Some Properties of Condensing Maps (¥) (++) (+++),

PAuL MaAssaTT (Providence, R.I., U.S.A.)

Summary. — See Introduction.

1. — Introduction.

In 1939, KURATOWSKI [19] introduced a measure of noncompactness of bounded
sets in a metric space, called the Kuratowski measure of noncompactness, or
a-measure. This along with the associated notion of an a-contraction, has proved
usedful in several areas of differential equations (see, for example, [12], [14] and [25]).

DEFINITION. — Let X be a metric space. The a-measure is a map o: B — [0, oo),
where $ = {Bc X: B is bounded} and o(B) = inf {d: there is a finite cover of B
with sets in X whose diameter is less than d}.

DEFINITION. — T: X — X is an «-contraction if there is a k €[0,1) such that
for all Be % we have a(TB)<ka(B).
To generalize this notion people began to investigate «-condensing maps.

DEFiNITION. — T: X — X is a-condensing if for all Be $ we have «(TB)<a(B)
with equality if and only if «(B) = 0.

The basie problem is to understand which properties of «-contractions also hold
for a-condensing maps. Recently, Richard LEGGETT [20] showed that if X is a Banach
space, T is linear and «-condensing, then there is an equivalent norm in X for which
T is an «-contraction in the new norm. SADOVSKII [25] showed by transfinite induec-
tion that «-condensing maps have the fixed point property-extending a result of
DarBO[9] for x-contractions. Another important contribution showing how many prop-
erties of a-contractions are true for a-condensing maps was made by COOPERMAN [8]. .
Cooperman developed an ingenious technique which exploited special properties of
the o-measure.

(*) Entrata in Redazione il 12 marzo 1979.
(**) This resedrch was supported in part by Air Force Office of Scientific Research under
AF-AFOSR 76-3092A. ;
(***) This is part of the author’s Ph. D. tliesis at Brown University written under the
supervision of J. K. Hale. ‘
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The principle results of this paper will be to generalize several of the results o1
Cooperman to more general measures of noncompactness as well as for certain set
mappings. The proofs are more elementary than the ones in Cooperman. However,
the bagic lemma used by Cooperman which depended so much on properties of
o-meagures is not generalized. In fact, we give an example showing that it will not
generally be valid for arbitrary measures of noncompactness.

Section 2 contains only notfation and definitions. In section 3 we prove that a
decreasing sequence of nonempty closed bounded sets with general measure of non-
compactness approaching zero must have nonempty intersection. In section 4
we show condensing maps are asymptotically smeoth. In section b we show the solu-
tion map T.x = y as a function of y for {T,} collectively condensing is upper semi-
continuous with mild continuity assumptions on T;. In section 6 we show results
proved using Sadovskii’s method of transfinite sequences may be proved using ordi-
nary sequences. We reprove a theorem by Hale and Lopes that «-condensing, com-
pact dissipative maps have a fixed point, and show this holds for general measures
of noncompactness. In section 7 we discuss the basic lemmas of Cooperman and their
validity for general measures of noncompactness. In section 8 we show linear con-
densing maps with general measures of noncompactness are o-contractions under
some equivalent norm.

2. — Definitions and mnotation.

Let X be a complete metric space, or a complete metrizable linear topological
veetor space. When we speak of distance in the latter case we may use any metrie
coinciding with the topology on X. Let 3 be the collection of bounded subsets of X.
For any subset B of X, let Cl (B) denote the closure of B. Let C be the collection
of subsets of X.

DEFINITION 2.1. — For any sequence {B,}.°., C B, the w-limit set of {B,} is defined
by o({B.}) =N Ol( U B,-), or equivalently w({B,}) = {y € X: 3 integers n, — oo,
k=1 izk

xy € B,, such that x;, — y}.

DEFINITION 2.2. — A set A C X attracts a sequence of sets {B,},> , c Xifd(B,, 4) -0
as n —> oo, where d(B, 4)= sup {d(z, 4)}.
z€B

DEFINITION 2.3. —~ If H: C — C and B € C, the orbit y}(B) c C under H is defined
by y+(B) = |J H*B). The w-limit set wg(B) of B under H is defined by wu(B) =

oo

n=0
= wy({H*(B)}) =N Cl( U H"(B)). When no confusion arises we may drop the
subscript, H. k=1 Y2k
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DEFINITION 2.4, — A subset U c C (i.e., a collection of subsets of X) is invariant
under H: C - C if HU = U. It is positively invariant if HU c U.

If 7: X — X is a map on X, then 7 induces a map ir: C — C by the relation
in(B) = |J Tx for any B e C. The above definitions coincide with the usual defini-

x€B
tions of w-limit set and invariance.

