
Noncharacteristic Hypersurfaces 
for Complexes of Differential Operators (*). 
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S u n t o .  - Sia  X una va~ietc~ di/]erenziabile ed S una ipe~'super]ieie ovientata in  X .  Si  considevi 
un  com21esso di ol)eratori di]#renziati  su X .  Se S ~ ]ormalmente non carattcristica, esso induce 
un  complesso di operatori su S. S i  generalizza la ~ozione di simbolo di un  operatore dine- 
renziale al caso di multigradazioni e si dimostra che, se S ~ non caratte~istica, modulo ~< tra- 
s/ormazioni libra ~> il complesso indotto ~ un  com~lesso di operatori di/ferenziali. I n  l)arti. 
colare, se una it)ersuper]icie ~ non caratteristica rispetto alta nozione usuale di simbolo, il  
eomplesso al bordo ~ sempre un  comAolesso di operatori di]]erenziali. 2geU'ultima l~arte del 
lavoro si studia il complesso at bordo indotto dal complesso di Hilbert dell'ol~eratore ~ s~ 
nna varlet4 eomplessa. 

In this paper we consider again the notion of noncharacteristic hypcrsurfaces 
for a complex of differential operators already introduced in [3]. We generalize 
here the notion of symbol of a differential operator to cover the case of multigradings 
considered in classical analysis (for instance the notion of ellipticity given by Douglis 
and l~irenberg). We prove that  on a noncharacteristic hypcrsurface the boundary 
complex induced by a given complex of differential operators up to <( fiber transfor- 
mations ~> is a complex of differential operators (theorem 1). 

In particular on a hypersurface which is noncharacteristie with respect to the 
usual notion of symbol I as 'used in [3] we get that  the boundary complex is always 
a complex of differential operators (corollary to theorem 1). 

We end this paper with the investigation of the boundary complex for the Hilbert 
complex of the operator 8~ on a complex manifold (given by BIGOLI~ [9]). We 
recover some interesting results obtained already by A~DrBEET [6], BE])FOED and 
I%DEE]3USH ([7], [8]). For simplicity we have restricted our consideration to the C ~ 
category; we believe however to have given a comprehensive set of general sta- 
tements. 

The Hartog type theorem for boundaries with nonvanishing Levi form is con- 
rained in papers of MAEmI~ELLI [12] and l~Izz~ [13] where the first set of ( n -  1)" 
equations for the tangential operator (~)z are first derived and interpreted geome- 
trically. 

That all the results established relating to the trace at the boundary of a pluri- 
harmonic function (theorem 3, corollary to proposition 8, last part of corollary to 

(*) Entrata in Redazione il 2 maggio 1980. 



14 A. A~DI~EO~r~r~ - :M:. ~xc][~ov][c~: ~oneharaeteristie hypers~r/aces, etc. 

proposit ion 12) should be valid under  much weaker assumptions of the type  used 
by  :F~C~E~X in [10] is ve ry  plausible. 

This paper  ends with a theorem asserting the  nonval idi ty  of Poincar6's lemma 
in general for the boundary  complex of the complex of the ~ - o p e r a t o r  ( theorem 4). 

1. - Differential operators, mult igrading and symbols ,  the local  situation. 

a) Le t  D de~ote an open set in the numerical  space R" where x ---- (x~, ..., x~) 
are Cartesian coordinates. Le t  D---(~/~x~, ..., ~/~x~) be the symbol of differentia- 
t ion and let #(D) denote the space of C ~ (complex va lued ) func t ions  on D. 

Le t  A(x,  D) = (a~(x, D))l<~<q,~<~<~ be a q•  matr ix  of differential operators 
with C ~ coefficients so tha t  A(x, D) defines a linear map 

A(x, D): #~(9)  -+ #~ (~ ) .  

Assume tha t  we have chosen two sequences of integers 

al, a~, ..., a~ ~or #~(~) , 

bl, b~, ..., bq for d~q(D) , 

such tha t  one can write, for any  i, j,  

a~j(x, D) = ~ a~(x)  D ~ 
N<~aj-b~ 

where ~ e N " ,  ~ (gl, ..., a.) is a multi index, 

[~] -= ~1 + ... + a ,  and D~ - -  
~]~,~+...+~.] 

~x~,...~x~." 

Note tha t  if the sequences (al, ..., a~), (b~, ..., b~) satisfy the  p roper ty  ment ioned 
above,  also, for any  integer  k, the  sequences (a~ ~- k, ..., a~ ~- k), (b~ ~- k, ..., bq -~ k) 
satisfy the  same proper ty .  

W e  define 

~ d x , ~ )  = ~: a~=(x)~ ~ 

for ~----(~1, ..., ~ . ) e C "  and where ~ stands for ~1 . . .  ~ where a ~ (~1, ..., ~ ) .  
We define the  symbol o] the operator A(x,  D) /or the multigrading (a~, b~) given 

above, the mat r ix  of polynomials in ~ with coefficients in #(•):  

A(x, ~) = (~,.(x, ~)) .  
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b) Le t  

B(x, D): #~(~9) -~ #~(~9) 

be a second differential opera tor  with C ~ coefficients in ~9 

B(x, D) : (bhi(x , D))l<h<~.l<~< ~ . 

We  fix a th i rd  sequence of integers 

(~1~ (~2, . . . ~  Or 

so that~ for any  h and  C, 

for #~(~2) 

ba~(x , D) = ~ bh~,(X )D ~' 

is an opera tor  of order b~- -c  a. 
We can then  construct  the  symbol  of the  opera tor  B(x, D) for the  mul t igrading 

(b~, oh); 

: 

l ]=b~--ch 

Also, one can consider the  opera tor  

B(x, D)oA(x, D): #~(Y2) -+ #r(Y2) 

as an  opera tor  (( compat ib le  )> with  the mul t igrading  (aj, e~). Therefore  we can con- 

sider its symbol  of mul t igrad lng  (aj, ca). We have  the  impor t an t  p rope r ty  

BoA(x, ~) --- J~(x, ~)~(x, ~) 

(multiplieative property o] the symbol). 

2. - Differential operators between vector bundles, multigrading and symbols. 

a) Le t  X be a differentiable manifold  of pure  dimension n. l~et 

E > X ,  

F # > X ,  

be vec tor  bundles  on X with  fibres modeled respect ively  on C ~, Cq. We  say t h a t  E 
is a vec tor  bundle  on X of r ank  p and  F a vector  bundle  on X of r a n k  q. 

2 - A n n a l i  d i  Matematica 
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Let  ~ : {U~},~ I be a system of coordinate patches on X such t h a t  on each U, 
Ele  ̀  and /7]~, are trivial.  We fix trivializations on each U, 

EI~, ''~ U~• 

and consequently the  transit ion functions 

ei~: Ui (~ Ur -+ GZ(p~ C) , 

fi~: Ui n Ua ~ GL(q, C) , 

for the bundles E and 2': 

eil  e ~  = ei~ 

] i , / , k  = /ilz 
on UsN UjC~ U~. 

Given a section s: X -~ E,  nos ---- idx, this is represented in the local tr ivializations 
:Ely, - -  U~• by  (x, st(x)), x ~  U~, s,(x) eC~ so tha t  

and on Us(~ Uj we have 

Similarly for a section of /~ .  

8 , ( x )  = e . ( x )  s j ( x )  . 

b) A differential operator f rom the bundle E to the bundle F is ~ linear map  

A(x, 2)): F(X, E) -~/'(X, F) 

where I '(X, E) a n d / ' ( X , / ~ )  represent  the spaces of 0 | sections of E and F respec- 
t ively such tha t  

i) A(% 2)) is continuous for the Schwartz topologies o f / ' ( X ,  ~E) a n d / ' ( X ,  ~),  

ii) A(x, 2)) is local i.e. for any  s e F(X,  E) 

supp (A(x, 2)) s) c supp s .  

F rom a theorem of Peetre  we derive tha t  the da tum of a differential operator  
A(x, 2)) is equivalent 
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(o~) to the assignment ]or every U, o] a di]]erential operator 

A+(x, D): #~(U~) -+ #~(U~) 

i ~ I, with the property that 

(fl) the diagrams 

(*) 

commute where they are de/ined. 

I f  we set 

#~(~) A+> #o(~) 

A+(~, D) = Z a~)(~) D= 

f rom the  ident i ty  on U, (~ Uj 

A (~) e~j Sj ~-~ ]i~ A(J) S~ 

Vs~e#~(U~) = I~(U~, E), we derive t h a t  the  condition ( , )  is equivalent  to the  
consistency condition 

which expresses the  ident i ty  of differential operators  on U~ ~ Uj 

(r A(i)oe~ --- /~joA!J) . 

c) A grading on the bundle E will b% b y  definition, an ass ignment  for each 
open set U~, i e I of a grading 

g ' ) ,  . . . ,  

saeh tha t ,  se t t ing 

we have  

(**) 

for # ' (u , )  -~ l"(U,, E) 

%(~) = (%,~,~(x))1<,<~,~<~<~ 

e~,,,s(x ) = 0 whenever  a (r - -  , ~ 0 . a  (~) 
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l~or instance we can fix an integer a e Z and set 

') . . . .  = o = a v i  e z ; 

then  the condition (**)  on the transit ion functions becomes empty  and therefore 
we have defined a grading on E.  A grading of this sort will be called a classical 
grading. 

The following proposition clarifies the s tructure of a graded vector  bundle 

PROPOSITIO~ O. - .Let E be a multigraded vector bundle on a connected mani]old X .  
Then E splits into direct sum of vector bundles 

.E : E~ Q E~ |  0 :E, 

on each o] which a classical grading is given. 

P~ooF. - (g) Le t  ~ : {Ur162 z be an open covering of X such tha t  for any  i e I 
EIv, is trivialized, E ly  , _~ U~xC~ and graded with a grading a~ ~), ... ~ a~ 0. 

Let  i~, i~, ..., i~ be a permuta t ion  of (1, 2~ ..., p) such tha t  

Q ~ i ,  ~ ' " ~  i~ �9 

Let  ~(~) denote the mat r ix  p •  with 1 in the places (1, i~), (2~ i2), ..., (p, i~,) so 
tha t  

Then det ~(~) : 4- 1. We set 

and change the local trivializations of ~lv~ by  the isomorphisms given by  the ma- 
trices 2(o. 

Consider the commuta t ive  diagram (where it  is defined) 

E p ,  e .  ) E F  ' 

E[~, e .  > EI~, 

where ~j = 2<Oe.(~<J)) -1. Wi th  the new trivializations the S. ' s  will be  the transi t ion 
functions and these correspond to the g~radings ~ ) ,  ~(2 ~), ..., :r on each U~ e ~g. 
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We have  thus  p roved  t h a t  it is not  restr ict ive to assume t h a t  for every  i e I 
the  chosen grading is such t h a t  

(fl) Le t  on U~ be 

a~ 0 . . . .  

). 

a~ i) ~ ~ r + l  " ' "  ~ t % + s  ~ " ' "  

and  let U~-~ ~g be such t h a t  U~ n Uj r 0. Then b y  the  prescribed conditions on 
the  t ransi t ion funct ions we deduce t ha t  on U~- we mus t  have  

a~ ~) ~ "" ~ @r ~ ~ "'" 

a(D _ (D ~ /r .(0 _ (i) 
~+i -- gtr+s ~ Vbr+l - -  66r+s 

�9 �9 * * �9 , �9 �9 �9 �9 ~ ~ �9 �9 * ~ �9 �9 �9 �9 �9 �9 

Since X is connected we realize t ha t  the above  relations mus t  be valid on any  Uj 
even if Uj ~ U~ = 0 as one can find a finite sequence of open sets Ujl , ..., U~. in ~ '  
such that 

Ui n Ujl # O, U h n U~, :/: O, ..., Uj,_~ ~ Ur # ~, Uj, n Us :/: f) �9 

We deduce then  t h a t  for any  i, j in I the  matr ices  e~j split into the  direct sum 
of blocks of the  fo rm 

e~- ~-~ 

1 0 . . .  0 t 
e~j 

i ~ . .  0 6~j �9 

\ o . . .  

2 is an s • s mat r ix ,  all non singular. 1 is an r • r mat r ix ,  e~j ... where % 

Set E~ to be the bundle  defined b y  the t ransi t ion funct ion e~ 1 < ~ < / ,  and  let 
us choose the  classical grading on E~ given by  the integer k~. We have  p roved  t h a t  

up to an isomorphism 

E ~  E~|  E~O ... | ~:~ 

with classical gradings kl on El ,  ks on E2, ..., k~ on Ez. 

d) Suppose now t h a t  we have  given two vector  bundles E and  F and  a dif- 
ferential  opera tor  

A(x, D):  F (X,  E) -+ F ( X ,  v ) .  
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Suppose also t ha t  we have chosen gradings 

a~)~  . . .  ~ a(~ 0 on E 

t L  . . . ,  ') on  

compatible with the operator  A(x, D). This means that setting 

A(O(x, D) (0 -~" (ars(X , D))l<~r<<q,i<~s<~ 

we have 

a(~ D) ~ a (0 (x~ D ~ 
l~l<o?)-b~') 

From the  consistency conditions ( , )  we derive then  the  following formula 

(1) A"'(x, $)e,~(x) =/,(x)~(~)(x, ~). 

~ o w  note  tha t  a change of coordinates in X affects the $ = ($~, ..., $~) as if t hey  
where the components  of a covariant  vector.  Thus (x, $) has to be thought  of 
as a point  in the cotangent  bundle T*(X). Consider also the  vector  bundle 

H o m  x (E,/~) . 

A section a ~ F(X,  Hom x (E, F))  is given by  a collection {M~}ia of matrices M,, 
C ~ on U~, i ~ I ,  of type  q x p  such tha t  

M,(x) e,(x) = f,~(x) Mj(x) Vx e U~ ~ Uj. 

Formula  (1) then  shows tha t  the symbol of a differential operator  

is a map 

such tha t  the diagram 

A(x, D): F(X, E,) --> F(X, r 

.~(x, ~): T*(X) ~ tIom z (E, F) 

A(x, 
T*(X) ~ t Iomx (•, F )  

X 

is commutat ive ,  ~ and /? being the natural  projections. 
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e) The above representat ion of the symbol ~(x ,  ~) does not  take into account  
the fact  tha t  the matrices .~")(x, ~) are polynomials in ~. For  this reason we develop 
the following considerations. 

We first consider the cotangent  bundle T*(X) of X of eovariant  vectors on X.  
We denote by  ~ ( X )  the ring of d ~ functions on T*(X)  which are polynomials 

along the  fibres. 
Le t  ~ = {U~}~ z be a set of coordinate patches covering X and let 

/'*(X)[~, ___ U, x R  ~ 

be local trivializations with x ( ~  (x~ ~ x~ )) coordinates on Ui and ~(o= (~), ~(~)~ 
coordinates along the fibres R ~. 

An element  p(x, ~) ~ ~ ( X )  is a collection of polynomials 

p,(x"), ~")) 

in the variables ~")e  R ~ w i t h  C ~ coefficients in x " ) e  U~ such tha t  on U~ n U~ we 
have 

~x(J) \ 
pj(x( ' ,  ~(~)) = p~ x")(x")), - -  ~(~)| ~x(') / 

where ~x(S@x (i) denotes the gacobian mat r ix  of the change of coordinates f rom U~- 

to Ui: 

0x(J~ 

l<~o:<n. 

The space ~ ( X )  could be called the ring of (( eodi]/erential symmetric ]orms >). 
l~ote tha t  if X is parallelizable i.e. if 

/ '*(X) ___ X • 

(as a fiber space over X) then  ~ ( X )  is nothing bu t  the ring #(X)[~I, ..., ~ ]  of poly-: 
nomials in the n variables ~ = (~1, ..., ~.) with C ~ coefficients on X. Here  #(X)  
denotes the ring of C ~ functions on X.  

