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Summary. - See Introduction. 

1 .  - I n t r o d u c t i o n .  

I n  1939, K~ICATOWSKI [19] in t roduced a measure  of noncompactness  of bounded  
sets in a metr ic  space, called the  Kura towsk i  measure  of noneompactness ,  or 
~-measure.  This along with  the  associated notion of an  ~-contraetion,  has p roved  

usedful in several  areas of differential equations (see, for example,  [12], [1r and [25]). 

DEFINITION. - -  Le t  X be a metr ic  space. The ~-measure is a m a p  ~: 5~ -+ [0, co), 

where ~ = ( B c X :  B is bounded} and  ~(B)---- inf  (d: there is a finite cover of B 

with sets in X whose d iameter  is less t han  d}. 

Dv.PI~ITIO~. - T :  X -> X is an ~-contract ion if there is a k e [0, 1)  such t h a t  

for aH B E ~  we have  ~(TB)<k~(B). 
To generalize this not ion people began to invest igate  ~-condensing maps.  

D~FI~ITI0~. - T :  X - +  X is a:condensing if for all B e ~5 we have  ~(TB)<~(B) 
with equal i ty  if and  only if ~(B) = 0. 

The basic p rob lem is to unders tand  which propert ies  of a-contract ions also hold 
for ~-condensing maps.  l~ecently, l%iehard LEGGE~T [20] showed tha t  if X is a Banach  
space, T is l inear and  ~-condensing, then  there is an  equivalent  norm in X for which 
T is an  ~-contract ion in the  new norm.  SADOVSKII [ 2 5 ]  showed b y  transfinite induc- 
t ion t h a t  ~-condensing maps  have  the  fixed point  p roper ty-ex tending  a resnlt  of 

D_~]3o [9] for g-contractions.  Another  impor t an t  contr ibut ion showing ho w m a n y  prop-  

erties of ~-contract ions are t rue  for ~-condensing maps  was made  b y  CO0PEn~AN [8]. 
Cooperman developed an  ingenious technique which exploited special propert ies  of 

the  ~-measure.  

(*) Entrata in Redazione il 12 marzo 1979. 
(**) This research was supported in part  by ~ir  Force Office of Scientific Researchunder 

AF-AFOSR 76-3092A. 
(***i This is part  of the author 's  P h . D .  thesis at Brown University written Under the 

supervision of J. K. Hale. 



102 PAVL :~ASSATT: Some properties o/ condensing maps 

The principle results of this paper  will be to generalize several of the results o~ 
Cooperman to more general measures of noncompactness as well as for certain set 
mappings. The proofs a r e  more e lementary  than  the ones in Cooperm~n. I towever,  
the basic lemma used by  Cooperman which depended so much on properties of 
~-measures is not  generalized. I n  fact,  we give an example showing tha t  it  will not  
generally be valid for a rb i t rary  measures of noncompactness.  

Section 2 contains only nota t ion and definitions. In  section 3 we prove tha t  a 
decreasing sequence of nonempty  closed bounded sets with general measure of non- 
compactness approaching zero must  have nonempty  intersection. In  section 4 
we show condensing maps are asymptot ical ly  SlIm0th. In  section 5 we show the solu- 
t ion map T~x = y as a funct ion of y for (T~} collectively condensing is upper  semi- 
continuous with mild cont inui ty  assumptions on T~. I n  section 6 we show results 
proved using Sadovskii 's method  of transfinite sequences m a y  be proved using ordi- 
na ry  sequences. We reprove a theorem by  Hale  and Lopes tha t  ~-condensing, com- 
pact  dissipative maps have a fixed point,  and show this holds for general measures 
of noncompactness.  I n  section 7 we discuss the basic lemmas of Coopermau and their  
val idi ty  for general measures of noncompaetness.  In  section 8 we show linear con- 
densing maps with general measures of noncompaetness are ~-contractions under  
some equivalent  norm. 

2.  - D e f i n i t i o n s  a n d  n o t a t i o n .  

Let  X be a complete metric space, or a complete metrizable linear topological 
vector  space. When  we speak of distance in the la t ter  case we m a y  use any  metric 
coinciding with the topology on X. Le t  ~ be the collection of bounded subsets of X. 
For  any  subset B of X ,  let  C1 (B) denote the closure of B. Le t  C be the collection 
of subsets of X. 

B oo DEFI~ITI01~ 2.1. - For  any  sequence ( .}~=1 c 33, the o~-limit set of {B,} is defined 
c o  

by  o~({B~}) = ~ CI( U B~), or equivalent ly o)({B~}) = {y ~ X :  3 integers nk -+ 0% 

x~ e B ~  such tha t  xk -> y}. 

DEFI~NiTIO~ 2.2. -- A set A c X attracts a sequence of sets {B,}~'= 1 c X if d(Bn , A)  -+ 0 
us n --> c~, where d(B, A ) =  sup (d(x, A)}. 

z s B  

DEFI~ITIO~ 2.3. - I f  H :  C -> C and B e C, the orbit y+(B) c C under  H is defined 
oo 

by  y+(B) = [J i t ' (B ) .  The o~.limit set o~(B) of B under  H is defined by  c o . ( B ) =  
~ = 0  co  

= eon({H"(B)}) = ~ CI( ~ H'(B)). W~en no confusion arises we m a y  drop the  
subscript, H.  k=l ' ~ k  
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DEFINITION 2 . 4 .  - A subset  U c C (i.e., a collection of subsets of X)  is invariant 
under  H :  C -~ C if H U  ~-- U. I t  is positively invariant if H U  c U. 

I f  T :  X -+ X is a m a p  On X,  then  T induces a m a p  i t :  C --> C b y  the  relat ion 
i t (B) -= [J Tx  for any  B ~ C. The above  definitions coincide wi th  the usual defini- 

mEB 

t ions of (o-limit set and  invariance.  
Other  mappings  on a collection of subsets of X are useful. We make  the  follow- 

ing definitions. 