Other mappings on a collection of subsets of X are useful. We make the follow-
ing definitions.

DEFINITION 2.5. — If H: C — C is a given map, we say
H is of type 1 if H(B) = U {H(%): e B}.
H is of type 2 if H(B)=U {H({wi}): {x;} is any finite subset of B}.
H is of type 3 if HB) = {H(K): K c B is compact}.

Similar definitions apply for H: 3 - C or H: B - B.

A set operator of type 1 is a set operator of type 2 which is turn is a set operator
of type 3. If H, and H, are set operators of the same type », for n» = 1 or 2, then
H,oH, is a set operator of type n. This property may not hold for operators of type 3.

EXAMPLES.

(i) If T: X - X then ¢;: C > C defined by ix(B) = [J{Tre X:x € B} is of
type 1.

(if) If 7': X — X, then y+: C—C defined by y+(B) = positive orbit through B
is of type 1.

(iii) If 7: X — C is a set valued map on X, then the map ir: C —> C defined
by i(B) = U {Texe C: x e B} is of type 1.

(iv) If C e C is given, then H: C — C defined by either H(B) = BU C, BN C,
or B 4 O, is of type 1.

(v) H: C— C given by H(B) = co B = the convex hull of B is of type 2.
(vi) H: C — C given by H(B) = Cl (B) is of type 3.

DEFINITION 2.6. — A measure of noncompactness on X iz a map f: B — [0, co)
with the properties that (i) §(B) = 0 if and only if Cl (B) is compact and (ii) S(B) <
p(C) it BcC.

The «-measure of noncompactness of Kuratowskii defined in the introduction
is a measure of noncompactness. It satisfies many more properties, some of which
will be required below. They will be introduced as needed since one of our objectives
is to understand which basic properties of the «-measure imply certain results.
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DerFINITION 2.7. — If H: $ — &, then H is a f-contraction if there is a k€0, 1)
such that f(H(B)) <kf(B) forany B € $. H is f-condensing if for each B € B, f(H(B)) <
B(B) with equality if and only if f(B) = 0. If T : X > X and maps bounded sets to
bounded sets, we say T' is a S-contraction (f-condensing) if the induced map
i B — B is a p-contraction (B-condensing).

In the applications it is sometimes convenient to not assume H: 3 — B but
only that H: $ — C; that is H may not take bounded sets into bounded sets. One
then calls the map a conditional §-contraction (conditionel S-condensing) if the above
properties hold for each B € $ for which H(B) e $. The results below hold in this
more general situation, but we do not explicitly state and prove them in this
generality since it is only a minor technical detfail.

DEFINITION 2.8. — Let H: C — C and let § be a collection of sets. A bounded set B
dissipates S-sets under H if for any C € 8, there is an integer n,(C) such that H»(C)c B
for n>no(C). If 8 = {{o}: we X} we say H is point dissipative, it § = {{J}: Jc X
is compaet} we say H is compact dissipative; if S contains a neighborhood of any
point. x € X, we say H i3 local dissipative; if S contains a neighborhood of any com-
pact set, we say H is local compact dissipative; if 8 containg all bounded sets of X(§ = $
we say H is bounded dissipative or ultimately bounded.

If H is type 2 and continuous in the Hausdorff metric, then eompact dissipative,
local dissipative and local compact dissipative are equivalent.

DEFINITION 2.9. — A map H: $ — C is asymplotically smooth if, for any Be B
such that y}(B) € B, there is a compact set J ¢ X such that J attracts B under H.

Asymptotically smooth maps play an important role in stability theory. In
fact, it is known (see [8], [14]) that H asymptotically smooth and compact dissipa-
tive implies there is a maximal compact invariant set J for H which attracts neigh-
borhoods of compact sets. In particular, J is uniformly asymptotically stable. It is
important therefore to give other characterizations of asymptotically smooth maps.

LEM:MA 21.~-1f T': X — X ig a given map and 4y: C — C is the map induced by T,
ix(B) = U {Tw: » € B}, then the following are equivalent to i,: being asymptotically
smooth '

(1) for any B € 3 such that y*(B) € $, there is a compact set J that attracts B
under T'; ’

(2) for any B e % such that 7B c B there is a compact set'J that attracts B
under 7'; " '

(3) for any B € & there is a compact set J such that, for any e > 0, there is
an integer n,(B, ¢) such that T"meB for n>0 1mp11es ad(Trx, J) < ¢ for
1 >=>M0(B, ). » :
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Lemma 2.1 suggests other definitions of asymptotic smooth for mappings H:
B — C. More precisely one could define agymptotic smooth of type (j), j = 1,2 by
the relations (1) and (2) in Lemma 2.1, with T replaced by H. One finds asymptotic
smooth (2) defines a smaller class than asymptotic smooth (1).

