
at a point T€E. The formula o(— f)(Z) = — 0f(x) holds.

Proor. - It is a direct consequence of the assertion of proposition 2.2 which says
that (— f)*(&; v) = f2(Z; —v) for every veH. 0O

To close this section, we now proceed to show that, if f is compaectly lipschitzian
at a point T e B, there exists a convex mapping of F into F such that its convex
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subdifferential at the origin coincides with of(%), and to study the case where f is
convex.

Let us recall that a mapping ¢ of F into F" is said to be convex if for all #, yc F
and real numbers ¢€[0, 1]

gltw+ (L—8)y) <tf@)+ (L —1) () .

We need also some further definitions. The domain of g is the set domg=
= {reBlg(x)eF}. If x, is a point in domg, the set of all elements T of L(E, F)
such that

T(z) — T(w) <g(®) — g(w,) for all weF

is the eonvex subdifferential of ¢ at x,. It will be denoted by 2.g9(x,).
We shall put (see [43]) f'(@,; v) = inft (@, + ) — f(w,)] for all ve B.

3.7. PROPOSITION. — Let f be a mapping of E into F which is compactly lipschitzian
at @ point TeH. Then the mapping *(Z; -) of E into F* is convex and the following
equality holds:

of(®) = 0.f(@; *)(0) .

Proor. — The convexity of the mapping f°(Z; -) is trivially verified and 0 €
€domfo(Z; -) since fo(Z; 0)= 0. Moreover, a continuous linear mapping T of F
into F is in 0f(%) if and only if T(v)<f(%;v) for all veE (see the definition of
of(%)) and hence if and only if it is in o,f2(Z; -)(0). O

The following three lemmas will allow us to compare the lipschitzian subdiffe-
rential with the convex one for a convex mapping.

3.8. LEMMA. — If (%;);c; 18 & decreasing net whose elements are in a compact sub-
set K of an order topological vector X, then this net is convergent and we have

limg; = inf2; .
ieJ iet

Proor. — Since K is compact, it suffices to prove that any cluster point ¥ of the
net (z;);c; is the infimum of the family {»,|jeJ}. For each jedJ, since 8;= {m ke J,
k>j}ce;— X, and that the positive cone X+ i3 closed, we have yeel(S;)ca;, — X ..
Therefore, for each jeJ we have y<;. If a point 2 X verifies z<a; for all j €J,
we have z2<y, for y is a cluster point of the net (z,),; and hence y= ijIelfwj.

3.9. LEMMA. — Let G be an order-complete vector lattice endowed with a topology
for which it is an ordered topological vector space. If a mapping f of E into F is convex



174 Lroxer TmrBavrr: Compactly Lipschiteian functions

and compactly lipschitzian at a point Te I, then for every continuous positive linear
mapping A of F into G we have

(dof)(Z; v) = A(f'(Z;v)) for every veE .

Proor. — Let K be a mapping of E into Comp (F), r a mapping of 10, 1X EX E
into F' verifying the conditions of definition 1.1. Let v» be any point in E. There
exist a neighborhood 2 of Z in E and a real number 5 €10, 1] such that g,(¢, ; v) e
e K(v)+r(t, z; v) for all (f, )]0, 9] x 2. Since f is convex, the mappings ¢,(-, Z;»)
and q,.(:, Z; v) defined on the real interval ]0, 4 cof are increasing. Therefore, if
we consider a decreasing sequence (), in 10, #] converging to zero we have

f(@;0) = indgits, T50)  and  (Aof)(&; 1) = I, 4ltr F; 0)

But if we put R = {r(t., z; v)|n € N} U {0}, the decreasing sequences (q(t,, =; v)),ex
and (4 .4(tu, T; ©))en ave respectively in the compact K(v)-+R and 4(K(»)) + A(R).
Thus the preceding lemmsa ensures that

(Aof)'(®; v) = lim qeor(t, Z; v) = lim A(g;(t, Z; v)) = A(f'(Z; v))

n—>co fn—>co

and the proof is complete. O

3.10. LEMMA. — Let ¢ be a convex real-valued function defined on E. If ¢ is con-
tinuous at Te K then g is compactly lipschitzian at T and we have

@@ v)=g'(T;v) for all vel.

Proor. — In proposition 1.9 we have seen that g is compactly lipschitzian at %.
Let v be any point in B. The inequality ¢'(Z; v) < ¢%Z; v) being obvious, let us show
the reverse inequality. We shall follow the proof of proposition 3 of CLARKE [7].
Let lajsry 4,(%;, ;3 v) be any point in D,(F; v). Since ¢ is continuous, the mean value
theorem for convex real-valued functions implies that, for each jeJ, there exist
Yi= (1 — 8;)®, 4 s;(w; - ;0) with s;€10, 1] and ¢,;€9.9(y,) verifying

Qoltss 055 0) = {25, V> <g' (Y55 ) .

Since the function > ¢'(z;v) = tiggt—l[g(w—i- tw) — g(x)] is upper semi-continuous, we
obtain that

lim g,(t;, @535 ©)<lim sup ¢'(y,; v) < g'(T; )
jed jeJ

and hence ¢%7; v)<g'(%;v). O
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3.11. PROPOSITION. — If the space F is locally convex and if f is a convexr mapping
of X into F which is compactly Upschitzian and continuous at a point z € B, then we
have f'(Z; v) = 1&; v) for all ve .

Proor. — It is clear from the definitions of f'(Z; ) and f°(%;-) that f(Z; v) <f(Z; v)
for all ve B. Let us show the reverse inequality.

