Noncharacteristic Hypersurfaces
for Complexes of Differential Operators (*).

(1) ALDO ANDREOTTI - MAURO NACINOVICH (Pisa)

Sunto. — Sia X una varietq differenziabile ed 8 wna ipersuperficie orienlata in X. Si considert
un complesso di operatori differenziali su X. Se 8 é formalmenie non caratleristica, esso induce
un complesso di operatori su S. Si generalizea la nozione di simbolo di un operatore diffe-
renziale al caso di multigradazioni e si dimostra che, se 8 & non caratteristica, modulo «ira-
sformasgiont fibra » il complesso indotto & un complesso di operatori differenziali. In parti-
colare, se una ipersuperficie & non caratteristica rispetio alla nozione usuale di simbolo, il
complesso al bordo é sempre un complesso di operatori differenziali. Nell'uliima parte del
lavoro si studia il complesso al bordo indotto dal complesso di Hilbert dell’operatore 86 su
nna varietd complessa. '

In this paper we consider again the notion of noncharacteristic hypersurfaces
for a complex of differential operators already introduced in [3]. We generalize
here the notion of symbol of a differential operator to cover the case of multigradings
considered in classical analysis (for instance the notion of ellipticity given by Douglis
and Nirenberg). We prove that on a noncharacteristic hypersurface the boundary
complex induced by a given complezi of differential operators up to «fiber transfor-
mations » is & complex of differential operators (theorem 1).

In particular on a hypersurface which is noncharacteristic with respect to the
usual notion of symbolz as ;used in [3] we get that the boundary complex is always
2 complex of differential operators (corollary to theorem 1).

We end this paper with the investigation of the boundary complex for the Hilbert
complex of the operator 29 on a complex manifold (given by Bicorin [9]). We
recover some interesting results obtained already by AUDIBERT [6], BEDFORD and
FepERBUSH ([7], [8]). For simplicity we have restricted our consideration to the ¢
category; we believe however to have given a comprehensive set of general sta-
tements.

The Hartog type theorem for boundaries with nonvanishing Levi form is con-
tained in papers of MARTINELLI [12] and Ri1zzA [13] where the first set of (n — 1)2
equations for the tangential operator (90)¢ are first derived and interpreted geome-
trically.

That all the results established relating o the trace at the boundary of a pluri-
harmonic function (theorem 3, corollary to proposition 8, last part of corollary to

(*) Entrata in Redazione il 2 maggio 1980.
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proposition 12) should be valid under much weaker assumptions of the type used
by FicHERA in [10] is very plausible.

This paper ends with a theorem asserting the nonvalidity of Poincaré’s lemma
in general for the boundary complex of the complex of the 90-operator (theorem 4).

1. - Differential operators, multigrading and symbols, the local sitnation.

a) Let © denote an open set in the numerical space R* where # = (xy, ..., 2,)
are Cartesian coordinates. Let D = (d/0w, ..., 0/0x,) be the symbol of differentia-
tion and let &£(2) denote the space of C* (complex valued) functions on Q.

Let A(w, D) = (a:(#, D))s<icq,1<i<» V€ & ¢Xp matrix of differential operators
with % coefficients so that A(x, D) defines a linear map

Az, D): 67(Q) — £4(Q) .
Assume that we have chosen two sequences of integers

Gys Gyy vory Oy for &7(02),

byy bay wnny by for &402),
such that one can write, for any <, j,

a;(2, D) = Z @5, (@) D*

Jol<ay—bs

where a e N*, o = (ot ..., &) I8 & multiindex,
Ol t.. o]

|£ZI=0€1+...+(1” and D"‘:W.

Note that if the sequences (&, ..., ;), (by, ..., b,) satisfy the property mentioned
above, also, for any integer k, the sequences (a; -+ %k, ..., a,+ %), (b -+ k%, ..., b+ k)
satisfy the same property. .
"We define
Gy, &) = 3 ay,(@) &

fol=as—b

for & = (&, ..., &) €C* and where &* stands for £§*... £ where a = (0, ..., &%)
We define the symbol of the operator A(x, D) for the multigrading (a,, b;) given
above, the matrix of polynomials in & with coefficients in &(£2):

AA(% &) = (di:‘(w, 5)) .