3. — A property of measures of noncompaciness.

A classical result for the z-measure of noncompactness is that a decreasing se-
quence {B,} of closed bounded sets with «(B,) — 0 has the property that d(B,, J) — 0
as n — oo for some compact set J. It is the purpose of this section to show this result
is true for more general measures of noneompactness. We need the following lemma.

LEmva 3.1. - If {B,}°., is a sequence of bounded sets in X with the property
that every {#,};>, C X is precompact if there is a sequence of integers n, — co with
r, € B, , then w({B,}) is nonempty, compact, and attracts B,.

PROOF. — w(rB,}) = {y € X: there exists n; — oo, v, € B,, such that {w,} con-
verges to y} o(B,) is nonempty since any sequence z, & B, with n; — co has a
converging subsequence which must converge to a point in w({B,}). w({B,}) is
precompact since if we let {y,} be a sequence in w({B,}) then there is a sequence
Ny —> 00, &y € B, With d(@, y:) < 27%. But {#,} has a convergent subsequence, hence
so does {y;}. All that is left is to show w({B,}) attracts B,. Suppose it does not.
Then there is an &> 0, n; — oo, %€ B, with d(xk,a)({Bn})) >e& But x, has a
converging subsequence which must converge to a point in w({B,}). This is a con-
tradiction. Q.E.D.

THEOREM 3.1. — If § is a measure of noncompactness satisfying (4 U B) = §(4)
if B is a finite set then any decreasing sequence {B,} ¢ $ of nonempty closed bounded
sets satisfying B(B,) -—> 0 must have [} B, nonempty, compact, and attracting B,.

o
Proor. — Let B, be a decreasing sequence of nonempty closed bounded sets with

B(B,) — 0. Clearly w(B,) = (| B.. Let n, — oo and @, € B, . Then f({z:}) <f(B.)
n=0 -
for any n since {z;} minus a finite number of points is a subset of B,. But then

B({w}) = 0 and {x,} is precompact. Lemma 3.1 implies the result.

4. — Dissipative processes.

The basic result. of this section relates [-condensing maps to asymptotically
smooth maps. .

THEOREM 4.1. — Suppose f§ is a measure of noncompactness satisfying (4 U B) =
== B(A) if B is a finite set. If H: $ — B is p-condensing and of type 2 (see Defini-
tion 2.5), then H is asymptotically smooth.
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Proor. — Let B and y*(B) be bounded. Let D(B) = {{w:, ns}: {m} — oo,
2 EH"””(B)}. Let P({®y, m}) = {ws}. Let 5= sup {f(Ph)/heD(B)}. Note < oo
since y*(B) is bounded. We first show there is an k" = {a}, n;} € D(B) such that
B(Ph*) = . Let {h;} ciD ) be a sequence with A(Ph;) —u. Let h; = {(w:, n:) €
€ h;: 1, > j}. Let b* = U h; reordered in any way. Then we have k* € D(B) and so

E=1

7> B(h*) > Bh;) = B(h;) ), @ j — co. Hence, ﬂ(h*)

Now for each (z}, nk) e h* there is a set {&}, ny — 1}, CH"'FI(B) X Z such that

@, € H({z}}). Let g* = U {w, m — 1}7%; € D(B). Hence n>p(g*) > f(Hg*) > p(h*) =
B=1

with equality if and only if g(¢*) = 0. Hence 5 = 0.
Now Lemma 3.1 implies there is a J ¢ X compact, which attracts {H»(B)}, or
attracts B under the map H.

CorOLLARY 4.1. — If § satisfies the conditions of Theorem 4.1 and 7: X - X
is p-condensing, then T is asymptotically smooth.

COROLLARY 4.2. — If § satisfies the conditions of Theorem 4.1 and 7: X — C
is f-condensing, then 7' is asymptotically smooth.

COROLLARY 4.3. — If §-satisfies the conditions of Theorem 4.1 and f(co B) = S(B),
T:X - X iy f-condensing, and H: B — B is defined H(B) = co T(B) then H is
asymptotically smooth. Furthermore, if 7 is continuous, then H: $ — 3 defined
by H(B) = ¢l H(B) is asymptotically smooth.

Proor. — H is clearly p-condensing and type 2, hence we have the first part of
the corollary. For the second part we note H(cl B) c ¢l H(B). Using this we get
Hn(B) c cl HYB) and so H is asymptotically smooth.