Let v be any point in . Let us consider any point y'eF; and any point
lajgl g:(t;, 25 v) in Dy(Z; v). Since the convex real-valued funection y'of is continuous
at Z and hence continuous on H, we have (y'of)(%; v) = (y'of)°(Z; v) according to
lemma 3.10. Then it follows from the continuity of ¥’ and lemma 3.9 that we have

y (U g(t;, 55 0)) = L g, (4, 355 0) < (' of)°(@; v) = ¥/ (f'; v)) .
Therefore, since F is locally convex, the Hahn-Banach theorem implies that
}ig?qf(tj,mj; v)<f(%; ). Thus we may conclude that f(z; v)<f(Z;v). O
An immediate consequence of the above proposition is the following.

3.12. CoROLLARY. — Under the above asswumptions the lipschitzian and convex
subdifferentials of f at the point T coincide.

4. — Some formulas relative to the Lipschitzian subdiffereniial.

Below we shall need the following lemma.

4.1. LEMMA. — Let g, and g, be two convex mappings of E infoc F* such that ¢,<g,.
Suppose that @, 1s a point of H verifying ¢,(x,) = 9,(%,) € F. Then we have 0.9,(%,) C
C 3o8a(%o). ’

Proor. — This result is a direct consequence of the definition of the convex sub-
differential of a convex mapping (see the definitions whieh follow proposition 3.6). [

The following proposition gives a result about the subdifferential of a sum of
two compactly lipschitzian mappings.

4.2. PROPOSITION. — Let f, and f, be two mappings of E into F which are compactly
lipschitzian ot a point Te B and put f=f,+f,. Assume that the positive cone F_ is
normal and that & is a reqular point for f,, then the relation °f(%) C Of(T) + of,(T) holds.
Moreover, if Z is also a regular point for f,, then Z s a regular point for f and Of(%) is
nonempty.

Proor. — By proposition 2.2 we have f%Z;v)<f(T; v)+ f3(Z; v) for all ve H.

Since the mapping f)(Z; -) is continuous at the origin, we may apply theorem 4 in
Zowr [46] to the convex mappings f)(Z; -) and fJ(Z; -). We obtain 9,(f)(Z; -)+

12 ~ dnnali di Matematica
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4 13@; -))0) C acff(?é; -)(0) -+ 3,13(%; -)(0). Hence, using the above lemma and pro-
position 3.7, we see that

of(®) = 9,1°(®; +)(0) € 0, f2(T; -)(0) + B, [3(®; )(0) = 0f,(%) + Of() -

Now suppose that % is also a regular point for the mapping f,: To prove that
0f(%) is non empty, it suffices to prove that Z is a regular point for the mapping f.
Sinee the mapping f&; -) is sublinear, the inequalities

— 9&F; — v) — 13(&; — v) <f°(T; v) <f1(F; v)+ fa(F; v)  hold for each vel.

Then it follows from the normality of the positive cone F,_ and the regularity
of Z for f, and §, that %1_1)101 fo(; v) = 0. Therefore fo(Z; -) is continuous at the origin
and hence, by lemma 2.4, continuous on E. [

REMARKS.

1) In general the above inclusion cannot be replaced by an equality. It is
not even the case when F is the real line and f, and f, are Lipsehitz at #. Indeed,
if g is a real funetion which is Lipschitz at a point Z and whose subdifferential
contains more than one point, take fy=g¢ and fo= —g¢.

2) However, if the mapping f, is strictly differentiable at #, then it is not diffi-

cult to see that 1°(#; v) = f3(&; v) + f2(&; v) for all ve E and hence 0f(x) = Vf,(Z) -+ 0f2().

About the subdifferential of a composite mapping foB, we have the following
relations.

4.3. PROPOSITION. — Let B be a continuous affine mapping of a topological vector
space G into B and let T be a point of G such that BT is & regular point for a mapping f
of E into F. If the positive cone F . is normal and if B denotes the linear mapping
associated with B, then we have:

1) o(foB)(%) #= 0 and T is a regular point for f;
ii) 8(foB)(@)C of(BE)oB where 0f(BX)oB = {ToB|T € 3f(BT)}.

ProOF. — By proposition 1.6 the mapping foB is compactly lipschitzian at Z.
Moreover, it is an easy matter to verify that D, z(Z;v) C D/(BZ; Bv) for all ve E.
Then we have (foB)"%; v)<fB%; Bv) for all ve E. Using an argument similar to
that given in the second part of the proof of proposition 4.2, we can say that Z is a
regular point for foB and that o(foB)(Z) is nonempty. Now consider an element 4
of d(foB)(%). By the above inequality we have — j°(B%; — Bv)<Av<f(BZ; Bv)
for all € B, and hence Av= 0 whenever Bv= 0. Therefore, we can define a linear
mapping 7' of Im B = B(@) into F by putting T(Bv) = Av for all v E. This linear



Lioxer TmiBAULT: Compactly Lipschitzian functions At

mapping T verifies T(y)</B%;y) for all yeImB. By lemma 3.3 we can extend
it to a linear mapping 7' of E into ¥ such that T(y) < f°(BZ; y) for all y e E. Finally,
it is easily seen that A= ToB and Tedf(Bz). O

REMARKS.

