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Summary. - We introduce the concept of compactly lipsehitzian fq~nctions taking values in a 
topological vector" space .F. We show that if ~ is finite dimensional the Zipschitz functions 
are compactly tipsehitizian. We define the notions of generalized directional derivatives and 
subdifferentials for such functions f taking values in an ordered topological vector space. I t  is 
shown that this notion of subdif#rential coincides with the one of F. t l .  Clarke when f is ~ s p .  
ehitz and 17 = R. Some formulas for this subdifferential concerning the cases of finite sum, 
composition, pointwise sqzpremum and continuous sum are studied. 

Introduction. 

The theory  of generalized gradients  of reM-vMued locally Lipschitz functions 
buil t  up first by  F. H. CL~Ic~ has been the subject of much development;  for the  
results, we refer  to  C L ~ _ ~  [6] for the finite dimensional case and AvBI~ [1], CLAn- 

[7], LE~Om~G [20] and Tm]3AZYL~ [40] for the infinite dimensional case. Here,  
our Mm is to develop a theory  of subdifferentials for a class of vector  valued func- 
tions extending the one of real-valued locally Lipschitz functions. 

In  the last few years, in order to obtain opt imal i ty  conditions for infinitely, m an y  
inequal i ty  constraints m a n y  authors  have invest igated vector-valued functions and 
defined for t hem a notion of directional derivative. The first ones to have considered 
such functions seem�9 to be RAFFI~ [34], VALADIE]~ [43], IOFFE and LEVI~ [15] and 
Z0WE [46] WhO have extended the concepts of directional derivat ive and subdiffer- 
ential  of a convex function. In  [30] g. P. PE~OT has int roduced the notions of upper  
and lower directional derivatives of a vector-vMued funct ion and considered the 
functions for which these directional derivatives are sublinear. I n  [3], for a point  
in a topological vector  space E,  M. S. BAZ~a~AA and J.  J .  G00DE have used vector- 
valued functions ] for which the mappings 

v ~-~ lim t-l[](~ + in) - -  ]@)] 
tr 

have  a sense and are sublinear. P. MICHEL has investigated in [24] vector-vMued 
functions ] such t ha t  ] ~ g +  d where g is convex and d is str ict ly differentiable. 

I n  this paper,  af ter  recent  works, for instance, these of AUSLE~DER [2], CLAR- 
KE [6-9], GOLDSTEIN [10], HII~IAI~T-U]Cl~UTY [12-14], LE]30UI~G [20], I~IFFLIN [25], 

(*) Entrain in Redazione il 24 aprile 1979. 
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P0~T~CIAV [33], TmBAvLT [40 42], which have shown that  the generalized gradient 
of Clarke has many important applications, we introduce a class of vector-valued 
functions which contains the class of Lipsehitz functions when the range space is 
the real line. For these functions we define a notion of subdifferential which coincides 
with the one of generalized gradient of 1~. tI. CLA~K~ [6, 7] for a real-valued locally 
Lipschitz function. 

The first section deals with the definitions of compactly lipschitzian mappings 
and strictly lipschitzian mappings. I t  is shown that  the set of mappings of a 
topological vector space into another one which are compactly lipsehitzian at  a 
fixed point is a vector space. Properties of composition are studied and some ex- 
amples are given. I t  is also proved that  under some conditions a convex vector- 
valued function is compactly lipsehitzian. 

In w 2 we define the directional derivative of a compactly lipschitzian mapping 
which takes values in an ordered topological vector space. Some important prop- 
erties of this directional derivative are studied, in particular it is shown that  it is a 
sublinear mapping. 

The third section is concerned with the definition of the subdifferential of a 
compactly lipschitzian mapping defined on a vector space E. Conditions under 
which the subdifferential at a point is a non empty convex compact subset for the 
pointwise convergence of the space of continuous linear mappings of E into the 
range vector space are given. I t  is also proved that  the convex Subdifferential of a 
convex compactly lipschitzian mapping coincides with the above subdifferential. 

Some formulas for this subdiffercntial concerning the cases of finite sum, com- 
position and pointwise supremnm are studied in w 4. The results that  we obtain 
are generalizations of known results for real-valued Lipschitz functions. We also 
apply the result about the composition with ~ positive continuous linear functional 
to the study of a continuous sum of real-valued Lipschitz functions. 

w 5 is devoted to the study of the subdifferential of a continuous sum of compactly 
lipschitzian mappings. 

Before concluding this introduction, let us indicate that  all topological vector 
spaces that  we shall consider will be Hausdorff real topological vector spaces and 
that  we shall always assume that  the positive cone of an ordered topological vector 
space is closed. 

1. - Compactly Lipschitzian mappings. 

Throughout the following E and F will be two topological vector spaces and R 
will denote the real number system. 

1.i. DEFINITIOI~S. 

1) Let  / be a mapping of E into F and let ~ be a point in E. We shall say 
that  ] is compactly lipschitzian at the point ~ if there are a mapping K of E into the 
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set Comp (F) of nonempty  compact  subsets o f / ~  and a mapping r of ]0, 1] • E • E 
into F which ver i fy  the following propert ies:  

a) limr(t,x; v ) = 0  for each v e E ;  
t r  

b) for each v E E there  exist  a neighborhood ~9 of ~ in E and a real  number  
U E ]0, 1] such tha t  
t-l[J(x-~tV)--J(X)]eK(v)+r(t,x; v) for all x e O  and t e ] 0 ,  U ] . 

2) ] wil l  be locally compact ly  ]ipschitzian on E, if it  is compact ly  lipschitzian 
at  every  point  x E E. 

Le t  us also note  tha t  for a lot of mappings ] tha t  we shall encounter  in the 
sequel, there  are mappings K and r and neighborhoods ~ of ~ and V of zero in E 
satisfying: 

a') limr(t,x; v) = 0 for each v~  V and limr(t~x; v) -~ 0; 
t./,o t,l,o 

V'-~'O 

b') for all xef2,  v e V  and t e ] 0 , 1 ]  

t - l [ ] (x  + tv) - ] (x)]  e K(v) + r( t, x; v) ; 

c') K(0) = {0} and the mult i funet ion K is upper  semi-continuous at  the 
origin ( that  is for each neighborhood W of K(0) in F there  is a neigh- 
borhood U of zero in E verifying K(v)c W for every  v e U). 

We shall say tha t  these mappings are strictly lipschitzian at  the point  ~. 

I{E~AI~K. -- I t  is not  difficult to see tha t  ~ mapping which is s tr ict ly ]ipsehitzian 
at  a point  is compact ly  lipschitzian a t  this point. 

Before proceeding to the definition of the subdifferential of a compact ly  lipsehitzian 
mapping, we shall give some propert ies and some examples . . . . .  

The first one will be tha t  a mapping which is str ict ly lipschitzian at a point  
is Lipschitz at  �9 ii1 a certain sense. ~ _ 

I n  order to deal with let  us recall the following definition. 
I f  U is a closed, circled neighborhood of the origin in a topological vector  space X 

the gauge of U is the  real-valued f u n c t i o n  ~ defined by  

~v(x) = inf{t > O]xetU} for every  x e X .  

I t  is easy to see tha t  the funct ion ~ is posit ively homogeneous and continuous at  
the origin with ~ ( 0 ) =  0 and tha t  x e  U i f  a n d  only if ~ ( x ) < l .  

11  - A n n a l i  di  Matemat ica  
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1.2. P~o~osr~m~. - I f  / is a mapping o/ E into F which is strictly lipsehitzian 
at ~, then f is Lipsehitz a~ ~ in the sense that ]or every elosed~ circled neighborhood W 
of the origin in ~ there are a closed, cireled neighborhood 17 o] the origin in E a~d a 
neighborhood X of ~ in ~ such that 

e~(/(y) - f(x)) < e ~ ( y -  x) /or a~l x, y ~ X .  

PEOOF. - Let W be any closed, circled neighborhood of the origin in F.  Con- 
sider u neighborhood f2 of Z and a neighborhood V of zero in E defined by condi- 
tion (a ~) in definition 1.1 and choose a neighborhood W, of zero in /~ verifying 
W, ~ W~c W. The definition of a strictly lipschitzian mapping implies that  there 
exisf a circled neighborhood U of zero in E and a positive real number y < 1 such 
that  

Uc V , ~ +  Uc f2  

and 

K(v) c W, and r(t, x; v) e W, 

for all Se]0,?],  s e ~ +  U and ve  U. Then, by condition (b') we have 

](x § w) - ](~) e tW 

for all x e s  w e t U  and tejO, y]. Choose a neighborhood X of ~ satisfying 
X - - X c 2 - a y U .  If  x and y are two points in X and if A is any real number verifying 

then we lmve 

](y) - / ( x )  = ] ( x +  (y - x)) - f(x) e ; t w  , 

for y - - x e ~ U  and ~ < y .  So we have 

~ , , , ( l ( y )  - l ( x ) )  < 

and hence 

ew(f(y) - l(~)) < q ~ ( y -  x ) .  [ ]  

R ~ K .  - I f  E and F are two normed vector spaces it is an easy matter to verify 
that  the definition of Lipschitz mappings given above in terms of gauges is equivalent 
to the usual definition. 

As a consequence of the above proposition we have the following property. 
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1.3. COROLLARY. -- I f  a mapping ] of E into F is strictly lipsehitzian at ~, then 
it is continuous at ~. 

I~,~A~K. - A mapping f which is compact ly  lipschitzian at  a point  ~ is not  
necessarily continuous at  this point. ~o r  instance, let  E be the space of all sequences 
of real numbers  (x , )n~ with  x ~ r  0 only for a finite number  of integers n endowed 
with the norm ][x]] ---- m a x  ]x~ I. Define a real-valued function ] on /~ by  put t ing 

heN 

f(x) -~ x~ ~- ~. nx~ for x = ( x ~ ) ~  N . 
n >~o 

Then f is compact ly  lipschitzian and non-continuous at  the origin (and hence 
non str ict ly ]ipschitzian at  this point). 

1.4. P~oeosI~rloN. - Assume that .E is a dual Banach space, that is the topological 
dual of a Banach space. I f  a mapping f of E into F is _~ipschitz at ~ with respect to 
the strong topology of F, then ] is strictly lipsehitzian at ~ with respect to the weak star 
topology of F.  

P~ooF. - I f  ] is Lipschitz a t  ~, there  are a closed circled neighborhood U of the 
origin, u neighborhood X of 5 in /i7 verifying 

]If(Y) -- f(x)]1 < @~(Y -- x) for all y, x in X .  

Choose ~ neighborhood $2 of 5 and a circled neighborhood V of zero in E verifying 
-~- V c X and take 

r ~- 0 and K(v) = ~u(v)]~(0, 1) 

where ] ~ ( 0 , 1 ) ~ { z e F ]  [[zU~<l }. Since /~(0,1) is weakly star compact  in F and 
tha t  ~ is posit ively homogeneous ~nd continuous at  the origin, the mappings K 
and r and the neighborhoods f2 and V satisfy the  conditions of the  definition of a 
s tr ict ly lipschitzian mapping. [] 

1.5. CO~OLL~u - I /  F is a finite dimensional vector space, then a mapping f 
of E into F is strictly lipschitzian at a point if and only if it is Lipsehitz at this point. 