Given a vector  bundle E on X,  trivial on the covering ~g = {U~}ie s with transi- 
t ion functions {e~} we can consider the space 

~ ( X )  | F(X ,  E) 

of (( eodif]erential symmetric ]orms with values in E i>. 
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An element ~0 of this space is locally given b y  a collection 

q~(x, ~) = i 
\~f(x, ~)1 

of codiffcrential symmetr ic  forms ~0~(x~ ~) l < j < p  on each coordinate pa tch  U~ E q/ 
such tha t  on U~ n U~ we have  

~,(x, ~) = e,~(x)~(x, ~) . 

We note  tha t  the  space of codiffercntial symmetr ic  forms with values in E is 
no longer a ring bu t  only ~ module over ~ (X ) .  

Given now the vector  bundles E and ~ over X,  given a differential operator  
A(x, D): F(X, .E) ~ F ( X ,  F), given a grading on E and a grading on F compatible 
with the  differential operator  A(x, D), we can then  consider the symbol ~ (x ,  ~) as 
a ~(X)- l inear  map  (because of formula (1)) 

~(x, E) zI(x, ~)) ~(x, F) 

where by  definition 

~ ( x ,  E) = ~(X)  | F(X, E) ,  ~ ( x ,  F) -- ~(x1  | F(x,  F) 

are the spaces of codifferential symmetr ic  forms with values in E and s respectively. 
Final ly let us consider a th i rd  vector  bundle 

G--~ X .  

of rank  r (i.e. with fiber C'). Assume tha t  we have given ~ second differential operator  

B(x, D): F(X, F) ~ F(X, G) 

and suppose tha t  a grading 

~), ..., Q) on a 

is given such tha t  it  is compatible with the differential operator  B(x, D). 
We can then  consider the space ~ ( X ,  G) of codifferential symmetric  forms on X 

with val~cs in G and the symbol /}(x ,  }) of B(x, D) as a ~(X)- l inear  map 

~(x, F) ~(x, ~)) ~(x, (~). 
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F r o m  the mul t ip l ica t ive  p rope r ty  of the  symbol  we derive the  c o m m u t a t i v e  

d iagram 

~(x ,  E) , A(x, $)> ~(x,  F) 

B o ' ~ ( x , ~ ) ~  ~ ( x , ~ )  

~(X, G) 

3. - Complexes of differential operators, the symbolic complex, elliptic complexes. 

a) We give on X a sequence E ~ E 1, E 2, ... of vec tor  bundles  with fibres 

C ~', C ~', C ~', ... i.e. of ranks  Po, P l ,  P2, . . . ,  respectively.  
We  give a sequence of differential operators  

A~ D): F(X, E ~ --> F(X, El), 

A~(x, D): F(X, .El) ~ F(X, E ~) , 

a2(x, 1)): F(X, E~) ->/'(X, E3), 
�9 �9 �9 �9 �9 o �9 �9 �9 ~ �9 �9 * ~ ~ �9 . . 

with the  p rope r ty  t h a t  

A l o A ~  O, A % A I - ~  O, ... i.e. AS+~oA ~ = 0 j -~ O, 1, 2, . . . .  

We then  say t h a t  we have  given a complex of differential operators .  
Set t ing for the  sake of a simple nota t ion  

#(J)(X) = F (X ,  EJ) 

the  given complex will be  denoted b y :  

(3) e(o)(x) AO(x, ~ #,,(X) A~(x, D) #,~,(X) A~(~, ~! .... 

b) Suppose now t h a t  we have  given gradings 

... a (0 on E ~ a~ i)' ' ~o 

�9 b (0 on E 1 b(1 i), ..., ~ 

... v (0 on E ~ 

�9 �9 ~ ~ �9 �9 �9 �9 �9 �9 �9 o �9 

for i e I ,  I being the  index set of a covering ~ = (U~}~ I of X b y  coordinate patches  
on which each bundle  EJ is tr ivial .  
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We assume tha t  these gradings are compatible with the differential operar 
A~ D), A~(x, D), ... so tha t  for each operator  AJ(x, D) we can consider the cor- 

responding symbol *J(x,  ~). We obtain then  the  following sequence of ~(X)- l inear  
maps 

(4) ~ ( x ,  Eo) ~o(x, 2) ~ ( x ,  F.~) 3_~(x, 2) ~ ( X ,  2W) A~(x, 2). . . . .  

This sequence is a complex by  vir tue of the multiplicative proper ty  of the symbols 
i.e. by  formula (2). 

The sequence (4) will be called the symbolic complex on X associated to the 
given complex (3). 

Le t  us fix a point  x ~ ~ X and let m~~ c #(X)  denote the ideal of #(X) of t h o s e  
functions which vanish at  x ~ We can tensor  over  #(X) the above sequence (4) by  
C~. = #(X)/to,~ considered as an #(X)-module.  Then for each j > 0  

where ~ = C[21, ..., 2,] is the ring of polynomials in the variables 2 = (21, ..., 2,). 
F r o m  the  complex (4) we then  obtain the complex 

(4)~0 9o ~ . . . .  

We call this complex the symbolic complex associated to the given complex (3) at the 
point z ~ E X .  

c) Final ly we can fix z ~  and 20 E R" -- {0}, on the fiber of T*(X) 
over x ~ F rom (4)5 ~ we then  obtain another  complex 

(5) o ~ c~~ ~~176 2~ - .~l(xo, 2~) ~ ~I,(xo, 2~) ~v, C ' ... 

where C v~ stands for the fiber over x ~ of the bundle EJ. 
We will s~y tha t  the given complex (3) is an elliptic complex at x ~ E X if for any  

choice of 2~ R ~ -  {0} the sequence (5) is an exact  sequence. 
We may  remark  tha t  one can consider the  complexified cotangent  bundle T*c(X ) 

(with fibers C ~ and the same transi t ion functions t~j(x) --= ~x(J)/~x (~) of T*(X)).  Then 
the  sequence (5) can be considered also for given x~ X and given 2~ C=~ the 
fiber of Tc (X  ) over x ~ 

d) I~eplacing the  symbols 2 with the symbols of differentiation D we obtain 
from (4)50 the  complex of differential operators with constant  coefficients on R ~ 

This is what  is usually called the symbolic complex for the complex (3) a t  the  point  
x ~  
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The complex (6) is a t I i lbc r t  complex (cf. [4]) if and  only if 

,AO(xO ~) ' ~ ' x  ~) '~ (Xo,  ~) 
~(4=)~o ~ o  < , ~ , ~ , ~  ~ o, ~ ,  ... 

is an exact  sequence. 

We  recall  the  following theorems (cf.[5]) 

TmSOl~E~ O. - Assume that at a point x ~ ~ X the symbolic complex (6) is a HAlbert 

complex. Then the given complex (3) admits the formal Poincare lemma at x ~ 

Assume t h a t  the  manifold  X is a real  ans ly t i c  manifold,  t h a t  the  bundles E ~ 
~re also rc~l ana ly t ic  (i.e. on a real  analyt ic  coordinate  at las  ~ : {U~}~e ~ the  
t rans i t ion funct ions are real  ana ly t ic  funct ions ~(J)'~. U~ 5~ U~ -~ GL(pj, C) and the  
differential operators  At(x,  D) have  real  analyt ic  coefficients). We  have  then  ([5]) 

Tn-EOI~]~ 1. - Assume that at a point x ~ e X the symbolic complex (6) is a Hilbert 
complex. Then (under the above assumptions) the given complex (3) admits the analytic 

.Poineard lemma at x ~ 

THEOF~E~ 2. - Under the same assumptions of analytieity. Assume that at a point 
x ~  X the symbolic complex (6) is a Hilbert complex. 

Assume also that at the point x ~ the given complex is elliptiv (1). 

Then the given complex (3) admits the C ~ Poineard lemma at x ~ 

I t  is still an  open question to decide whether  theorem 2 remains  val id wi thout  
t~he assumpt ions  of ana ly t ic i ty  on X ,  E~ Vj, and  At(x,  D). 

4. - Fiber transformations and change of  grading. 

a) Le t  E be a vec tor  bundle  on X,  let ~ = {U~}~ be a covering of X b y  
coordinate  pa tches  on which the  bundle  E is t r ivial  

p being the  r ank  of E. 
Le t  

M(x, 9 ) :  F ( X ,  E )  ->  F(X, E) 

be ~ differential opera tor  f rom E to E.  

(1) In the sense that the sequence C ~~176176 ~o) C v~ fl=l(xo ' ~o~ C ~' ~ ... is exact fox" any 
~~ R ~ -  {0} even if the first map is not injeetive. 
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W e  assume t h a t  we have  g iven  grad ings  

�9 a~ ) on  E as the  (~ source bund le  ~;, a~i)~ .. 

~)~ ... ~ )  on /~ as t he  (~ t a rge t  bund le  ~, 

compa t ib le  wi th  t he  differential  ope ra to r  M(x, D). This  means  t h a t  local ly on U, 

the  local  r ep resen ta t ions  of M(x~ D) 

M(~)(x, D) (~) = (mAx,  D))~<~<2),~<~<2) 

order  of m~8(~)Cx, , D)<~a~ O -  ~ )  

for  each i e I .  W e  can  t h e n  consider  the  symbo l  

Z?(x, 2) = (~<~)(x, ~)}~ 

of t he  opera to r  M(x~ D). W e  h a v e  the  fol lowing 

PROrOSTTION 1. -- We assume that 

i) M(x~ D) is a differential operator of total degree zero. By  this we mean that 

2) 2) 

1 1 

and therefore /or each i ~ I det  ~Lr<~)(x~ 2) is a homogeneous polynomial in ~ of degree 
zero~ thus independent of 2. 

ii) For each i 

det  ~r<i)(x, 2) -~ det  2/l~")(x, 0) ~ 0 . 

Then there exists a unique differential operator 

N(x, D): F(X, E) -~ F(X, E) 

compatible with the gradings 

~)~ ...~ o~(~ ) on the source bundle E ,  

a~)~ ...~ a~ ) on the target bundle E~ 

are such t h a t  
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s,tch that 

/V(x, D)oM(x, D) = identity on F(X,  E) ,  

M(x, D)oiV(x, D) = identity on F(X, E) .  

This is a consequence of the  local theorem proved  in proposi t ion 2 of [5]. We r e m a r k  
explici t ly t h a t  if ~ and  N- 2 are respec t ive ly  left  and  r ight  inverse of M we m u s t  h a v e  
5T ~ N2. Indeed  f rom N~oM = identi ty,  MoN2 = identi ty,  as the  algebra of dif- 
ferent ial  operutors  f rom E to /~ is associat ive we derive 

(NloM)oN~ = ~V2 thus  N~o(MoN~) = Zr2 

hence _~ = N~ as we wanted.  

If  e~j: U~n Us-+GL(p, C) are the t ransi t ion functions of E we mus t  have  

and  

M")(x, 1))oe,(x) = e~j(x)oM(~)(x, D) 

~") (x ,  #)oe,(x) = e,(x)  l~(~)(x, ~) . 

A differential opera tor  M(x, D) satisfying the  hypothesis  of proposi t ion 1 will 
be called a (~ ]iber transformation ~>; it  establishes an  isomorphism of F(X,  E) onto 
itself: 

M(x, D): F(X, E) --~/'(X, E). 

RE~A~K. -- I f  the  grading on E as source and  ta rge t  bundle  is a classical grading 
i.e. V i e I  

a ~  i)  . .  = - -  _ _  ~ = .  a(2)= k = ~ )  (i) 

for some k E Z then  M(x, D) is a differential opera tor  of order zero thus  locally 
defined b y  matr ices  M")(x) not  containing der ivat ives  and  with  det  M")(x)~ O, 
Vx E U~. 

b) Suppose now t h a t  we have  a complex of differential operators  

(3) ~,o,(x) Ao(x, D) ~,l ,(X) A~(~, D) ~,~,(X) A~(x, 1)) ... 

where #(r = / ~ ( X ,  Er for some bundle EJ of r ank  p j .  
Assume also t h a t  we have  given gradings 

... a (0 on ~o a l l ) ,  ' ~o 

b(10, , b~ on E1 , * "  y 

... c (0 on j~2 

�9 �9 �9 �9 . �9 , �9 �9 , ~ �9 �9 
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compatible with the operators of the  complex, i e I the index set of the  charted 
covering ~ = {U~}~e I on which each bundle  ~ is assumed to be trivial. 

Suppose tha t  we change grading on the  b u n d l e s / ~  into 

~ ) ,  ~(') on .E ~ with ~ a (~)--- ~ a~ ) 
* " '  Do 

h h 

f l l i ) ,  . . . ,  ~ O i l  . ~ 1  w i t h  2 fl(~') = Z b l  0 , 

h h 

~i '), . . ,  ~ on E ~ with Z ~i ' )= Z 4 ̀ ) , 
h h 

�9 �9 �9 �9 �9 �9 �9 �9 �9 . ; �9 . �9 . , . . . . o . . . 

and tha t  for each bundle  E~ we give a fibre t ransformat ion 

Ms(x, D): #")(X) -~ #(~)(X), 

compatible with the  old and new gradings on E J. 
Set, for j = 0, 1, 2, ... 

BJ(x, D) = M~+I(x, D)oAJ(x, D)oM-~a(x, D) . 

Then 

BJ(x, D): J~~ -+ g(J+l)(X) 

is a differential operator  compatible with the new grading. 
muta t ive  diagram 

(5) 

We obtain thus a c o m -  

IMo(x, D) ;M,(x, 1)) ;M~(x, D) 

~,o,(x) ~ ~,,(x)  B~(x, ~.) ~(~,(X) B~(x, ~)  ... 

in which the  horizontal  rows arc complexes and the vert ical  maps arc isomorphisms. 
The complex of differential operators 

(6) e,o,(x) BO(x, D) g,,(x) BI(x, ~ g'2'(X) B~(~, D) ... 

with the  new gradings {g~}, {flj}, {Yh}, ... will be called the trans]ormed oJ the com- 
plex (4) by means o] the /iber trans]ormations Mo(x, D), M~(x, D), M~(x, D), .... 

Let  for j>O Hi(X; #*(X), A*) denote the j-th cohomology group of the com- 
plex (3) i.e. 

H~(x; ~*(x), A*) = Ker{~"(X) A~<x, ~ '~"+'(X)} 
Im{g(~-~)(X) AJ-l(x' D) g(~)(X)} 
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(setting #(-~)(X)= 0). Similarly, by  replacing the complex (3) with the com- 
plex (6) we can define the groups H~(X; #*(X), B*). We have the obvious 

P~oPosITIo~ 2. I f  the complex (6) is obtained ]rom the complex (3) by ]iber trans- 
/ormations then for every j ~  0 we have natural isomorphisms 

W ( X ;  ~*(X), A*) - ~  W ( X ;  ~*(X), B*).  

This isomorphism is induced by the  differential operator 

Ms(x, D): #(J)(X) -> #(~)(X). 

c) Let  S denote a closed subset of X. We set 

~ ) ( x )  = (s(x) e #(~)(x)ls(x) is f ~ t  o n  ~}. 

Let  x~  S(~ U~ and let us represent s(x)~ #(J)(X) locally near x ~ by  a set of C ~ 
functions 

s~(x): Y~ -> C ~' . 

We say tha t  s(x) is flat a t  x ~ if all part ial  derivatives of s~(x) vanish at  x~ 

D ~ s~(Xo) = 0 V~ ~ N ~ . 

We say tha t  s(x) is flat on S if it  is flat at  every point x ~ E S. 
The differential operator AJ(x~ D) sends ~ ) ( X )  into ~(~+~)(X). We thus  obtain 

subcomplex of (3) 

(7) ~:I~ ao(~, I))) ~:2'(X) A~(% ~)~ ~i~,(X ) A~(x, ~ . . .  

whose cohomology groups will be denoted by 

W ( X ;  ~ ; ( X ) ,  A*),  j = 0, 1, 2, . . . .  