COoROLLARY 4.4. — If 8 satisfies the conditions of Corollary 4.3, T: X — X is
f-condensing, P c X is compact and H:$ — B is defined by H(B) = co (T(B) U P)
then H is asymptotically smooth. If T is also continuous then H is also asympto-
tically smooth.

COROLLARY 4.5. — If § is a measure of noncompactness satisfying f(4 U B) =
= max {§(4), f(B)} and H is f-condensing then y:: B — B implies yT i f-nonex-
pansive. '

PROOF. — Assume S(y5(B)) > B(B). Then f(y5(B)) = (B U Hy}(B)) = max {f(B),
B(HyH(B))} = B(HyH(B)) < B(y4(B)) which is a contradiction.

The last three corollaries are useful in showing several fixed point theorems proved
by Sadovskii’s method of transfinite sequences may be proved with ordinary sequences.
This is illustrated in Section 6.
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THEOREM 4.2. — Let § be a measure of noncompactness satisfying f(4 U B) = B(4)
if B is a finite set and either (1) B is continuous in the Hausdorff metric or (2) (B) =
— B(B), and (4 + B) = p(4) it B(B) = 0.

If H: $ — B is f-condensing and type 3, then H is asymptotically smooth.

Proor. — Let B, y*(B)e®. Let D'(B) = {{Jr, m}: I c H*(B), B(Ji) =0,
ny — oo}, Let D(B) = {{wx, m}: 3 € H™(B), my — oo}, p'W'=p'{Jy, ne} = |JJ, for
k

e D'(B), ph = p{as, i} = U {w:} for he D(B). Let n'=sup{f(p'h'): h'e D'(B)}.
%

Let 5 = sup {B(ph): h € D(B)). We first show # = »'. This takes the most work.
By the method of Theorem 4.1, we show there exists h," € D'(B) with B(h") = 7.
Let b* = {J', ny} and hy' = {J2", n;} with J%" a finite set satisfying d(JZ", JL') <
<27% and J2 c JL'. We claim f(h,') = A(I'}). Both are in D'(B).

Case (3): Let y; = {BL,n,} with RY = J7 if k>1 and R. is a finite set with
RY cJY, ARy, Ji) < 278 if k<1 Then B(h,) = B(y;) — B(h"). Hence, B(h,’) =
= B(h}").

Case (ii): Let hy' = {J', n;} € D'(B) with J3' c Ji" countable and dense in Ji'

Clearly, B(hy") = f(h;"). Now for each point zfeJ:" there is an afed?, yfeX
r r

with f = of 4 o¥ and |y¥| = d(2;, I3 )<27". The set {y¥/lyt|>2cUJ} — U J5

and hence is compact. k=1 k=1

Since r is arbitrary we know {y} is compaet. Now h," ch, -+ {y;} and A} c
By — {y;} implies A(h;") = B(k;"). This shows f(h;") = B(hy").

But k" € D(B) also (when reordered). Hence, n>%'. It is obvious that n<y'.
Hence 5 = 7. Now let h* € D(B) with f(k*) = % (constructed as is Theorem 4.1).
Since H is of type 3 there is an h'e ©'(B) such that h* c H(h'). We get n>p(h')>
>B(HM)) > p(h*) = 5, with equality if and only if B(A') = 0. Hence, we have
7 = n'= 0. Now we may apply Lemma 3.1 to obtain the result.

5. — Continuous dependence on parameters.

Here we look at a result originally proved by ARTSTEIN [2] for «-contractions.
The result was extended to «-condensing maps by Cooperman and will now be gene-
ralized to arbitrary measures of noncompactness.

DEFINITION 5.1. — We say that a convergence structure is given for a set V if to
certain nets {v,, ne N} in V (called the convergent nets) there corresponds an ele-
ment v in V, denoted by lim v,, so that the following cenditions are fulfilled.

(@) If v, = v Vn then limv, = ».
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(b) If limw, = v and {v,} is a subnet then lim v, = .

(¢) If {,} does not converge to » then a subnet of {v,} exists, no subset of which
converges to v.

A set with a eonvergent structure on it is called a convergence space. Not every
convergence space is topological. See KELLEY [18] on the « convergence of the ite-
rated limit» property.

DEFINITION 5.2. — Let W = {U4} be a set of operators Us: X — X with a conver-
gence structure on it. Then {Uai} is a eollective S-contraction if there is a k[0, 1)
such that for all Be $ we have /3( U UAB) <kp(B). {U} is collectively p-condens-

A

ing it VB e B, ﬁ(U 'UAB) <B(B) with equality if and only if A(B) = 0.
i

DEFINITION 5.3. — A multi-valued function £ from the convergence space U
to the convergence space W is Lu-continuous if lim «, = %, w, € £(«,), and lim w, = w
implies w € £(u).