P~ooF. - I t  is a simple consequence of propositions 1.2 and 1.4. 

1.6. P~OPOSlTIO~. - Assume that f and g are two mappings of E into F compactly 
lipschitzian at ~ e E, that B (resp. A) is a continuous affine mapping of a topological 
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vector space H "into E (resp. a cOntinuous linear mapping o] ~ into a topological vector 
space G) and that Bff ~ V~, then the ]ollowing assertions hold: 

i) ] ~-g is compactly lipschitzian at the point ~; 

if) Ao]oB is compactly lipschitzian at the point ft. 

P~ooF. - Consider a mapping Kf (resp. K~) of E into Comp (/~) and u mapping r~ 
(resp. r~) of ]0, 1 ] • 2 1 5  into F verifying the above conditions for the mapping ] 
(resp. g) and the point 5. I t  is easily seen tha t  the mappings K ~ K ~  and r~-~r~ 
satisfy conditions (a) and (b) of definition 1.1 for the mapping ]~ -g  and the point ~. 
Now, let v be ~ point in H. Write B = b + B where b e E a n d / 3  is a linear map- 
ping p i l l  into E. There exist a neighborhood Y2 o f t  and a real nwmber ~e ]0 ,  1] 
such tha t  

t-~[/(x+tBv)--](x)]eK~(Bv)-~-rf(t ,x;Bv) for each (t ,x)e]O,~]• 

I f  we choose ~ neighborhood W of ff with B(W)c~2 and if we put  K(z )=  
: A(Kjo.B(z)) for e~ch z e E  ~nd r(t, y; v) = A(rf(t, By; By)), then we have 

t-~[AoloB(y~tv) -- Ao]oB(y)] eK(v) -~r(t, y; v) for each (t, y) e l0 ,  ~] •  W ,  

and the proposition is proved. [] 

I~E~ARK. -- Similar results also hold in the strictly lipsehitzian c~se. 
Let  us give some other examples of compactly lipsehitzian malapings. 

1.7. EXA~aTLES. 

a) I f  a mapping ] of a normed vector space E into a topological vector space/v 
is strictly differentiuble at  a ipoint 5 e E, tha t  is if there is a continuous linear 
mapping V](~) of E into F such tha t  

l i m [ / ( x ) - t ( y ) -  V / ( ~ ) . ( x - y ) ] / l ] x - Y l l  = o (see [~]), 
$-->5 

x e y  

then ] is strictly lipsehitzian at  ~. Indeed, if we put  K(v) -~ {V](~).v} and r(t~ x; v) = 
t-l[](x~ - t v ) -  ] ( x ) -  tV](~).v] it  is an easy  mat ter  to verify tha t  the mappings K 

~nd r satisfy the conditions of the definition of ~ strictly lipsehitzian mapping. 

b) Suppose tha t  /T is an ordered topological vector space in which the order 
intervals [zl, z~] = {zeEIz~<z<z2 } are compact. Le t  h be a mapping 6f E into F 
which is positively homogeneous, tha t  is~ h(tv)= th(v) for all t>O and v e E .  I f  ] 
is ~ mapping of E in to /~  and if there exists ~ neighborhood ~9 of ~ point ~ e E such 
tha t  f(x) -- ](y) < h(x -- y) for all x e ~9 and y e ~2, then  ] is compactly lipschitzian 
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at  ~. Indeed, it is easily seen tha t  ](x) -- /(y) 6[-- h(y , x), h(x-- y)] for all x 6 ~  
and y e ~2. I f  we put  K(v) -= [-- h(-- v), h(v)], the elements K and r ~ 0 satisfy the 
conditions of definition 1.1 for the mapping f and the point ~. 

c) Le t  G, E be two normed vector spaces and let -~ be an ordered topological 
vector space. Consider a mapping g of G into E which is Lipschitz at  a point ~, :a 
mapping f of E into F Such tha t  there exist a neighborhood W of g(~) and a point/~ 
in the positive cone F + =  {ze~lz~>0 } of _F which satisfy the following relation: 

/(Y~)--/(Y2)< [lY~--Y~I[~ for all y l e W  and y ~ e W .  

I f  we suppose tha t  the order intervals of xV are compact, then  the mapping log 
is compactly lipschitzian at  the point ~. Indeed, since g is Lipsehitz at  ~, there 
exist a real number ~ >  0 and a neighborhood ~c2 of ~ such tha t  g (~)=  W and 
I[g(x~) -- g(x~)]] < ~ [[x~-- x~ I[ for all xz e ~ and x~ e ~2. Therefore, it follows tha t  

]og(x~) ~ ]og(x~)< ][g(x~) -- g(x2)II k < ~ ]lXl-- x~ [[ i~ 

for all x ~ e ~  and x2~(2. Define a mapping h of G into F by h(v) =- ~][v]lk for each 
v e G. Then we see tha t  the mapping h and the neighborhood ~ of 5 satisfy the 
conditions of example (b) for the mapping fog and the point ~. 

If, in addition, the positive cone F+ is normal (see 1.8), then fog is strictly 
lipschitzian at  ~. 

Before making some remarks, we recall the following definitions. 

1.8. DJ~FII~ITIO~S. - The positive cone F+ of an ordered topological vector 
space F is normal if there exists a neighborhood basis {V}v of the origin in F such tha t  

V =  ( V §  (V =- F+) .  

We say tha t  an ordered topological vector space  F is normal if t hepos i t i ve  
cone F+ is normal. 

Let  us note tha t  if / ~  is normal a n d  if (xj)i~j, (y~.)j~j, (z~)j~ are three nets in F 
verifying xj<yj<zr for all j e J  and l i m x j = l i m z j = 0 ,  then we have l i m y ~ = 0  

j e J  j e J  j e J  
(see [32]). 

~Ei~AI~KS. 

1) Let  F be a strongly closed subspace of the dual of a Ban~ch space. Suppose 
tha t  k~ is equilaped with the topology induced by the weak Star topology and that F 
is ordered by a strongly closed convex cone F+.  If  the positive cone •+ is normal 
for the norm topology of E ,  then  the order intervals [Zi, z~] are boundecl in-/~ (see:[32~), 
hence compact in F for the weak star topology. For  instance, if # is a positive meas- 
m~e on a tribe ~ of a set S, the space L~(S, X, #) of all equivalence classes of real- 
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valued g-measurable functions ] such tha t  ]]1 v is #-integrable if 1 < p < § c~ or 
#-essentially bounde4  if p = § c~ ver i fy  these assumptions for its na tura l  positive 

c o n e .  

2) I f  F = .L~(S, Z, #), the  order intervals o f /~  are weakly compact  in 17 since 
they  are equi-integrable subsets of L~(S, Z, #). 

3) I f  p is a positive integer and F ~ lv, the space of all sequences ( x , ) , ~  

h e n  

order, it  is an easy ma t t e r  to ver i fy  tha t  the order intervals are compact.  
1flow we are going to s tudy the case where ] is a convex vector-valued funct ion 

which is continuous on a neighborhood of ~ in E.  
Le t  us recall t ha t  for a topological vector  latt ice (see [32]) the latt ice operations 

x ~-> sup (x, 0) and x ~-> in (x, 0) 

are continuous and the  positive cone is normal. 

1 . 9 .  P R O P O S I T I O N .  - -  Assume that F is an ordered topological vector lattice ]or which 
the order intervals are O-compact, where 0 is a vector topology on F which is coarser than 
the topology o] F. I] f is a mapping o] E into F and i] ~ is a point in E /or which 
there exists an open convex set U with 3~  U and such that the restriction o]]  on U 
is convex and continuous, then ] is strictly lipsehitzian at 3 with respect to the O-topolology. 

P~ooF. - Choose a neighborhood f2 of ~ and a circled neighborhood V of zero 
in E verifying ~ §  V r U. Since the restr ict ion of ] on U is convex, it  is easily 
seen that ,  for all t e l0 ,  1], x e f2 and v e V, we have 

-~(x-v)§247247 

For  each v e E and each x e E pu t  

a(v) = -- ](3 -- v) § and b(v) = ](3 § v) -- ](3) 

and 

~(x, v) = inf (0, - -  ](x - -  v) + ](x) + ](3 - -  v) - -  ](3)), 

~(x, v) = sup (0, ](x§ v) - / ( x )  - 1(~ + v) § 1(3)). 

Then,  since F is a vector  lattice, according to corollary 1.4, chap. 1 in [32], we have 

[a(v) § ~(x, v), b(v) + ~(x, v)] = [a(v), b(v)] + [~](x, v), y(x, v)J 
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and hence there exist, for each t e ]0, 1], each x e ~ and each v e V, an element 

4(t, x; v) e [~(x, v), y(x, v)] 

such tha t  

t-*(f(x q-tv) -- ](x)) ff [a(v), b(v)] ~- d(t, x; v) . 

Define a mapping K of E into C o m p ( F 0 ) a n d  a mapping r of ] O , I ] •  
into E by  setting 

and 

K(v)-~ [a(v), b(v)] 

r(t, x;  v) = d(t, x; v) 

for each r i f E ,  

if x e D  and v e  V 

r(t, x; v ) =  0 otherwise.  

Since the mapping ] is continuous o n  U, tha t  the lattice operations are contin- 
uous for the topology of _F and tha t  the positive cone /V+ is normal, it is not  
difficult to verify tha t  the multi]unction K is upper-semicontinuous with K ( 0 ) =  (0}, 

l i m r ( t , x ; v ) = O  for each v e  V and l i m r ( t , x ; v ) : O .  

x-+5 x--+~ 
v-->O 

So conditions (a'), (b') and (e') of definition 1.1 are verified, and the proposition 
is proved. [] 

REMARK. -- The above proof shows tha t  the proposition still holds if the map- 
ping x ~+ sup (x, 0) of E into E 0 is continuous and if the positive cone/~+ is normal 
with respect to the 0-topology. 

2. - Generalized directional derivative of  a compactly Lipschitzian mapping. 

In  this section and the following ones we shall denote by E a topological vector 
space and by E an ordered topological vector space. We shall assume t h a t / ~  is also 
an order-complete vector lattice for its order structure, tha t  is, sup (x, y) exists 
for all x, y e E and sup M exists for each nonempty  subset M of E which is bounded 
above in /~ (see [32]). 

By  E'----E ~)(-~ c~} we shall mean the order space F with the adjunction of a 
supremum ~- c~. I t  follows tha t  every nonempty subset of E has a supremum in/~ ' .  
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Let  ] be a mapping of E in to /~  which is Compactly lipschitzian at  ~ point S e E ,  
Consider the following mapping 

\ 

q~: ]0, -[- o o [ x E •  

q~(t, x; v) = t-~[/(x~ - tv) - - / (x )] .  

:For every subset M of F we  shall denote by  cl~(M) the closure of M in F.  
We shall put :  

D/(~; v )=  n cldq/(]o, 4 x  w;  v)], 
e,W 

where W is a neighborhood of �9 in E and s is a positive real number. 
We remark tha t  D~(5; v) is also the set of limits of all convergent nets (q~(t~, x~; v))~z 

such tha t  (t~)~z is a net of positive real numbers  converging to zero and (%)~ez is a 
net in E converging to 5. 