D E F I N I T I O N  2 . 5 .  - -  I f  H :  (~ --> C is a given map ,  we say 

H is of type 1 if H(B)  ---- U {H(#): x e B } .  

H is of type 2 if H(B)  ---- U {H({x~}): {x~} is any  finite subset  of B}. 

H is of type 3 if H(B)  = U (H(K)  : K c B is compact}. 

Similar definitions app ly  for H :  ~ -> C or H :  ~5 -> ~ .  
A set opera tor  of t ype  1 is a set opera tor  of t ype  2 which is tu rn  is a set opera tor  

of t ype  3. I f  H ,  and  H~ are set operators  of the  same type  n, for n = 1 or 2, then  

H, oH~ is a set opera tor  of t ype  n. This p rope r ty  m a y  not  hold for operators  of type  3. 

EXAMPLES. 

(i) I f  T :  X -> X then  i~: C -> C defined b y  i~(B) ----- [.J (Tx  ~ X :  x ~ B} is of 

t ype  1. 

(ii) I I T :  X --> X ,  then  y+: C->C defined b y  y+(B) -~ posit ive orbit  th rough  B 
is of t ype  1. 

(iii) I f  T :  X -~ C is a set va lued m a p  on X ,  then  the m a p  i~: C -~ C defined 
b y  i~ . (B)~-U (Tx  e C: x e B} is of t ype  1. 

(iv) I f  C e C is given, then  H :  C -+ C defined b y  either H(B)  = B U C, B n C, 
or B + C, is of t ype  1. 

(v) H :  C - >  C given b y  H ( B ) =  co B - - - - t h e  convex hull of B is of t ype  2. 

(vi) H :  C -~ C given b y  H(B)  = C1 (B) is of type  3. 

D E F I N I T I O N  2 . 6 .  --  A measure o/ noncompactness on X is a m a p  fl: ~5 -~ [0, oo) 
wi th  the  propert ies  t ha t  (i) fl(B) -~ 0 if and  only if C1 (B) is compac t  and  (ii) fl(B) < 
/~(r if B c r 

The ~-measure of noncompactness  of Kura towski i  defined in the  in t roduct ion 
is a measure  of noncompactness .  I t  satisfies m a n y  more  properties,  some of which 
will be  required below. They  will be in t roduced as needed since one of our objectives 
is to unders tand  which basic propert ies  of the  ~-measure imply  certain results. 
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I)E:FI~ITi0~r 2 . 7 . -  I f  / / :  35 -->35, then  H is a fi-contraction if there  is a k e  [0, 1) 
such t ha t  ~(H(B)) < kfl(B) for any  B e 35. H is 13:condensing if for each B e 35, ~(H(B)) <~ 
fi(B) with equal i ty  if and only if fi(B) ~ O. I f  T: X --~ X and maps bounded sets to 
bounded sets, we say T is a fl-contraction (fi-condensing) iLi the induced map  
iT: 35 --~ 35 is a fl-contraction (fl-condensing). 

In  the  applications it  is sometimes convenient  to not  assume H :  35--> 35 bu t  
only tha t  H :  35 --> C; tha t  is H m a y  not  take bounded sets into b o u n d e d  sets. One 
then  calls the map a conditional fl-contraction (conditionvl /?-condensing) if the above 
properties hold for each B E 35 for which H(B) ~ 35. The results below hold in this 
more genera] situation, bu t  we do not  explicitly s tate  ~nd prove them in this 
general i ty since it  is only a minor  technical detail. 

Dv.FI~ITI0~ 2.8. - Le t  H :  C --> C and let  S be ~ collection of sets. A bounded set B 
dissipates S-sets under H if for any C e S, there  is an integer no(C) such tha t  H~(C) c B 
for ~>no(C). I f  s = {{x}: x e X }  we say H is point dissipative, if S = {{J}: J c X  
is compact} we say H is compact dissipative; if S contains a neighborhood of any  
po in t  x e X, we say H is local dissipative; if S contains a neighborhood of any  com- 
pact  set, we say H is local compact dissipative; if S contains all bounded sets of X ( S  = 35 
we say H is bounded dissipative or ultimately bounded. 

I f  H is type  2 and continuous in the I tausdorff  metric, then  compact  dissipative, 
local dissipative and local compact  dissipative are equivalent.  

DEFINITION 2.9. -- A map H :  35 -~ C is asymptotically smooth if, for any B e 35 
such t ha t  F+(B) ~ 35; there is a compact  set J c X such tha t  J a t t racts  B under  H.  

Asymptot ical ly  smooth maps play an impor tan t  role in stabili ty theory.  In  
fact,  it is known (see [8], [14]) t ha t  H asymptot ical ly  smooth and compact  dissipa- 
t ive implies there  is a maximal  compact  invariant  set J for H which a t t racts  neigh- 
borhoods of compact  sets. In  particular,  J is uniformly asymptot ical ly  stable. I t  is 
impor tan t  therefore to give other characterizations of asymptot ical ly  smooth maps. 

L E n A  2.1. - I f  T:  X -+ X is a given map and iT: C -+ ff is the map induced by  T, 
iT(B) = U {Tx: x E B}, then  the follpwing ~re equivalent  to iT: being asymptot ical ly 
smooth:  

(1) for any  B ~ 35 such tha t  7+(B) ~ 35, there  is a compac t  set J tha t  a t t racts  B 
under  T;  

(2) for any  B ~ 35 such tha t  T B c  B t h e r e  is a compact  set J t ha t  a t t rac ts  
under  T;  

(3) for any B ~ 35 there  is a co m p ac t  set  J such tha t ,  for  a n y e  > 0, there  is 
a n  integer no(B, s) such tha t  T~x ~ B  for n~>0 implies  d(Tnw, J ) <  s for 
n >~no(B, E). 
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L e m m a  2.1 suggests other  definitions of a sympto t i c  smooth  for mappings  H :  
:~ -+ C. More precisely one could define a sympto t i c  smooth  of type  (j), ~ = 1, 2 b y  
the relat ions (1) and  (2) in L e m m a  2.1, wi th  T replaced b y  H.  One finds a sympto t i c  

smooth  (2) defines a smaller class t han  a sympto t i c  smooth  (1). 