REMARK. — If U and W are topological spaces this is equivalent to the graph
being closed. ’
The following lemma is proved by ARTSTEIN in [2] and only stated here.

Lemya 5.1. — Let {y,: k € K} be a net which is contained in a bounded set of X.
Denote by 4, the set {y;: j>Ek}. If the numbers o(4;) converge to zero then there
is a convergent subnet {y.,n € K} of {y.}.

DEFINITION 5.4, — B is semi-invariant with respect to U if for all # € B there is
a Uel with ¢ = Uw.
For the next theorem we will also use the following lemma.

LeMMA 5.2. — Let G be a collectively ($-condensing family of operators. Let the
B-meagure of noncompactness satisfy (4 4 B) = p(4) if f(B)=0. Let B,=
{w: there exist (T, y)e GxX such that Te=y for some yeX with |y—uy,|<y.}.
Then G collectively p-condensing implies «(B;) =0 as ¢ —> oco.

Proor. — Let {I;} — oo and #; € B;;. We will show {#;} has a converging sub-
sequence, and then apply Lemma 3.1.

Since 2; € By; there is {T;}, {y} >, sueh that ;, = T2, + y,. Let U;: X - X
be defined by U,x = T,x + y,. Since {y;} — ¥,, it ig precompact. Also |J U;BcC
cUTuB) + {y so :

(U T®) <p(U 1B + w3) = 5(UTuB)) <p(B)

with equality if and only if §(B) = 0. Hence {U,} is collectively f-condensing. Now
since {z,} is semi-invariant with respect to {U.} it is precompact. This completes
the proof of the Lemma.
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THEOREM 5.1. — Let X be a mefric space. Let G be a collectively (-condensing
family of operators. Let the f-measure be as in Lemma 5.2. If for a certain conver-
gence structure on B, the mayp s(7, y) = {#: Te = y} is Lu-continuous, then for every
closed and bounded B the mapping s(7,y) N B: BXX — X is upper semi-conti-
nuous.

PrOOF. — We first make the following remark. If U is collectively f-condensing
and B i§ semi-invariant with repect to U then f(B) = 0. This is a trivial consequence
of the definitions.

Let {(Tx, y2)} — (Ty,y,) be a converging net with T,e 6 and y,e€ X. Let
2, = Ty, -+ Y, and x,cB. We must show {z,} converges to the set s(T, y,)N B.
We notice s(T,¥,) N B is compact since if we define T,:X — X by T, (2) =
= T® 4 y, then T S-condensing implies T, is p-condensing. Furthermore, since
$(T, 4o) N B is invariant with respect to T, , it is precompact. Now, by the Lu-
continuity of s(7,y) it suffices to prove the existence of a convergent subnet. Let
Ay = {®,: n>k}. There are k; such that 4,;c B; with B, defined in Lemma 5.2.
Lemma 5.2 limplies «(B;) — 0 which implies «(A4y;) — 0, or a{d;) - 0. Lemma 5.1
implies there is a convergent subnet. This completes the proof.

6. — Fixed point theorems.

We begin by stating two theorems previously proved by Sadovskii’s method of
transfinite sequences, and show they can be proved using ordinary sequences. Then
we will reprove a result of Hale and Lopes, which used Zorn’s lemma, and show
this can also be proved without using Zorn’s lemma.

The first is due to Sadovskii and is found in [25].

THEOREM 6.1. ~ Let 7:X -~ X be f-condensing and continuous. Let the
[-meagure satisfy f(4 U B) = f(4) if B is finite and f(co 4) = $(4A) for any 4 € 3.
Let BcX be closed, bounded, convex, and positively invariant (i.e. T(B)c B).
Then 7' has a fixed point.

PrOOF. — Let H: $ — 3 be defined by H(B) = co T(B). Then H is asymptotically

smooth by Corollary 4.3. Therefore, w(B) = [) H*B) is compact, convex, inva-
n=1
riant under H, and attraets B. It is, therefore positively invariant under I'. Schauder
fixed point theorem implies T: w4(B) — w(B) has a fixed point.
The second theorem is a nonrepulsive fixed point theorem by Mario MARTELLI [22].

DEFINITION 6.1. ~ Let ¥ be a nonempty subset of a topological space X and
f: ¥ — Y Dbe continuous. A point #, € X is said to be a repulsive fized point for Q
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if (i) 2(w,) = @4, (ii) there exists a neighborhood U of «, such that for any neigh-
borhood V of #, there exists an n», with the property that |J 2X\V)c I\ U, 2

n >Ny
is a nonrepulsive fized point if it is not a repulsive fixed point.