Hence, we may  write 

Ds(E~; v) = { l im q~(t~, xj;  v ) [ t j >  O, l i m t j  = O, l i m x j  = E'} . 
t ~ J  ~eJ ~ J  

Since ] is compactly lipschitziun at  ~, it  is easily seen tha t  DdS; v) =~ 0 for every 
v ~ E .  

2.1. DEF~NimION. -- The mapping ]~ .) of E into F" defined by 1o(~; v ) =  
supDf(5; v) for every v~_E will be called, following Clarke's terminology, the 

generalized directional derivative of ] at  the point ~. 

RE]~JCK. - I t  is easily seen that ,  i f /~  is a normed vector space and if ] is a real 
valued function which is Lipschitz at  a point 5, ]0(~; .) coincides with Clarke's direc- 
ti0nat derivative (CL~Ic~ [6, 7]).  . . . .  : 

2.2. P~0P0SITION. - Let ~ be a nonnegative real number and let ], g be two map- 
pings o] E into F which are compactly lipschitzian at a point ~. Then/or  every v e E, 
the ]ollowing assertions hold: 

a )  ( ) 4 ) o ( 5 ;  v )  = ~Io(~' ;  v ) ,  . . . . . . . .  - _ . . . . .  ' ,  

�9 5 )  ( - ] ) o ( ~ ; v ) = l o ( - x . ; . , = v ) _ i .  . _ : . . ~  . . . .  - - : - . . - :  . . . . .  : . - - : . . ~ _  . . . :  . .. 

e )  ( ] + g ) O ( ~ ; : v ) < ] o ( - ~ ; v ) §  : : : " " " : :: . . . . . .  

�9 .:P~o0F. -: Muk~ng: use of: the:nbvioas-:rel-ations qa)~ ~qf and q#~=-q~-~.g~,, we 
get the following: " 

/)~r(~; v) ~ ~Df(~; v) and Ds+g(5; v) c DI(5; v ) ~  Dr v) . 
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Hence, the assertions (a) and (c) are verified. Let  us observe now tha t  we have:  

q_gt, x; v) = - t-~[f(x + tv) - f(x)] 

= t-~[f((x + tv) + t ( -  v)) - f(x + tv)] 

= qAt, x §  tv; -- v).. 

L e t  W b e  a neighborhood of 5 in E and let s be a positive real number. We 
claim tha t  W §  ]0, ely is a neighborhood of ~ in E. Indeed, since Che mapping 
(x~t)~-->x§ of E •  into E is continuous, there exists a real number  ~ wit]] 
0 < ~ < s and a neighborhood U of 5 in 2~ such tha t  

Therefore, we huve 

V - ] o ,  v[vc  ~7§ ] - n ,  n[vc  W .  

U c  W +  ]0, V[vc W +  ]0, , [v .  

Using this fuet and the definition of D_~(~; v), we see tha t  the following inclusion holds: 

D_A~; v) cDAS; - -  v).  

By  symmet ry  we obtain tha t  the reverse inclusion holds too. t tencc,  we m a y  conclude 
thug we have:  

(_  f)o(5; v) = supD_f(~; v) = snpD~(~; -- v) = fo(~; _ v).  [] 

The following proposition gives a very important  property of the generalized 
directional derivative. 

2.3. PgoPoslTIO~. - I f  f is compactly lipschitzian at a point ~ ~ E, then the map- 
ping fo(5; .) of E into F" is sublinear. 

PROOF. 

1) I f  2 =  0, it is obvious tha t  fo(~; 2 v ) =  2]o(~; v) for every v E E .  Le t  ~ be 
a positive real number and let v be a point in E. Since qAt, x; ,Iv)=_~qf(2t, x; v), 
if we denote by ~(~) the set of neighborhoods of ~,  we have:  

D,(~; ~v) = N 
8:>0 

clF [q,(]0, ~[x wi  ~ ) ]  

= ~ N clFEq,(]o, a~E • w; ~1] 
�9 e>O 

= ~ N d~[+(]o ,~[•  v)] 
e > o  

w ~ ( ~ )  ..... 

Thus, we have fo(~; ~ v ) =  ~fo(~; v). 
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2) Le t  v and w be two points in E.  Choose a mapping K of E into Comp (F) 
and a mapping r of ]0, 1 ] • 2 1 5  into F verifying the properties of definition 1.1, 

and note  tha t  we have 

q~(t, x; v-~ w) = qt(t, x; v) ~ q~(t, x -~  tv; w) 

for every  positive real number  t and for every  x e E .  ~ o w  consider a point  
limq~(t~, xj; v + w )  in DAb;v - i -w) .  There exists ~n element j 0 e J  such tha t  
5eJ  

and 

q~(t~, x j ;  v)  - r(tj ,  x~; v) e K(v)  , 

q~ (tj, x~ ~ t~ v; w) - r(t~, x~ ~- t~ v; w) ~ K(w)  

for every  j E J  verifying J>Jo. Hence,  making use of the relation l~o r(t , x; z ) =  0 
for every  z ~ E ,  we can find two convergent  subnets ~-~ 

(q~(t~(o, x~(~); v))~ 

Therefore,  we may  conclude tha t  

~nd 

and (q~(t~(o, x~(~)+ t~(ov; w))~e 1 . 

D~(~; v ~ w) c D1(x; v) ~- Dj(~; w) 

p(~.; v§ v)+]o(.u w). [] 

In  order to give a class of mappings for which the generalized directional derivat ive 
is a continuous mapping, we consider t h e  following lemma. 

2.4. L~.~r~. - Assume that the positive cone F+ is normal. I] s is a sublinear 
mapping o] .E into ~ which is continuous at the origin, then s is eontinuous on E. 

PROOF. -- Le t  Xo be a point  in E.  Noting tha t  - s ( x o - - x ) < s ( x ) -  s (xo)<.s (x -  xo) 
for every  x e E and using the normal i ty  of the positive cone F+ and the equalities 

l i ras(x- -  xo) ---- l im[  s(xo-- x)] = 0 ,  

we m a y  conclude (see 1.7) tha t  lims(x)-----S(Xo). [] 

2.5. DEFINITION. -- A mapping ] of a topological vector  space E into an ordered 
topological vector  space F will be said to be order Lipsehitz at  a point  ~ e E if there 
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exist two mappings h and h of E into F and a mapping r of ]0, 1 ] x E x E  into F 
such tha t  

a) h(v)<h(v) for all v e E  and limb(v) = 0; 
v---~0 

b) l imr(t ,x;  v ) ~ 0  for all v e E ;  
i t 0  

c) for each v e E there is a neighborhood /2 of ~ in E and a real number 
,1 ~ ]0, 1] for which 

t-~(l(x § tv) - l(x) ) e [h(v),  ~(x)]  § r(t, x;  v) 

for all t e ]0, ~] and x e/2. 

RE~ARK. - Consider a normed vector space E and a normed vector lattice ~.  
Assume tha t  / is ~ mapping o f / ~  into F and ~ is a point of E such tha t  there 

exist a point k ~ F +  and a neighborhood /2 of ~ satisfying 

l(x) - I(Y) < ilx - y I[ 7~ 

for all x, y in /2 .  I f  we denote by  [. I the absolute value mapping of F ,  then  we have 

II(x) - l(y) 1< llx - y ]1 

for all x, y in ~ .  Then the mapping ] is Lipschitz at  the point ~, since we have 

Ill(x) - l(y) H < ]]~]]' l i x -  y]] 

(in a normed vector lattice the inequality Izl[< ]z~] implies [IzllI< IIz~tl, see[32]). 

2.6. P~oPOS~TIO~. - Assume that the positive cone tz+ is normal and that the order 
intervals are compact in F. I] ] is order Lipsehitz at a point ~ ~ E~ then ] is compactly 
lipsehitzian at ~ and ]o(~ i .) is a continuous sublinear mapping o] E into F. 

P~oo~. - Choose a mapping h of E into F such tha t  limb(v) ---- 0 and a mapping r 
V->O 

of ]0, 1] x ~ E x E  into F verifying the conditions of definition 2.5. I t  is obvious tha t  ] 
is compactly lipschitzian since the order intervals are compact in F.  

I f  v is a point in E and if limq1(tj, x~; v) is a point in Dr(5; v), then with the 
5eJ  

help of the above facts it  is easily seen tha t  l imqf(t~, x~; v)<h(v). Hence we  have 

--h(--v)</~ v)<h(v) for  every v e E .  Therefore, the normali ty  of F+ and the 
relation !imp h(v ) ~-0  imply tha t  ]0(~; .) is continuous at  the origin. Making use of 

the above lemma we conclude tha t  /~ .) is continuous on E. [] 

As a consequence of the above l~roposition we have the following result. 
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2.7. PRoPosi t ion .  - Under the assumptions el the above proposition, the mapping 
~(5; .) el E into ~ is order Lipschitz on E. 

PROOF. - I n  the proof of the preceding proposit ion we have seen tha t  t he  relation 
]o(~; . ) < ~  holds. Therefore,  if we assume tha t  v and w are two points in E, we 
conclude t ha t  we have:  

]o(~;v)_]0(~;w)</o(~;v w)<~(v-w). [] 

R E ~ K .  - More generally, every  continuous sublinear mapping is order lipschitz 
on E. I t  is obvious tha t  the cont inui ty  of the mapping ]0(~; .) is very  important .  
So we introduce the following definition. 

2.8. DEFI~ITI0~. - We shall say tha t  a point  5 is regular for a mapping / of E 
in to /~  if ] is compact ly  lipsehitzian at  ~ and if ]o(~; .) is a continuous mapping of B 
into F.  Sometimes we shall say tha t  ] is regular a t  ~. 

~E1KARKS. 

1) Obviously, if ~ is a regular point  for ], the  mapping ]o(~; .) is then  convex 
and continuous. 

2) I f  the cone /~+ is normal  and if the mult i funct ion K in definition 1.1 is 
bounded above on a neighborhood of zer% then  it is easily seen tha t  ~ is a regular 
point  for ]. 

3. - Subdifferential of a compactly Lipschitzian mapping. 

L(E, F) will denote the vector  space of all continuous linear mappings of E into F 
and L~(E, F) this space endowed with the topology of pointwise convergence. 

3. t .  DEFInITIOnS. -- Le t  ] be a mapping of E into F which is compact ly  lipschit- 
zian at  a point  ~ e E. An element T ~ L(E, F) will be called a subgradient  of ] 
a t  ~ if the following relation holds: 

T(v)<]~ for all v e E .  

The set of all subgradients of ] at  ~ will be called the  subdifferential of f at  ~ and 
denoted by  ~](~). 

RE'lARKS. - 

i)  The subdifferential ~/(~) can be empty,  i t  is the Case if f is a noncontinuous 
linear mapping since ]~ v ) = f ( v )  for all V eE.  

2) I f  ] is a real-valued funct ion which is Lipschitz at  ~ and if E is normed, 
then  the above subdifferential is exac t ly  the one of CLARKE [6, 7]. 



LIo~v,~ Tm]~Av~:  Compactly Lipschitzian ]unctions 171 

3.2. PROpOSiTion. - Assume that ~+ is a normal cone and that ~ is a regular point 
]or the mapping ]. Then the subdiMerential ~](~ ) o]] at ~ is the set of all linear map- 
pings T o] E into ~ such that T(v)<]~ v) ]or all v e E .  