3, - A property o f  measures  o f  noncompactness .  

A classical result  for the  ~-measure of noncompactness  is t h a t  a decreasing se- 
quence (B.} of closed bounded  sets wi th  ~(Bn) -~ 0 has the p roper ty  t ha t  d(B~, J) - .  0 
as n -+ c~ for some compac t  set J .  I t  is th6 purpose of this section to show this result  
is t rue  for more  general  measures  of noncompaetness .  We  need the following lemma.  

L n ~ h  3.1. - I f  {B~}~ 1 is a sequence of bounded sets in X wi th  the  p rope r ty  
tha t  every  {Xk)k~= 1 C X is p recompae t  if there  is a sequence of integers nk -+ oo with 

x~ �9 B ~ ,  then  o ) ( (B , ) ) i s  nonempty ,  compact ,  and  a t t rac t s  B~. 

PI~0oF. - (o(~B~}) -~ (y � 9  there  exists n~ -> 0% x~r � 9  k such t ha t  {x~} con- 

verges to y). ~o(B.) is n o n e m p t y  since any  seqllence xT~ �9 B~,: wi th  nT~ -+ oc has 
converging s ubs equencewh i ch  mus t  converge to  a point  ill o)({B~}). ~o((B~})is 
p recompac t  since if we let  {y~} be a sequence in ~o((B,}) then  there  is a sequence 
n~ -> 0% xk �9 B ~  wi th  d(x~, yk) < 2 -~. Bu t  (xk} has a convergent  subsequence, hence 

so does {Yk}. All t h a t  is left  is to show co((B,)) a t t r ac t s  B~. Suppos e it  does not.  
Then there  is an s > 0, nl~--> 0% x k � 9  with d(xk ,co( (B~)) )> r B u t  xk has a 

converging subsequence which mus t  converge to a point  in eo({B~}). This is a con- 

tradict ion.  Q.E.D. 

TI~EO~V,~ 3.1. - I f  fl is a measure  of noneompactness  satisfying fi(A U B) ~ fl(A) 
if B is a finite set then  any  decreasing sequence (B.} c ~ of n o n e m p t y  closed boImded  

sets satisfying fi(B~) ~ 0 must  have  ~ B~ nonempty ,  compact ,  and  a t t rac t ing  B~. 

PlCOOr. - Le t  B~ be a decreasing sequence of n o n e m p t y  closed bounded  sets wi th  
oo 

fi(B~) --> O. Clearly ~o(B~) : ~ B~. Le t  n~ -> oo and  xT~ �9 B , .  Then fl((xk)) <fi(B~) 
~ t = 0  

fer  a n y  n since {xk} minus a finite number  of points is a subset  of B,~. Bu t  then  
fl(~x~}) ---- 0 and (xk) is precompact .  L e m m a  3.1 implies the  result. 

4. - Diss ipat ive  processes.  

The basic result  of this section relates fi-condensing maps  to  asympto t ica l ly  

smooth  maps.  

TttE0t~EM 4.1. - Suppose fl is a measure  of noncompactness  satisfying fi(A U B) -~ 
fl(A) if B is a finite set. I f  H :  53 -~ ~ is fi-condensing and  of type  2 (see Defini. 

t ion 2.5), then  H is asympto t ica l ly  smooth.  
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PROOF. -- Le t  B and y+(B) be bounded.  Le t  ~D(B)= {{x~, n~}: {n~}-->0% 
x~ e H"~(B)}. I~et _P({x~, n~}) ----- {x~}. Le t  ~ == sup {fl(_Ph)/h e ff)(B)}. Note ~ < oo 
since y+(B) is bounded.  We first show there is an h* = {x~, n~} e ~(B)  such tha t  
fl(Ph*) = V. Le t  (hi} c fl)(B) be a sequence with fl(Phj) -+V. Le t  s = {(xk, nk) e 

o o  

s h~: nk > j}. Le t  h* ---- (.J s reordered in any  way. Then we have h* s ff)(B) and so 
k = l  

V>fl(h*)>~fl(]tj) ~- fi(hj) -+~], as i -+ oo. Hence,  fl(h*) -~ V. 
- -  ~" H"'~-~(B) • Z such tha t  Now for each (x~, n~) e h* there  is a set (x~*, n;  1}j =1 c 

o o  

x~ e H( (x  k }). Le t  g* -~ [J {x~*, n k -- 1 } ~  e 9(B) .  Hence V > fi(g*)>1 fl(Hg*)>~ fl(h*) = ~  
~ = 1  

with equali ty if and only if fl(g*) = O. Hence ~ = 0. 
Now Lemma'  3.1 implies there  is a J c X compact,  which a t t rac ts  (H'(B)},  or 

a t t racts  B under  the map H. 

COROLLARY 4.1. -- I f  fl satisfies the conditions of Theorem 4.1 and T:  X - + X  
is fl-condensing, t hen  T is asymptot ical ly  smooth. 

COROLLA~Y 4.2. -- I f  fl satisfies the conditions of Theorem 4.1 and T:  X - +  C 
is fl-condensing, then  T is asymptot ical ly smooth. 

COt~0LLA~u 4.3. -- I f  fl-satisfies the conditions of Theorem 4.1 and fl(co B) = fl(B), 
T:  X - + X  is fl-condensing, and H :  :B-+~B is defined H ( B ) =  co T(B) then H is 
asymptot ica l ly  smooth. Fur thermore ,  if / '  is continuous, then  _~: ~B-+ ~ defined 
b y / t ( B )  = -e l  H(B) is asymptot ical ly  smooth. 