We will use the following theorem of BROWDER [5].

THEOREM 6.2. — Let ¢ be a compact, convex, infinite dimensional subset of a
Banach space X and let : C — C be continuous. Then F has a non-repulsive fixed
point.

THEOREM 6.3. — Let B be a closed, bounded, convex, and infinite dimensionas
subset of a Banach space X and let T: B — B be a continuous f-condensing map,
with g satisfying (4 U 0) = f(4) if C is a finite set, and f(co 4) = f(4). Then T
has a nonrepulsive fixed point.

PrROOF. ~ Let 'Be % be compact and infinite dimensional. Let H: 3 — 3 be
defined by Hy(4) =AU P. Let H;: B — B be defined by Hy(A) = co A. Let
H: H,oHioT. H is f-condensing, T, H,, and H, are of type 2, hence so is H. Thus,
Theorem 4.1 implies H is asymptotically smooth. Continuity of T implies H(C) c
c H(C) which implies H is asymptotically smooth. Hence w(B) = () H»(B) is com-

n=1
pact, co-dimensional, invariant under H, and attracts B. It is also positively inva-
riant under 7. Theorem 6.2 implies T': w5(B) —+ w(B) has a non-repulsive fixed
point.

The next theorem originally proved by HALE and LoPES [16] is reproved here in
more detail, to end any confusion as to its validity. It is followed by a simpler proof
that does not use Zorn’s lemma (which Hale and Lopes use to prove result 3 below).

THEOREM 6.4. — Let T be f-condensing, continuous, and compact dissipative.
With 8 a measure of noncompactness satisfying (4 U B) = max [B(4), B(B)] and
Blco A) = p(A). Then T has a fixed point.

The proof by Hale and Lopes and the results we use below are also found in
HALE [14].

Resurt 1. ~ H compact, T f-condensing, yt(H) bounded implies y*+(H) is pre-
compact and w(H) is compact, invariant and attracts H.

REsurr 2 (Horn [17]). — If §, c 8, C 8, are convex subsets of X, §,, S, compact,
and 8, relatively open in 8,, T: §, - X is continuous, y+(8,) c 8,, and 8, dissipates §;,
the 7' has a fixed point.

RESULT 3 (LEMMA 4.1 in Hale [14]). — Suppose K c B c § are convex subsets of X
with K compact, § closed and bounded, and B open in 8. If T: 8§ — X is conti-
nuous, y*(B) c 8, and K attracts points of B, then there is a closed, bounded, convex
subset 4 of S such that A = 0_6{ UTi(BN A)}, ANEK =9,

izl
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RESULT 4. — Lemma 4.3 (Hale [14]). — T S-condensing with § satisfying the con-
ditions of Theorem 6.4 then the set 4 in Result 3 is compact.

The proof of Result 4 is given in [14] for «-condensing but generalizes immedia-
tely to p-condensing.

ProOF 1 oF THEOREM 6.4. — Let By = {#: |v|<< R} dissipate compact sets. Since
orbits of compact sets are dissipated by By, they are bounded. Hence, Result 1
holds for any compact set. Furthermore, for any compact set H, w(H)c By since
w(H) is compact and invariant. Let J = {w(H): H c X compact}, J c By and is
invariant, hence it is precompact. It also attracts compact sets. Let K —=TcodJ
There is a neighborhocd H; = K - B, of K whose orbit y£(H,) is bounded. This is
because dissipative and local compact dissipative are equivalent when T is con-
tinuous. Let H, = K + B,,. Result 3 implies there is a set A = ¢o { U§T?’Am A)}.

§>1
Result 4 implies 4 is compact. Let 8, = H,N 4,, 8, = H, N 4,and 8, = A. Clearly,
p+(8;) ¢ 8;. Also 8, is compact and H attracts compact sets, so H, dissipates §,.
This implies S, dissipates S, and Result 2, Horn’s theorem, implies 7' has a fixed
point,