PROOF. -- Suppose tha t  is is a linear mapping of E into F verifying the above 
assumption. Since ]o(~; .) is a sublinear mapping of E into F,  we have --]o(~; _ v )<  
dis(v)  <]o(~; v). Using the normal i ty  of F+,  we conclude tha t  limis(v)----0, and 

V--->0 

hence is is continuous on ]L [] 

RS.~AnK. -- The relat ion iS(v) e [ - -  ]o(5; _ v), ]o(~; v)] for every  i ce  ~](~) implies 

tha t  ~](~) is an equicontinuous subset of L(E, F) when the assumptions of the above 
proposit ion are verified, Indeed,  let W be any  neighborhood of the origin in F ver- 
ifying W-- - - (Wd-F+)n (W- -F+) .  Since the mappings v~-~- - /o (~ ; - -v )  and v~-> 
>_> to(~; v) are continuous, there exists a neighborhood V of the origin in /i7 for 
which we have -- ]o(~; _ v) ~ W and ]o(~; v) e W for every  v e V. Thus we m a y  con- 

clude tha t  i s (V)c  W for all is~ ~](~). 
Below we shall make  use of a generalization of the analyt ical  form of the t Iahn-  

Banaeh  Theorem (see [21] or [32]). 

3.3. LE~lwA. - Let s be a sublinear mapping o] a real vector space X into as order 
complete vector lattice Y. I] T is a linear mapping de]]ned on a vector subspace H o] X 
with range in ~ vet]lying the relation is(x)< s(x) ]or all x ~ H~ then is can be extended 
to a linear mapping T o] X into Y such that T(x)<s(x) ]or all x ~ X .  

3.4. P~oPosITIO~. - Under the assumptions o] proposition 3.2, the subdi]]erential 
~](~) is a nonempty convex closed subset o] L~(E, F) and 

/o(~; v )=  max{T(v)lise ~](~)} ]or all ve2~. 

Moreover, ~](~) is a compact subset o/L~(E, F) i] the order intervals are compact in F. 

PRooP. - We m a y  assume tha t  E r (0} and let  v be an element of E different 
f rom the origin. The linear mapping T of R .v  into F defined b y  T(tv)-~ t]~ v) 
for all t e R  verifies the relat ion T(tv)<]~ tv). If  t is non-negative,  the inequali ty 
is obvious. Suppose tha t  t is negative. Since the relat ion 0<]~ v) ~- ]~ -- v) 
holds, we have:  

T(tv) = (--  t ) ( - -  ]o(~; v)) 

< - t]o(~; - v) 

_ ]0(~; tv ) .  

The above lemma asserts t ha t  there  exists a linear mapping T of E into F ex- 
tending T such tha t  T(y) <p (~ ;  y) for all y e E. Proposi t ion 3.2 implies tha t  T e ~](~). 
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Therefore, we have 3](~) :~ 0 and ]o(~; v ) =  max(A@)]A e ~](~)}. To p rove tha t  ~f(~) 
is a closed subset of Ls(E,F),  consider for each v e E  the mapping t~ of Ls(E,F) 
into F defined by l~(T)-~ ]0(~ i v ) ~  T(--v).  ]it is continuous. Since F+ is a closed 
subset of F ,  ~ / (~)= [~ l~l(F+) is a closed subset of L~(E, F). As the convexity 

of 3/(~) is obvious, it  remains to show tha t  ~](~) is a compact subset of Ls(E, F)  if 
the order intervals are compact in 17. Since ~](~) is eqnicontinuous, it  suffices to 
note tha t  we have T(v) e [-- ]0(~; _ v), ]o(~; v)] tor all T ~ ~](~) and v ~ E to conclude 
tha t  0](~) is relatively compact in L~(E, F) hence compact. [] 

R E ~ K S .  

1) The above arguments are close to the ones used by  YALAI)I~I~ in [43]. Simi- 
lar results have been also obtained by IOFFE and L]~WN [15] and ZowE [45] for 
convex functions and PENOT [30] for unscarped, tangential ly convex functions. 

2) By  the Ascoli theorem~ instead of the pointwise convergence topology, we 
may  also consider the compact or precompact convergence topology on L(E, F) in 
the above results. 

3) I f  F is a semi-reflexive locally convex space and if t h e  positive cone F+ 
is normal, the order intervals are weakly compact in F since they  are bounded and 
closed convex subsets of F.  

The following proposition gives an expected result. 

3.5. P]aoPosi~Io~. - Let ] be a mapping o]E into F which is compactly lipschitzian 
at a point ~ e E. I] the point ~ is a local minimum ]or the mapping ~, then we have 
o e ~1(~). 

P~oor .  - Choose K and r verifying the conditions of definition 1.1. We may  
assume tha t  ](5)<](x) for all x e/2,  where Q is a neighborhood of ~ in E. 

Consider a point v e E and a net  (t~)~++ of ]0, 1] converging to zero. For  some 
io e J we have qj(tj, ~; v ) ,  r(tj, ~; v) e K(v) and ~ ~ t~v e /2  for all ~ > ~o. Also~ there 
exists a convergent subnet (q~(t~(O, ~; v))~+~. Therefore, the inequalities 

0 < lim q~(t~, e ~ 5; v) < ]o(~; v) 

are verified~ and hence we conclude tha t  0 e ~](~). [] 
The subdifferential has the following property. 

3.6. P~OPOSIT~ON. - Let ] be a mapping o] ~ into F which is compactly lipsehitzian 
at a point F. eE .  The ]ormula ~ ( - - ] ) ( 5 ) ~ - -  ~f(~) holds. 

P~ooF. - I t  is a direct consequence of the assertion of proposition 2.2 which says 
t ha t  (--])~176 for every v ~ E .  [] 

T o  close this section, we now proceed to show that ,  if ] is compactly lipschitzian 
at  a point ~ e E, there exists a convex mapping o~ E into F such tha t  its convex 
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subdifferential a t  the or igin  coincides with ~/(~), and to s tudy the case where ] is 
c o n v e x .  

Let  us recall t ha t  a mapping g of E into ~"  is said to be convex if for all x, y e E 
and real numbers  t e[0,  1] 

g( tx+  (1 --  t)y) < tl(x) -F (1 -- t )I(Y).  

We need also some fur ther  definitions. The domain of g is the set d o m g ~  
= ( x e E [ g ( x ) e F } .  I f  xo is a point  in  doing, the set of all elements T of L(E,_F) 
such t ha t  

T(x)--T(~o)<g(x)--g(Xo)  for all x e E  

is the convex subdifferential of g at  x0. I t  will be denoted by  3~g(xo). 
We shall pu t  (see [43]) ]'(Xo; v) -~ inft-~[](Xo-F tv) -- ](Xo)] for all v e E .  

t > 0  

3.7. 1)~oPosI~rIo~. - Let ~ be a mapping o] E into F which is compactly lipschitzian 
at a point T e E .  Then the mapping /o(~; .) o] E into F" is convex and the /ollowing 
equality holds: 

~f(.~) = 3o]o(~; . ) ( o ) .  

P~ooF. - The convexi ty  of the mapping 1o(~; .) is t r ivial ly verified and 0 e  
edom]~  .) since /o(~; 0 ) =  0. Moreover, a continuous linear mapping T of E 
into F is in ~](~) if and only if T(v)<-~]~ v) for all v e E  (see the definition of 
a](2)) and hence if and only if it  is in ~]0(5; .)(0). [] 

The following three lemmas will allow us to compare the lipschitzian subdiffe- 
rent ial  with the  convex one for a convex mapping. 

3.8. L E p t A .  - I] (x~)jej is a decreasing net whose elements are in a compact sub- 
set K o/ an order topological vector X ,  then this net is convergent and we have 

lira xj = inf x~. 
~ J  j e J  

P~oo~. - Since K is compact,  it  suffices to prove tha t  any  cluster point  y of the 
net  (xr is the infimum of the family {xj ]} e J}. For  each j ~ J ,  since S~ = {x~ ]k e J ,  
k >  j ) c  x j -  X+ and tha t  the positive cone X+ is closed, we have y r  (Sj )c  xj - - X + .  
Therefore,  for each j e J  we have y<~xr I f  a point  z e X  verifies z<~xj for all j e J ,  
we have z < y ,  for y is a cluster point  of the  net  (x~)~j and hence y = infx .  

3.9. L E N A .  - Let G be an order-complete vector lattice endowed with a topology 
]or which it is an ordered topological vector space. I] a mapping ] o] E into ~ is convex 
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and compactly lipschitzian at a point ~ e.E, then ]or every continuous positive linear 
mapping A of F into ~ we have 

(Ao])'(5; v)-~ A( f (5 ;  v)) for every v e E .  

PgooF. - Let  K be a mapping of E into Comp (/~), r a mapping of ]0, I • 2 1 5  
into F verifying the conditions of definition 1.1. Le t  v be any  point in E. There 
exist a neighborhood/2 of 5 in E and a real number ~ El0 , 1] such tha t  q:(t, x; v) e 
e K(v) + r(t, x; v) for al l  (t, x) e 10, ~] • ~ .  Since f is convex, the mappings q:(., ~; v) 
and qao~(., ~; v) defined on the real interval ]0, ~-oo[ are increasing. Therefore, if 
we consider a decreasing sequence ( t ~ ) ~  in ]0, ~/1 converging to zero we have 

f'(~; v) = -eNinf q~(t., ~; v) and (Aof)'(~; v) -~ n~inf q~o~(t~, ~; v) . 

But  if we put  R = (r(t . ,  ~; v)In ~ N} L) (0}, the decreasing sequences (qy(t,, x; v)),~ s 
and (q.4of(t~, ~; v))~e N are respectively in the compact K ( v ) ~  R and A (g(v ) ) -~  A(R).  
Thus  the preceding ]emma ensures tha t  

(Ao/)'(~; v) = limq~oAt., ~; v) = l imA(qAt . ,  ~; v)) -- A(]'(~; v)) 
n-~oo  ~---> OO 

and the proof is complete. [] 

3.10. LEave .  - Let g be a convex real-valued ]unction de]ined on E. I] g is con- 
tinuous at ~ ~ E then g is compactly lipschitzian at �9 and we have 

g0(~.; v) ---- g'(~"; v) /or all v e E .  

P~ooF. - In  proposition 1.9 we have seen tha t  g is  compactly ]ipsehitzian at  ~. 
Le t  v be any  point in E. The inequali ty g'(5; v)~<g~ v) being obvious, let us show 
the reverse inequality.  We shall follow the proof of proposition 3 of CL~KE [71. 
Le t  liejmqg(tj , x~; v) be any  point in Dg(5; v). Since g is continuous, the mean value 

theorem for convex real-valued functions implies that ,  for each j e J, there exist 
yj ~- (1 -- sj)xj + sj(xj Jr tjv) with s~ e ]0, 1[ and zj e ~og(y~) verifying 

q~(t~, xj; v ) :  (zj ,  v)  <~ g'(yj; v ) .  