1) If, in addition, the mapping B is open, then, we have 9(foB)(Z) = 0f(B%)oB.
Indeed, let Lim g;(t;, y;; Bv) be any point in D,(B%; Bv). For each neighborhood V
of the point Z in K, me may choose j,€J such that 4, B(V) for all j>§, since B(V)
is a neighborhood of B% in F. Put I={(j, V)|V eB(#),jed, j>j,} where B(z)
denotes the filber of neighborhoods of Z in E and choose for each (j, V) eI a point
%y €V with y,= B . If we define a preorder relation on I by setting (§,, V,) <
<(ja, Va) if ji<j, and V; D V,, it is easily seen that (,),.; is a net which converges
to Z in H. Construct a mapping « of I into J by putting a(i)=14 if i=(j, V). We
have y,;,= Bz, for every ¢el. Consider any point joedJ. If V, is a neighborhood
of  in K and if we choose jeJ verifying j>4, and j>j, , then for i,= (], V,) we
have o(i)>j, for all i>4,. Thus (¥,q); is a subnet of (y,),.; (see [18]). Therefore,
we have

Yim g;(4, 33 Bo) = Lim gs(taw, Bai; Br) = 1im grop(taw, @43 0)
jed iel iel
and hence Lim q,(t;, 9;3 Bv) € Dy, 5(F; v). Also, we obtain that jo(BZ; Bv) < (foB))(Z; v)
and hence j°(B%; Bv)= (foB)*(Z;v). Finally, if T e 8f(B%), then we have
ToB(w) < f*(BZ; Bw) = (foB)'(Z; w)

for all we E and hence ToB e 9(foB)(T).

2) If B is a surjective and continuous affine mapping of a Fréchet space onto
another one, then B is open since the linear mapping associated with it is surjective
hence open according to the well known Banach theorem.

4.4, PROPOSITION. — Assume that B is a normed vector space and that the order
intervals of F' are-compact. Let g be o mapping of a normed vector space G into E which
is stricily differentiable at a point Ze€@. If f is a mapping of B into F for which
there exist a neighborhood W of g(%) and a point ke F . such that

W) — @) < |y1— 9|k for all ye W and y,e W,

then the mappings f and fog are vespectively compactly lipschitzian at the points g(%)
and E and we have

8(fog)(@)  (3f(9(@))) o Vo (@) .
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PROOF. — Since the order intervals are compact in F, it follows from example 17.¢,
that f-and fog are respectively compactly lipschitzian at ¢g(Z) and Z. Now, let v be
any point in ¢ and let 1}31 Q100(t;5 ;3 ©) De any point in D, (%; v). Since g is strictly

(A B
differentiable at the point # and since f verifies the above relation, we have:

1;1}1 Qragltsy 233 ©) = hmt [Hg(@s) + ¢, Vg(@) -0 -+ ti0(t;)) — H(g(2,))]
= hm t‘l[f(g(w + ¢, Vg(@)-0) — f(g(,))]
= ileffn qf( 15 9(#5); Vg(@) v ) .

Therefore, we obtain that (fog)*(Z; v) <f°(¢(Z); Vg(Z)-v) for all ve G and it suf-
fices to repeat the arguments of the end of the proof of proposition 4.3. O

In order to study the subdifferential of a composite functional y'of, let us reeall
the following notion. A linear mapping A of an ordered vector space into another
one is positive if Ax>0 for every y>0.

We shall denote by ', the dual positive cone of F', that is F', = {y'e F'|y'(F,)> 0}

4.5. LEMMA. — Let G be a topological vector space which is an order complete vector
lattice and let A be a positive continuous linear mapping of F into G. Swuppose that i
is a mapping of E into F which is compactly lipschitzian at a point Ze E. Then Aof
is compactly lipschitzian at T and (Aof)*%; v) < A(f/T;v)) for each veE with the
convention A(-+ co) = - co. '

Proor. — By proposition 1.6 Aof is compactly lipschitzian at Z Choose now a
mapping K of F into Comp (F) and a mapping # of 10, 1] X EX E into F verifying
the conditions of definition 1.1. Let v be any point in F and letl= 11].51 § 405(t;9 255 0)
be any point in D, ((¥; v). There exists jocJ such that ¢(¢;, x;; v) — r(t;, @;;v) € K(v)
for each j>4,. Since K(v) is compact in F, there is a convergent subnet
(2tatiys @agiys ©))ier- Then using the continuity of the mapping A, we obtain

l= hm QAo;f( %(4)? a(z)? ) A(I}g]- Qf(tot(iﬂ mov(i); Iv)) .
Therefore, 1€ A(D,(%; v)) and hence D, (Z; v) c A(D,(T; v)).

‘Finally, it follows from the positivity of the linpar mapping A that (Aof)(x; v) <

<A(f(z;0)). O

REMARKS.

1) Since the inclusion A(Dy(Z; v)) C D, 4(%; v) is obvious, we have A(D(Z;v)) =
= D, (&;v) for every ve H.

2) Assume that ¥ is a normed vector space, that ¢ is a mapping of F into G
which is strictly differentiable at f(%) and that Vg(f(Z)) is a positive linear mapping
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of F into . If the mapping f is continuous at %, then gof is compactly lipschitzian
at Z and we have (gof)*(%; 2) <Vg(f(Z)) (f(Z; 2)) for every zcH. Indeed, let » be a
point in E. On the one hand, consider a neighborhood 2 of Z in E and a real number
1 €]0, 1] such that ¢, #; v) € K (v) 7., x;v) for all (f,2)e€]0,4]X Q2 and that
7,(10, ] X £2; v) is topologically bounded in F. Since

g9(2) — gly) = Vg(f(@)(z — ) + ||z — g (=

with lim e(z, y) = 0, we have for every (t,«)€ 10, 7]x 2
2~>f(&)
y—>1(%)

1=t"[g(f(x+ ) — g(f())]
= Vg (f(&)) -+ [f(@ 4 tv) — f(@)]+ 11| f(@ 4 tv) — f(@) |2 (f(z+ t0), f(=)

and hence
Le Vy(f(@)) (K,(v)) -+ Vg(f(®)) ‘742, @5 v) + 2 f(z -+ tv) — f(@) |e(f(@ -+ tv), f(@)) .