PROOF. -- H is clearly fl-condensing and type  2, hence we have the first par t  of 
the corollary. For  the  second par t  we note  H(cl  B ) c  cl H(B).  Using this we get 
/ t" (B)  c c l  H~(B) and s o / t  is asymptot ical ly  smooth. 

COROLL~u 4.4. -- I f  fl satisfies the conditions of Corollary 4.3, T:  X - + X  is 
fi-condensing, P c X is compact  and H :  .~ ->:B is defined b y  H(B) = co (T(B) U P)  
then  H is asymptot ical ly  smooth. I f  T is also continuous t h e n / 7  is also asympto- 
t ically smooth. 

COROLLARu 4.5. -- I f  fl is a measure of noncompactness satisfying fl(A U B ) =  

= max  {fl(A), fl(B)} and H is fi-condensing then  +" Yz. ~B-+ ~B implies y+ is fl-nonex- 
pansive. 

PROOF. - Assume fl(7+(B)) > fl(B). Then fl(y+(B)) = fi(B u Hr+(B)) -~ max (fl(.B), 
fi(Hy+(B))} = fl(Hy+(B)) < fi(y+(B)) which is a contradiction. 

The last three corollaries are useful in showing several fixed point  theorems proved 
by  Sadovskii 's method  of transfinite sequences m ay  be proved with ordinary sequences. 
This is i l lustrated in Section 6. 
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Tm~ol~E~ 4.2. - Le t  fi be a measure of noneompactness satisfying f l(A W B) = fl(A) 
if B is a finite set and either (1) fi is continuous in the Hausdorff  metric or (2) fl(B) ---- 

-~ fi(B), and fl(A ~- B) = fl(A) if fi(B) = O. 
I f  H :  :5 -+ ~5 is fi-condensing and type  3, then  H is asymptot ical ly  smooth. 

PI~OOF. - Le t  B, ?+(B) e:B.  Let  ~ ' ( B ) - - - - { ( J ~ , n ~ } : J ~ c H ' ~ ( B ) ,  f l ( J~ )=  0, 
oo} .  = e oo} ,  = [J for  

k 

h'efl) '(B),  ph = p{x~, n~r = [j  {x~} for h e ~(B) .  Le t  U '=  sup {fl(p'h'): h'e flY(B)}. 
k 

L e t  U = sup ( f l (ph):h  e ~(B) ) .  We first show U-~ V'. This takes the most  work. 
t*  

B y the  method  of Theorem 4.1, we show there  exists h~ e flY(B) with fi(h'l* ) -~ ~'. 
~* 1" * ~* 2* * 2* Let  h 1 ---- {J~,  n~} and h~ = {J~,  n~} with J~ a finite set satisfying d(J~*, J~*) < 

2* 1"  < 2  -~ and J~ c J~ . We claim fi(h~ *) = fi(h'*l). Both  are in ~ ' (B) .  

�9 l* 2* l* Case (i): Le t  ~ (/~.*, n~} w i t h / ~  ---- J~ if k~>l and /~k is a finite set wi th  
~* 1"  l* 1" 2-I 1~ c J k ,  d(Rk, J~ ) < if k < 1. Then fl(h'2* ) = fl(~) --> fi(h'~*). Hence,  fl(h'~*) = 

= 

l*  8" * 8* 1" Case (ii): Le t  h 8 ---- (J~ , nk} ~ flY(B) with Jk c J~ countable and dense in J~*. 
h'*) ~* Clearly, fl(h'8* ) fl( 1 �9 Now for each point  k 8* ~ --~ z~ e J k  there  is an x i e J k ,  Y~ e X  

T 

with z~ : x~ + y~ and [y~[ -~ d(zi, J ~ ' ) < 2  -~. The  set {y~k/iy~ ~ [>~ 2-k} c [J JkS* _ [j Jk2" 
and hence is compact,  k=l k=l 

t *  
Since r is a rb i t ra ry  we know (y~} is compact.  :Now h'8*c h~* + (y~} and h z c 

[*  
h 8 -- {y~} implies fi(h'8* ) = fi(h'z*). This shows fl(h'l* ) = fi(h 8'*). 

B a t  h'2*e ~(B)  also (when reordered). Hence,  U>~U'. I t  is obvious tha t  U~<~'. 
H e n c e  ~ : V'. I~ow let h* e ff)(B) with fl(h*)----~ (constructed as is Theorem 4.1). 
Since H is of type  3 there is an h 'e  lt)'(B) such tha t  h* c g (h ' ) .  We get U>fl(h')~> 
>fl(H(h'))>~fi(h*)----~, with equali ty if and only if f l ( h ' ) =  0. Hence,  we have 

= ~ ' =  0. Now we may  apply  Lemma 3.1 to obtain the result. 

5.  - C o n t i n u o u s  d e p e n d e n c e  o n  p a r a m e t e r s .  

Here  we look at  a result  originally proved by  ARTSTEIN [2] for a-contractions. 
The result was extended to ~-condensing maps b y  Cooperman and will now be gene -  

r a l i z e d  to a rb i t ra ry  measures of noncompaetness.  

DEFINITION 5.1 .  -- We say tha t  a convergence structure is given for a set V if to 
certain nets {vn, n e h z} in V (called the convergent  nets) there  corresponds an ele- 
ment  v in V, denoted by  lim v~, so t h a t  the  following conditions are fulfilled. 

(a) I f  v n : v  Vn then  l i m v n : v .  
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(b) I f  l im v~----v and {v~} is a snbnet  then  lira vm = v. 

(e') I f  {v,} does not  converge to v then  a subnet  of {v.} exists, no subset  of Which 
converges to v. 