(s) 

Taking the quotient complex of (3) by  (7) we obtain the complex 

where we have denoted by AJ(x, D) the operators induced by the differential opera- 
tors AJ(x~ D) on the quotient spaces. The cohomol0gy groups of the complex (8) 
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will be denoted by  

H~(X; e*(X) /~(X) ,  A*) j = O, 1, 2, .... 

We have the following straightforward 

P ~ o P o s I ~ o ~  3. - I] the complex (6) ks obtained/rein the complex (3) by ]iber trans- 
formations then for every j>O we have also natural isomorphisms 

re(x; ~;(x), x*) _ w(x; ~(x),  B*) 
Hi(X; #*(X)/~(X),  a*) N_ Hi(X; #*(X)/~(X) ,  B*). 

5.  - N o n c h a r a c t e r i s t i c  h y l m r s u r f a c e s .  

a) Let  

~: X - + R  

be a C ~ function on X, real valued. We consider the set 

s = {x e xl~(x)  = 0 } .  

This is a closed set. We say tha t  S is a hypersur/aee if a t  each point  x ~ e ~ we have 

d~(x ~ :/: 0. 

I f  this is so at  each point  x ~ e S we can select a system of local C ~ coordinates 

xl, ..., x, where xl ~- O(x). Therefore in a small neighborhood U of x ~ we have 

One could define a hypersurfaee S as a closed subset S c X with the proper ty  

tha t  for each point  x~  S we can find an open neighborhood U of x ~ and a C ~ 

function ~ :  U - +  R with the properties 

d ~  ~e 0 on U ,  

a n v = {x ~ V l ~ ( x )  = 0 } .  

Assume we have a hypersurface S in this second sense and let og = {U,),. I be 

an open covering of X by  coordinate charts in which S is defined by  the local equa- 
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tions {@~(x) - -  0). One verifies t h a t  on U~ (~ Uj we huve 

Q~(x) = h~j(x) ~(x) 

with h~(x) C ~ and  h~j(x) ~= O. 
We say t h a t  the  hypersur face  S is orientable if the covering ~ = {U~}~• ( that  

we will suppose locally finite) and  the  local equations {@i(x) = 0}~el can be so chosen 

t ha t  h.(x)  > O, Vi, j ~ I .  
We then  claim t h a t  then and only then the hypersurface S can be defined by a global 

effuation {@(x) ---- 0) as in the first definition. 

P~ooF.  Assume S is orientable.  Then if the  local equations are proper ly  chosen 

h~j > 0 and  thus  one can consider log h,(x)  for x e U~ (h U~. as a uniquely  defined 

real va lued  function.  We have  con U~ (~ U~ (~ U~ 

log hij(x) + log hj~(x) = log hi~(x) . 

I n  par t icular  for i ---- k 

log h~j(x) = --  log h~j(x) . 

Let  {a~}~ z be a C ~ par t i t ion  of un i ty  subordinated  to the  open covering ~ = 

: { U ~ } ~  I .  Set on U~ 

/Cx) = ~ a~(x) log h~Jx). 
cr 

This has meaning  as the  covering ~g is locally finite. Then we have  on U~ n Uj 

/~j(x) --  #i(x) = ~ a~(x){log h~(x) + log hv,(x)) 

= log h.(x)  . 

Thus h , ( x ) =  e~(~)e-~'(~) and  therefore on U~ ~ Uj 

e i ( x )  e "'(~) = ~ j ( x )  e "j(~') = Q(x )  

is a globally defined real  va lued  C ~ funct ion defining S. The converse s t a t ement  

is obvious ( take ~ = {X} and the  unique local equat ion @(x) = 0). 
As we will consider only oriented hypersurfaees  we will st ick to the  first defini- 

tion. I n  this case X is divided into t w o  dist inct  regions (closed in X) 

x +  = {z e Xlq(x) > o} and X -  = {~ e Xlq(x) < 0} 

having  only the  hypersur face  S in common.  

3 - . d n n a l i  d i  M a t e m a t ~ c a  
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b) Suppose now that  we have given on X a complex of differential operators 

(3) r AO(x, D) #,I,(X) A~(x, 1)) #,~,(X) A~(x, ~) ... 

with gradings on the fiber bundles E j, j - ~  0, 1, 2, ..., compatible with the  given 
differential operators. 

One can then consider the corresponding symbolic complex 

(4) ~(x ,  ~o) _~o(x, ~) ~(x ,  ~t) _~(x, ~) ~(x ,  ~ )  3~(x, ~ ... 

IJet S be an oriented hypersurface in X and let ~(x) = 0 be an equat ion for S. 
At each point  x~ S the vector  

grad~(x~ = ~ ( x o ) , . . . , ~ ( x  O) 

is defined. Another choice of the equation of S changes the vector  grad ~(x ~ by  
multiplication b y  a nonvanishing factor. 

We will say tha t  the  hypersurface S is noncharaeteristic ]or the given complex (3) 
at the point x~ S, if the sequence 

0 C' ,  ~~176 grad~(x~ Xllx~ grad ~(x~ -~(x  ~ grad~(x~ --> - C ~  ~ ~ . ( ~ 2  - . . .  

is an exact sequence. 
Let  x ~  and let on U~ 

a (0 be the grading for E ~ a~  ~)~ " "~  ~o 

�9 b (0 be the grading for E 1 b~)~ ...~ ~, 
. . . . . . . . . . .  , , , . . ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  

Choose an integer l>~(~ ), Va, l>~b~ ), V~, ... and let a(x) be another  equat ion for S. 
Let  

grad a(x ~ = 4o grad 0(x ~ 

with 4o > 0. We h a v e  then a commutat ive  diagram 

C'~ ~i~176 grad ~(xO))~ C'~-~(x~ grad ~(x~ C, ' -+ 

c,~ X~176 grad ~(xO))~ e~ X~(xO, grad ~(x~ C,.-,- ... 
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where 

No(~o) d i a g / ~ - ~  ~ -  ~o} 

N~(~o) = d i a g  \"o/~-~, �9 "", 2~o - ~ }  , 
�9 . . . . . .  �9 �9 �9 �9 �9 �9 . . , �9 , 

(6) 

This shows that  the definition is independent of the choice of the equation of S. 

e) Let 

~(o)(x) BO(x, 1)) ~, , (x)  B~(x, D! ~(~)(X) B~(x, 1)) ... 

be another complex of differential operators between the same fiber bundles as before 
and with a new grading compatible with the differential operators BJ(x, D). 

Suppose that  the complex (6) is obtained from the complex (3) by means of the 
fiber transformations Mo(x, ~), M~(x, D), Ms(x, D), .... 

From the commutative diagram (5) (see previous section) we derive then the 
commutative diagram: 

~(x,  Eo) Ao(x, ~) ~(x,  ~1) A~(x, ~) ~(x,  E ~) ~(x ,  ~)> ... 

(9) IMo(x, ~) iMx(x, ~) IM2(x, ~) 

~(x,  Eo) ~o(x, ~) ~(x,  E~) ~(x,  ~) ~(x,  E ~) ~(x,  ~ )  ... 

Let us recall that  at every point x E X, det :~lj(x, ~) is independent of ~ and dif- 
ferent from zero. 

From the commutative diagram (9) taking x ~ x~ S and ~ = grad ~(x ~ we 
derive the commutative diagram 

( l o )  

Cp ~ A~ ~ grad 0 (x~ )7 C*, fl~l (x o, grad 0 ( x~ ) )~. C~ A2( x~ grad ~ (x~ ~-... 

IMo(x~176 ,L/l(x~ grad Q(x~176 grad O(x~ 

C~ ~ /~~ grad ~(Xo))~. C',/}l(Xo, grad ~(x ~ C ~ /~(x~  grad Q(x ~ )~.... 

where the vertical arrows are isomorphisms. We have therefore the following 

Pt~OPOSlTIOI'~ 4. - Assume that at the point x~ ~ the hypersur]ace S is nonehar- 
acteristic for the complex of diMerential operators (3). 

I f  (6) is another complex of differential operators obtained form the complex (3) 
by a (graded) fiber transformation then the hypersuAace ~ is also noncharacteristic for 
this new complex at the same point x~ S. 



34 A. A~DI~EOT~rI - M. ~AClNOVlOH: Noncharacteris t ic  hypersur/aces,  etc. 

A hypcrsurface S in X is called noncharacterist ic if it is noncharaeterist ic  at  each 
one of its points (with respect to a given complex of differential operators). 

I f  the given complex is elliptic a t  every  point  of X then  any  hypersurface is 
noneharucteristie.  Conversely if any  hypersurf~ee of X is noncharacterist ic the given 
complex must  be elliptic at  every  point  of X. 

6. - Formally noncharacteristic hypersurfaces. 

a) The local si tuation.  We consider a coordinate pa tch  on X identified by  
its chart  with an open set Q c R ~. On t9 we have a C ~ funct ion 5 : t 9  --> R and we 
consider the set 

~ .  = {x e , . . o 1 ~ ( , ~ )  = 0 } .  

We assume tha t  d e # 0 on S~ so tha t  Sa is a smooth hypersurface.  Final ly  we 
replace ~9 by  another  open set relat ively compact  in Y2. 

I m ~ v ~  1. - W e  can f ind  an  open neighborhood U of So in  Y2 and a new G r func-  

t ion t: U--> R wi th  

S.,~ = {,~ ~ u]t(x) = 0}. 

dt=/=O on U ,  

such that on U we have identically 

X ~ax,] = 1 .  

P~ooF. - On some neighborhood U of So in Y2 we have 

5 ~0x/! >0 .  

l~eplacing /2 by  U and 0 by  { ~  (~0/~x~)2}-�89 we m a y  assume *hat on So we 
have 

= 1 .  

We consider now the following set of equations 

(*) t~-~, (81, . . . ,  s~) + s,  = x,  , 

~(sl ,  . . . ,  s~) = e �9 

1 . ~ i < n  , 
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The gacobian de terminant  

det  ~(xl, ..--: x_%, O) 
~(s~, . . . ,  s~, t) 

equals, up to the sign, the quadrat ic  form 

~ ( ( ~ , + t ~ )  ~O(s)~(s) 

For  s e So and t-----0 this form is different f rom zero. Thus it remains different 
f rom zero in an open neighborhood U of Sa in ~2 for It[ < s~ for s~ > 0 convenient ly  
small. 

We can then  solve equations ( . )  with functions 

t = t(x, O), s j= sj(x, ~), l < j < n ,  

defined for x in a small neighborhood U of So in g) and for [o[ < ~ with ~ > 0 
conveniently small. 

We consider now the functions defined on U 

We have  identically 

t = t(x, O) and sj= sj(x, 0). 

(**) t(x, 0)~(s(x, 0)) + s~(x, o) = x ~ ,  

~(8(~, o)) = o .  

We first remark  tha t  f rom the nature  of these equations 

(a) the quantit ies 

x ~ - ~ ( x , o )  = t (~ ,  o)~e (8(~, o)) 
CX i " 

arre proport ional  to the quantit ies (~/~x~)(s(x, 0)). 
Secondly from the identities on~iU 

we derive tha t  

(8) 

~(8(~, o)) ---. o,  

1<j<n, 

l < i < n ,  
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and 

~ ~ ( ~ ( x , o ) ) ~ ( x , o )  (7) Z (~(x,o)) a~e a~ - o ,  
i , h  = 1 s ,  i 

From the equations (**)  we derive also tha t  

t(~, o) = Z (x~- ~(x, o ) ) ~  (8(x, o)). 

Taking par t ia l  derivatives we get 

St(x, o )_  ae (s(x, o)) 
~xj ax~ 

because of (~), (fl) and (~). Therefore identically on U 

at(x, o) 
- 

We thus ha~e tha t  the function 

satisfies the desired requirements.  
is different f rom zero. 

l < j ~ < n .  

t = t(x, o) 

~ o t e  tha t  t(x, O) vanishes on $9 and its gradient 

b) We introduce on /2 the differential operators (vector fields) 

.D,~ - -  ax~ axj (x) 7 q '  l < j < n .  

We have the s formulae 

(i) 2)~(eh ) = e2)t~h, Vh e ~(/2), 

~ /  - 1. 

tiEbACK. -- The hygersurfaces t ~ - co n s t an t  are hypersurfaces on U 9arallel 
to So. 

l~estricting eventual ly  /2 we m ay  assume without  loss of generali ty tha t  on /2 
the function ~ satisfies the condition 
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(so sh~t Dtj is a tangent ia l  operator  to S in the sense tha t  it sends the ideal J ( S )  
of C ~ functions vanishing on S into itself); 

(ii) "DtJ' ~ = D t J ~  O~)ti --~=1 ~xi~xJ ~ t , !  

(iii) ~ ~ D . = 0 .  
i= l  J 

I~et d S  denote the Euclidian element  of hypersurface area on S. We have tha t  

~x---~ dS  = (-- 1) ~-1 dxl  ... dx~ ... dx~]z 

therefore 

(iv) ds = Z (-1)~-1 ~x dxl ... h~'~ ... dxol~. 

Given a differential operator  on s 

A(x ,  D): #~(~2) -~ #q(~2), 

A(x ,  D) : ~ a~(x)D ~ 

with a~(x) matrices of type  q •  with C ~ entries one can consider the (formal) 

adjoint  operator  

A*(x ,  D): #q(t2) -~ #~(~2) , 

A*(x ,  D) : ~ (--  1)l~iD~(ta~(x).) . 
I~[<k 

On has the following formula 

f'v (x, D)v  dx = f v) v dx 
~2 t) 

for U e ~(~9) ,  V E ~q(~2) (i.e. C ~ with compact  support) ~nd where dx = dx~ ... dx~. 

For  instance we have tor  the adjoint  of ~ / ~ :  

(v) Vo = - -  = ~ q + A Q  

where 

We have the following ident i ty  

(vi) \~-~Q / U = ~ 

for U, V ~ #~(~2). 
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Also we have for the adjoint  of the (( tangent ia l  ~ operators Dtj 

(vii) (D~j)* ---= - -  D~j. 

c) Given a differential operator  A(x~ D)~ using the above formulas~ and the  
fact  t ha t  A**(x~ D)=--A(x, D)~ we can always write A(x, D) in one of the forms 

A(x, 1)) = Ao(% D~) + A~(x, D~) + ... + A~(x, .D~)-~e~ , 

A(x, .D) = Ao(x, D~) + VQA~(x, .D~) + ... + ~7~A~(x, JO~) , 

where the  A~(x, .D,) are operators containing only the (( tangential  derivatives ~) D~.  
Let  

~ -  = {x ~ ~ l ~ ( x ) < 0 } .  

Let  v e ~q(zg) and u e ~(Y2). We have ~he following properties 

(~) Zet A(x, Dr): d~(Y2) -+ #~(tg) be a tangential  operator  and let A*(x, Dr): 
#q(zg) --> #r(zg) be its adjoint .  Then 

EJ- f2 -  

This formula is easy to ver i fy  for an operator  of the form a(x)Dt~ and thus in gen- 
eral. 

(fl) Le t  the operator  A(x, D) be wri t ten in the form 

A(x, D) -~ Ao(z, D~) -~ VQAI(x, D~) -~ ... + V~A~(x, .D~) 

= Ao(x, Dr) + Ve C~(x, D) 

= Ao(x, D,) + V~ A~(x, D,) + V~ r D,) 
�9 �9 �9 . . . . .  �9 �9 . . . .  , . �9 , �9 . . . . . . . .  , , , 

= Ao(x, D,) + V~A,(x, D,) + ... + V~ C,(x, D) 

w h e r e  

Cl(x, D) : Al(x, D~) ~ VeAl(x, D~) ~ ... + V~-IAk(x, D~) 

r D) = As(x, D~) + V~A~(x, .D~) + ... + V~-~A~(x, D~) 
. . . . . .  o . . . . . . . . . .  , . o , , �9 . . . , , �9 , 

r .D) = A~(x, D~) . 
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The following formula is then  valid (Green's formula) 

~- fJ- S 

u d S .  