A. ANDREOTTI - M. NACINOVICH: Noncharacteristic hypersurfaces, ete. 15

b) Let
Bz, D): £4(Q) - E7(Q)

be a second differential operator with C* coefficients in Q
B(@, D) = (by(®, D))1<ner,1<i<a -
We fix a third sequence of integers
Cyy Cay eeey Cr for £7(0)

so that, for any h and i,

bpi(w, D) = Z byinl@) D™

[ol<bi—en

is an operator of order b,— ¢,.
We can then construet the symbol of the operator B(z, D) for the multigrading
(b iy 0;,);

B, =( 3 hu@e).

o] =bi—en

Also, one can consider the operator
B(z, D)oA(x, D): &7(Q2) — &7(2)

as an operator « compatible » with the multigrading (a;, ¢;). Therefore we can con-
sider its symbol of multigrading (a,, ¢;). We have the important property

ey

BoA(z, &) = B(w, & A(x, &)

(multiplicative property of the symbol).

2. — Differential operators between vector bundles, multigrading and symbols.

a) Let X be a differentiable manifold of pure dimension n. Let

E—n—>X,

F—LX,

be vector bundles on X with fibres modeled respeetively on C», C+. We say that I/
is a vector bundle on X of rank p and ¥ a vector bundle on X of rank g¢.

2 ~ Annali di Matematica



16 A. ANDREOTEI - M. NACINOVICH: Noncharacteristic hypersurfaces, efe.

Let % = {U,};; be a system of coordinate patches on X such that on each U,
El,, and Fly, are trivial. We fix trivializations on each U,

El”{ =~ UiXCp7
Flgi : Ui XCG s

and consequently the transition functions

‘¢;: U;NU,— GL(p, C),
fi: U.NU;—GL(g, C),

for the bundles # and F':

€ij65x = €41

fi:ifa'k =fzk

on lfin Uu,ntv,.
Given a section s: X — B, mos = id,, this is represented in the local trivializations
Bly, ~ U;XC? by (w, s,(#)), z€ U, si{z)eC» so that
s; e &2(U,)
and on U,N U, we have
54(@) = ey,(®)s;(w) .

Similarly for a section of F.

b) A differential operator from the bundle E to the bundle ¥ is a linear map
Az, D): I'X, BE) - I'(X, F)

where I'(X, E) and I'(X, F) represent the spaces of 0° sections of E and F respec-
tively such that
i) A{x, D) is continuous for the Schwartz topologies of I'(X, E) and I'(X, F),

ii) A(w, D) is local i.e. for any s e I'(X, E)
supp (A(», D)s) csupp s .

From a theorem of Peetre we derive that the datum of a differential operator
A(x, D) is equivalent
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(c) to the assignment j‘or every U, of a differential operator
ANw, D): E2(U,) = (U

i e 1, with the property that
(B) the diagrams

AW
&r(U,;) — 64U,
(%) €i: fii
AW

&7(U;) —— €4U,)

commute where they arve defined.

If we set
Az, D) = T a(x) D"
from the identity on U,n U,
Ae; 8, = f;; ADs,

Vs, e 67(U;) = I'(U;, B), we derive that the condition (%) is equivalent to the
consistency condition

. a i
(8) 3 00(0) (3) Dseto) = foagte)
which expresses the identity of differential operators on U,n U,
() Aoey; = f 049 .

¢) A grading on the bundle E will be, by definition, an agsignment for each
open set U, i€l of a grading

a®, ..., o for 67(U,) = I'(U;, E)

such that, setting

we have

(9) _

(%) €4irs(@) =0 whenever af’ — a{? %0 .
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For instance we can fix an integer @ € Z and set
= .. =a=q Viel;

then the condition (s#) on the transition functions becomes empty and therefore
we have defined a grading on E. A grading of this sort will be called a classical
grading.

The following proposition clarifies the structure of a graded vector bundle

PROPOSITION 0. — Let B be a multigraded vector bundle on a connected manifold X.
Then E splits into direct sum of vector bundles

E=RBOoE®.0O
on each of which a classical grading is given.

PrROOF. — («) Let % = {U},.; be an open covering of X such that for any iel
Bly, is trivialized, B|;,~ U,;xC» and graded with a grading a{?, ..., a{?.
Let 4y, 4, ..., ¢, be a permufation of (1, 2, ..., p) such that

>0l >..>al) .