PROOF 2 OF THEOREM 6.4. — Tf-condensing implies T is asymptotically smooth.
Hence, for any B e $ such that y*(B) € & we have w(B) is compact, invariant, and
attracts B. Let By be a ball of radius R which dissipates compact sets. Then w(B)c Bj.
Let J = U {o(B): B, y*(B) e $}. We have J precompact, invariant, and attracts
any B € $ for which y*(B) € $ also. In particular, it attracts neighborhoods of com-
pact sets, since compact dissipative and local compact dissipative are equivalent.
Let K = ClcodJ. There is a neighborhood H, = K - B, for which y{(H,) € $ by
the above reasoning. Let H, = K - B,,. Let H: $ — % be defined by H(B) =
= co T(y*(H, N B)). H is of type 2 and is the composition of a f-condensing ope-
rator and the rest f-nonexpansive. Hence H is also f-condensing and Theorem 4.1
implies H is asymptotically smooth. Since H(B)c H(B) we also have H asympto-
tically smooth. Let § = co y+(H,) = H(H,). Then H(S)c § and hence H»(S) is a

decreasing sequence of sets which approaches the nonempty compact set w(8) H~(8)
n=1
which is also convex and invariant under H. We also have w(8) positively invariant

under 7. Let 8, = w4(8), 8; = H; U w4(8),and 8, = H, N w5(S). Since K attracts H;,
H, dissipates H, and S, dissipates 8,. Clearly, y*(8;) ¢ 8,: Hence, Result 2, Horn’s.
theorem, implies 7 has a fixed point. ‘

7. — Remarks.
In this section we show how some of the proofs of Cooperman and mine are related,

and also how one of Cooperman’s results does not generalize to more arbitrary measures
of noncompactness.

8 ~ Annali di Matematica
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The important lemma used by CooPERMAN [8] to prove the semi-continuity of .
the solution map for collectively o-condensing maps, is the following lemma, which
we prove for S-condensing maps.

LemmaA 7.1. — Let 4, be a decreasing sequence of bounded sets,i.e. 4,24,24,....
Let T be f-condensing with § satisfying (4 U B) = B(4) if § is a finite set and
B(A + B) = f(A) if f(B) = 0. If there are two sequence {ir}, {jz} such that d(4,,
T(4,)) — 0, then «(4,) -0, where d(4, B) is the Hausdorff metric. ’

REMARK. ~ The result is also true if the condition f(4 + B) = p(4) if f(B) =0
is replaced by the condition that § is continuous in the Hausdorff metric.

PROOF. — Let Dy = {{(x, ns)}: 3 € T(4,,), n — oo},
If heDy, h= {(&s,n)} let Ph=1{J{x;}. Let n, = sup {f(Ph): heD,}. Let
k

g(h) = max {k:ir<n}. Let D,= {(y,ns)}: Ys € An , mp — o0}, 0, =sup {B(Ph):
he D,}. We first show 1, = 5,. Let ke Dy, b = {(z:, ns)}, B(PR) = B(P{(2s, Ni)}) =
= B(P{(®, Jymy)})- Now there is a sequence {(yy,tymy)} €D: With |y — 2| — 0
since d(A4,,, T(4;,)) — 0. Hence, B(P{(%y, jypun)}) = BPLYss loeun)} <72 Henee, 7, <ns.
Reversing the argument shows #,<7,. Hence, 7, = 7,. Now as in Theorem 4.1
there is an k* e D, with (k) = 5,. But there is an h'e D, with TPh'= Ph*. So
> P(Ph) > B(TPH) = B(Ph*) = %, with equality if and only if S(Ph’) = 0. Hence,
= 0 and Lemma 3.1 implies the existence of a compact set which attracts A,.
Hence, x(4,) - 0.
A result of Cooperman’s [8] which does not generalize is the following.

THEOREM 7.1 (Cooperman). — Let X and Y be metric spaces, not necessarily
identical, and let 7T: X — Y be x-condensing. Let Y be separable. Suppose 4,2
24,2..., a(4,)—> 6 and «(T(4,))— 6. Then 6=0.

We give the following example to show it does not hold for more general
measures of noncompaetness.

ExAMPLE 7.1. — Let T: L*0,1]x R—L%0, 1]x R be defined by

1] %<w
T(F,a)= (4 —2)F (20— 1) %<m<%
0 x<%

Let BcL[0,1]x R, and let B,= {(¥,, a)/where F, is the restriction of F to [r,1],
(F,a)eB}. We define §(B)=0 if B is compact, otherwise f(B)=14inf{r/B, is
compact in Lfr, 1], 7r€[0,1]}. Let A,= {(F, a)/|F| <1, |a|<1, F@)=0a for x>
>3+1/n}. Then f(4,)—1%, f(TA,)—1%, and T is p-condensing. Hence, the
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conclusion of theorem 7.1 does not hold in this case. We notice T(4,) approaches a
compact set. The example could easily be modified so it does not. Also pg-satisfies
most nice properties for measures of noncompactness exeept continuity in the
Hausdorff metric. If we assume § is continuous in the Hausdorff metric I do not
know if theorem 7.1 is true.