The proof follows f rom repeated application of formula (vi): 

/~vA(x,D)udx=f~v(Ao(x, Dt) + V~C, (x ,D) )udx=  
s ~Q - 

t Ov 

~- D- S 

.(2- -(2- S 

t~- D- 

r + ~vC,(x,D) u d S - -  Q ( x , D ) u d S  . . . . .  
S S 

d) The shea] ~r IJet be given on X two vector  bundles E and F and a 
differential operator  

A(x, D): F(X, E) ~ T'(X, ~) . 

Let  S be an oriented hypersurface on X with the equation {~o(x): 0) where 
Q : X - + R  is C ~ and d~]Sr  We set 

~-= {x~Xl~(x)<o), ~+ = {xeXl~(~)>0}, 

Let  E* and F* denote the dual vec tor  bundles of E and F respectively. I f  on 
the open covering ~ - ~  (U~}~ I E and F are given respectively by  the  transi t ion 
functions % and ]ij then  E* and F* are given respectively by  the transi t ion func- 
tions te~l and ,]~1. Let  n-- - -dim X and let /2" denote the bundle of differential 
n-forms on X. I f  T*(X) is the cotangent  bundle of _X then  with usual notat ions 
we have ~ ~-- A~T*X.  

There is a uniquely defined differential operator  

A*(x, D): /~(X, ~* |  ~2~) -->/'(X, 2~*| O n) 

with the following proper ty  

Vv dx ~ F(X,  ~* | #2 ~) 

Vu ~I ' (X ,  E) 

supp (v dx) compac t ,  

supp (u) compac t ,  
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we have 

f <v, A(x, 1)) u> ax =f  <A*(x, D) v, u> dx 
x x 

where <-, .> dx denotes the natural  bilinear form of dual i ty 

<-,-> ax: r ( x ,  ~) x r ( X ,  F*@ f2-) ~ I ' (x ,  ~2.) , 

< .,. > dx: F(X, E) x F(X, E* | s ~) ~ F(X, ~"). 

The operator  A*(x, D) is called the (]ormal) adjoint of the differential operator  
A(x, D). 

I f  x (0 ---- (x~ ~), ..., x~ )) are coordinates on Ui and if A*(O(x~ 1)) is the local expres- 
sion of the operator  A*(x, 1)) in those coordinates and if A(~ D) is the local expres- 
sion of the operator  A(x, D) in those same coordinates,  then  A*(~ 1)) is the formal 
ad jo in t  of A(~ 1)) and on Ui n U~. we have 

~x(J) ~x(J) 
A*( t ) (x ,  D) o ~]51 det ~ ---= det  ~ u D) . 

Let  now U be an open set in X and let  

e F( U, E) ; 

we will say tha t  u i s  in the domain of A(x, D) along S or tha t  u has zero Cauchy 
da ta  on S for A(x, D), if for every  

~0 dx ~ F(U,  F*  | Q,~), 

we have 

supp ~o dx compact  in U 

f<% A(x, D)u> dx =f<A*(x, D)% u> ax. 
g2- t?- 

We denote by  J~(S, U) the vector  space 

Ja(S, U)-= {u ~ .F(U, E)lu has zero Cauchy data  on S for A(x, D)}.  

I f  V c U is open we have an obvious restrict ion map 

~ ( S ,  U) -> ~ ( S ,  V) .  

One verifies readily tha t  

U -+ ~ (S ,  U) 

is not  only a presheaf bu t  a sheaf (denoted by  ~r 
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I f  U is covered by  the chart  x = (xl, ..., x~). 
I f  the equation @ of S in U is chosen as specified in point  a) above. 

I f  A(x, D) has the local expression on U given in (fl) of point  c) above. 

I f  u = represents a local section on U of the bundle E 

then u e ~ ( S ,  U) if and only if 

G(x,/))u]~ = o ,  1 < i < ~ .  

I f  A(x, _D) is a differential operator of total  order k then G(x, D) is a differential 
operator of order /~--i .  

I n  part icular  let 

~ ( v )  = (u e r ( v ,  B)lu fiat (~) on S } .  

From the previous remark it follows tha t  

~ ( v )  c ~ ( s ,  u ) .  

Also U - ->~(U)  is a sheaf (denoted by  ~ )  so tha t  we have an exact  sequence of 

sheaves 

0 --+ ~ -+ ~G(S)  -+ ~ G ( S ) / ~  -+ O.  

e) Suppose now tha t  we have given on X a complex of differential operators 

(3) #(~)(X) . . . . . . .  #(~)(X) ... 

where ~(~)(X) = F(X, E~). 
Let  S be an oriented hypersm~face in X. We can consider for any  j >  0 the 

spaces J~j(S, X). We have with self explaining notations, with ~ dx compact ly  
supported, 

f (% Ai+lAJu) dx 

Therefore 

= o =f(A*~A*~+~q~, u} dx 
l"2- 

A u> ax if u e Jx~(S). 

A~(r D)Jxj(~q, X) c Jxj§ X) . 

(2) By this we mean that for any point z ~ E S and any chart x = (xl .... , x~) at x ~ we 
have (D~u)(x ~ = 0 V~eN n. 



42 A. A~D]~EOTT:[ - ~ .  ~TA.CIi'iOVICII: Noncharacteristic hypersurfaces, etc. 

(11) J~o(S, X) 

and obviously 

(12) 

where 

We have therefore the subcomplexes of (3) 

A~ D) J~.(S, X) A~(x' 1)>) J~.(S, X)A~(x' 1))> ... 

~(x) AO(x, ~) ~i(x) ~(X, ~ ~(X) A~(x, ~. . .  

~ ( X )  = {u E #(J)(X)[r is fiat on S } .  

Therefore we have the quotient complex 

s~.(s, x)  AO(x, ~) S~,(S, X) A,(~, D) J~,(S, X) X~(x, ~) ... 
~ ( x )  ~ i ( x )  ~ ( x )  

We will say tha t  the hypersurface S is formally noncharacteristic for the given 
complex (3) if the sequence 

J~.(S, X) A~ 1))> J.4}(S, X) A~(x, D) J~,(S, X) A2(x, 1)) 
(13) 0 -~ ~ ( x )  ~-~(x)  ~ ( x )  "'" 

is an exact sequence. 
We have the following 

P~ot, osYrioN 5. - Suppose that the complexes 

(3) #(o)(X ) A~ 1))> #(1)(X ) A~(x, D) #(~)(X) AS(x' 1)) ... 

(6) #~o)(x) Bo(~, .D) o~v(1)(X ) Bl(x, .D) ~(2)(X ) B2(x, D) ,*, 

are graded with a classical grading on each bundle E j (j > 0). Suppose that (6) is obtained 
from (3) by fiber transformations 

M~.(x): #(J)(X) -+ #(~)(X) 

(so tha t  BJ = Ms+~oAJoM71). 
Then if the hypersurface S is formally noncharacteristic for the complex (3) it is 

also formally noncharacteristie for the complex (6). 

P~OOF. -- Since the grading is classical the bundle EJ must  have the same grading 
with respect to the complexes (3) ~nd (6). Moreover the fiber transformations M~. 



A. A~D~EOmmI - M. ~ACIiNOVICtt: Noncharacteristic hypersur]aees~ etc. 43 

are not  only of to ta l  degree zero bu t  also in each of t h e m  each en t ry  is an  opera to r  
of degree zero; they  arise therefore f rom an i somorphism M~.: E s --~E ~. I t  follows 

tha t  we have 

4 , ( s ,  x)  = M ~ ( S ,  X) .  

Hence  we have  c o m m u t a t i v e  diagrams 

S~,(& x) AJ(x, 1)) J~,+,(S, x )  
~ ( x )  ~-i+'(x) 

J.,(~, x )  BJ(x, 1)) S~,.,(S, X) 
> -  

~(x) ~+~(x) 

with ver t ical  isomorphisms.  This establishes our proposit ion.  

/) A n  example. Take  X ----- R and  let  #(R) denote  the  space of C ~ funct ions 

on R. Le t  t be  a Cartesian coordinate  on R and  let S ----- (0} ~ {t = 0}. 
Consider the  following commutat iYe d iagram of differential operators  

#(R) , dldt >, #(R) 0 > #~(R) t(d/dt~ l #:(R) 

<<o. <=<o.(1 ~ R, 

The two horizontal  rows are complexes t ha t  can be considered obta ined  one 

f rom the other  with fiber t rans format ions  corresponding to convenient  nonclassical 
gradings. 

We have  

y<,,<,,(o, R) = {u e r = o} = t~(R) ,  

Jo(O, R) = {u e ~(R)} = ~(R) ,  

We denote b y  40 the  space of formal  power  series in the  var iable  t. 
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The sequence (13) reduces then  t,o the  following sequence, for the complex of 
the top horizontal  line: 

o -+ @o d/dt > q~o o > ~o| t(d/dt)! ~ .  

This sequence is an exact  sequence, hence S = {0} is formally noncharacterist ic  for 
t ha t  complex (3). 

For  the complex of the  bo t t o m  horizontal  line we have instead the  sequence 0) 
0 -+ tq~o d/dt 0 t(d/d 

This sequence is not  exact  a t  the place before the last. 
We conclude tha t  the  notion of formally noncharacterist ic  hypersurface is not 

invar iant  under  fiber t ransformations of general type  (arising from nonclassical 
gradings of the complex). The assumption in proposit ion 5 tha t  the grading be 
classical is therefore essential. 

g) We rever t  to  the  si tuat ion considered in point  e) above. 

Sett ing 
#<~'~(X) 

Q+(S) - J~,(S, X) 

we derive from (3) and (11) a quot ient  complex of the  form 

A~ Ai A~ 
(14 )  Q(+(~)  > Q(1)(S) ) Q(2)(S) ~ . . .  

where the  A~ are induced by  the differential operators AJ(x, D) but  are not  neces- 
sarily differential operators. They  are linear operators between the linear spaces 
Q(~)(g) and Q(J+I)(S). 

The cohomology groups of the complex (14) will be denoted by  

w(s; q*(s), A:). 

PI~OPOSITION 6. - Zet (3) and (6) be graded complexes of di]]erential operators 
endowed with classical gradings and obtained one from the other by ]iber trans]orma- 
tions. 

(a) We tacitly assume that the domain along S of the << empty ,) operator is the whole 
space. Thus we have the space ~ in the last place. (This may not be a correct view.) 
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.Let S be an oriented hypersurface on X and let 

Q(O)(~) A~ Q(,(S) Ai > Q(~)(S) A~> ... 

B ~ B i B~ 
C(0)(L~) ~ :~ ~(1)(L~) ~ ) C ( 2 ) ( 8 )  ) . . .  

be the corresponding boundary complexes. Then for j>~O 

w(~; Q*(S), A:) ~ W(S; ~*(S), B~) 

with a natural isomorphism induced by the fiber transformations. 

Pl~oeosi~io~ 7. - .Let (3) be a given complex of differential operators on X .  .Let S 
be an oriented hypersurface on X and let (4) be the corresponding boundary complex. 

Assume that S is formally noneharaeteristie for the complex (3). Then we have 
for any j > 0 

Hi(S;  Q*(S), A~) ~__ Hi (X;  # * ( X ) / ~ s ( X ) ,  A*) . 

P~oo~.  - We  have  an  exact  sequence of complexes 

0 - +  J*(8 ,  X) #*(X) --> Q*(8) --> 0. 
~ ( x )  -~ ~ ( X )  

B y  the assumpt ion  t h a t  S is formal ly  noncharactcr is t ie  it  follows t h a t  the  com- 

plex J*(S ,  X ) / ~ ( X )  is acyclic in all dimensions (including zero). Therefore Q*(S) 
and # * ( X ) / ~ ( X )  have  the  same cohomology. 

7. - Local  canonical  form of  a graded complex.  

a) We wan t  to p rove  the  following local theorem:  

Tn~EO~E~ 1. - Zet Q be an open set in R ~ and let 

(~) ~0(~) a0(x, ~ ~'(~) al(x, ~) ~(~)  A2(x, ~)... 

be a graded finite complex of differential operators with gradings 

al~ ...~ a~o ; bi~ ..., b~l ; el, ..., e~ ; ... 

respectively on #~~ #~'(~), ~(~2) ,  . . . .  
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Zet S be an oriented hypersurfaee on [2 with equation {~(x)~  0}. 
We assume that at a point x ~ e S, S is noneharacteristic i.e. that the sequence 

O --> C ~ox~176 grad ~(Xo))> C, ,-~(xo, gr~d ~(Xo))~ Ca ' 3-~(Xo, grud ~(xo)), ... 

is an exact sequence. 
One can l ind an open neighborhood ~ o] x ~ in .Q and graded ]iber trans]ormations 

wi*h 

Me(x, D): #~~ -* #*~ 

M~(x, 2)): #~'(co) ~ #'~(o,) 

Mdx,  D): #"(co) ~ #~(o~) 

o/ grading (a,, ~ )  

o/ grading (b j, fl~) 

o/ grading (c,, y,) 

permutations respeetively of 

a t  ~ ... ~ a~ o 

and such that the transformed complex 

(6) #~.(~o) Be(x, ~) ~ (~)  B~(x, ~ ~,.(o~) B~(x, 1)) . . .  

has the ]ollowing properties 

i) S~-~  oJ ~ S is ]ormally noneharaeteristie for (6); 

ii) in the boundary complex o] (6) 

1 2 

bl~ . . .~ b~l ; el~ . . .~  %~ ; . . .  

]or each j>~O we have (denoting by #(Sco) the C ~ ]unctions on S~) 

C(J)(~) ~_ #q'(S~) (some qj>O) 

and 

B~ :~r ~ dJ+l)(S,J 

is a di]ferential operator; 

iii) the shea] on ~o, U--> ~ ( S ,  U) and there/ore also the sheaf 

are so]t sheaves. 
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We derive f rom this s t a t emen t  t h a t  if the  grading of the given complex is clas- 
sical then  the  considered fiber t rans format ions  Mj do not  contain the symbols  of 
par t i a l  derivations.  One can thus  app ly  proposi t ion 5 to the  s i tuat ion considered. 

We obtain  therefore  f rom the above  theorem the following 

COrOLLArY. - Zet there be given on X a graded complex 

(2) #(o,(x) AO(x, D) #(~,(X) A~(x, D) #(~)(X) A~(x, 1))) ... 

o] di]]erential operators~ and let us assume that the grading is classical. 
Zet S be an oriented hypersur/ace on X which we assume to be noncharacteristic 

]or the complen (2) at every one o] its points. 
Then 

i) The boundary complex 

A ~ A~> A ~ (14) Q(O)(S ) ~> Q(1)(%) Q(~)(S) ~> . . .  

is a complex o] di]/erential operators on the mani/old S. 

ii) The sheaves 

-~  JA,(s ,  v )  

and 

are so]t sheaves. 

iii) The hypersur]ace S is ]ormally noncharaeteristic ]or the given complex (2). 

The last  s t a t ement  iii) follows f rom the s t a t ement  ii) since we have  an exact  

sequence of so]t sheaves (el. [11] 7 theorem 3.5.47 p. 154) 

~ 2  , . .  �9 o -+ J ~ o ( s ) / ~  ~ -> ~ , ( s ) / ~  - .  J ~  (z ) /  . -+  

b) P ~ o o r  oF mm~o~]~ 1. - (a) Let  us assume tha t  x ~ is a t  the origin of the  

coordinates and  t h a t  those are so chosen t h a t  @(x) ~-x~.  This can be obta ined b y  

replacing D~ if necessary,  b y  a smaller open neighborhood of w ~ 

We set 

n : ( Y l ~  ...~ y n - - l ~  ~) 

Y : (Yl~ . . , ~  Yn--1) 

~ (~I~ .. .~ ~n - -~  72) 

- . A n n a l l  d i  M a t e m a t i c a  
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so tha t  the operator  A*(x, D) and its symbol ~*(x, ~) will be denoted also by  
A~(y, t; ~/~y, ~/~t) and ~ ( y ,  t; ~, ~). 