Moreover, ltifont—l [f(x = tv) — f(z) |e(f( -+ tv), f(x)) = 0, for the set

L0

K (v) 47,10, 5] X 2; v)

is topologically botinded in F and ltif](t)ls(]‘(m—%tv), f(@)) =0 (f is continuous at ).
>z
Therefore, fog is compactly lipschitzian at Z.
On the other hand, to prove the inequality (gof)*(Z; v) < Vg(f(®))(f*(Z; v)) it suf-
fices to use arguments similar to the ones of the proof of the above proposition.

4.6. PROPOSITION. — Let y' be a positive continuous lineer functional on F(y’eFﬁr)
and let T be a point in H which is regular for a mapping f of B into F. Asswme that .,
is normal, then:

) 2(y'of)(@) C elg[y'o0f(T)], where y'o0f(T) = {y'oT|T € 0f(F)};
ii) 4f, in addition, the order intervals are compact in F, we have 0(y'of)(Z) C y o 8f(T)
Proor. — The above lemma says that (y'of)%Z; v) <y (f%(Z; v)) for all veE, and

hence it ensures that Z is a regular point for the function y'of.
Then, by proposition 3.4, we have

max {{&’, v) [#'€ 8(y'of) (%)} <max {(y'oT, v)|T € af(i)} for every. vel.

Thus, the Hahn-Banach separation theorem implies that assertion (i) holds.

For (ii) it suffices to apply proposition 3.4 to conclude that 2f(%) is compact in
L,(E, F), and hence that y'odf(Z) is compact in E, since the mapping of L,(H, F)
into E, defined by T+>y'oT is continuous. [
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REMARKS.

1) In general, the above inclusion cannot be replaced by an equality. Indeed,
consider, for instance, two real valued functions f; and f, defined on R which are
Lipschitz at a point ZeR and which verify the relation of,(%) - 0f,(Z) ¢ 0 (fi+1:)(@).
Define a mapping f of R into R? by f(z) = (f(2), fa(» ) for every xR and a positive
linear mapping ¢y’ of R? into R by y'(2y, %) = @+ @, for every (@, #,) eR%. The
mapping f is Lipschitz at ¥ and we see that

f’/’(aﬂzE ) (af1 ) X afz ) = a.f1 ) afz )¢ 8 .f1+f2 = a(?/,°f)(55) .

2) If the assumptions of remark 2) following proposition 4.5 are verified with
G = R and if f is regular at 7, then using arguments similar to the ones of the above
proposition, one obtains

o(gof)(@) Celg, [Va(f(x))o0f(@)] .
‘The following proposition gives a formula about the subdifferential of a product.

4.7. PROPOSITION. — Assume that E is a normed vector space. Let f be a mapping
of B into F which is continuous and compactly lipschitzian at a point Zc B and let &k
be a real valued fumction which is defined on E and strictly differentiable at Z. Then
the mapping ki defined by (kf)(x) = k(z)f(@) for all € B is compactly lipschitzian
at T and the following formula holds:
o(kf)(T) = k(Z) - 0f(@) + VK(Z) -(Z)

where

k(T) - 0 (&) = {k(Z) T |T € f(T)}
and VE)-f(x) is the mapping of B into F defined by v > VE(E)(v) -1(F).

ProoF. — Let v be any point in E. Consider a neighborhood £ of Z and a real
number 7 €]0, 1] such that

gs(t, @3 v) € Ko (v) F7,(%, 23 0)
and '

g, (8, @3 v) = VE@E)(v) -+ 7,(t, ;0)  for all (4, »)€ |0, n]X Q.
Then, for every (¢, x)e]0,n]X 2, if we write

o= t-1[k(@ -t ) f(o+ 10) — k(@) f(@)]
= k(@ to) (@ tv) — f() ]+ - k(x4 ) — k(@)]f(2) ,
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we obtain
2 € (%) KA(v) -+ VE@)(v)  f(T) + B(@ 1 1) -7ty ;5 0) 4 1,(t, 2; 0) f(@) + d(t, z; )

with d(t, x; v) € (k(z - tv) — k(Z)) K,(v) + VE@E)(v) - (f(x) — f(Z)). Since %k and f are
continuous at ¥ and that K,(v) is topologieally bounded in F, it follows that
1t1¢1(:)1a d(t, #; v) = 0 and hence that the mapping %f is compactly lipschitzian at Z Now,

let us prove that the formula of the proposition holds. By proposition 3.6 we may
suppose that k(%)= 0.

Let 11151}1 (Y, @55 ) be a point in Dy (Z; v). There exists a subnet (¢, s Lagys ©))ier
such that the subnets (¢4(fuuy» Zaiys ©))icr @04 (G(%)) Py )i 8T€ convergent.

Then we have

Lim gpr(t;, @35 v) = k(@) im ¢s(taciyy Taiys ) + (ﬁm (tairy Zagiys v))'f (@)
jed el iel

and hence D, (Z; v) C k(Z) - DyZ; v) + VEZ)(v)-f(Z). Now, consider a point ‘lziegqu(ta,
x,; v) € Dy(%; v). Since the net (q,(f,, ©,; v))4e, 18 convergent, it follows that the net

(94555 @45 ©))gey is also convergent and that

k() lim g, (4, %43 v) + VE@)(0)-{Z) = lim q,,(t,, 2.3 0)
acd acd
and hence k(Z)-D;(Z; v)+ VE(Z)(v) -{(Z) c Dy (Z; v). Therefore, we have (kf)*Z;v) =
= k() - f°(%; v) + VE(#F)(v) -f(Z) and the formula of the proposition is a consequence
of the definition of the subdifferential. [

REMARK. — If =R and if % is a real-valued function which is continuous,
compactly lipsehitzian and regular at #, then using arguments similar to the ones
of the proof of the above proposition one can show that the function %f is compactly
lipschitzian at Z and that

o(kf)(@) C k(%) of (%) + /(%) Ok() .