A set with a convergent  s t ructure  on it  is called a convergence space. Not  every  
convergence space is topological. See KELLEY [18] on the  <( convergence of the  ite- 
ra ted  l imit  ~> proper ty .  

DEFINITION 5.2. -- Le t  % = {U~} be a set of operators  U~: X --> X with  a conver- 
gence s t ructure  on it. Then {U~} is a collective fl-contraction if there  is a k e [0, 1) 

s 

such t h a t  for all B a :B we have  fl( U. UzS) </~fl(B). {Ua} is collectively fl-eondens- 
A 

ing if VB ~ ~,  fl(U UzB) <~fi(B) with equal i ty  if and only if fi(B) = O. 

DEFINITION 5.3. -- A mul t i -va lued funct ion • f rom the convergence space 
to the  convergence space %0 is Lu-cont inuous if l im u~ = u, w~ e ~9(u~), and  lira w~ = w 
implies w e 9(u) .  

I~EX~K.  - I f  % and %0 are topological spaces this is equivalent  to the  g raph  

being closed. 
The following l emma  is p roved  b y  ARTSTEIN in [2] and  only s ta ted  here. 

L ~ v ~ A  5.1. - Le t  {y~: k e K} be a net  which is contained in a bounded  set of X.  
Denote  b y  A~ the  set {yj: ]>k} .  I f  the  numbers  ~(A~) converge to zero then  there  
is a convergent  subnet  {y~, n e K} of {y~}. 

DEFINITION 5 . 4 . -  B is semi- invar iant  wi th  respect  to 2L if for all x e B there  is 

a U e q L  wi th  x =  Ux. 
For  the  nex t  theorem we will al~o use the following lennna. 

LE~a~A 5.2. - Le t  ~g be a collectively fi-condensing family  of operators.  Le t  the  

fl-measure of noncompactness  sat isfy fl(A + B ) =  fl(A) if f l(B)= O. Le t  B~-= 
{x: there  exis t  ( T , y ) e ~ •  such t h a t  T x = y  for some y e X  with  ly--yol<y~}. 
Then ~g collectively fl-condensing implies ~(B~) -*  0 as i -*  co. 

P~00F. - Le t  {l~} -*  co and  x~ e B u .  We will show {x~} has ~ converging sub- 
sequence, and  then  app ly  L e m m a  3.1. 

Since x~eB~ there is {T~}, {y~} -~Yo such t h a t  x~ = T~x~ + y~. Le t  U~: X -->X 

be defined b y  U~x = T~x + y~. Since (y~} - ,  Yo, i t  is prccompact .  Also y U~B c 
c U T,(B) + {y,} so 

with  equal i ty  if and  only if/~(B) = 0. t [ence  {U~} is collectively/~-condensing. Now 
since {x~} is semi- invar iant  wi th  respect  to (U~} it  is preeompaet .  This completes 
the  proof of the  Zem m a .  
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T~EO~EX 5.1. -- Le t  X be ~ metr ic  space. Le t  ~ be a collectively fi-condensing 
family of operators. Le t  the fi-measure be as in Lemma 5.2. I f  for a certain conver- 
gence s t ructure  on ~,  the map s(T, y) ---- (x: Tx ---- y} is Lu-continuous, then  for every  
closed and bounded B the mapping s(T, y ) ~  B: ~ •  is upper  semi-conti- 
nuous. 

P~ooF. - We first make  the following remark.  I f  ~ is collectively fl-condensing 
and B is semi-invariant with repeet  to ~ then  fi(B) = 0. This is a tr ivial  consequence 
of the definitions. 

Le t  ((TT~ y~)}-~(To, yo) be a converging net  with T ~ e G  and ykeX .  Let  
x~= Tkxk+yk, and xkEB. We must  show (xk} converges to t he  set s(T, yo)nB. 
We notice s(T, Yo)~ B is compact  since if we define TVo: X - +  X b y  Tvo(X)-~ 
-----Tx ~ Yo then  T fi-condensing implies Tv~ is fi-condensing. ~ur thermore ,  since 
s(T, Yo)n B is invariant  with respect to Tvo, it is precompact .  ~ow~ b y  the Ln-  
cont inui ty  of s(T~y) it  su~ces  to prove the existence of a convergent  subnet.  Le t  
Ak----(x~: n~>/~}. There are k~ such tha t  A~cB~ with Bi defined in Lem m a  5.2. 
Len~na 5.2 limplies ~(B~) - ~ 0  which implies ~(A~) -> 0, or ~(A~) -~ 0. Lem m a  5.1 
implies there is a convergent  subnet.  This completes the proof. 

6 . -  Fixed point theorems. 

We begin by  stating two theorems previously proved b y  Sadovskii 's method  of 
transfinite sequences, and show they  can be proved using ordinary sequences. Then 
we will reprove a result  of t i t l e  and Lopes, which used Zorn's lemma, and show 
this can also be proved wi thout  using Zorn's lemma. 

The first is due to Sadovskii and is found in [25]. 

T y m o m ~  6.1. - Le t  T : X - ~ X  be fi-condensing and continuous. Le t  the 
fi-measure satisfy fi(A W B)-~ fi(A) if B is finite and fi(co A) fl(A) for any  A e :~. 
Le t  B c X be closed, bounded,  convex, and posit ively invariant  (i.e. T(B)c B). 
Then T has a fixed point. 

P~ooF. - Le t  H :  ~ -~ ~ be defined by  H(B) = co T(B). ThenffI is asymptot ical ly  

smooth by  Corollary 4.3. Therefore,  opt(B)-~ ~ I~(B) is compact,  convex~ inva- 

r ixat  under  H, and a t t racts  B. I t  is, therefore posit ively invar iant  under  T. Schauder 
fixed point  theorem implies T:  w~(B) -~ w~(B) has a fixed point. 