= inf t- l[g(x ~- tv) -- g(x)] is upper semi-continu0us, we Since the function x ~-> g'(x; v) t>o 
ob ta in  tha t  

lim qg(t~, x~; v).<<lim sup g'(yj; v)~<g'(~; v) 
j e J  ~ E J  

and hence gO(~; v)~g~(~ i v). [] 
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3.11. P~o~osITIO~. - I f  the space ~ is locally convex and if ] is a convex mapping 
of ~ into ~ which is compactly lipsehitzian and continuous at a point ~ ~ E, then we 
have f'(~; v ) :  fo(~; v) for all v e E .  

PnooF.  - I t  is clear f rom the definitions of f'(~; .) and ]0(5; .) t ha t  f '(~; v) <fo(5; v) 
for all v e E.  Le t  ns show the reverse inequality.  

Le t  v be any  point  in E.  Le t  us consider any  point  y'~/~+ and any  point  
limq~(t~, x~;v) in D~(N; v). Since the convex real-valued function y'of is continuous 
~ e J  

at  2 and hence continuous on E,  we have (y'oJ)'(2; v ) =  (y'of)~ v) according to 
lemma 3.10. Then it  follows from the cont inui ty  of y'  and lemma 3.9 tha t  we have 

y'(limq~(t~, x~ ;v)) : limqr x~; v )<  (y'o]),(~; v ) =  y'(f '(~; v ) ) .  
\ ~ e J  

Therefore,  since F is locally convex, the Hahn-Banach  theorem implies tha t  

limq~(t~, x~; v)<f ' (~ ;  v). Thus we m a y  conclude tha t  f"(2; v )< f ' ( 2 ;  v). [] 
j e J  

An immediate  consequence of the above proposit ion is the following. 

3.12. C01~OLL)Ar165 -- Under the above assumptions the lipschitzian and convex 
subdi/ferentials of f at the point ~ coincide. 

4. - S o m e  formulas  re lat ive  to the  Lipschi tz lan  subdifferential .  

Below we shall need the following lemma. 

4.1. LE~W~A. -- Let gl and g~ be two convex mappings of E into F" such that g~<g~. 
Suppose that Xo is a point of ~ verifying gl(Xo)~ g2(xo)eF. Then we have ~g~(Xo)c 
c ~og~(Xo). 

P~ooF. - This result  is a direct consequence of the definition of the convex sub- 
differential of a convex mapping (see the definitions which follow proposit ion 3.6). [] 

The following proposit ion gives a result  about  the subdifferential of a sum of 
two compact ly  lipschitzian mappings. 

4.2. PROP0SITIO]% -- .Let fl and f~ be two mappings of E into ~ which are compactly 
lipschitzian at a point ~ ~ E and put ]-~ f~-~ f~. Assume that the positive cone F+ is 
normal and that ~ is a regular point for f,, then the relation ~f(~) c ~f~(~) -~ ~f2(x) holds. 
Moreover, if  ~ is also a regular point /or  f~, then ~ is a regular point for f and ~f(~) is 
nonempty. 

P]~OOF. By  proposit ion 2.2 we have fo(~; j o - .  - v ) ~ / l ( x  , v)-~f~ v) for all v ~ E .  
Since the mapping fo(~; .) is continuous at  the origin, we m ay  apply  theorem 4 in 

ZOWE[46] to the convex mappings fo(~; .) and fo(~; .). We obtain ~c(f~ .)~- 

1 2  - A n n a l i  dl  Matemat l ca  
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q_]0(~; .))(0)c 3j0(5; . ) (0 )+  3j0(~; .)(0). Hence, using the above lemma and pro- 

position 3.7, we see tha t  

~/(~) = ~j0(~;  .)(o) c ~o]o(~; .)(o) + ~o1~(~; ")(0) = ~/~(~) + ~I~(~) �9 

:Now suppose tha t  ~ is also a regular point for the mapping ]~ To prove tha t  
3](~) is non empty,  it  suffices to prove tha t  5 is a regular point for the mapping ]. 
Since the mapping /o(5; .) is sublinear, the inequalities 

-Lo(~;- v)-/o(e;-v)</o(,~;v)</~176 v) hold for each ve .E .  

Then it follows from the normali ty  of the positive cone F+ and the regularity 
of ~ for ]~ and ]~ tha t  lim]~ v) ----- 0. Therefore p(~; .) is continuous at  the origin 

V-->0 

and hence, by  lemma 2A, continuous on E. [] 

I~ElVfAI~KS. 

1) In  geaeral the above inclusion cannot be replaced by  an equality. I t  is 
not  even the case when ~ is the real line and ]1 and ]2 are Lipschitz at  5. Indeed,  
if g is a real function which is Lipschitz at  a point ~ and whose subdifferential 
contains more t han  one point, take ]1= g and ] ~ = -  g. 

2) However, if the mapping ]~ is strictly differentiable at  ~, then it is not  diffi- 
cult to see tha t  ]o(~; v) : ]1~ v) q- ]o(~; v) for all v e E  and kence ~](~) = V]~(~) q- ~]~(~). 

About the subdifferential of a composite mapping ]oB, we have the following 

re]ations. 

4.3. PROPOSITION. -- Let B be a continuous a//ine mapping o/ a topological vector 
space G into E and let ~ be a point o/G such that B~ is a regular point/or a mapping ] 
el E into F. I] the positive cone F+ is normal and i/ B denotes the linear mapping 
associated with B, then we have: 

i) ~(]oB)(5) ~: 0 and ~ is a regular point /or ]; 

ii) 8(]oB)(5) c ~/(BV.)oB where ~](BS)oB----- {To/~]T e 8](B.~)}. 

PROOF. -- B y  proposition 1.6 the mapping /oB is compactly lipschitzian at  5. 
Moreover, i t  is an easy mat te r  to verify tha t  D~o~(~; v)cDI(B~.; .By) for all v e E .  
Then we have (/oB)~ v)</~ By) for all v eE .  Using an argument  similar to 
tha t  given in the second par t  of the proof of proposition 4.2, we can say tha t  ~ is a 
regular point for l o b  and tha t  3(/oB)(~.) is nonempty.  Now consider an element A 
of 3(/oB)(~.). By the above inequali ty we have --p(BV~;--Bv)<Av<]~ By) 
for all v e E, and hence Av ----- 0 whenever/~v = 0. Therefore, we can define a linear 
mapping T of Im/~ =/~(G)  into Y by  put t ing T(.Bv) = Av for all v a E. This linear 
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mapping T verifies T(y)<]O(BS; y) ~or all y e I m B .  By  lemma 3.3 we can extend 
it ~o a linear mapping T of E into ~ such tha t  T(y)<]O(B~; y) ~or all y ~E.  Finally,  
it  is easily seen tha t  A = ToB and T e ~](BS). [] 

I~E~A~KS. 

1) If,  in addition, ~he mapping B is open, then, we have ~(]oB)(~) = ~](B~)oB. 
Indeed, let limq~(t~, y~; By) be any  point in D~(B~; ~v). ~or  each neighborhood V 

of the point ~ in E, me m a y  choose i r e  J such tha t  y~ e B(V) for all ~> Jr since B(V) 
is a neighborhood of B~ in F.  P u t  I - =  {(~, V)]Ve~(~) ,  i e J ,  ~>}r} where ~(~) 
denotes the filter of neighborhoods o~ �9 in E and choose ~or each (j, V ) e I  a point 
x(~,~)e V with y~= Bx(~,v). I f  we define a preorder relat ion on I by  setting (j~, V~) 
<(j~, V~) if j~<j~ and 171 ~ V~, it  is easily seen tha t  (x~)~z is a net  which converges 
to ~ in E. Construct a mapping a o~ I into J by  put t ing a(i) = ~ if i ---- (j, V). We 
have y~(~)= Bx~ ~or every i e l .  Consider any  point J0 e J .  I f  Vo is a neighborhood 
of 5 i n / ~  and if we choose ~ e J  verifying ?>j0 and ]>~ro, then for io-----(], Vo) we 
huve ~(i)>j0 for all i>io. Thus (y~(~))iez is ~ subnet of (y~)~g (see [18]). Therefore, 
we have 

lim qi(t~, y j ; / ~ v )  = l i m  qf(t~(~), Bx~; /~v) = l i ra  q~oB(t.c~) , X~ ; V) 

and hence limqs(t;~ y~; By) eDfo~(5; v). Also, we obtain tha t  p(B~; By) < (]oB)O(5; v) 

and hence ]o(B~; B y ) =  (]oB)~ v). l~inally, if T e ~](BS)~ then  we have 

< = (foB)o( ; w) 

for all w ~ E and hence ToB E ~(]oB)(~). 

2) I f  B is a surjeetive and continuous aifine mapping of a FrSehet space onto 
another one, then B is open since the linear mupping associated with it is surjective 
hence open according to the well known Banach theorem. 

4.4. P~oPosITIo~. - Assume that ~, is a normed vector space and that the order 
intervals o] F are-compact. Let g be a mapping o] a normed vector space G into E which 
is strictly di]]erentiable at a point ~ ~ G. I] ] is a mapping o/ E into ~ ]or which 
there exist a neighborhood W o] g(~) and a point k ~ ~+ such that 

](y~)-](y2)<Ily~-y~l]l~ ]or all y~e W and y~e W ,  

then the mappings ] and log are respectively compactly Iipschitzian at the points g(~) 
and ~ and we have 

a(fog)( ) c oVg( ). 
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PROOF. -- Since the order intervals are compact in F~ it follows from example 17.c. 
that  ]-and log are respectively compactly lipschitzian at g(5) and 5. Now, let v be 
any point in G and let limqfog(t~, %; v) be any point in Dfo~(2; v). Since g is strictly 

differentiable at the point N and since / verifies the above relation, we have: 

lira q~o~(tj, xj; v) = lim tT~[f(g(xj) § tj Vg(5). v q- tie (tj) ) - -  ](g(xr )] 
5~J ieJ  

= lira tT'[/(g(xj) Jr tj Vg(~). v) - -  J(g(xj))] 
y ~J 

= lira qf(t~, g(x~); Vg(~). v).  

Therefore, we obtain that  (log)~ v)<~]~ Vg(~).v) for all v eG  and it suf- 
fices to repeat the arguments of the end of the proof of proposition 4.3. [] 

In order to study the Subdifferential of a composite functional y'oJ, let us recall 
the following notion. A linear mapping A of an ordered vector space into another 
one is positive if Ax>~ 0 for every y ~> 0. 

We shah denote by F+ the dual positive cone of F ' ,  that  is F+ = {y'e F '  [y'(F+)~> 0}. 

4.5. LE3~r_~. - Let G be a topological vector space which is an order complete vector 
lattice and let A be a positive continuous linear mapping el F into G. Suppose that I 
is a mapping el E into F which is compactly lipschitzian at a point S e E .  Then AoJ 
is compactly tipschitzian at 5 and (AoJ)~ /or each v e E  with the 
convention A(  q- co) ~- q- co. 

PROOF. - By  proposition 1.6 Ao] is compactly lipschitzian at 5. Choose now a 
mapping K of E into Comp (F) and a mapping r of ]0, 1] • E • into F verifying 
the conditions of definition 1.1. Let v be any point in/~ and l e t / =  l'l~aj qaof(tr x~; v) 

be any point in D~ot(5; v). There exists joe J such that qf(t~, zj; v ) -  r(tj, wj;v)e K(v) 
for each j>]o.  Since K(v) is compact in F,  there is a convergent subnet 
(q~(t,(o, x~(~); v))~• Then using the continuity of the mapping A, we obtain 

1-= limqAo~(t~(,) , w~(~); v ) =  A (l~m q,(t~(0, x~(0; v)). 