We turn now our attention to an important application of proposition 4.6. Let ~
be a tribe on a set 8, u a positive measure on X, F a separable Banach space, T a
point in F and f a real valued function defined on T x B verifying the following
conditions:

i) there exist a neighborhood V of Z in E and a nonnegative function
x e Y8, u) such that ‘ '

(1) s, ) —f(s, )| <a(s)[z —y] for all 4, yeV;

ii) for each e E, the function f(-,») is u-integrable.
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We may define a real function ¢ on E by g(x f f(s, @ ) and it is easily

seen that ¢ is Lipschitz at Z. Using the theory of 1ntegrable multivalued mappings

it has been proved in [41] that for each 0 € dg(Z) there exists a Weakly integrable

mapping o of 8 into E’ such that §= f o(s) du(s) and o(s) € of (%) p-almost every-
S

where. Here, with the help of the above proposition we shall give a direct proof
of this result. :

Let us consider the mappings k of ¥ into LS, u) defined by k(z)=[f(-,2)] .
for all z€ B and y' of L1(S, 1) info R defined by y'([%]) fh du for all [A]e LY(S, p)
where the symbol [-] denotes the equivalence class for the almost-everywhere
equality. We note that ¢’ is a continuous positive linear functional, that the map-
ping % is order Lipschitz at Z, and that by propesition 2.6, if L(8, u) is endowed with
the weak topology, the point % is regular for the mapping k. Then proposition 4.6
ensures that there is an element 7T € 0k(%) such that § = y’oT. Also, we shall study
the form of elements belonging to ok(Z).

Let us begin by proving a lemma which will be nsed in the next proposition.

4.8, LEMMA. — Let v be a point in E. If we denote by h the mapping of 8 into R
defined by s> fO(; v), then b is p-integrable and the equivalence class [h] of b verifies
the relation kO(T; v)<[h] wn LX(S, u).

PrOOF. — The p-integrability of h follows from (1). Now, since the mapping
(z, t)> z } to is continuous there exists a positive real number ¢ and a neighborhood £
of Z such that 21 70,¢lvcV. Let (£2,),o be a countable neighborhood basis of Z
with Q,,,c2,cQ for each n and (e,), a decreasing sequence of real numbers in
10, €] converging to zero. We can consider for each integer n the u-measurable real-
valued function h, defined on 8 by h.(s)= sup ¢; (¢, #; v).

t€10,€n]
LEL,

From relation (1) we have h,e %S, u) for each n. Then it follows from the

relation sup ¢,(t, z; v)<[h,] for each » and relation (1) that

t€10,6n]
xefly

inf sup ¢, x; v)<1nf [ha] = hm [h.] = [hmh ]

n 1€]0,eal
2Ey

where lim[#,] denotes the limit of the sequence ((kn])s in LYS, u) equipped with
the strong topology. Finally, since the definition of k%(%; v) ensures that k%Z; v)<
<inf sup ¢,(t, #; v), we may conclude that k°(x;v)<[h]. O

n t€10,8,]
a:E.Qn

The assertion will be proved if we construct a famlly (6(8))ses Of linear mappings
of E into R such that the mapping o(-)-ve T(v) for each ve X (note that T(v)e
e LY(8, u)) and that for p-almost every se 8, o(s) v<f3%;v) for all ve B.

This result is established in the following.

4.9. PROPOSITION. — Under the above assumptions there ewisis o family (0()),eq
of Uinear mappings of E into R verifying the preceding relations.
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PrOOF. — Let (e,,),.c D¢ a total free sequence in E. For each integer m choose a
p-integrable real-valued function h, € T'(e,). Consider the vector subspace G gen-
erated by the family (), 20d for each se & define a linear mapping o(s) of &
into R by Q(S)'(z A em) = > Anln(s) for all 1,eR and peN. Since 7 is linear, it

m<p MED
follows that the function o(-)-z€ T(z) for each ze . By the above lemma we have

for each element Y y,e, Wwith y,€ Q (the rational number system) g(s)(zym em) <

m<p n<p
<‘f‘s’(9"c; > Vo em) for p-almost every scS. Hence there exists a u-negligible sub-
m<p
set S, of § such that for each s ¢s,, o(s)- ( Zymem) <f‘;(9"c; > Vm em) for all > v, en
m<e m<p m<p

with y,€ Q and peN. Since the mapping f%%; -) is continuous on K for each
se 8, we obtain that for each s¢ &S, o(s)2<f%(Z; ) for all ze G. Hence for each
s ¢ 8, the linear functional g(s) is continuous on G for the topology induced by the
topology of H. Therefore, for each s¢ S, we can extend o(s) to a continuous linear
funetional o(s) defined on E and it is obvious that o(s) - v< fQ(z;v) for all ve B. If
se8,, we choose an element o(s)eL’. It remains to show that o(-)-veT(v) for
each ve K.

Write v = limzg, with z,€G for each n. By relation (1) we have [¢(-) -v]=
= li,]bIl[O'(')zn]. Since T is continuous, we may conclude that [o(-) -v]=T(v). O

We are going to consider now the subdifferential of a pointwise supremum. For
this study we shall need the following notions.