The second theorem is a nonrepulsive fixed point  theorem by  5~ario MA~TWLLI [22]. 

DEFI~I~IO~ 6.1. - Le t  Y be a n o n em p ty  subset of a topological space X and 
]: :Y --~ :Y be continuous. A point  x0 ~ X is said to be a repulsive ]ixed point for 
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if (i)/2(xo) = x~, (ii) there exists a neighborhood U of xo such tha t  for any  neigh- 
borhood V of xo there exists an no with the property tha t  [J ~2~(lr~V) c lr'~U, 1"2 

n ~no 
is a nonrepulsive ]ixed point if it  is not  a repulsive fixed point. 

We will use the following theorem of BBOWDE~ [5]. 

Tn-EORE~ 6.2. -- Let  C be a compuct, convex, infinite dimensional subset of a 
Banach space X and let $ :  C -+ C be continuous. Then 5" has a non-repulsive fixed 
point. 

TH~0B~,~ 6.3. - Let  B be a closed, bounded, convex, and infinite dimensiona~ 
subset of a Banach space X and let T: B --> B be a continuous /?-condensing map, 
with fl satisfying fl(A w C) =- fl(A) if C is a finite set, and/?(co A) -~ fl(A). Then T 
has a nonrcpulsive fixed point. 

P~oo~. - Let  PB e ~ be compact and infinite ~ dimensional. Le t  H~: 5~--> ~B be 
l 

defined by  H~(A)~  A u t ) . Let  H~: 5~-->51 be defined by  H ~ ( A ) ~  co A. Let  
H: H~oHioT. H is fl-condensing, T, H~, and H~ are of type  2, hence so is H. Thus, 
Theorem 4.1 implies H is asymptotical ly smooth. Continuity of T implies H ( C ) c  

c t/(C) which implies H is asymptotically smooth. Hence w~(B) = [ ] / t " (B)  is com- 

pact, c~-dimcnsion~l, invariant  u n d e r / t ,  and at tracts  B. I t  is also positively inva- 
r iant  under T. Theorem 6.2 implies T: ~o~(B)-~o~(B) has a non-repulsive fixed 
point. 

The next  theorem originally proved by  HALE and LoPEs [16] is reproved here in 
more detail, to end any  confusion as to its validity. I t  is followed by  a simpler proof 
tha t  does not  use Zorn's lemma (which Hale and Lopes use to prove result 3 below). 

TEE0~,~  6.4. - Let  T be fl-condensing, continuous, and compact dissipative. 
With  fl a measure of noncompactness satisfying ,8(A U B) ~- max [fl(A), fl(B)] and 
fl(eo A) = fl(A). Then T has a fixed point. 

The proof by Hale and Lopes and the results we use below are also found in 

RESVLT 1. -- H compact, T fl-condensing, y+(H) bounded implies y+(H) is pre- 
compact and ~o(H) is compact, invariant  and at tracts  H. 

Rv, s~:s~r 2 (Horn [17]). - I f  So c $1 c S~ are convex subsets of X, So, S~ compact, 
and $1 relatively open in S~, T: S~ -+ X is continuous, y+(S1) c S~, and So dissipates S~, 
the T has a fixed point. 

R~,SlrLT 3 (Lv ,~A 4.1 in Hale [14]). - Suppose K c B c S are convex subsets of X 
with K compact, S closed and bounded, and B open in S. I f  T: S - ~  X is conti- 
nuous, y+(B) c S, and K at t racts  points of B, then  there is a closed, bounded, Convex 
subset S such that  = / U r (B n n H 

( 
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RESULT 4. -- Lemma 4.3 (Hale [14]). - T fi-condensing with fl satisfying the con- 
ditions of Theorem 6.4 then  the set A in Result  3 is compact. 

The proof of Result  4 is given in [14] for ~-condensing but  generalizes immedia- 
te ly to fl-eondensing. 

P~ooP 1 o~ T n - E O ~  6.4. - Let  B~ ~ {x: ]xl< R} dissipate compact sets. Since 
orbits of compact sets are dissipated by BR, they  are bounded. Hence, Result  1 
holds for any  compact set. Furthermore,  for any  compact set H, co(H)c B~ since 
~o(H) is compact and invariant.  Let  J ---- {co(H): H c X compact}, J c B R and is 
invariant,  hence it is precompact. I t  also at t racts  compact sets. Let  K----~6 J 
There is a neighborhood H~ ---- K ~- B~ of K whose orbit y+(H~) is bounded. This is 
because dissipative and local compact dissipative are equivalent when T is con- 
tinuous. Le t  H0 ---- K ~- B~/2. Result  3 implies there is a set A ---- ~6 / LJl TjA n A)/.  

Result  4 implies A is compact. Let  So ---- tto n A~, SI -~ 1tl (~ A, and S~ ---- A. Clearly, 
y+(S1) c S~. Also S~ is compact and H at t racts  compact sets, so Ho dissipates S~. 
This implies So dissipates S~ and Result  2, Horn's  theorem, implies T has a fixed 
point. 