8. — Linear condensing maps.
References for this section are [10], [111, [20], [28] and [29].

TrrOREM 8.1. — If T is linear and f-condensing with a f-measure of noncompact-
ness satisfying (i) f(4 U B) = f(4) if f(B) = 0 and (ii) f(4 + B) = p(4) if f(B) = 0
then r,(T) < 1 where r,(T) is the essential spectral radius.

DEerFINITION 8.1. — 7{T) = ng (T + A) where #(T |+ A) is the spectral radius
of T 4+ A and C is the collection of compact operators.

ProOF oF THEOREM 8.1. — We will use the fact that d¢ Cc g, U o, where ¢ is the
spectrum, o, is the point spectrum, and o, is the continuous spectrum. Clearly o
is bounded since 7 maps bounded sets into bounded sets. Let B, = {w: |z]|< 2}.
Let H: $ — B be a set operator with H(A) = T(A) N B,. H is clearly p-condens-
ing and of type 1. Hence, Theorem 4.1 implies H is asymptotically smooth. We
will show do,c B, for some k< 1 where B, = {#€C: |z|< k}.

(a) If A€o, |A|>1, and A€o, then N(T — AI) (the null gpace of T — AI) is
finite dimensional. Otherwise there is a sequence {#,} with «({#.}) =7 >0, [lz.] =1
such. that 7w, = Ax,. But then oc(Hm((l/l)m {m,,})) = ofx,} = > 0. Hence
a(H™(B,)) >n > 0 which contradicts the fact that H is asymptotically smooth.

(b) If A€o, |Al>1 then R(T' — AI) = ¢l R(T — AI), where dim N (T — AI)<C co.
Suppose R(T — AI) 2 ¢l R(T — AI). Then the map (I — AI)1: R(T — il)—
- XI\N(T — AI) is unbounded. So there exists a sequence {x,} € X:N(T— iI),
f#.] = 1 and a sequence {y,} — 0 such that (T — AI)w, = ¥,. There is also ann >0
such that a{z,} = 5. For otherwise a cluster point, x, € X\N (T — AI) would satisty
(' — AI)x, = 0, which is a contradiction. It is now easily verified that oc(Hm((l/l)m
{azn})) = a({®.}) = > 0. Hence, a(Hm(B,))>7>0 which again contradicts the
fact that H is asymptotically smooth.

(e) If A € 00, |A|>1 then dim N(T — AI) << co where N(T — Al) = cl{ UN(T —
. mz=1

— ZI)m} is the generalized null space of T — AI. Let T be the restriction of T to
N(T < 2I), ie. T': N(T — AI) - N(T — AI) with T'z = T(x). Since T’ is also
f-condensing we have dim N(T'— AI') < co (a) and R(T'— AI) = cl R(T'— AI') (b).
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In this part we need to use the concept of an index. If R(T — AI) = cl R(T — AI)
let op_;; = dim N(T — AI) and fp_;; = codim R(T — AI). The index, K,_,, =
= Bp_sr — %p_j;- 1t is clear that if dim N(T — AI) = oo then K,_,; <— 1. But it
is known that the index is constant on an open set, and for any A € o(U), the resolvent
set, Kp_;; = 0. This contradicts 4 € do.

(@) If 1€ @0, |A|>1, then codim N(T — AI)<< co. We know from (¢) that
dim N(T — AI) < co. Hence there is a normal splitting of X = N(T — AI) — Y,
for some subspace ¥ where (I' —AI)Y — Y. Let T'— AI': Y — Y. Since N(T'—
— A"y = {0} and R(T'— AI') = cl R(T'— AI') (b) we have A¢ o,(T"— AI') U 0, (T'—
— AL"). Hence A¢ do(T'— AI'). So Ae€po(T') and T'— AI' is 1 —1 onto. Hence,
codim R(T — AI) < oo,

(e) If A€ do, |A|>1 then A is a normal eigenvalue. From (a), (b), (c) and (d)
we have oy_;; < 00, fp_z;< oo and R(T — AI) = cl R(T — AI). Hence, K,_;; is
well-defined. Since the degree is-constant on an open set and 4 € 0o we have K,_;; = 0.
So, dim N(T — AI) = codim R(T — AI), and 4 is a normal eigenvalue.

(f) The set of points in 2o M {A: |A|>1} is finite. We have proved (¢) that all
these points are normal eigenvalues. Hence they are also isolated.

(9) Since we may introduce a finite dimensional operator 4 which subtracts
off the normal eigenvalues with [A|>1, we get 00(Z — A) c B, with B, = {1eC:
Il < 1}. Hence r,(T)< 1. Q.E.D.
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