Therefore, l e A(D,(5; v)) and hence D~ot(~; v) c A(D,(5; v)). 
Finally, it follows from the positivity of the linear mapping A that (Ao])~ v)~< 

<A(/o(~; v)). [] 

~ E i ~ A R K S .  

1) Since the inclusion A (D,(5; v)) c D~ o~(5; v) is obvious, we have A (D,(~; v)) = 
----/)~oI(5; v) for every v e E .  

2) Assume that F is a normed vector space~ that g is a mapping of F into G 
which is strictly differentiable at ](5) and that Vg(J(~,)) is a positive linear mapping 
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of F into G. I f  the mapping ] is continuous at  ~, then go] is compact ly  lipschitzian 
at  5 and we have (go])O(~; z)<Vg(](~))(]o(~; z)) for every z e E .  Indeed, let v be a 
point in E. On the one hand,  consider a neighborhood/2 of 5 in E and a real number  

e ]0, 1] such tha t  q~(t, x; v) e K~(v) § r~(t, x; v) for all (t, x) e ]0, ~] •  and tha t  
r~(]0, ~] • 9 ;  v) is topologically bounded in F. Since 

g(z) - g(~) = Vg(](~)). ( z -  ~) + IIz-  yll ~(z,~) 

with l im e(z, y) = 0, we have for every (t, x) e ]0, ~] • ~2 

y-->$(5) 

= t - ~ [ g ( ] ( x §  tv))  - g(](x))] 

- -  Vg(](~)). t -~[ l (x  § tv) - ](x)] § t-~ II ] (x  § tv) - ] (x)  II ~ q(x § tv) ,  ](x) ) , 

and hence 

l e Vg(](~))(Kf(v)) + Vg(](~)) "re(t, x; v) § t-~ll/(x+ tv) -- ](x)I[s(/(x§ tv), ](x)). 

Moreover, l imt-~]l/(x§ tv) - ] ( x ) I I ~ ( ] ( x +  tv) ,  ] (x) )  = o, for the set 

K,(v) § rs(]0, V] •  v) 

is topologically bot]nded in F and l i~e(] (x§  ](x))= 0 (] is continuous at  ~). 

Therefore, log is compactly lipschitzian at  ~. 
On the other hand,  to prove the inequali ty (go])O(~; v)<Vg(](~))(]o(~; v)) it  suf- 

fices to use arguments similar to the ones of the proof of the above proposition. 

4.6. PI~OPOSITIO~. - Let y~ be a positive continuous linear/unetional on F(y'E~+) 
and let ~ be a point in E which is regular ]or a mapping ] o] E into F. Assume that F+ 
is normal, then: 

i) ~(y'o])(~) c clE~[y'o ~](~)], where y'o ~](~) = {y'oT IT e ~](~)}; 

ii) i], in addition, the order intervals are compactin F, we have ~(y' o])(5) c y'o ~](~), 

P~OOF. - The above lemma says tha t  (yro])"(~; v)<y'(]o(~; v)) for all v EE, and 
hence it ensures tha t  ~ is a regular point for the function y'o]. 

Then, by  proposition 3.4, we have 

max{(x ' ,  v)lx'e ~(y'of)(~)}<max{(y'oT, v ) l T e  ~](~)} for every v e E .  

Thus, the t Iahn-Banach separation theorem implies tha t  assertion (i) holds. 
For  (ii) it  suffices to apply proposition 3.4 to conclude tha t  ~](~) is compact m 

L,(E, F), and hence tha t  y'oS/(~) is compact in E'~ since the mapping of Zs(E,/P) 
! /O into E~ defined by  T ~-~ y T is continuous. [] 



180 I~TO~EZ TmBAI~T: Compactly Lipschitzian functions 

I~E~AI~KS. 

i) In general, She above inclusion cannot be replaced by  an equality. Indeed, 
consider, for instance, ~wo real valued functions fl and ]~ defined on R which are 
IApschitz at  a point ~ e R  and which verify the relation ~f~(~) § ~]~(~) r ~(f~§ 
Define a mapping f of R into R ~ by f(x) = ( f ix) ,  ]~(x)) for every x e l~ and  a positive 
linear mapping y'  of R ~ into R by y'(x~ x ~ ) :  x~§  for every (x~, x~ )eR  ~. The 
mapping f is Lipschitz at  ~ and we see tha t  

y'(~f(~)) = y'(3fi(~) X ~1~(~)) ----- 3f~(~) § 3f~(~)r ~(f~§ /~)(~) = ~(y'of)(~) . 

2) I f  the assumptions of remark 2) following proposition 4.5 are verified with 
G = R and if f is regular at  ~, then  using arguments similar to the ones of the above 
proposition~ one obtains 

~(gof)(9) c c l~  [Vg(/(~)) o ~f(5)]. 

T h e  following proposition gives a formula ~bout the subdifferential of a product. 

4.7. P~OPOSZTZO~. - Assume that E is a normed vector space. .Let  f be a mapping 
of E into F which is continuous and compactly lipschitzian at a point ~ E E and let k 
be a real valued/unct ion which is defined on E and strictly differentiable at ~. Then 
the mapping kf defined by ( k ] ) ( x ) :  k(x)f(x) for all x e E  is compactly lipsehitzian 
at ~. and the following formula holds: 

~(kf)(~) - -  ~(~). ~ ] (~ )§  w(~)./(~) 

where 

k(.~) �9 ~t(~) = {~(~') T IT  e ~f (~)}  

and Vk(~).](~) is the mapping of ~ into • defined by v ~-~Vk(~)(v).](~). 

P~ooP. - Let  v be any  point in J~. Consider a neighborhood ~ of ~ and a real 

number V e ]0, 1] such tha t  

q~(t, x; v) e K~(v) § r~(t, x; v) 

and 

q~(t, x; v) -~ Vk(~)(v) § r~(t, x; v) for all (t, x) e ]0, U] X f2.  

Then, for every (t, x)e]0 ,  ~]•  if we write 

z = t - l [k(x § tv ) / (x  § tv) - ~(x) f(x)] 

= k(x § t v ) . t - l [ l (x  + tv) - t(x)] § t - l[~(x + tv) - ~(x)] .f(x), 
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we obtain 

z e ~(~)Kz(v) + Vk(~)(v) .](~) + k(x + tv) .r/~, x; v) + r~(t, x; v) ](x) + d(t, x; v) 

with ~(t, x; v) e ( ~ ( x +  tv) --  ~(4))K/v) + W(4)(v). i f(x) --  ](4)). Since ~ and ] are 
continuous at  5 and tha t  K / v )  is topologically bounded in /~, it follows t h a t  
lira d(t, x; v) ~ 0 and hence tha t  the m a p p i n g / q  is compact ly  lipschitzian at  4. 5Tow, 
tJ~o 

let  us prove tha t  the formula of the proposit ion holds. By  proposit ion 3.6 we m a y  
suppose tha t  /~(~) ~> 0. 

Le t  l i ~  q~/t~, xi; v )be  a point  in D~(~; v). There exists a subnet  (q~r(t~(~), x,(0; v))~s z 

such tha t  the subnets (q~(~(~), x~(o; v))~ z and (q~(t~(i) , x~(~); v))~ z are convergent.  
The~ we have 

lim q~r(tj, x~; v} = k(2} lim qr(t~(~), x~(o; v) + (lira qk(t~o, x~(o; v)). ](~} 

and hence Dks(5; v) c/~(5) .D~(4; v) -t- Vk(~)(v) -](4). :bTow, consider a point  limq.(t~, 
a e A  J 

Xa; v) ~Ds(Z; v). Since the net  (qk(ta, x~; v))~.4 is convergent,  it  follows tha t  the net  
(qkr(ta, Xa; V))~ A is alSO convergent  and tha t  

k(~) lim q~(to, x~; v) + Vk(~)(v).](4) --~ lim qk/Q, x~; v) 
a~A aeA 

and hence k(~)"Ds(~; v ) +  Vk(~)(v).I(4) c Dki(~; v). Therefore,  we have (k])~ v) 
: k(~).p(~; v ) ~  Vk(4)(v).](4) and the formula of the proposit ion is a consequence 
of the definition of the subdifferential. [] 

l~n~A~Ic. - I f  F - ~  R and if k is a real-valued funct ion which is continuous, 
compact ly  lipschitzian and regular at  4, then  using arguments similar to the ones 
of the 1)roof of the above proposit ion one can show tha t  the function/~1 is compact ly  
lipschitzian at  4 and tha t  

We tu rn  now our a t ten t ion  to an impor tan t  application of proposit ion 4.6. Le t  Z 
be a t r ibe on a set S, # a positive measure on 2:, E a separable Banach  spac% 4 a 
point  in E and ] a real valued function defined on T •  verifying the following 
conditions : 

i) there  exist a neighborhood V of ~ in E and a nonnegat ive funct ion 
o~ e ~31(S, #) such tha t  

(1) j](~, x ) - ] ( ~ ,  y)l<~<~)lix- vii for all x, y e V ;  

if) for each x e E,  the  funct ion ]( . ,  x) is #-integwable. 
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We may define a real function g on B by g(x)-~f/(s, x)d#(s) and it is easily 
S 

seen that  g is Lipsehitz at ~. Using the theory of integrable multivalued mappings 
it has been proved in [41] that  for each 0 s ~g(~) there exists a weakly integrable 
mapping ~ of S into E'  such that  0-~fa(s) d#(s) and a(s)e ~f~(~) #-almost every- 

S 

where. Here~ with the help of the above proposition we shall give a direct proof 
of this result. 

Let us consider the mappings k of E into J51(S,/~) defined by k(x)= [f(., x)] 
for all x e E  and y' of LI(S, #) into R defined by y ' ( [ h ] ) = f h d #  for all [h] eL~(S, #) 
where the symbol [.] denotes the equivalence class for the almost-everywhere 
equality. We note that  y' is a continuous positive linear functional, that  the map- 
ping k is order Lipschitz at ~, and that  by proposition 2.6, if Z~(S~ #) is endowed with 
the weak topology, the point 5 is regular for the mapping k. Then proposition 4.6 
ensures that  there is an element T e  ~k(~) such that  0 : y'oT. Also, we shall study 
the form of elements belonging to ~k(~). 

Let ns begin by proving a lemma which will be used in the next proposition. 

4.8. LElVI25A. -- Zet v be a point in E. I /  we denote by h the mapping of S into R 
defined by s ~ /o(5; v)~ then h is/z-integrable and the equivalence class [h] o/h  verifies 
the relation k~ v)<[h] in L~(S, #). 

P~ooF. - The /~-integrabflity of h follows from (1). :Now, since the mapping 
(x, t )~ x ~ tv is continuous there exists a positive real n~mber s and a neighborhood f2 
of ~ such that  ~ ]0, e]vr V. Let (-Q,)~N be a countable neighborhood basis of 
with f2~+~c~2~c~2 for each n and (e~)~ a decreasing sequence of real nuanbers in 
]0, e] converging to zero. We can consider for each integer n the #-measurable real- 
valued function h~ defined on S by h~(s)-~ sup qs~(t, x; v). 