P~ooF 2 oF Tm~o~E~ 6.4. - Tfl-condensing implies T is asymptotical ly smooth. 
Hence, for any  B e :5 such tha t  y+(B) e ~ we have co(B) is compact, invariant,  and 
at t racts  B. Let  B~ be a ball of radius R which dissipates compact sets. Then co(B) c B~. 
Let  J - - - - [ j  {o~(B):B, y+(B)~ ~}. We have J prceompact, invariant,  and at t racts  
any  B e 5~ for which ~+(B) e ~ also. In  particular, it  a t t racts  neighborhoods of com- 
pact  sets, since compact dissipative and local compact dissipative are equivalent. 
Let  K = C1 co J .  There is a neighborhood H1 ---- K ~- B~ for which ?+(H1) e .~ by  
the above reasoning. Le t  Ho = K-[-B~/2. Let  H:  ~ - +  .~ be defined by  H ( B ) =  
----- co T(y+(Ho n B)). H is of type  2 and is the composition of a fi-eondensing ope- 
rator and the rest fi-nonexpansive. Hence H is also fi-eondensing and Theorem 4.1 
imp]ies H is asymptotical ly smooth. Since H(B) c H(B) we also h a v e / 7  asympto- 
tically smooth.  Let  S = c~ ?+(1tl)= H(ttl). Then / t ( S ) c  S and hence/7~(S) is a 

oo  

decreasing sequence of sets which approaches the nonempty  compact set w~(S) [-] TT~(S) 
n = l  

which is also convex and invariant  under /7 .  We also have ~o~(S) positively invariant  
under  T. Le t  S~ = ~ ( S ) ,  $1 ---- H1 W ~o~(S), and So ---- Ho n co~(S). Since K attracts H1, 
Ho dissipates/ /~ and So dissipates S~. Clearly, y+(S~) c S~: Hence, Result  2, H o r n ' s  
theorem, implies i" has a fixed point. 

7 .  - R e m a r k s .  

In  this section we show how some of the proofs of Cooperman and mine are related,  
and also how one of Cooperman s results does not  generalize to more arbi trary measures 
of noncompactness. 

8 - . A n n a l i  d i  M a t e m a t l c a  
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The important  lemma used by C o o P E ~ _ ~  [8] to prove the semi-continuity of .  
the solution map for collectively ~-condensing maps, is the following lemma, which 
we prove for fl-condensing maps. 

LE~W_~ 7.1. - Le t  A.  be a decreasing sequence of bounded sets, i.e. A~ ~_ A~ ~_ Aa .... 
Le t  T be fl-condensing with fi satisfying fl(A t3 B) -~ fl(A) if fi is a finite set ~nd 
fi(A ~ B) = fi(A) if fl(B) ---- 0. I f  there are two sequence (i~}, (je} such tha t  d(Ar 
T(Ad) ) ---> O, then ~(A~) --~ 0, where d(A, B) is the Hausdorff metric. 

I~E~2d~K. -- The result is also true if the condition fi(A ~- B) = fl(A) if fi(B) = 0 
is replaced by the condition tha t  fl is continuous in the H~usdorff metric. 

P~ooF .  - L e t  D~ = ({(x~, ~ ) } :  x~ e ~(A.~),  ~ -~ ~ } .  
I f  heD~,  h =  {(x~,n~)} let / ~ h =  U{x~}. Le t  ~---- sup{fl(_Ph):heD~}. Let  

k 

g(h) : max {k: ik<~n), Let  D~ ~-- {{(y~, ~ ) ) :  Yk e A ~ ,  nk --> c~}, Us : sup {fi(/~h): 
h ~ Ds}. We first show W = ~2. Let  h ~ D~, h = {(x,, n~)}, fi(/)h) = fl(/){(xk, n~)}) = 
= fi(/~{(xk, j~(~))}). Now there is a sequence {(y~, i~(n~))} eD~ with [y~ -- x~] --> 0 
since d(A~, T(Ad) ) ---> O. Hence, fi(P{(x~, ~(n~))}) -~ fi_P{(y~, i~(~))} <Vs. Hence, U~ <W.  
l~eversing the argument  shows U~<U~. Hence, ~ ~ U~. :Now as in Theorem 4.1 
there is an h*e  D~ with f l(h)= ~h. But  there is an h 'e Ds with TPh'-~ _Ph*. So 
~l>fl(Ph')  >fi(TPh') -~ fl(Ph*) = ~ with equality if and only i f  fl(_Ph') = O. Hence, 
~ = 0 and Lemma 3.1 implies the existence of a compact set which at t racts  A~. 
Hence, ~(A~) -> 0. 

A result of Cooperman's [8] which does not  generalize is the following. 

THEOREM 7.1 (Coopermun). - Le t  X and :Y be metric spaces, not  necessarily 
identical,  and let T: X - ~  Y be ~-condensing. Le t  Y be separable. Suppose AI~_ 
~_A2~_..., ~ ( A ~ ) - ~  and o~(T(A~))--~& Then ~ = 0 .  

We give the following example to show it  does not  hold for more general 
measures of noncompactness. 

EXAHPLE 7.1. -- Let  T: Z~[0, 1] • 1] •  be defined by 

T(~-, a )=  

a ~ < x  

(dx--2)5(2x-- 1) � 8 9  

o x < � 8 9  

Let  BcL2[0,  1] •  and let B~-~ {(~-~, a)/where ~-~ is the restriction of ~- to [r, 1], 
(~-, a)eB}.  We define fl(B)----0 if B is compact, otherwise f l ( B ) : l + i n f { r / B ~  is 
compact in L~[r, ~], r e [ 0 ,  :t]}, Let  A s :  {(~-, a)/]l~-]I<l, [ a [< l ,  ~ - ( x ) :  a for x >  
>�89  Then fi(A~)--~1�89 fl(TAn)--+1�89 and T is fl-condensing. Hence, the 
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conclusion of theorem 7.1 does not  hold in this case. We notice T(A~) approaches a 
compact  set. The example could easily be modified so it  does not.  Also fl-satisfies 
most  nice propert ies  for measures of noncompactness  except  cont inui ty  in the  
Hausdorff  metric.  I f  we assume fl is continuous in the  I tausdorff  metr ic  I do not  
know if theorem 7.1 is true.  

8. - Linear  condens ing  maps .  

l%eferences for this section are [10], [11], [20], [28] and [29]. 

TtIEO~V.~ 8.1. - I f  T is linear and fl-condensing with a fl-measure of noncompact-  

ness satisfying (i) fl(A tJ B) = fi(A) if fl(B) = 0 and (ii) fi(A ~ B) = fl(A) if fl(B) = 0 
then  r~(T) < 1 where r~(T) is the essential spectral radius. 