B y  assumption we have an exact  sequence 

o --> C~o ~~176 o; o, I)> C~ A~(O,~ O; O, 1)~. C~. A~(O' O; O, ~) 
o o o  �9 

Therefore 

i.e. 

Po = qo = rank  ~~ O; O, 1 ) ,  

P~-- ~o = ~ = rank-~(O,  O; O, 1) 

p , - -  q~ = q~ = r a n k ~ ( O ,  O; O, 1) 

�9 �9 �9 �9 �9 �9 �9 . �9 �9 . �9 �9 �9 �9 �9 �9 �9 

p~ = q~. -[- q~._~ (q_l = 0) ,  j = 0, 1, 2, . . . .  

Le t  ~ = C(~, 3) be the  field of rotat ional  functions in ~ and 3. 
any  j > O  

Since the sequence 

Q~<~j = rank~ ~J(O, O; ~, 3) .  

o ->~o/~~176 o; v, 3)~ ~ ,  /~(o, o; v, 3)> ~,~, g_~(o, o; ~, r ... 

is a complex we derive tha t  for all j > 0 

Therefore 

(~_1 = o). 

We have for 

~ = ~ Vj>o.  

Since the complex is finite we can then  find a small open neighborhood o) of ~o 
such tha t  for x = (y, t) e eo we have 

~. = rank~_~(y,  t; ~, 3) V(y, t) e o~. 

Indeed  if ~j(y, t) denotes this rank  we have ~r = ~(y,  t) for all j and a con- 
venient  co. On the other  hand  as before we derive the inequalities 

~j_I(Y, t) ~- 6~(Y, t)<p~ (~_I(Y, t) = 0) (cf. [5], lemma 1 ) .  
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(fl) Let  Co[T] denote the  graded ring of homogeneous polynomials in the 
variable w. B y  dl~• we denote the ring of p •  matrices with entries in 
Co[w]. B y  a homogeneous matr ix  of grading a~, ..., a, ;  ~ ,  ..., ~ (abbreviated 
(aj, a~)) in d[~• ) we mean a matr ix  M(~) e J~, xs(Co[W] ) with M(~) ~ (m,j(w)) 
w~xcre the m/j(w) are homogeneous polynomials of degree a j -  a, (the zero polynomial  
if a j - -  ~ <  0). The number  ~ a j - -  ~ a j  is called the total  degree of M(w). B y  [5], 
lemma 2, we can find homogeneous matrices ~(w) 6 J//~• and ~5(w) s d[~• 
�9 (Co[T]) of to ta l  degree zero and determinant  different from zero of gradings (aj, a~), 
(b~, fl,) as specified in the s ta tement  of the theorem, such tha t  

(~ ~(~)X~ 0; O, w)R(~) = ~ .  
""... W/%o 

If  we apply  the fiber transformations ]~(~l~t) to #~~ and L-~(~l~t) to d~'(s then 

( ~ )  (~) o( ~ ~_~_~ A ~ y , t ; ~ , ~  is replaced by  _L ~t A y , t ; ~ , ~ t ]  \~t]' 

A~(y, t; 

and the other operators are unchanged. 
We can thus assume tha t  

(~ ~_~ 0; 0, 3) = w~.......w~o] 

and tha t  b~>b2>...>b~. 
Then in zi~(0, 0 ;  0, w) the  last ~o columns must  be zero since 

~ ( o ,  o; o, ~)_~~ o; o, 3) ---- o .  

(y) We can find homogeneous matrices /~(~) e Jt~l• ) and L(~)e  J/ , ,•  
�9 (Co[T]) of total  degree zero and determinant  different from zero and of gradings 
(b~, fld and (cj, y,) as specified in the s ta tement  of the theorem such that ,  b y  
replacing 

~o,o.o~ o,., ~ i~,:,  -. o,i~o,o, o~ o, ~,, 

XI(o, / / '  \ u  

we have 

(~  -~~ 0; 0, 3) = 7: ~1. 

\ '"'~~ 
/ ~ :) -~1(0, 0; 0, 3) = vhl. 

. . . . . T h ~  1 



5 0  A .  A N D R E O T T I  - iVf. ~TACINOVICH: 2r hypersur]aees, e te .  

and 

b~>b~> ...>~be~ 

We apply the fiber transformation(R(~/~t) 
0 \ 

e ~  e ~  ...  ~ Co, �9 

0,/ to # ' 1 ( ~ ) a n d  L-~(~/3t) 
. L ]  

to #~(~). 

Then A ~ and A 1 are t ransformed in the way indicated above, A ~ is replaced by  

A s y, t i ~ , ~  Z -~ ~ , while the  other AJ are unchanged .  

We ean therefore assume tha t  ~o and A~ have the forms indieated above. ~iore- 
ever in ~_~(0, 0; 0, ~) the last ~ columns will be zero. 

Operating with A~(0, 0; 0, ~) and _~(0, 0 i 0, ~) as we did before with A"(0, 0; 0, ~) 
and ~1(0~ 0 ; O, ~) and so on, we realize tha t  we can assume without  loss of generality 
that (0) 

_~~ O; O, T) = zk'.......z4 ~ 

(o :) 
_8~(o, o; o, ~) = ~i... 

""" T lo 2 

with bl>...>b~~ c~>...>ee,; .... 

~ ( 0 ,  O; O~ v) = 
( ~hl~ i )  ; "'..Thoz 

(8) According to [5], lemma 3, in an open neighbourhood ~o of the  origin in R ~ 
we can find fiber transformations 

M on #e~ of grading (( (a~, a,) ~) 

N on #~(~o) of grading (( (bj, fl,) ~ 

/~ on #~ of grading (( (oj, ~)  ~ 
. . . .  . . . . . o �9 , �9 �9 �9 . �9 �9 �9 �9 . �9 

such tha t  the  gradings arc as specified in the s ta tement  of the theorem and with the  
following properties: write 

~,(x, D) = k~i ~) ~)] 
/ 

with A(~ ) of type  ~j • ~j [ thus  
\ 

~O(x, D) \~i~ ; 

then  the  matrices 

M~io), ~Ail), p ~ 2 ) . . .  



A. A~I)~EOTTI - IV[. ~ACI~OVICH: Noneharacteristic hypersur]aces, etc. 51 

are of the  fo rm 

MA~ ~ ~ , . . .  , ~t%/ ~-R y , t ; - -  -~ , ~y ' 

NA~ 1) , .~h~ ~ 1 \  ( ~ ~ ) 

. . . . . .  . . . . . . . . . . . . . . .  o o o 

with R = (r~j), S = (s,), T : (t~j), ... such t h a t  

order  of s ,  in 5 < h i ,  l < j < p ~ ,  

order  of r ,  in ~ < k j ,  l < j < @ o ,  

order  of tij in ~ < 1 r  1 < j < @ 2 ,  

Then the  sys tems MA(2 ~ ---(1) p~(2) ~VA 2 , will lead to well posed C~uehy problems ~ 2  ~ " ' "  

on t : 0 in the  sense t h a t  those sys tems are in Cauchy-Kow~lewska form. 
We  app ly  the  fiber t ransformat ions  

(~ o) ~o ~/o~ 

(0 ~ :~~ ~o ~ /o ,  

and  thus  we replace 

(0 ~ o)~o A ~ wi th  M ' 

~ ~ (o ~ ~)~(~ ; )  

This will not  affect the canonical forms a l ready obtained for the  symbols ~ ( 0 ~  0 ; 0~ v). 
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W e  can  thus  a s sume  also t h a t  

A(~ ~ = dlag~,~-~l , . . . ,Ot%o/ -+-./~ y, t; ~ y , ~  , 

= d,ag \~-F,' ' " '  ~t~o~; ~ + ~ y' ~; ~ '  ~ ' 

A~ 2) = d iag  \ ~ t ' , '  " " '  ~t%~ + T y, t; ~ y y , ~  , 

�9 ~ . . . , ~ . ~ . ~ ~ ~ ~ �9 . ~ ~ ~ , ~ . . ~ 

with  _~, S, T, ... of t he  f o r m  specified above .  

(s) W e  a p p l y  n o w  l e m m a  5 of [5] a n d  wri te  

A (o) _= A (o) Qo 2 + / ~ o ,  

A(I>-~ QIA~I) -] - --~1, 

~(:)= 9~ Ai') + &, 
. . . .  ~ ~ . . , ~ �9 

with  Qj a n d  Rj  di f ferent ia l  ope ra to r s  (of p r o p e r  gradings)  wi th  

(~,(o)x r (~ in < kr R o = ,  ~ j  a n d  o rde r  of ~j ~ , 

/-"),  a n d  o rde r  of ~ r in ~ Rx = ~'ri~ j rij ~ < hj , 

= ( '~Jl a n d  o rde r  of r~  in ~ < lj , 

P e r f o r m i n g  the  f iber t r a n s f o r m a t i o n s  

7 t  . o /  

(0 oo 
we real ize  t h a t  

I < ] < ~ o ,  

these  fiber t r a n s f o r m a t i o n s  h a v e  the  g rad ings  specified in t he  s t a t e m e n t  of 
t he  t h e o r e m ;  m o r e o v e r  for  

(A~ ~ A~'~ 
j = O~ ~1~ 2, ... 
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we can make the assumptions specified in points (9), (d), and suppose also tha t  

in A~ ~ , (o) ,  order  of ~o) in ~ l~<j<00 

in A(o ~) = t~"-m~J , order  of eij'(1) in ~ ~ < hj , 1 < j < ~ 1 ,  

in A(o 2) , u), order  of (2) in ~ I~<j~<Q~, 

�9 ~ . . . . .  . �9 �9 �9 �9 ~ �9 �9 �9 * * �9 o . . . . . . .  . * * * * 

With  all these conditions verified, we call the complex in (( canonical form ~. A com- 
plex of differential operators in canonical form is therefore a complex of the fol- 
lowing type  

A" A 1 A~ 
0 -+ g~o(o~) ) g~,(~o) | g~~ , ~o~(o)) | ~o~(o)) ~ . . .  

with gradings on t h e s p a c e s  g~J(e))@g~-~(r (g~  0) compatible with the 
differential operators 

where A~ ~) is of the type  ~ • O~ with 

A~ ~' y,  t; ~y , ~ = d i a g \ ~ ) , . . . , O t a ( o ~ ) / + R u ) y , t ; - - O y , ~  ' 

where each en t ry  ra~ in R (j) is an operator  with 

0 
order  of r~  in ~ <  k~ j) 

and where the operator  A~ ) has every en t ry  aa~ with 

order of e~  in ~ <  k[ j) . 

We set 

q~ = k i t )+ . . .  + k( 2 

It is also assumed for the gradings {aj}, {bj}, {cj}, ... that 

bl>~...>~boo ; c1>~e2>~...>~eel ; ... 
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and that 

with 

k(J) k(~)\ 
.~(2J)(O, 0; O, T) ~ d i a g @  ~ , ..., ~ oj?. 

In  all this picture S = {t = O} is the basic noncharucterist ic hypersurface tha t  
h~s determined the canonical form. 

($) We consider for every  j >  0 the linear map 

a: ~(~o) -~ ~ ( ~ ) Q  #~-'~9), 

~(u) = u |  0 .  

LE~ 2. - Zet (1 / 
] =  ~ e~ ' (co) .  

\ L J  

The ]ollowing are equivalent conditions 

i) f e J ~ j ) ( ~ ,  ~), 

ii) ~]h/~t~I~=o= O, 0 < s < k ( 2 - - 1 ,  l < h < ~ ,  

iii) a(]) e Ja~(S, co). 

P ~ o o L  - The equivalence of i) and ii) follows from Green's formula. 
Wi th  the notat ions used in number  6 b), for the operator  A(~ ) we h~ve 

C~(x, 9 ) =  drag \ ~ 7 ~ _ t ,  ... , 3t,~j]_l / + lower o rd e r ,  

/~k(?)-~ ~k"-2 �9 O~QJ - \ 
C~(x, D) = drag \ ~ ,  "" '  o~'k[()~J-21. + lower o r d e r ,  

where in C~(x, 1)) <( lower order >) means tha t  in the ent ry  (r, s) the order in 3/~t 
is < Z; (~)- h. 

- - 8  

I t  follows then  tha t  the conditions 

r 9)/1~ = o ,  r D)/I~ = 0 ,  

are equivalent  with the conditions given by  ii). 
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Now let ~(])~ ~r co). This is equiva lent  to saying  t h a t  

and  

/ e ~ , ) ( g ,  co) 

/ ~ ~ i , ) ( S ,  co). 

Thus  iii) => i). ]3ut if ] e J ~ ) ( S ,  co), because of if) ~nd the  canonical  fo rm of A(0 j) 
we deduce theft au tomat i ca l ly  f E J~(J~(S, co). Thus  b y  the  above r emark  (~(]) 
e ~ ( ~ ,  co). 

Le t  #(S) be the  space of C ~ funct ions  on S ~ {(y, t)~co]t  = 0}. 1'Cote t h a t  
#(co)/~'s(co) ~ #(S){{t}}, the  space of formal  power  series in t wi th  coefficients in 
#(S). F r o m  the  equivalence of condit ions i) and  if) in the  previous ]emma and  
f rom ~he canonical  fo rm of A(~ ~) we deduce the  following 

L ~ X  3. - For  any j > 0 ,  given ] ~ (#(S){{t}}) ej we van / ind  a unique u ~ (# (s ) .  

�9 s u c h  that 

L E P T A  4. - We  have the ]oIlowing 

i) /or any  j > O  

~ s(co) 

with ~ ( c o ) :  (o~s(co))qJ+~ 

if) the map  

J~, (S ,  co) SMS,  co) 

is an isomorphism. 

P~ooF oF i). - For  j = 0 u ~ #~'(co) is such t h a t  

if an  only  if 

u e J~~ co) 

u ~ ~i0}(~,  co) 

(as this  has for consequence t h a t  u ~-r o9) also). 
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Therefore in this case 

Here  ~ is the  ident i ty  m a p  on #e~ This shows the va l id i ty  of i) for j = 0. 
/ \ 

j > l .  Le t  ] = ( : )ad~~ , ~ r  o). B y  Le t  us assume tha t  
\ / 

l emma  3 we can find w ~ J~7-~)(8, ~) such tha t  A(zJ-1)w-~ v rood ( ~ ( o ) )  ~ 
/ \ 

B y  l emma  2 ~(w)- -=(O)eJ~_~(S ,o )andthere foreAJ- la (w)eJAj (8 ,  o~ ). Moreover 

( # )  l - -  A ~ - l a ( w )  mod (~(o))o,+o,-~. 

B y  l emma  2, u -  AJ-~w ~ ~r o). This p roves  our contention.  

P~ooF OF if). - By  l emma  2 a is injective. To show t h a t  a is sur ject ive we pro- 
/ \  

\ / 
with j > l .  As before we can' find w ~ J~J-1)(8, o) such t ha t  ( . )  above  holds. As 
A J-1 a ( w ) e  ~ ( 8 ,  w) we obtain  the  desired s ta tement .  

As a corollary we obta in  the  following 

LEM~A 5. - The shea] on o~ 

~ - ~ ( ~ ,  ~) 

is a so/t shea], (j>O). 

P~ooF. - To p rove  this fact  we use the  following criterion. 

On a pa r acompac t  locally compac t  space X a sheaf ~ of abelian groups is a 
soft sheaf if the  following holds 

for any  point  x E X we can find an  open neighborhood U of x wi th  the  p rope r ty  

for any  compac t  set F c U ,  

for any  section s e F(U, ~ ) ,  

we can find a section sge F(U, ~ )  such t h a t  

supp s~ c U, 

8U[ P ~ 8 

(we can assume U relat ively compact) .  
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~ o w  this p rope r ty  follows immediate ly  for the sheaf considered f rom formula i) 
of the previous lemma. One has only to remark  tha t  the sheaf U - >  ~ ( U )  is a 
fine sheaf as it  is a sheaf of modules over the sheaf ~ of C ~ functions on X. 