4.10, DEFINITION. — A topological vector lattice is an ordered topological vector
space which is a vector lattice and which has a neighborhood basis {V}, of the origin

such that V= U {y|ly|<|»|}, where the symbol |-| denotes the absolute value.
2eV

It is shown in [32] that an ordered topological veetor space whiech is a vector lattice
is a topological vector lattice if and only if the positive cone is normal and the
lattice operations are continuous.

In proposition 4.13 we shall make use of the following result of KUTATELADZE
in [19].

4.11. PROPOSITION. ~ Let (g,); <p<, ¢ n sublinear mappings of a vector space X
into @& complete vector lattice Y. If g is the mapping of X into Y defined by g(x)=

= sup f,(«) for every we X and if 0,9(0) denotes the algebraic convew subdifferential
1<o<n

of ¢ at the origin, then

M=

2,900 = U{

v

L,=1d,},

1

i

3 8,(0,00,)(0) I, I, T),
-1

»

where L, (Y, Y) denotes the set of all positive linear mapping of Y into itself and Idy
the identity mapping on Y.
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Before giving our statement about the pointwise supremum let us proire the
following two lemmas.

4.192. LEMMA. — Let X be an order complete vector space and 1 a linear mapping

of X into iiself verifying 0 <1<Idy, that is 0 <U(z) <z for all @ in the positive cone X
of X.

1) If A is a subset of X which is bounded above, then we have sup {(4) = i(sup A).

9\ Tf, in addition, X is a topological vector lattice, then 1 is continuous.

Proor.

1) Since 1 is pbsitive, we have I(x)<l(supA) for all €A and hence I(4) is
bounded above. Moreover for each x€A we have

0<l(supd) —1I(») = U—2+supd)<—az4-sup 4,

for 1<Idy; Therefore, we obtfain that 0= 32} (—a--supd) = ﬂiag} ({sup A) —1(2))
and hence supl{z) = I(sup 4).

xed
2) Suppose now that X is a topological vector lattice and consider any net
(#;);e; in X converging to zero. By what precedes it is easily seen that [l(z)|=
=1(jz])< || for all xc X. Also we have

— s | < U®) < |25

for each jeJ and hence ljiglal(mj)z 0. O

4.13. LEMMA. — Assume that F is a topological vector lattice. Let 1 be a linear
mapping of F into itself verifying 0 <1<Idy and let f be a mapping of E into F' which
is compactly lipschitzian and regular at a point Ze H. The mapping lof is compactly
lipschitzian and regular at T and (lof)*(F; v) = (f*(T; v)) for every ve E.

PROOF. — It follows from lemma 4.12 and proposition 1.2 that the mapping lof
is compactly lipschitzian at Z. Let » be any point in E. Sinee f is regular at 7, the
set D,(%; v) is bounded above. Moreover, by remark 1) following lemma 4.5 we-have
1(Dy(Z; v)) = D, 4(Z; v). Therefore, according to lemmsa 4.12 we may conclude that

Tef)(&; v) = Ufo(x;v)). O

4.14. PROPOSITION. — Let (f,); <, <n b n mappings of E into F which are compactly
lipschitzian and regular af o point & and let | be the mapping of B into F defined by
f(#) = sup f,(x). Asswme that F is a topological vector lattice and that the mapping f

1<psn
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is compactly lipschitzian at . Then f is regular at T and the following holds:
x)cu{zazof, e (P, F), 31,= 1d}.

Proor. — Let us consider the continuous mapping of F* into F defined by
W@y ooy @) = SUD (21, ..., @,). If We prove that f(F; y)< sup fJ(Z; y) for all yeE, f

1<r<n
will be regular at # because of the continuity of » and the normality of ¥ _ and the

result will be a consequence of Kutateladze’s proposition, lemma 4.1, proposition 3.7
and lemma 4.13.

For each p, 1<p<n, let us choose a mapping K, of E into Comp (F) and a
mapping 7, of 10, 11X E X E into F verifying definition 1.1 for the mapping f, and
the point Z.

Let v be any point in E and Hmg,(t;, 2,; v) any point in Dy(%; v). There exists
joedJ such that for each j>7, and each p, 1 <p<n, qr (b5 55 ©) — 15(t;, 255 0) € Kp(0).

Thus, it follows from the compactness of the subsets K,(v) and the relations
lhnolrp(t, #; v) =0 that there are p subnets (9,,(tuiy» @agsy3 ©))ier Which are convergent.

& —>T

If we note that we have
= f(w o) — f(@) ] <sup i f,(@ 4 o) — fo(@)]

for each positive number ¢ and each z e F, then using the continuity of # we may
conclude that
lim g,(t;, @55 v) = lim ¢;(fany Tatn; ©)
ied iel )
< lim (sup g, (tucsr; Taca; 0))
P

iel

= sup (lim g;,(tawsy Tacn; v))
P iel

< supfp(@;v). O
o

REMARK. — If the mappings f, are order Lipschitz at %, then f is also order Lipschitz
at Z. Indeed, let » be a point in H. There exist a neighborhood 2 of Z in ¥ and a
real number 7 e]O 1] such that, for each p and each (¢, #) €10, 9] X 2, t1f,(x 4 tv) €
€811, () + [hy(v), hy(v)]+ 7,(¢, #; v) where the mappings h,,h, and 7, verify the
conditions of deﬁmtlon 1.5. If we put _@(@):i%f (), B(v) = sgpﬁ,,(v), P, o5 0) =
= sgpm(t, z;v) and r(¢, x; v) =infr,(¢, x; v), it is an easy matter to verify that
as(t, @5 v) €[R(v), B(v)]+[1(t, #; v), 7(¢, @; v)]. Therefore, there exists

r(t, x; v) €[zt »; v), 74, z; v)]

such that ¢, o;0)e (v)]+r(t, x; v) for each (4, 2)e]0,n]xX L. Thus, f is
order Lipschitz at Z
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5. — Subdifferential of a continuous vector sum.