D~,FI~CITIO~ 8.1. - r~(T) = inf  r(T ~ A) where r(T ~ A) is the  spectral radius 
AeG 

of T ~ A and C is the collection of compact  operators. 

PnooF  oF T~rEOg~ 8.1. - We will use the fact  t ha t  ~ c ~ u ~ where a is the  
spectrum, g~ is the point  spectrum, and ~ is the continuous spectrum. Clearly 
is bounded  since T maps bounded sets into bounded sets. Le t  B~ = {x: Ix I <  2). 
Le t  H :  33 -+ 33 be a set operator  with H(A) -~ T(A) (3 B~. g is clearly fi-condens- 
ing and of type  1. Hence ,  Theorem 4.1 implies H is asymptot ical ly  smooth. We 
will show ~ c B~ for some k < 1 where B~ : (z e C: Iz[ < k}. 

(a) I f  2 e ~ ,  ]h[>~l, and 2 e ~ then  57@ - 2I) (the nul l ' space  of T - -  2I) is 
finite dimensional. Otherwise there  is a sequence {x~} with ~({x~}) -~ 7 > 0, ]]x~[[ = 1 
such that  T x ~  = ,~x, .  ~ u t  then ~(m~((1/2)={x, , } ) )  = ~{,~.} = 7 > O. Hence 
~(//~(B,)) > 7  > 0 which contradicts  the fact  t ha t  H is asymptot ical ly  smooth. 

(b) I f  h e ~ ,  ]A I~> 1 then  R ( T -  h i ) -~  el R ( T -  i I ) ,  where dim h T ( T -  h i ) <  co. 

Suppose R ( T - -  hi) =/= c l R ( T - -  2I). Then  the  map  ( T - -  2I)-1: R ( T - -  2I) -+ 
- - > X ~ N ( T -  hi) is unbounded.  So there  exists a sequence (x~} e X:  2V(T- - i l ) ,  
]lx~l[ : 1 and a sequence (Yn} -> 0 such tha t  (T -- 2I)x~ = y~. There is also an 7 > 0 
such tha t  ~(x~} ~ 7. l~or otherwise a cluster point,  xo e X",flT(T -- 2I) would satisfy 
(t/' --  2 I )x  o : 0, which is a contradiction. I t  is now easily verified that ~(H~((1/2) m 
{x~})) -~ ~((x~}) = 7 > 0. Hence,  ~(H'~(BI))>~7 > 0 which again contradicts  the  
fact  t ha t  H is asymptot ical ly  smooth. 

(~) I f  2 a ao, 121> 1 theu dim X ( ~  - -  22) < co where X ( 1 ' - -  hZ) = cl ] U - V ( r  - 

i I ) ~ /  is the  generalized null space of T --  2I. Le t  T '  be the restrict ion of T to 
J ~ ( T - - ' l I ) ,  i.e. T ' :  2V(T--  21) -+ Ae(T - 2I) with T'x  = T(x). Since T '  is also 

/ 

fl-condensing we have dim ZT(T ' -  2I ' )  < co (a) and R(T' - -  2I) = c l /~(T ' - -  2I ' )  (b). 
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I n  this  pa r t  we need to use the  concept  of an  index. I f / ~ ( T  --  i I )  ---- cl R ( T  -- 1I) 
let  ~ - ~ i  ~ - d i m s  and  fiT-~I--~ c o d i m / ~ ( T - - ~ I ) .  The index, K~_~• 
---- fiT-~z - -  ~ T - ~ .  I t  is clear t ha t  i~ d im ~ ( T  --  21) = oo then  Kr_~• ~<-- 1. B u t  it  

is known t h a t  the  index is constant  on an open set~ and  for a n y  ~ e ~(U), the  resolvent  
set, KT_~ ~ ---- 0. This contradicts  2 e ~ .  

(d) I~ 1 e ~a, ]21~->:i, t hen  codim A e ( T -  l I ) <  c~. We know f rom (c) t h a t  
d im AO(T --  ~I) < co. Hence  there  is ~ normal  split t ing of X ---- AO(T --  ~I) - -  17, 

for some subspaee 17 where (T - -  t l )17 --> 17. Le t  T ' - -  2 I ' :  17 -+ 17. Since N ( T ' - -  
- -  i I ' )  ---- (0} and  R(T ' - -  ~I') : cl R ( T ' - -  i I ' )  (b) we have  1 ~ ~ ( T ' - -  ~I ' )  ~) ~ ( T ' - -  

- -  21'). Hence  t ~ ~a(T ' - -  t I ' ) .  So i e ~(T') and  T ' - -  ~ I '  is 1 - -  1 onto. Hence ,  
codim R ( T  -- 2I) < oo. 

(e) I f  i e  ~ ,  ]2],->1 then  ~ is a normal  eigenvalue. F r o m  (a)~ (b),(c) and  (d) 

we have  ~r-~z < c% f l r - ~  < oo and  //2(T --  21) ---- c l /~(T --  ~I).  Henc% K r _ ~  is 
well-defined. Since the  degree is constant  on an  open set and  ~ e ~a we have  Kr_~z ---- 0. 
So, d i m s  2 I ) - ~  c o d i m R ( Y - - 2 I ) ,  and  1 is a normal  eigenvalue. 

(/) The  set o~ points in 3a ~ (2:12 ]~ 1} is finite. We  have  p roved  ( c ) t h a t  ~11 
these points are normal  eigenvalues. Hence  they  are also isolated. 

(g) Since we m a y  introduce ~ finite dimensional opera tor  A which subtracts  
off the  normal  eigenvalues wi th  [ t ]~1 ,  we get  3 ( r ( T - - A ) c B ~  with B~ = {~e  C: 
!)t[ < 1}. Hence  r,(T) < 1. Q.E.D.  
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