:From the  fact  t ha t  U--> ~Aj(S, U) is soft and tha t  U - ~  ~-~s(U) is also soft 
(being a fine sheaf) it  ~ollows tha t  the sheaf U - ~ ( S ,  U)/~s(U)  is also a soft 
sheaf (cf. [11], theorem 3.5.3, p. 154). 

S ta tement  iii) of theorem 1 is therefore proved.  

(~) We can now prove statemen~ i) of theorem 1, i.e. tha t  the sequence 

0 _ _ > ~ A o ( S , ~ O )  A ~ ~ ( S ,  o9) A 1 ~ A ~ ( ~ , o ) )  A ~ 
) ;~ - -  ) . . .  

is, an exac~ sequence. 
Le t  us consider first gn ] s J~~ o~), and assume tha t  A ~ ~ ~(~o) .  We have to 

show then  tha t  ] e ~~ ~ o w  A(2 ~ is fiat on S. By  lemma 3 ] must  be fiat on S 
i.e. ] ~ ~~ as we wanted,  becguse (as we have already seen) ] s ~A(:)(S, co). 

] \ 

Let  n o w j ~ > l  gnd choose w s J ~ - , ) ( S ,  o)) so tha t  -]-- A~-~a(w) --  0 mod ~-~(~o). 
\ /  

This is possible by  lemma 4i) .  I f  A~]6~+~(o~) then  A~)~ is fiat on S. ]~ecause 
of lemma 2 u ~ J ~ ( S ,  ~o). By  lemma 3 we deduce tha t  u is fiat on S i.e. 

This proves tha t  / is in the image of A r and thus  the exactness of the sequence 
at  the j - th  place. 

(0) I t  remains to prove s ta tement  if) in the formulat ion of the theorem. 
To this purpose it  will be enough to show tha t  we have a commuta t ive  diagram 

) ---------O- - - - - - - - ~  "~ �9 

go~ A o go~(~o) @ g%(09) A ~ go,(eo) @ go~(~o) A ~ 

where the vert ical  isomorphisms are those given in lemma 4. 
Le t  u e #~J(oJ) be given. We can find by  lemma 3 w e ~? ) (S ,  co) such t h a t  

A(~J)w = A~)u rood ~(co)  q' . 

Clearly ~ and ~ -  w belong to the  same class mod ~r o)). 
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l~ow 

[A (oJ)(u-- w) ) 
A ~ ( u - -  w) = I,A~)(u-- w) = (A~~ mod ~ ( c o ) .  

This shows tha t  in the above diagram we have commutat iv i ty  (at the j - th  place) 
since ~-~(~o) c Jxj(S, w). 

We remark explicitly that ,  by  lemma 2, 

#q~(~) ~ # (S  n ~) '~,  (qj k~ (~ + (J~ 
Sxt~)(S, co) . . . . .  + 4~) �9 

One then verifies tha t  each operator A(~ ) can be writ ten as a differential operator 

Bj: # ( S  n oJ) ~ ~ # ( S  r~ co) ~+~ 

because ACo j) is in canonical form. 
This s tatement  could also be deduced from Peetre's theorem and the fact tha t  Bj 

is linear continuous and 

supp Bsu c supp u .  

With  this the proof of theorem 1 is complete. 

c) Let  now r be any  paracompaetifying family of supports ([11], p. 150) and 
]et (2) be a complex of differential operators on the manifold X. 

Let  S be an oriented hypersurface on X defined by the equation {@ : 0}. 
We set 

x + =  {~ e x l q ( x ) > 0 } ,  x - =  { ~ e x l e ( x ) < o } ,  

and we define the groups 

H~(x, ~*), ~ ( x  +, E*), R~(x-, ~*) 

as the cohomology groups with supports in r of the complexes 

#~)(X) A~ A1 ~l ' (x )  > ~ ' ( x )  -->... 

#~o)(x• ) Ao A 1 > ~51'(x -+) > #~'(x• -~ ... 

where 
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and where #(~)(X~) represents the C ~ sections of /~  on X~ up to the boundary  S 
but  not  beyond i~, while 

#(~(x~) = {s e #(~)(x• s e r ~ x •  

Similarly we can define the boundary  complex with supports r by  means of exac~ 
sequences of the form 

(J] , (X,  S) =/~r J~,)) and the groups H~r Q*), these being the cohomology groups 
of the boundary  complex 

Q~O>(~q) As ~ > Q~I,(~) A1 ~> p~)(~) -~ .. . .  

From a s tandard  argument  we derive the following 

THEOI~E~ 2. - Let (2) be a complex o/ differential operators on X endowed with a 
classical grading. ]Let r be a paracompacti]ying ]amily of supports. 

Assume that the hypersur]aee S is noneharacteristic. Then we have a Mayer-Vietoris 
exact seffuence 

o -~ ~ ( x ,  ~*) -~ a ~ ( x  +, ~*) | H~(x- ,  ~ . )  -~ a~(s ,  Q*) -~ 

-+ H~(x, ~*) -+ ~ ( x  +, ~*) ~ e~(x- ,  ~*) ~ B~(s, Q*) ~ . . . .  

P~oo~. - By  the corollary to theorem 1 we have an exact sequence of soft sheaves 

0->~-~-+---->~ ~ ~ - +  . . . .  

F rom this, by  taking sections with support in r we derive an exact sequence 

(,) 

where 

J~~ x )  J b ( s ,  x )  
J ~  J ~ ( x )  

J~ , (s ,  x )  = {s e A , ( s ,  x)lsupp s e r  

Indeed one has 

~ ] -  J~(x/ 

because the sheaves JxJ and ~ }  are soft. 
From the exactness of the sequence ( , )  we derive the Nayer-Vietoris sequence 

by  the usual argument  (el. [3]). 
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8. - An example: boundary values of pluriharmonic functions. 

a) Let  X be a complex manifold, l~or every  open set Q c X we set 

A"~(/2) = space of C ~ forms of type  (r, 8), 

A(~)(-o) = �9 A"~(~),  
~+s=j 

d = exterior  differential, g = 8 -b ~ where ~ (resp. ~) is the exterior  differentiation 
with respect to ant iholomorphic (resp. holomorphie) local coordinates. 

We consider the following complex of differential operators 

~g d d 
(~) A~176 > A l 1 ( 9 )  :~ A12(sr~) (~) A2~(~r > .. .  

d ~-1 ~ d ~ d d 
... ~ @ AJ' -J(/2) - - - - +  A(+~)(.c2) > ... .> A(2~)(~) -> 0 .  

j = l  

I f  ~ is open and ~ ( / 2 )  denotes the  space of (complex valued) plar iharmonic  
functions on ~ we have the  exact  sequence (which gives an augmenta t ion  to the com- 
plex (~)) 

(~) - o - >  ,~(t2), > Aoo(~9) ~ A - ( ~ 9 ) .  

Let  ~ denote the sheaf of germs of pluriharmonic functions on X and let  (9 
denote the sheaf of germs of holomorphic functions on X. We have the  exact  
sequence of sheaves 

(~) o - ~ c  ~ 0 |  T > ~ _ ~ o  

where 

a(a) = a G a ( a ~ C ) ,  

z ( /Og)=] - -g  ]e(~, ge~ ,  

the  bar  over 0 denoting complex conjugation so tha t  (9 is the sheaf of germs of 
ant iholomorphic functions. 

This complex is a complex of differential operators with constant  coefficients 
in any  holomorphie coordinate patch. 

b) For  the  complex (~) the bundle  E ~ is the trivial bundle,  the bundle E 1 is 
the bundle J ' * ( X ) ( ~  ~'-*(X) where Y*(X)  is the holomorphie t angent  bundle,  the  
bundle E ~ is the bundle J * ( X )  Q A S ~ - * ( ~  | A~9-*(X) (D ~-*(X) etc. Gradings will 
be chosen classically so tha t  there  will be a jump of two units  f rom E ~ to E ~ and 
of one uni t  f rom every  bundle E '  to the successive E j+l. 
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To write the  symbolic complex of (~) a t  a point  we will use the  following nota- 

t ions: 

e = C[&, . . . ,  ~:,,, & ,  . . . ,  ~,,] 

ring of 9olynomial~ in the  indeterminates  ~ = (~,  ..., ~ )  ~nd ~ = ( ~  ..., ~ ) .  

P~'~= space of exterior  forms of t ype  r in d~l, ..., d ~  and of t ype  s in 
d~l, . . . , d ~  with coefficients in P, 

P(J) : 0 P~'~ , 
,r+s=J 

1 1 

A direct verification shows tha t  the symbolic complex of (~) at  any  point  x0 e X 
(i.e. the  complex denoted before as ( 4 ) J  is the complex 

(a) 

J = l  

We know tha t  (a) is an exact  sequence on any  countable open set of ho]omorphy;  
in par t icular  on any  open set f2 convex in a holomorphic coordinate pa tch  [9]. 
This proves tha t  the  t ransposed complex ~(~) of (~) is exact.  Taking into account  

the isomorphism 

pv, s ~ .  ~n-r ,n--s  

the  complex ~(~) can be wri t ten in the form 

~(~) 0 < -  AT -+- P " . "  < A ~ A o ~  A,z + ,~) p,~-~.~,-1 | , .  . . .  

pn--2,n--1 

�9 .. A(~ 4- ~) p~_~) . A ( ~  4- 5) p(~._~) <_ . . . . A ( ~  4-- ~) p(o~ <__ 0 

where 2/ is the cokernel of the last map. The exactness of the sequence ~(~) can 
also be established directly by  the  results of [4] (corollaries 1 and 2, pp. 606-607). 

The complex (g) is a part icular  t t i lber t  complex. 
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c) Let  S be an oriented hypersurface given on X by an equation ~ = 0. 
Writ ing zj = ~-q-ix~+r for the local holomorphie coordinates on X we write the 
gradient of p in terms of holomorphie and antiholomorphic coordinates 

grad ~(xo) : ~ozl"'" ~ 8z~' 85~' ""' ~z~ ~o " 

We have 

We also set 

~(grad e) = ~ ~ @, = 8~, 

8~ 
~(grad ~) = 5 ~  d~ = ~ .  

C~'"= space of exterior forms of type r in d~,, ..., dG and of type s in  
d ~ ,  ..., d~, with coefficients in C ,  

C O) ~ C ~'~ 
~+s =~ 

and note tha t  C ~ " ~  C'-~ '~-L 
Now remark tha t  the map 

A~A~ p~,n < , p~-~,~-~ 

is given by the matr ix  of one row 

so tha t  in C ~ where ~1, ..., ~ ,  ~ ,  ..., ~ are independent variables the variety 

v = { G  ~) e C'~[Mo(~, ~) = O} 

has no point~ except the origin, where ~ is the conjugate of ~ (% 
In  particular 

80 8~ 8~ 8~) 
g r a d Q =  ~ , . . . , S z n , ~ 5 i , . . . , ~  ~ V .  

(4) V is the union of the two linear spaces ~ =  { ~ =  O,l<~i<~n} and L = { ~ =  O, 
I < i < ~ } .  
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' (7) 

F r o m  [5], p ropos i t ion  1, we derive t h a t  we have  a a  exac t  sequence:  

C n , - - 1 . ~ - - 2  

A ~ e /  
.e / 

A(ae 4- gO) 0 <-  C ..... * AaeA~e  C '~-~''-~ @ + ... 

... + - C ( ~ - ,  .~ A(3e + ~e) C(~-~)+ - ... .~ A(3e § ~e) C (~ ~ 0 .  

F r o m  this  exac t  sequence or be t t e r  f r o m  the  exac t  sequence ob ta ined  b y  t ranspo-  

s i t ion:  

(7) o ~ c~176 A~~ c "  A@ +@~ C ~ c ' ~  A(~+~2") "" 

... ~ C(~+, A(~ + a ~  C(,~+~) ~ ... A(@ + ~ )  C(~,, ~ o 

we deduce  t h a t  the  g iven  complex  is elliptic a t  every  po in t  and  t h a t  any hypersur]ace 

S is noncharacteristic. 

d) W e  h a v e  n o w  the  fol lowing 

LE~2crA. - Given the complex (cr and the hypersur]ace S = {e -~ 0} i~ Q, the suv- 
cessivc domains o] the operators ~ ,  d, d, ... o/ the complex (~) along S are given by 

4~(S ,  ~2) = e 2 A~176 , 

4(s ,  o) = e(A12(O) + A21(O)) + de Al1(O), 
�9 . �9 * �9 �9 �9 . �9 . . . .  * �9 �9 * . . . . . . .  �9 

n--1 ~--2 

4 ( s ,  .~) = e Z A~ ~-J(Y2) + de Z nJ ~-J-~(9), 
~=1 j = l  

. . . .  . . . . . . . .  , , . . , . , . , �9 �9 , * 

~(5', ~ )  = eA(~)(s )) § d e A(2~-1)(O). 

P~OOF. - a) L e t  ~ ~ A~176 a n d  let u ~ ~'~-1 ~-~(~) where  ~ denotes  c o m p a c t l y  

s u p p o r t e d  forms.  W e  have  

I 2 -  S 8 12- 

T h u s  ~o e 4~(S,  t-2) if a n d  on ly  if Vu E ~ - ~  ~-~(Y2) 

(,) fSwAu + f~ASu= O . 
S S 

5 - . d n n a l i  d i  M a t e m a t i c a  
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Take zo G S at  the origin of the coordinates. Set t ing z. = x .  ~ iy. we m ay  
assume tha t  S n / 2  is given by  

---- y~-- ~(zi, ..., z,_:,  x~) 

with a C = and vanishing at  the origin of second order. Taking 

u = (~(z,, .:., z~_,, x ,)  + ( y ~ -  ~)~(z , ,  . . . ,  z~_,, x~)) dz: ... dz~_, d~, ... d ~ _ ,  

with a and fl compact ly  supported we realize tha t  if 

= ~~ ..., z~_~, x~) -F ~r ..., z~_~, x~) -F ... 

we must  have 90 ~ = O, ~: ~-- 0 i.e. ~ G ~AOo(/2). Conversely~ if this holds then  ( . )  
holds and ~ G ~ ( S ~ / 2 ) .  

fl) Wi th  selfexplaining notat ions we have for ~ e A::(/2) 

~- S ,o- 

Thus ~0 e ~ ( ~ ,  /2) if and only if 

o A u  " -~  ~-~ = 0 = f g o A u  '~-~ ~ - :  
S 

W "-~ ~-~ E ~ " - :  ~-~(/2) a n d  W "-2 ~-:  ~ . ~ - -~  ~-~(/2).  

Taking into account  lemma 1 of ([2], par t  I I ,  p. 755) we get the desired con- 
clusion as we must  have 

qA~el~ = 0 ,  

~Aa~ols = 0 ,  " 

where the restriction means restrict ion of the coefficients of the  form considered. 

7) Le t  ~ = ~0:~ -[- ~ i  G A:2(/2) ~- A~:(/2). To have ~ e ~ ( S , / 2 )  we must  have 

S ~ S 

Vu"- '  "-~ e ..@"-: ' , - f f ~ ) ,  Vu' -~  "-~ e ~ " - ~  " -~ ( /2 ) ,  Vu"-~ "-:  e ..~"-~ " - l ( f ~ ) .  

F r o m  the first and last in tegral  we derive tha t  

,p" = e~ TM + geM", 
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with convenient  forms a ~  fin, ~1, ~n in /2. l~rom the middle integral we get then  

i.e. 
8 

fsq(~ ~ -  ~)u~-~ ~-~= o 

since fd~ ~l~u ~-~ ~-~---- 0 because the form d e induces the 0-form on S. Thus ~ f l n  ___ 
S 

= ~ ~ Jr ~0 ~ and therefore 

(~) The general argument  is the  same ~s in y). 