In this section F will be a separable Banach lattice, that is a Banach lattice
which is topologically separable, and ¥ will be order complete. Thus, there is a
norm |-|| on F defining the topology of ¥ and verifying the following: |2]<|y|
if [z|<|y| (see [32]). F will be endowed with such a norm. We shall agsume that F
has the Radon-Nikodym property, that is for every positive measure space (L, 4, 4)
and for every countably additive set function m: 4 —F which satisfies

S (4] neN, 4y, ..., 4,€ A pairwise disjoint}< oo

k=0

Sup {
and which is absolutely continuous with respect to A there exists he,@}(l}, A) veri-
fying m(A):fh dA for all AeA.

A4

We shall also assume that each order interval of F' iy weakly compact. Then
by theorem 5.1 in KAWAI[17] every increasing net in F which is bounded above
converges to its least upper bound for the strong topology. This can be also seen
by using propositions 3.1 and 3.4 in PERESSINI [32].

ReMARK. — These assumptions are verified by the reflexive separable Banach

lattices and by the space I* of all real sequences (2,),.y Such that > |z,]< co endowed
neN

with the norm [z]|= > [¢,] and with its natural order gtructure.
neN

In the following (8, X, u) will denote a complete measured space. By L3L(8, u)
we shall mean the space of Bochner u-integrable mappings of § into F and by F |
the space F endowed with the o(¥, F')-topology. We shall assume that E is a se-
parable Banach space and that f is a mapping of 8 X B into F verifying the following
conditions for a point T ¥ and a neighborhood £ of Z in K:

i) there exist two mappings &, and k, of § X F into ¥ with (-, ») and k,(-, )
belonging to Q%L(S, u) for each v, a mapping ¢ of SX]0,1|XEXE
into F with ltifaas(s, t,; v) =0 for each (s,v) € § X B and &(+,t, 45 0) € 85 (8, p)

for each (¢, », v) € ]0, 1]x 2 X B, a mapping B of S X E into R with §(-,v) e

€ @L(8, u) for each v e E, and a nonnegative real-valued function « € 4(8, u)

such that:

“) t72(f(s, @+ tv) — (s, %)) €[ ky(8, v), ka(s, v) 1+ (s, 2, @5 v) for each (s, 1, #,v) €
e8x10,1]X 2 X E and

b) ks, v)]| <a(s)]v] for each (s,v)e SXE and i=1, 2 and [e(s, ¢, 25 v)| <
< f(s, ) for each (s, 1, z,v)e8x]0, 1]X 2 X E;

ii) for each z ¢ E, the mapping f(-, ) is Boehner u-integrable;

iii) the mapping f(s, -) of F into F_ is continuous on £ for each s€&.
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We may define a mapping g of E into ¥ by g(x) :ff(s, %) du{s) and using lemma 5.1
S

and the above assumptions it is easily seen that g is compactly lipschitzian at Z
as a mapping of ¥ into F_. We are interested in the subdifferential of ¢ at the point Z.
We shall begin with the following lemma.

5.1. LEMMA. — If b is a positive mapping in &L(S, u), then fh(s) du(s)>0 in F.
8
PrOOF. — Since ¥ is a closed convex cone in F, the Hahn-Banach theorem says

that it suffices to show that {y/, fh(s) du(s)>>0 for every y'e F..
S

For such an element y’ we have
<y () dus)y = [<'s 1) du(s) >0
g 3

since p is a positive measure. [
In the sequel we shall need a proposition of NEUMANN [27].
5.2. PROPOSITION. — Let X be a separable Banach space and Y be an order-

complete Banach lattice. Assume that the space Y has the Radon-Nikodym property.
Let p be a mapping of SXX into Y such that

i) for each se 8, p(s,*) is a sublinear mapping of X into Y;
i) for each e X, p(-,x) is Bochner u-measurable;
iii) there exists a nonnegative real-valued function b € Ry (8, ) verifying |p(s, x)| <
<h(s)|x] for all s€8 and xcX.
If Tel(X,Y) verifies T(w)<fp(s, x) du(s), then there exists a family (T,)..o of
continuous linear mappings of X Smto Y such that:
a) the mapping s+— T,(x) is Bochner p-integrable for each e X;
b) T(w)=[T.(%)du(s) for each veX;
¢) for each se 8, T.(x)<p(s,z) for all zeX.
REMARK. — This proposition has been formulated by SAINT-PIERRE in [37, 38]
for the separable dual Banach spaces and has been independently proved by NEU-

MANN in [27] for the Banach spaces which have the Radon-Nikodym property.

In order to apply Neumann’s proposition we are going to show that the mapping
s > f2(Z; v) is Bochner u-integrable.

Since F is a separable Banach gpace, its topological dual ¥’ is o(F’, F)-separable.
Let us fix a o(F’, F)-dense sequence (e,),y in F' and let us consider the countable
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family of semi-norms (p,),n. defined on F by p, (@) = e, , «>| for every ze F. The
locally convex topology on F' generated by the famlly (Pnaw Will be called the
f-topology and ¥, will mean the space F' endowed with the 6-topology. It is easily
seen that this topology is metrizable and coarser than the o(¥, F')-topology. More-
over, on every o(F, F')-compact subset of F' these two topologies coincide.

5.3. LEMMA. — The multivalued function s cly[q, (10, e[ X W;0)] from S to F,
is X-measurable for each ¢ >0 and each neighborhood W of T verifying W10, efvc 2
and Wc .