~e]0,e.] 
x~Qn 

From relation (1) we have h~e@~(S,#) for each n. Then it fellows from the 
relation sup qk(t,x; v)<[h~] for each n and relation (1) that  

~e]0,e.] 
r 1 

inf sup q~(t, x; v)<inf  [h~] = lim [h~] ~- ]lira h~/, 

where lim[h~] denotes the limit of the sequence ([h~])~ in L~(S, #) equipped with 

the strong topology. Finally, since the definition of k~ v) ensures that  k~ v)< 
<inf  sup qk(t, x; v), we may conclude that  k0(~; v)<[h]. [] 

n $ e]0,en] 

The assertion will be proved if we construct a family (a(s))~s of linear mappings 
of E into R such that  the :mapping a(.).v e T(v) for each v e E  (note that  T(v) e 
eZ~(S, #)) and that  for #-almost every soS ,  a(s).v</~ v ) for  all v e E .  

This result is established in the following. 

4.9. FRoPosI~IO~. - Under the above assumptions there exists a /amily (a(s))~ s 
o/ linear mappings o/ E into ~ verifying the preceding relations. 
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P~ooF. - Le t  (era)me N be a to ta l  free sequence in E.  For  each integer m choose a 
#-integrable real-valued funct ion h~e T(e~). Consider the vector  subspace G gen- 
era ted by  the  family (e~),,~N and for each s e S define a linear mapping @(s) of G 

follows tha t  the funct ion 9(") .z~ T(z) 2or each z E d .  By  the  above lemma we have 
for each element 5y~e~ with V~E Q (the rat ional  number  s y s t e m ) @ ( s ) ( Z y ~ e ~ ) <  

0 - -  every Z  eo)for ,a ost s  ..ence there o ists a ,-negligible sub- 

s e t  So of S 
\ / k I 

]~(x; .) is continuous on /~ for each with y ~ e Q  and p e N .  Since the mapping 0 -  
s~S~ we obtain tha t  for each Sr O(s)'z<f~ z) for all zr  Hence for each 
s r So the linear functional  @(s) is continuous on G for the topology induced b y  the 
topology of E.  Therefore~ for each s ~ So we can extend @(s) to a continuous linear 
fnnctional  a(s) defined on E and it is obvious tha t  d(s) .v<]~ v) for ~11 v e E .  I f  
seSo~ we choose an element a(s)~E'.  I t  remains to show tha.t (~(.).veT(v) for 

each v ~ E. 
Wri te  v = l i m z ~  with z~eG for each n. By  relation (]) we have [d(.).v]---- 

l im[d( . )z . ] .  Since T is continuous, we m a y  conclude tha t  [ a ( . ) . v ] :  T(v). [] 

We are going to consider now the subdifferential of a pointwise supremmm. For  
this s tudy we shall need the following notions. 

4.10. DEFII~ITI0:N. - A topological vector  lattice is an ordered topological vector  
sp~ce which is a vector  lat t ice and which has a neighborhood basis {V}v of the origin 
such that V =  U {y[ lyl< Ix I}, where the symbol l'l denotes the ~bsolute value. 

x e V  

I t  is shown in [32] tha t  an ordered topological vector  space which is a vector  lat t ice 
is a topological vector  latt ice if and only if the positive cone is normal  and the 

latt ice operations are continuous. 
In  proposit ion 4.13 we shall make use of the following result of KV~ATELADZE 

in [19]. 

4.11. PROVOSITION. - _Let (g~)l<~<~ be n sublinear mappings o] a vector space X 
into a complete vector lattice Y. I f  g is the mapping of X into ~ defined by g(x) 

sup f~(x) for every x e X  and i] 3~g(O) denotes the algebraic convex subdifferential 
l ~ n  

of g at the origin, then 

= U ,d,,}, 
where L+(Y, ~) denotes the set of all positive li~ear mapping of Y into itself and Idy 
the identity mapping on 7[. 
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Before giving our s ta tement  about  the pointwise supremum let us prove the 

following two lemmas. 

4.12. I~E~IA. - .Let X be an order complete vector space and 1 a linear mapping 
of X into itself verifying 0 < l < I d x ,  that is 0 < l ( x )<x  /or all x in the positive cone X+ 

of X. 

1) I f  A is a subset of X which is bounded above~ then we have sup l(A) = l(supA). 

2~ If, in addition, X is a topological vector lattice, then l is continuous. 

PlCOOF. 

1) Since 1 is positive, we have l (x )<l(supA)  for all x e A  and hence l(A) is 

bounded above. Moreover for each x e A  we have 

0 < l(supA) -- l(x) -~ l(-- x +  supA) < - -  x +  s u p A ,  

for l ~< Td x Therefore,  we obtain tha t  0 = in / ( - -  x -]- sap A) = ~Ainf (/(SUp A) -- l(x)) 

and hence supl(x)----l(supA). 
xeA 

2) Suppose now tha t  X is a topological  vector  latt ice and consider any  net  
(x~)~j in X converging to zero. By  Wha~ precedes it is easily seen tha t  ]l(x)]= 

----l(Ixl)< Ix I for all x e X .  Also we have 

- ]x+l<t(xj)< ixjl 

for each j e J  ~nd hence l iml(xj)-~ O. [] 

4.13. LE~2vIA. - Assume that F is a topological vector lattice. Let 1 be a linear 
mapping of F into itself verifying 0 ~ l ~ Id2  and let f be a mapping of ~, into F which 
is compactly lipschitzian and regular at a point Y~ ~ E. The mapping to/ is compactly 

lipsehitzian and regular at ~, and (lof)~ v) -~ l(f~ v)) /or every v E E .  

P~ooF. - I t  follows f rom lemma 4.12 and proposit ion 1.2 tha t  the mapping lof 
is compact ly  lipschitzian at  5. Le t  v be any  point  in E. Since f is regular at  ~, the 
set Dy(~; v) is bounded above. Moreover, by  remark  1) following lemma 4.5 w e h a v e  
l(Dt(~; v))----D, os(5; v). Therefore,  according to 1emma 4.12 we m ay  conclude tha t  

(lof)0(~; v) = l (p(~;  v)). [] 

4 14. PtC0POSITIO~. - Zet (f~)l<~-<<, be n mappings of E into F which are compactly 
lipschitzian and regular at a point ~ and let ] be the mapping of E into F defined by 
](x)----- sup f~(x). Assume that F is a topological vector lattice and that the mapping f 
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is compactly lipschitzian at ~.. Then f is regular at ~ and the following holds: 

P~ooF. - Le t  us consider the continuous mapping of F ~ into F defined by  
h(x~, ..., x~)= sup(xz, ..., Xn). I f  we prove tha t  p(~; y ) <  supf~ y) for all y e E ,  f 

will be regular at  ~ because of the continui ty of h and the normali ty  of ~+ and the 
result will be a consequence of Kutateladze 's  proposition, lemma 4.1, proposition 3.7 
and ]emma 4.13. 

:For each  p, l<~p<n,  let us choose a mapping K~ of E into Co~np(F) and a 
m~pping r~ of ]0, l J x E x E  into F verifying definition ].1 for the mapping f~ and 
the point 5. 

Le t  v be any  point in E and l'm}q~(t~, x~; v) any point in D~(5; v). There exists 

~0eJ such tha t  for each ~>~o and each p, l < p < n ,  q~(t~, x~; v) -- r~(t~-, x~; v) eK~(v). 
Thus, it  follows from the compactness of the subsets ~Y~(v) and the relations 

limr~(t, x; v) ---- 0 t h a t  there are p subnets (q~(t~(~), x~(,); v)),e ~ which are convergent. ~+o .- 

I f  we note tha t  we h~ve 

t -~[f(x § tv) - f(x)] < sup t -~[/ , (x  § tv) - t~(x)] 

for each positive number t and each x e E, then using the continuity of h we may  
conclude tha t  

lim qf(tj, xj; v) = lim qs(t~c~), X~c~); v) 
~EJ ie I  

< lira (sup q1~(t~(i~, X~(i); V)) 

= SUp (lira ql~(t~(o, x~(~); v)) 

< supf~~ v).  [] 

R E ~ K .  -- I f  the mappings f~ are order IApschitz at  ~, then f is also order Lipschitz 
at  ~. Indeed, let v be a point in E. There exist a neighborhood/2 of 5 i n / ~  and a 
real number  ~ e l0 ,  1] such that ,  for each p and each (t, x) e l0 ,  7] •  t-~f~(x+ tv) e 
et-~f~(x)+[h~(v),h~(v)]+r~(t ,x;v)  where the mappings _h~,h~ and r~ verify the 
conditions of definition 1.5. I f  we put  h(v) ---- inf_h~(v), h(v) ---- suph~(v), ~(t, x; v) = 

= s~pr~(t, x; v) and r(t, x; v) = infr~(t, x; v), it is ~n easy mat te r  to verify tha* 

q1(t, x; v) e [h(v), h(v)J + Jr(t, x; v), ~(t, x; v)]. Therefore, there exists 

r(t, x; v) ~ [r(t, x; v), ~(t, x; v)] 

such tha t  ql(t, x; v) e [h(v), ~(v)] § r(t, x; v) for each (t, x) ~ ]0, V] • ~ .  Thus, ? is 
order Lipschitz at  5. 
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5 .  - S u b d i f f e r e n t i a l  o f  a c o n t i n u o u s  v e c t o r  s u m .  

In  this section F will be a separable Banach lattice, tha t  is a Banach lattice 
which is topologically separable, and F will be order complete. Thus, there is a 
norm II" U on l~ defining the topology of ~v and verifying the following: ][x]l < [lY[I 
if Ix[< lY[ (see [32]). F will be endowed with such a norm. We shall assmne tha t  
has the l~adon-lqikodym property, tha t  is for every positive measure space (L, A, 4) 
and for every cotmtably additive set function m: A - +  F which satisfies 

sup I n , N ,  Ao,  , A ~ A  pairwise disjoint < c~ 
= 

and which is absolutely eontinuons with respect to 2 there exists h e ~ ( L ,  4) veri- 
fying re(A)~-fhd2 for all A e A .  

A 

We shall also assume tha t  each order interval of F is weakly compact. Then 
by  theorem 5.1 in KAWAI [17] every increasing net  in J7 which is bounded above 
converges to its least upper bound for the strong topology. This can be also seen 
by using propositions 3.1 and 3.4 in P~I~ESsIXI [32]. 