We define therefore on SQ ~ S ~ / 2  

A~176 
Q(o)(Sg) - -  ~AOO(12 ~ ~ A(~ § ~A(~ . 

A ~ ( ~ )  
Q(~)(Sa) eA~(~ )  4- a~A~ A~176 ' 

Q ~ A~,~(~)+ae Z A~,~(~) 
~ §  v-bs=/~ 

Q(~')(S~) = A(,+~)(Sa) for  n < # < 2 n - - 2  . 

for  2 < # ~ < n - - 1 ,  

where A(J)(S) denotes the space of forms of degree j on S. The boundary  complex 

has therefore the form 

T o t e  tha t  the  last pa r t  f rom Q(~)(S) on coincides with the de l~ham complex of 

exter ior  differentiation 

d d d 
Ac~+I)(S) ~ A(~+~)(S) - - ~  . . .  - - >  A(~- ' (S)  ~ 0 .  

e) Exp l i c i t  expression o] the operator (3~)s. Zet  zo ~ S be at  the origin in its 
coordinate pa tch  /2. We can assume tha t  there  

~ ~ y~ - -  a(zl,  ..., z~_l, x~) , z~ ~ x ~ - ~  iy~ 
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with a vanishing at  the  origin with its first par t ia l  derivatives. I n  a small neigh- 
borhood of the  origin we will have expressions of the form 

n - - 1  

dz~ = a 8~ § ~, ~j a z j ,  
1 

~ - 1  

1 

with a(0) # 0, at(0) = 0, l < j < n - -  1. Actual ly  

( a = - - 2  i + Oxj  and 

Also 

8 G  
6~j = a - - .  

~zj 

n - - 1  n - - 1  n - - 1  

1 1 1 

T o t e  tha t  the analyt ic  tangent  space to S at  the origin is {z~----O} and tha t  
~ - - 1  

~. l~r dz, dS~ is the  Levi  form of @ at  the  origin restr icted to the analyt ic  t angent  
1 

space. 
We can take z~, ..., z~4 and x~ as local coordinates on S near  zo. 
Le t  

uo § eu~ ~ A~ -1- eA~ 

with 

Uo = Uo(Zl . . . ,  z~_~, x . )  , u~ = u~(zl, . . . ,  z ._~, x~) . 

The equations (Sg)s(Uo-}- @ul) = 0 can be wri t ten as 

8g(Uo§ ou:dAS~l,~= o, 

(~) 8~(Uo § eul)Ageb = o, 

taking into account  the form of the space Q(X)(S). Here restrict ion to S means 
restriction of the coefficients of the form. 

This allows an explicit  calculation of tha t  system of equations. 
We set, for 1<~i, j<~n--1, 
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Then the system of equations (~)s(Uo + @u~): 0 reduces to the system of ( n - - i ) .  

�9 (n -[- 1) equations 

Lfi~.Uo -~ l~jul = 0 

1< i ,  j<n- -1 ,  

Sine AV TiUl : 0 , 

l < i < n - -  1 ,  

o, 

l < i < n - -  1 .  

X:~E1VfAX~K. - -  Assume tha t  the Levi  form of @ along the analyt ic  tangent  space 
to S is different f rom zero. I f  Uo ~- @ul and u o + @u 1 are two solutions of the equa- 
t ions (8) t hen  u 1 = u~. Moreover, locally, we can, f rom one of the first set of equa- 
tions, obtain Ul in terms of Uo and subst i tu te  in the remaining equations. There- 
fore uo satisfies in tha t  case a set of differential equations of second and th i rd  order 

(cf. [13]). 

f) Hartogs type theorem. We assume now tha t  S is compact  in X and t h a t  

x - =  {xeXle( )<o} 

x + =  {xeXle(x)>o} 

is compac t ,  

has any  connected component  n o n co m p ae t ,  

{@ = 0} being an equat ion for S. 
Le t  H~ -, 9t z) denote the space of C ~ functions on X -  which are pluri- 

harmonic  in ~ - .  
Le t  H~ W(s 1)) denote the space of couples of functions uo ~ @ul ~ A~ 

-~ o~A~ satisfying the equations (6): 

:Let 

be defined by  

where 

We have then  the following 

(88)~(Uo + qul) = o .  

r: t t ~  -,  ~(#) --> H~ %, ~z(1)) 

r(h) : uo ~ @ul 

Uo = hI~ , 

dh 
a@ S 
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Tm~ORE~ 3. - Under the above assumptions if the manifold X is (n--2)-com- 
plete (n>2)  and H~(X, C ) =  0 then the natural map 

is an isomorphism. 

r: H~ ~f) ~ H~ ~(~)) 

PROOF. - F r o m  the 5Iayer-Vietoris sequence with compact  supports we deduce 

tha t  we have an exact  sequence 

0 ~ g0(x-, ~ )  ~ Ro(~, ~o~(1))s -~ Ri(x, ~ ) .  

From the exact sequence of sheaves (fl) we deduce the exact  sequence 

Hi(x,  e) | ~ ( x ,  o) ~ ~ l ( z ,  ~ )  -+ H~(x, c ) .  

B y  the assumption tha t  X is ( n -  2)-complete and by  the duali ty theorem we 

derive 

where ~Q~ is the sheaf of ho]omorphie n-forms (ef. [1]). 

By  assumption also H~(X, C) = 0. Thus H~(X, ~/E) = 0 and from this we deduce 

our conclusion. 

I~E~AnK. - The above assumptions are verified if X is a Stein manifold of dimen- 

sion n~>3 [0] or if X is Stein of dimension 2 and H~(X~ C) ~ H~(X, C) = 0. I n  par- 

tieu]ar for X = C ~ n~> 2. We have indicated with ~ o )  the sheaf on S defined by 

the exact  sequence of sheaves 

o -~  ~ f 2  ) -~ Q(O) (~5!~ Q(1) 

where for S~ open in S Q~O) and Q(1) denote the sheaves 

We denote by  5/zs the sheaf of germs of C ~ functions u on S such tha t  we can find 

a germ of C ~ function v on S with 

(~8)~(u + or) = o . 

I f  

Aoo(~) A0O(~) 
o: _ _ _ _ > m  
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for  e v e r y / 2  open  in  X is t h e  n a t u r a l  m a p  we deduce ,  a t  t h e  sheaf  level ,  a n a t u r a l  m a p  

a: Q(O) _+ A(O~ 

w h e r e  A (~ is t h e  sheaf  of C ~ g e r m s  on S. 

F r o m  t h e  a b o v e  c o n s i d e r a t i o n s  we h a v e  a n a t u r a l  s u r j e c t i v e  m a p  

~(1)~ z _ ~  o. 

T a k i n g  in to  a c c o u n t  t h e  r e m a r k  a t  t h e  e n d  of p o i n t  e) of t h i s  s ec t ion  we o b t a i n  

t h e  fo l lowing  

P~OPOSITION 8. -- Zet the hypersurface S in X have the property that the _Sevi ]orm 
of @ on the analytic tangent space to S is nowhere zero. Then the natural map a is an 

isomorphism o] sheaves: 

COROLLiEY. -- Under the assumptions o] theorem 3 and o] proposition 8 the natural 

map 

Ho(x -, ~ )  -+ Ho(& ~ )  

(given by h ~ his) is an isomorphism. 

RE)fA~K. - L e t  h be  a C ~ f u n c t i o n  on X -  wh ich  is p l u r i h a r m o n i c  in  (so t h a t  

~ h  = 0). T h e n  

~ = ~h , fl = Oh, 

are  c losed  f o r m s  on  X -  w i t h  C ~ coeff icients  up  to  t h e  b o u n d a r y .  F i x  Zo e 2~- a n d  

l e t  z b e  a v a r i a b l e  p o i n t  a n d  a s s u m e  t h a t  HI(X~, C) = O. T h e n  

Z 

/(z) = f a  
gO 

g 

g(z) =f~  
Zo 

is C ~ on X -  a n d  h o l o m o r p h i c  in  .,Y.-, 

is C ~ on  X -  a n d  a n t i h o l o m o r p h i c  on  , 

and 

h(z) -- h(z.) = ](z) + g(z).  
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g) The shea] ~ z .  For  t9 open in X we set S a = S n ~Q and define 

A~176 
A~176 ~AOO(~2) = A(o)(So), 

A~ 
A~ QAO~(~9) + ~e A.o(n) ,  

The operator  8 on X induces then  a boundary  operator  ~s (ef. [1], [2]) and we get 

a complex 

Denot ing by  A ~ the sheuf Sn-->A~ at the sheaf level we have a complex of 

sheaves 

O0 ~ 01 f / 
where by  definition (9 s = Is jA s -->A s [. 

Passing to the complex cohjugate we-define analogously the  sheaves A~ ~ the 
operator  8~ and the complex of sheaves 

r  o -~ ~ -~ A~ ~ -~ A~ ~ -~ .. . .  

We define ~ ( / 2 )  = {~ ~ A"'~(~2)[~ is (~ fiat ~) on S}. :By (( F ~) we denote the  usual 

functor  (( sections ~). 

L~,~I~• 6. - Zet ] 6_F(S~, 0s). There exists a representative f6A~176 of ] such 
that 

-~ 01 

representative 

(and ~t]s = uo, d~/doIs = ul). 

PROOF. - We denote by  uo and u, any  fixed extensions of these 
as C ~ functions. We have 

e A~176 

functions to ~9 

(and/l* = / ) .  

This is lemm~ 2.2 of [2], pa r t  I~ p. 240. 

I~EI~'v~A 71 - .Let Uo ~ ~ul~-N(S~ JF(1)), there exists a 
o /  Uo ~- 9u~ such that 
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with ~1 c A11(~Q) and /31 E A~176 ~hen  with  ~'1 e Aa~(g2) convenient ly  chosen 

! 

~8(~0 + e u l -  ~ 0%) = e~1 

and  as 8 and  8 appl ied to the  left hand  side give zero, we get 

aeA~'lls---- O, ~eA~',b = o .  

Hence  

with  convenient  a~ and  fl~. Thus we have  

8&uo § e u l -  �89 0./31)---- q:~: + q 8eA~e~,  

[ 

and with a convenient  ~2, 

Moreover  one has 

so t h a t  

" ~eA~'~l,~ o 

with convenient  ~3 and  fl~. 
Proceeding in this way  we see t ha t  we can solve the equat ion 

a8(Uo + eul + ...) - 0 7  

with a formal  power series in 9 with coefficients C ~ on So, where 0 N denotes 
<~ vanishing of infinite order on S ~>. B y  the u~e of Whi tney  extension theorem 
(el. [2], I ,  proposi t ion 22, p. 337) we conclude as desired. 

Le t  A <r) denote the sheaf of  C ~ exter ior  f o rms  of degree r and  let ~(s  r) denote  

the subsheaf  of those forms with coefficients <~ flat ~> on S. We set 

:Exterior differentiation induces a na tura l  map  

a" W~P-+ w~ ~+~ . 
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Lv.m-~A 8. - The ]ollowing is an exact sequenee o] sheaves 

d w '~ ~ w'~" ~ w'.',~ . . . .  O ~ C ~  z 

P~ooF. - Only the differentiable s t ructure  is concerned in this lemma. We m ay  
ussume to work in R ~+~ near  the origin where (x~, ..., x~,  t) are coordinates and 
where S = {t = 0}. 

T h e  exuctness is obvious on W(s ~ 
Le t  

= ~ t-(~')(x, ~x) + dt ~(:-~)(x, ~x)) 
0 

be an element of W~) o with r>_-l. Here  fl~[) and a(~ -1) denote germs of exterior  forms 
of degree r and r - - 1  respectively. 

Le t  d~ be the exterior  differentiation on the variable x. The condition de) = 0 
is equivalent  to  the  conditions 

a.fl~)(x, ax) = o Vn, 

(n + (~) , _(r-1)l~ Vn. 

F r o m  the first set of equations we derive tha t  we can find forms fl~-~)(x, dx) 
such tha t  

~)(x ,  ax) = a.fl(:-~)(x, ax) Vn. 

f~(r-1)(~ dx)) = O. I f  r > 2  then  F r o m  the second we get d,(a~- l ) (x ,  dx ) - - (n -{ -1 )y~ ,+1  ~,  

we can find forms a(~'-2)(x, dx) such tha t  

t h u s ( D =  a { ~ t n ( ~ - l ) ( x ,  dX)--dtff~[-2)(x, dX))}. This proves the  lemma if r>~2. 

r = 1 only a slight modification of the  above argument  is needed. 

I f  

P~OPOSITIO~ 9. - We have an exact sequence o] sheaves 

where 

~(/ �9 g) = ] - -  g 

and where ~ =- Os n Oz. 
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P~OOF. - Given  f a (Ps,~0, for  zo a S b y  l c m m a  6 we can f ind an  ex tens ion  ] of ] 

such t h a t  ~-] e ~ .  T h e n  aa-] ~ ~ s  ~. E x p a n d i n g  ] in power  series of ~ we h a v e  

] = ] ~ - Q g - } - . . .  a n d  (a~)s(] ~ -~g) - - - -0 .  T h u s  (~ is a subsheaf  of ~f~. Simi lar ly  
~z  c ~%f~ a n d  therefore  a is well defined. Clearly K e r  a = os 

W e  h a v e  to  show t h a t  a is sttrjective. 

Given  u ~ 5/~s,~o b y  the  defini t ion of t he  sheaf  ~ we can  f ind a g e r m  of C ~ func-  

t ion  v on S a t  zo such t h a t  u -]- pv = ~(1) i.e. ( ~ ) s ( u  -4- ~v) = 0. B y  l e m m a  7 we 
can f ind an  ex tens ion  ~ of u -}- qv such t h a t  ~ 5  ~ ~-11 By 1emma 8 f r o m  d ( ~ )  a ~'(s ~) 

we deduce  t h a t  we can f ind a g e r m  a of func t ion  a t  zo in the  space such t h a t  

Hence  

and  

~ = da m o d  ~-(~). 

~(r @ ~1o  

a) e 

Set  ~ = ~ -  a. F r o m  the  above  equa t ions  we derive t h a t  

and  t h a t  

u : + 

This  p roves  our  conten%ion. 

PROPOSITIO~ 10. -- Let So c S be the open subset o] $ where the Zevi ]orm o] 
restricted to the analytic tangent plane to S is di]ferent /rom zero. 

We have on ~ 

~ e ~ C  

(C the constant shea]) so that in the exact sequence o] sheaves 

0 --> C i gr -+ oV --> 0 

i being the natural injection, we have J~/']sQ = O. 

P~ooF .  - Clearly C is a subsheaf  of ~ .  Le t  zo e S o a n d  let/~0 e s Le t  ] be  
a C ~ ex tens ion  of ] to  an  open  ne ighbo rhood  U of zo in X.  I f  U is sufficiently small  
we have  

~] = q~1o + ~ o~0, 
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with a~ fl, y, a convenient C ~ forms on U. 
fact that ~ L. = h~ Lo = o. 

Therefore we have 

Indeed these equations translate the 

Set # : a ~ 7 .  As dd]-~O we derive tha t  

o = ae t~ § e at, § ~ e  fl - ~q aft § 3he a -  he az 

i.e. at  each point of S n  U 

From this we deduce tha t  

h@A 8~oA ha@A (# - a)I,~ = 0. 

;By the ~ssumption the form h~A~@AhS@ on Sr is different from zero (wi th the 
n - -  1 

\ 

notations of point e) of this  cotion that form  qu ls ( Z dz,  herefore 
on ~ fi = ~. 

Hence 

a7--  q(~ + r! + aQ # .  

But  this proves tha t  d]~o = j ' d  i, j being the natm~al injection of S~ in U. There- 
fore ]~o is constant  in a neighborhood of z~ i.e. ]~0 c (2. 