PrOOF. — Let v be a point in F and let (2,, ,), be a dense sequence in 10, e[ X W.
Since ¢, (-, *;v) 18 continuous on 10, a[xW for the o(F, F')-topology of F, the
sequence (qfs(tn,xn,fv)) is dense in cly[q; (10, ¢[ X W; )] which is o-compact and
hence 0-compact. Noting that s— g, (%, #,; v) is Z-measurable, the lemma follows
from theorem III.9 of CASTAING-VALADIER [5]. O

5.4. COROLLARY. — The multivalued function s> D, (z;v) from 8 to Fyis X-meas-
urable for each ve B,

PROOF. — Choose a real number ¢>0 and a neighborhood W of % verifying
W10, e[vc 2 and Wc Q. It suffices to note that, if (W,),.y is a countable neigh-
borhood basis of & with W,c W for each » and if (¢,),.y 18 a decreasing sequence
of ]0,¢[ converging to zero, we have D, (%;v) ﬂcl (4,00, &,[ X W; v)) with

clg (10, &,[ X W,; v) o-compact and hence §-compact and to apply proposition I11.4
in CASTAING-VALADIER [5]. O

In the proof of the next proposition we shall make use of the following result.

5.5. LEMMA. — Let X be an order-complete topological vector space. If a subset D
is dense in a nonvoid subset R of X which is bounded above, then we have sup D = sup R.

Proor. — The inequality sup D<supR is obvious. Let r be any point in R.
Since D is dense in R, there exists a convergent net (d,);., in D verifying r = limd

For each jeJ we have d;<supD. Therefore, we may conclude that r—= hmd
<sup D since the positive cone X, is closed. O

REMARK. — This lemma has the following consequence. Let R be a subset of
an order-complete locally convex space X. If R is bounded above, then we have
sup B = sup (coR), where the symbol co denotes the closed convex hull operation
with respect to a topology compatible with the duality between X and its topological
dual X’. Indeed it is casily seen that sup R = sup (coR) and hence we may apply
the preceding result. ‘
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5.6. PROPOSITION. — The mapping s> f(&; v) is Bochner-measurable for each
ve R,

PrROOF. — Let v be any fixed point in F. Since the multifunction s D, (Z; v)
from § to F; is measurable with nonempty compact values, there exists a sequence
(h,)uen of measurable mappings of § into F, verifying D, (F; v) = elp ({h,(s)|n})=
= clp ({h,(s)[n}) for all s€8. Moreover, from the o(F’', F)-density of the family
(e,',_)nEN it follows that the real-valued funetion s {z', 2,(s)> is measurable for each
el and each meN. Therefore the mappings kb, are Bochner measurable since
the space F is strongly separable. Now denote by &= {g,|mecN} the set of all
convex combinations with rational coefficients of the mappings h,. For each sef
the subset G,= {g.(s)|meN} is strongly dense in co[D, (%;v)]. Thus lemma 5.5
and the remark which follows it imply that

fi(&; v) = sup co[Dy,(Z; )]
= sup {ger(s)lm eN}
= sup (Sup {gn(s)|m<n})

which completes the proof since the lattice operations are strongly continuous. [I

We can now give a proposition which will enable us to state our result about
the subdifferential of g at the point Z.

5.7. PROPOSITION. — The vector valued function s+ f3%;v) is Bochner y-iniegrable
and the inequality ¢°(%; v)<< f f9(T; v) du(s) holds for every ve E.
N

PROOF. — Let v be any fixed point in B. Put k= sup (|k], |k). Since aeL(8, u),
the u-integrability of the above mapping is a direct consequence of proposition 5.6
and the inequalities

173@; v) | < |&(s, ) | <2a(8) ] -

Now consider any point ze D, (Z; v). Since the topology induced on D (Z;v) by
the weak topology is metrizable, there exist a sequence (f,),.y 0f positive numbers
converging to zero and a sequence (#,), in £ converging to Z such that we have
z,+t,ve 2 for all » and z:qlzgrg}oqg(tn,xn;v).

If we show that the relation {y’, 2> <<{y’, f f2%Z; v) du(s)> holds for every y'eFi,

§

then according to the Hahn-Banach theorem the assertion will be proved. Indeed.
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for such an element y’ it follows from lemma 4.5 and condition (i) that

' = lim <y, 2[00 + 1a0) — Fil@a) 1 du(s))

S
= lim j (Y of ) (@0 + 1,0) — (47 of ) ()] du(s)
N->00 S

< [tim sup &1y o) (@, + t0) — (' ofu) )] dpa(s)
8

< ['ofr@; o)y duts)
8

< fy’(fi’(is v)) du(s)
8

— <, [B@ v dpe)>. O
8

5.9. COROLLARY. — Under the above assumptions for each T € 0g(Zx), there exists a
family (T,),.s of continuous linear mappings of E into F such that

a) T.eof(x) for every se8;
b) the mapping s> T (v) is Bochner u-integrable for every vel;

c) T(v):fTs(v) du(s) for every ve E.
&

Proor. — Let T be any fixed point in dg(Z). For each ve F the inequalities
T(v) < g'(x; 'v)<ff‘s’(9?; v) du(s) hold. Moreover we know that, for & =tsup (|k|, |k.),
S

we have [|f%(Z;v)] < [ k(s, v)| <2a(s)]|v], x € Lx(S ), and that the mapping s> f3(x; v)
is Bochner-measurable. Thus, it follows from Neumann’s proposition that there
exists a family (7,),.¢ of linear continuous mappings verifying conditions (a), (b)
and (¢). O

REMARK. — Since the dual of L(E, F) is B ® F', it is easily seen that the map-
ping s T, of § into L(E, F') is Pettis-integrable and that its Pettis integral is equal
to T.
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