REZ~A~IC. - These assumptions are verified by the reflexive separable Banach 
lattices and by the space 11 of all real sequences (z~).~ N such tha t  ~ ]z.[ < c~ endowed 

with the norm ]lz]]---- ~ [z. I and with its natltral order structltre. 
h e n  

In  the following (S, X, #) will denote a complete measltred space. By  ~ ( S ,  #) 
we shall mean the space of Bochner #-integrable mappings of S into F and by F .  
the space F endowed wi th  the a(/~, F)- topology.  We shall assume tha t  E is a se- 
parable Banach space and tha t  ] is a mapping of S • E into F verifying the following 
conditions for a point 5 ~ E  and a neighborhood ~ of ~ in E:  

i) there exist two mappings k~ and 1~ of S •  in to /~  with k~(., x) and k2(., x) 
belonging to ~ ( S , # )  for each x ~ D ,  a mapping e of S •  1]•215  
i~lto ~ with lime(s, t, x; v) ---- 0 for each (s, v) ~ S X E  and s(., t, x; v) e ~  (S, #) 

tdo 
~-->~ 

for each (t, x, v) el0,  1] • 2 1 5  a mapping/3 of S •  into R with/3( . ,  v) e 
~ ( S ,  #) for each v e E, ~nd a nonnegative real-valued function ~ ~ ~ ( S ,  #) 

such tha t :  

a) t-~(l(sl  x + tv) - ](s, x)) e [~(s, v), ~(s, v)~ + ~(s, t, x; v) for each (s, t, x, v) e 
e S •  1 ] • 2 1 5  and 

b) [[k,(s, v)[[ <.(s)[Iv [[ for each (s, v ) e  S • E and i = ~, 2 and lie(s, t, x; v)]] < 
<fl(s, v)'for each (s, t, x, v) eLq• 1 ] •  

ii) for each x e E ,  the mapping ](., x) is Boehner #-integrable; 

iii) the mapping ](s, .) of E into Y~ is continuous on /2 for each s e S. 
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We may  define a mupping g of E into F by  g(x) : f ] ( s ,  x) d#(s) and using lemma 5.1 
S 

and the  above assumptions it is easily seen tha t  g is compact ly  lipschitzian at  
as a mapping of E into F~. We are interested in the subdifferential of g ~t the point  5. 

We shall begin with the following lemma. 

5.1. LE~wA. - I f  h is a positive mapping in 2~(S ,#) ,  then fh(s)d/~(s)>0 in F. 
S 

P~ooF. - Since/~+ is a closed convex cone in /~ ,  the Hahn-Banach  theorem says 
tha t  it  suffices to show tha t  <y', fh(s)d#(s)>>0 for every  y '~F '  + .  

S 

For  such an element  y'  we have 

<y,, fh(s)d,(s)> =f<y', h(s)> dZ(s) > 0 
S S 

since # is a positive measure. [] 

In  the sequel we shall need a proposit ion of :NErO_ANN [27]. 

5.2. PROPOSITION. -- Let X be a separable Banaeh space and X be an order- 
complete Banavh lattice. Assume that the space Y has the Radon-iVikodym property. 
Let p be a mapping o] S•  X into ~ such that 

i) for each s~# ,  p(s,.) is a sublinear mapping of X into Y; 

ii) /or each x ~ X ,  p(., x) is Bochner #-measurable; 

iii) there exists a nonnegative real-valued function h e 2~(S, #) verifying lip(s, x)II < 
<h(s)llx[] for all s e S  and x ~ X .  

I] T e L ( X ,  Y) veri]ies T(x)< fp(s,x)d#(s), then there exists a ]amily (T~)~ s o/ 
S 

continuous linear mappings o] X into X such that: 

a) the mapping s ~-> T~(x) is Bochner #-integrable ]or each x ~ X ;  

b) T(x)==fT~(x)d#(s) ]or each x ~ X ;  

c) ]or each s~S ,  T~(x)<p(s~x) for all x e X .  

I~E~A~K. -- This proposit ion has been formulated by  SAI~T-PIEnRE in [37, 38] 
for the separable dnul Banach  spaces and has been independent ly  proved by  NEU- 
~A~N in [27] for the Banach  spaces v~hich have the l~adon-Nikodym proper ty .  

In  order  to apply Neumann 's  proposit ion we are going to show tha t  the mapping 
s ~-~ ]o(5; v) is Bochner  #-integrable.  

Since/~ is a separable Banach  space, its topological dua l /~ '  is a ( F ,  E)-separable. 
Le t  us fix a a(F ' ,  F)-dense sequence (e'~)~eN in F '  and let  ns consider the countable  
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~amily of semi-norms (Pn).Ne defined on F by p~(x)= [(e:, x)[ for every x e ~ .  The 
locally convex topology on ~ generated by the family (P,).~N will be called the 
0-topology and/~0 will mean the space N endowed with the 0-topology. I t  is easily 
seen that  this topology is metrizable and coarser than the a ( ~  F')-topology. More- 
over, on every a(~, ~')-compacr subset of F these two topologies coincide. 

5.3. L E ~ .  - The multivalued ]unction s ~-> cl~.[q~.(]0, ~[• W; v)] ]rom S ~o ~o 
is X-measurable ]or each ~ ~ 0 and each neighborhood W of ~ veri]ying W ~- ]0, sic c/2 
and W ~ .  

PROOF. -- Let v be a point in E and let (t~, x,)~ be a dense sequence in ]0, e[• W. 
Since qs.(', . ;v) is continuous on ]0 ,~ [ •  for the a(F,_F')-topology of F,  the 
sequence (qf.(t~ x~; v)) is dense in cl~.[q~,(]0, e l•  W; v)] which is a-compact and 
hence 0-compact. Noting that  s ~+ q~(t~ x~; v) is Z-measurabl% the ]emma follows 
from theorem III .9 of CASTA~N~-V~AD~ [5]. [] 

5.4. CO~0]~LA~Y. - The multivatued ]unction s F+ D~.(x; v) ]rom S to F o is X-meas- 
urable ]or each v ~ E. 

P~ooF. - Choose a real number s > 0 and a neighborhood W of 5 verifying 
W~-]0, s[vc[2  and W e D .  I t  suffices to note that, if (W,).~ N is a Countable neigh- 
borhood basis of 5 with W~c W for each n and if (e,)n~ is a decreasing sequence 
of ]0, s[ converging to zero, we have D s . ( 5 ; v ) :  ~cl2o(q~.(]0, sn[•  v)) with 

n a n  

c12o(]0, s~[• W,; v) a-compact and hence 0-compact and to apply proposition I I I .4  
in CASTAING-V~A])I~R [5]. [] 

In  the proof of the next proposition we shall make use of the following result. 

5.5. L ~ , ~ .  - Zet X be an order-complete topologica~ vector space. I] a subset D 
is dense in a nonvoid subset 1~ o] X which is bounded above, then we have sup D ~ sup R. 

P~ooF. - The inequality supD<supR is obvious. Let r be any point in /L 
Since D is dense in R~ there exists a convergent net (dj)j~j in D verifying r = limdj. 

For each j E J  we have dj<supD.  Therefore, we may conclude that  r--~limd~<~ 
< s u p D  since the positive cone X+ is closed. [] 

I~E~A~K. - This lemma has the following consequence. Let /~ be a subset of 
an order-complete locally convex space X. If  /~ is bounded above, then we have 
s u p R :  sup(coR), where the symbol co denotes the closed convex hull operation 
with respect to a topology compatible with the duality between X and its topological 
dual X'. Indeed it is easily seen that  supR = sup (coR) and hence we may apply 
the preceding result. 
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5.6. PROPOSITIOn.- The mapping s~-->/~ is Bochner-measurable ]or each 

P~oo~. - Le t  v be any  fixed point  in E.  Since the mult i funct ion s ~-> D~.(~; v) 
f rom S to/~0 is measurable with nonempty  compact  values~ there  exists a sequence 
(h,),~ N of measurable mappings of S into ~0 verifying Df.(~; v ) =  cl2,({h,(s)ln})--= 
= cl~o((h~(s)]n}) for all s e S. Moreover, f rom the a(/F'~ F) -dens i ty  of the  family 
(e~')nE~ it follows tha t  the real-valued funct ion s ~ (x', h.,(s)) is measurable for each 
x 'e/~" and each m e N .  Therefore  the  mappings h. are Bochner  mensurable since 
the space /v is strongly separable. ~Tow denote by  G----{g~ [m e N} the  set of all 
convex combinations with rat ional  coefficients of the mappings h . .  Fo r  each s e S 
the subset G.= {g.~(s)lmeN } is strongly dense in c-8[Ds.(~.; v)]. Thus lemma 5.5 
and the remark  which follows it imply tha t  

t~ v) = sup ~[D~.(~; v)] 

= sup {g (s)lm e N}  

= sup (sup 

= lira (sup {g~(s)[m<n}), 

which completes the proof since the lat t ice operations are strongly continuous. [] 

We can now give a proposit ion which will enable us to s tate  our result  about  
the snbdifferential of g at  the point  5. 

5.7. P~oPosI~Io~. - The vector valued/unction s ~-> ]o(~; v) is Bochner tt-integrable 
and the inequality gO(~; v) < f ]o(5; v)d#(s) holds /or every v eE .  

S 

P~ooF. - Le t  v be any fixed point  in J~. Put /~ = sup (]k~l~ Ik21). Since ~ e ~ ( S ,  #), 
the  #-integrabil i ty  of the  above mapping is a direct consequence of proposit ion 5.6 
and the  inequalities 

0 - -  IT/s(x; v)II < lik(s, v)H < 2 (s)Hvli �9 

Now consider any  point  zeD.(~.; v). Since the topology induced on/).(5; v) by  
the  weak topology is metrizable,  there exist a sequence (tn).~ N of positive numbers  
converging to zero and a sequence (x.) .  in ~2 converging to V. such tha t  we have 
x.~- t~v ~ D for all n and z = lim qg(t~, x.; v). 

O - -  I f  we show tha t  the relat ion (y'~ z)<~ (y', fJs(x; v)d#(s)) holds for every  y'e ~ 
S 

then according to the Hahn-Banach  theorem the assertion will be proved.  I n d e e d  
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for such an element y' i~ follows f rom lemma 4.5 and condition (i) thut  

<y', z> = lira <y', tP f [tlx~ + t~ v) -/~(x~l]d#(s)> 
S 

---- l i m  ftz~[(y'o/~)(x. + t,~v) - (y'of~)(~.)]d#(s) 
~.--> co 

8 

< flim snptj~[(y'oJ,)(x~ + t ,v)  - -  (y'oJ~)(x~)]d#(s) 
S 

< f(y,o]~)o(w; v)d#(s) 
S 

< fy,(]:(w; v)) d#(s) 
S 

= <y', f t~  [] 
S 

5.9. COrOLLArY. -- Under the above as sumpt ions /or  each T e ~g(~), there exists a 
]amily (T8)8~ s o/ continuous linear mappings o/ E into F such that 

a) T,e~/~(~) ]or every s e S ;  

b) the mapping s~->T~(v) is Boehner tt-integrable /or every v e E ;  

e) T(v) =fT,(v)d#(s) /or every v e E .  

P~ooF. - Le t  T be any  fixed point  in ~g(~). For  each v e E  the inequalities 
T(v)<g~ v)<f ]~  v) dtt(s ) hold. Moreover we know that ,  for k ~ sup (]k~[, Ik~]), 

S 

w e  h a v e  o - I]/~ (x; v)]i < ]]k(s, v)U < 2~(s)Hvli, ~ e ~ ( ~  #), and tha t  the mapping s~-+/~ v) 
is Boehner-measurable.  Thus, it follows from Neumann 's  proposit ion tha t  there 
exists a family (T~)s~ s of linear continuous mappings verifying condi t ions (a)~ (b) 
and (c). [] 

t~E~CA~K. -- Since the dual of L(E,  F) is E Q F' ,  i t  is easily seen tha t  the  map- 
ping s ~> T, of S into L(E,  F) is Pett is- integrable and tha t  its Pet t is  integral  is equal 

to T. 
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