CO~0LLAIr165 - I] the _Levi ]orm o] @ restricted to the analytic tangent space to S is 
everywhere diMerent ]rom zero and if Hi(S,  C ) ~ - 0  then we have an exact sequence 

o --~ r ( s ,  c) - ~  r ( s ,  G) | r (~ ,  ~)  -~ r(~, ~ )  --~ o .  

We do not know if in the case S compact w i th  Hi(S, C) ~ 0 the above state. 
ment  still holds without  any  assumption on the Levi form of @. 

h) The ease o] a .Levi form or rank ~ 2. Let  us start  again with t he  considera- 
t ion of the complex (~). 

We set 

Jo(s, o) = qAoo(~9), 

J I (S ,  [2) -~ @An(tg) + h@ Aol(Y2) + 8@ A~~ + h~@ Ao~ 

J , ( g ,  s = @(A,,(.Q) ~- A,,(Y2)) 4- d o A,,(Y2) ~- ~ ( S ,  ~9), 
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and in general  for / z>2  

~r O) = 4 ( &  O).  

We realize t ha t  

is a subcomplex of (~). Moreover the sheaves 

/2 ~ ~r 

are fine (therefore soft) sheaves. 
Note  t h a t  the  subcomplex of (~) given b y  the  domains of the  var ious operators  

(0) 4~(& D) -+ 4 ( 8 ,  D) --> 4(,S', D) --> 4 ( g ,  O) --> ... 

is a subcomplex  of (~). 
We set 

r = AOO(D)/~co(& ~9), 

r  = A ~ ( t ~ ) / J ~ ( S ,  t~) , 

C(~)(go) = Q(~)(So) for # > 2 . 

At  the sheaf level, we have  therefore a commuta t ive  d iagram of sheaves and  linear 
maps :  

1. 1 I I l 
C(" --> Q(~) ~ O (3) d~ 

where (~ )~  and  d ~ ~Jre the induced linear maps  of sheaves by  the operators  ~ and  d 

the  surrounding space, and  where, by  definition is---- Ker--t/~(O) t .r~[~); ~(1)},- in 

functions on g. T h g  sheaf Note  that C r176 _ A (~ ---- #s the  sheaf of germs of C ~ 
C c~) is a sheaf of #s modules. 

PI~OrOSITION 11. - On the set So where the .Levi ]orm o/ ~ restricted to the analytic 
tangent space to S is diNerent / tom zero the shea] C (1) is a locally ]ree shea] o/modules 
o] rank (n--  1) 2 -  1. 

P~OOF. - Indeed  if Zoa go we can choose a sys tem of ( n - - 1 )  3 -  1 forms of 
t ype  (1, 1) l inearly independent  over  the  C ~ funct ions d~(U) in a small  neighbor- 
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hood U of zo in X,  say 

so that 

o)1~ o2~ .... ~ (D(n-1)~-i 

(n--l)2--1 
AI~(U) = X ~(U)(~ ~ o  d~ -}- ~A~ .71_ g0AlO(U) . 

1 

COIr - On Sa the linear maps (Sg) ~ and d ~ are given by differential ope- 
rators. 

PROOF. - Indeed  C (~ C m, Q(~) can be viewed as the  she~ves of germs of C ~ 
sections of appropria te  0 ~ vector  bundles on Sa. The operators (8~)a ~nd d R are 
continuous for the  usual Schwartz topology and preserve supports.  One can there- 
fore upply Peetre ' s  theorem. 

Also ~ direct calculation gives the  same conclusion. We note  thu t  (8~)n is a 
differential operator  of the  second order. I t  is the zero operator  if n----2. 

F r o m  the commuta t iv i ty  of the above diagram we derive a naturM inclusion 

Indeed  ~ s  is just  the  image of ~(s ~) in ~s by  the  map 4. 
We set 

~ ( ~ )  = {s e JJ (S ,  ~)[s is fiat on S}.  

We know tha t  since the complex (~) is elliptic we have  an exact  sequence of soft 

sheaves 

(4)  0 5 o  , , , . . . .  

We can also consider the complex of sheaves (all soft) 

j o  88 j 1  d j 2  d 
(#) 0 --> o~-- o~ > - - ~  ~ --o~ ~ > . . . .  

PROPOSlTIOI~ 12. - Zet z ~ ~ S~ and let ~r denote the Zevi form of 0 restricted 
to the analytic tangent space at zo to S. 

i) I f  ~(~)ITzo(s) is different from zero then the sequenee (#) is exact at the place 
jo/ o. 

ii) I f  ~--ce(0)l~o(S) is different from zero and has rank > 2  then the seqq, ence (#) 
is exact also at the place j l / ~  and therefore everywhere. 
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P~oo~. - The exactness  of the  sequence 

~i d J z  d 
; * - -  ) . . .  

follows f rom the  exactness of (4) and  the  fact  t ha t  J~ c ~r 
We prove  i). Le t  w = ~u ~ j o .  Assume t h a t  

i .e.  

therefore 

~o 8iF~ 4- a e A ~ -  ~0Aau 4- age ~ z .~-] 

Because of the  assumpt ion  u]s----0 i.e. u = ~v and  w = ~u = ~ v  e ~ .  
(~',1 is exact  we derive t ha t  w e ~ o  as we wanted.  

We  prove  ii). Let~ with obvious notat ions,  be 

Because 

Then ~o'~176 j o  and  

Assume t h a t  dg ll e ~ .  We have  also d(g ~1-  ~8(~o~~ e ~w~. This gives 

o ~o~1 § ao( o~1- ~o~ - ~e ~o1~ § age 01~ + ~ 

and  an  analogous relat ion with 8 replaced b y  8. We  deduce then  t h a t  

aeA~eAa~eAOiO b = o .  

Because  of the  assumpt ion  we mus t  have  

01o = ~xo 4_ ~#oo  . 

#- - -1  

(we can assume ~ as in the  fo rm of poin t  e) of this section with  ~ l ,  dz~ dgj = 
n--i i 

= ~ejdzjd~j  in diagonal  fo rm a t  the  origin and  e l #  0, e ~ #  0. Set t ing 01~  
1 

= ~ a ~ d z _ ~ / ~ o o ~ @  ~1o we deduce t h a t  a , - - - -0  for l < j < ~ - - 1  a t  the  origin. 
1 

F r o m  this we get  our conclusion.) 
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Similarly 

Hence 

0ol = #~.ol § ~,oo ~q. 

Therefore g11_ ~ ( ~ a o o ) e ~  and consequently by the exactness of (1) we get 

Let Z be an open portion:of ~g. We can consider on Z the following complexes 
for any family of supports r 

(i) /'r A~176 ~~176 ~ Fr All/~,~ 1) d i t ( Z  ' ( A l ~ O A 2 1 ) / ( ~  0 ~ l ) )  d_~ ..., 

(ii) F~(z, Q(0)) (~)~ r~(z, Q,,) ~ r~(z, Q,~)) -~  ..., 

(iii) / 'r C '~ ~ Fr C (1)) dA/~r Q(2)) d~ . . . .  

We set 

~-~ ~er{c,o, (oo)~ c, ,}  

and we denote the cohomology groups of the above complexes with the notations, 
for any j > 0 

/Z~(X, [ ) d ) ,  H~(Z, [~e~(']), H~(Z, [ ~ ] )  �9 

From the previous proposition we deduce then the following 

C0t~0LLAt~Y. - -  Set 

S(~ ) = {x e S[rank Z(O ) ]T~(S) ~> 2}. 

2Let Z be any open subset of S(~ ). Then for any family of supports r (paraeompacti- 
]ying) we have 

~ ( z ,  [*(2J) = B~(z, E2r]) = H~(z, ~ )  

for any j >~ O. 
In  particular for j = 0 and r the family of closed sets, germifying X at any point 

of S(~ ) we get that 
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is an isomorphism o] sheaves over S(~ ). Thus on S(~ ) 

CO~OLLAI~u - I] S ( ~ ) :  S we have a Mayer-Vietoris sequence 

o -~ H~(x, w) -~ H~(x +, w)  | u~(x- ,  ~ )  -~ ~ ( s ,  [~])  -~ 

-~ ~ ( x ,  w)  -~ ~ ( x  +, ~ )  | ~ : ( x - ,  ~ )  -~ H~(s, [~])  -~ . 

I~EUA~K. - We have  denoted with  the  peculiar nota t ion  H~(Z,  [5~f]) etc. the  
cohomology groups of the  complexes (i), (ii), and  (iii) above  as t hey  m a y  not be 

isomorphic  to the  cohomology groups with values in the corresponding sheaves.  
Indeed  the  complexes of sheaves 

Aoo A n A12@A 21 
0--> 3r ~ ~ - ~ o o - +  ~ ~ ~ | ~ ... 

0 - >  W ( )  ' -~  Q(o) _+ Q(~) _+ Q(~) _ ~  . . .  

0 --> ~ ' - s  --> C (~ --> C(~) --> C (2) --> . . .  

m a y  not  be exact .  This s i tuat ion will be discussed in the  nex t  point .  

i) We consider the  locally closed region X -  = (x c XI@(x ) ~< 0}. We  have  defined 
(section 7 o)) the  cohomology groups H~(X-, 0), HJ(X -, ~) and H~(X-, Yf)  b y  means  
of the  complexes of Dolbeaul t ,  of its (( conjugate  ~ and  of the  complex (~). 

We can also consider the  usual cohomology groups H~(X-,  C). 
We first claim t h a t  

LEM2cIA 9. - Hi(X- ,  C) is the j-th cohomology group of the complex 

where A(J)(X-) is the space o/ C ~ ]orms o/ degree j de]ined on X -  up to the boundary 
but not beyond it, and where d is exterior di]]erentiation. 

PnooF.  - This l e m m a  deals only with the  C ~ s t ructure  of X.  We are reduced 
to p rove  the  following. Let  X = R m and X -  = {(xl, ..., x~) ER~]xm<0}. Similarly 
for X +. Le t  A(J) be the  sheaf of C ~ forms on R "~ of degree j and  let ~(~)---- {seA(J)[s 
is (( flat )~ on X +} so t h a t  set t ing A ~  ) = A ~  (~ we have  A(J)(X -) = F(X,  A~)). 

One has  to show t h a t  a t  a poin t  x ~ = (x ~ ..., x~_~~ 0 ) e ~ X -  we have  the  Poincar6 
lemma,  i.e. t h a t  the  sequence 

6 - .Anna l i  eli M a t e m a t i c a  
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is an  exact  sequence. This follows with  the  usual  proof  of Poincar6 l emma  for the  

opera tor  d, or b y  the  use of the  Mayer-Vietoris  sequence on a small  bal l  centered 
at x ~ 

Let  us now consider the m a p  for j >  1 

(~: Hi(X-, (9)| Hi(X-, 0) --> Hi(X-, ~f) 

given as follows: Le t  {9oJ}, ~9oj = 0 and  {pie}, ~ p j o :  0 be  cohomology classes in 

HJ(X- ,  (9) a m d  Ha(X-,  ~) so t h a t  9oj (9~o) is ~ C ~ fo rm of t ype  (0, j)  ((j, 0)) defined 
on X -  bu t  not  beyond.  We define 

This m a p  is l inear and  well defined. 

LElVI~•  1 0 .  - I] H~(X-~ C) = 0 = H J + I ( X - ~  C)  and j > l  we have that a is an 
isomorphism: 

Hi(X-, (9) | tt~(X-, r -~  Ha(X-, ~ )  . 

PlzooF. - The m a p  a is injective.  Assume t h a t  j > 2  and  t h a t  wi th  obvious nota-  
tions, 

~9o~ + 5~'o = d(~l j-1 + ... + V~'-~ 1). 

Then since ~9 ~ = 0 = ~9 j~ we get 

d(9Oj + 9 jo_  U1 ~-1_ ... _ ~-11) = 0 . 

B y  lemm~ 9 we deduce then,  since Ha(X -, C ) =  O, 

9oj + 9jo_ ~1 ~ - 1 _  . . .  _ ~ - 1  ~ : d(O o ~-1 + . . .  + 0~-1 o ) .  

Hence  9 ~ ----~0 ~ ~-1 and  9 ~ o :  ~0 j-1 o. This proves  om�9 contention.  
The m a p  a is surjective.  We shall assume j > 2 .  Le t  

with 

d(~o- + ... + ~ ' )  --- o 

represent ~ class of Hi(X-, ,~F). Since HJ+~(X -, r = 0 we h~ve, by lemma 9, 
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i.e. 

Hence 

~0 ~ = 0 , 

r ~OoJ + ~01 J-~ 

q~ j-1 ~01 ~-i + ~0 ~ j-~ 

�9 �9 �9 ~ . . �9 ~ �9 ~ . . �9 

c#1 ~OJ-1 ~ + ~0 ~~ 

~0 ~~ = 0 .  

c;" + ... § c;" = ~0 ~ + ~0 j~ § 4(01 j-1 + ... + Oj-~ 1) . 

This p roves  the  su r j ec t iv i ty  of a. 

I t  r emains  to  t r ea t  t he  case j = 1. 

~ v l ~  0 a n d  a s sume  t h a t  

Then 

Let ~oi and 9 ~~ be such that ~~ O, 

~vol + ~vlo = ~gooo. 

a(vol + ~1o_ 8coo) = o .  

Since H~(X -,  C) = 0 we m u s t  h a v e  

i.e. 

vol  ooo + 91o- -  ~ o o .  

wi th  

Therefore  

~11 ___= d(~o + ~o~) . 

~U TM ---- 0 = ~uol. 

Thus  a is sur jec t ive  also in the  case j = 1. 

This shows t he  in j ec t iv i ty  of a also for  j = 1. 

Consider  n o w  ~ n  wi th  d ~ n - ~  0. As H~(X,  C)--- -0  we h a v e  
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THEOI~E~ ~. -- Zet Zo ~ S be a point where the Zevi form of ~ restricted to the analytic 
tangent space to S is nondegenerate with p positive and n -- 1 -- p : -  q negative eigen- 
values. Then in the boundary complex of sheaves 

The Poincard lemma fails to be true at 0 (~) and at 0 (q' but holds at any other place. 

P~oor .  - The theorem being of local na ture  we can assume tha t  X = C ~, t ha t  
Zo is at  the origin of the coordinates and tha t  ~ is in the  form used at  point  e) of 
this section. 

Set 

B ; = { z ~ B . [ ~ < O } ,  X . = S ~ B . .  

:For j>~l  and n large we have HJ(Bn, C) = HJ(B. +, C) = H~(B~, C) = O. 
fore for  n large 

HJ(B.,  ~ )  ~_ Ha(B., r | R~(B.,  ~)) = o . 

There- 

Hence from the Mayer-Yietoris sequence we derive that ,  for j>~l, 

H~(Z., [g~(1)]) ~ + ~_ H (B, , g~) @ H~(B: , g~) . 

Also by  lemma 10 

(*) 
H'(B , ~ )  ~ H~(B +, r @ H~(B +, O) ,  

HJ(B-~, ~ )  ~ H~(B~, ~)) @ HJ(B~, -0) . 

Taking direct limits we get 

limm Hi(2: . ,  [~(*)]) _~ li>m H~(B +, ~%f) @ ~ HJ(B~, ~o) . 

Taking into account  the isomorphisms ( . )  and theorem 3 of ([2], I I ,  p. 795) we get 

lim H~(B~, 5/f) = O if j ve O, p, q .  

Thus the Poincar~ lemma holds for  j V= O, p, q. 
For  j = p, q and for a proper  sign of ~ we have 

lim H~(B +, ~ )  
-----N 

lim H~(B~ ~ ' )  

is infinite d imensional ,  

is infinite d imens iona l , '  
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( b y  t h e o r e m  4 of [2], I I ,  p .  798; see also [1], t h e o r e m  9.6.1, p.  165).  

t h a t  

limH~(2:~ [~r :)z(= 0 for  j = p ,  j = q 

This  shows 

( indeed  these  spaces  a re  in f in i t e  d imens iona l ) .  H e n c e  t h e  s t a t e m e n t  of t h e  t h e o r e m .  
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