Let A denote the matrix pxp with 1 in the places (1,1,), (2, ¢s), ..., (P, %) SO
that

1 i
P e I
P (2

Then det ¥ = 1. We seb

o) = ), ol = o), .y )= af)
and change the local trivializations of H|,, by the isomorphisms given by the ma-
trices A9,

Consider the commutative diagram (where it is defined)

Gis
By, — By,

||

€45
Bly,—> H|y,

where &;, = A¥e,;(A?)-1. With the new trivializations the &;,’s will be the transition
functions and these correspond to the gradings «!?, o, ..., of? on each U, e %.
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We have thus proved that it is not restrictive to assume that for every ie I
the chosen grading is such that

> >..>a?.

(f) Let on U, be

= .. =ad">ad¥), = .. =a? > ..

and let U,;e % be such that U,N U,;s~ . Then by the prescribed conditions on
the transition functions we deduce that on U, we must have

N R A, S

@ — U N —
oy =.=a ,=k=a'l,=..=a

......................

Since X is connected we realize that the above relations must be valid on any U,
even if U, N U, = 0 as one can find a finite sequence of open sets U, , ..., U, in %
such that

UnU;,#6, U,NU;#6, .., U,

Ty

NU,#8, U, nU,#0.

We deduce then that for any ¢, j in I the matrices ¢,; split into the direct sum
of blocks of the form

e; O 0

0 e 0
i =

0 0 e

where ¢}, is an r X7 matrix, €% is an s X s matrix, ... all non singular.

Set H, to be the bundle defined by the transition function e}; 1<y<l, and let
us choose the classical grading on F, given by the integer k,. We have proved that
up to an isomorphism

E~EBOEY.. .0

with classical gradings %, on By, ky on By, ..., k; on H,.

d) Suppose now that we have given two vector bundles F and ¥ and a dif-
ferential operator

A(w, D): I'X, B) -~ I'(X, F) .
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Suppose also that we have chosen gradings

ad, ..., ad on X,
bY, .., B on F,

compatible with the operator A(x, D). This means that setting

AU)(‘”: -D) = (“%(w’ D))1<r<q,1<s<p
we have

ag)(wa D)= 3% asy)

73,06
: [a]<a(si)—b(;')

() D* .

From the consistency conditions (%) we derive then the following formula
(1) A, &) 6,y(@) = fus(w) A, €) .

Now note that a change of coordinates in X affects the £ = (&, ..., &,) as if they
where the components of a covariant vector. Thus (x, £) has to be thought of
ag a point in the cotangent bundle 7*(X). Consider also the vector bundle

Hom, (E, I') .

A section ¢ € I'(X, Hom, (¥, F)) is given by a collection {M,},, of matrices I,
0 on U;, iel, of type g xp such that

Mo)eue) = fu@) My(e)  VoeU.NT,.
Formula (1) then shows that the symbol of a differential operator

Az, D): I'X, B) - I'(X, F)
is a map

A(w, &): T*X) - Hom, (E, F)

such that the diagram
14(x) 2@ 8 Hom, (B, F)

N A

X

is commutative, « and § being the natural projections.
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¢) The above representation of the symbol A(w, £) does not take into acecount
the fact that the matrices A@(p, &) are polynomials in £ For this reason we develop
the following congiderations.
We first consider the cotangent bundle 7*(X) of X of covariant vectors on X.
We denote by #(X) the ring of C® functions on T*(X) which are polynomials
along the fibres.
Let % = {U;};; be a set of coordinate patches covering X and let

TH(X)ly, =~ U xR>
be local trivializations with = (&, ..., ) coordinates on U, and £&9= (&, ..., &M)

coordinates along the fibres R~.
An element p(x, &) € P(X) is a collection of polynomials

palat, £9)

in the variables £&? e R" with C® coefficients in 2% e U, such that on U, N U, we
have :

®)
P; (@D, ED) = pi(mw(x(ﬂ), oa E"")

ozt

where 0x?/0x'? denotes the Jacobian matrix of the change of coordinates from U,
to U,:

K2 am(i)
ED = Z ' &
* 1 800;") g7
1<agn.

The space Z(X) could be called the ring of « codifferential symmetric forms».
Note that if X is parallelizable i.e. if

T#(X) = X xR~

(as a fiber space over X) then #(X) is nothing but the ring &(X)[&,, ..., &.] of poly-
nomials in the n variables & = (&, ..., &) with C® coefficients on X. Here &£(X)
denotes the ring of ¢ funections on X.

Given a vector bundle ¥ on X, trivial on the covering # = {U};,; with transi-

tion functions {ez-,-} we can consider the space
P(X)Qgx) I'(X, B)

of « codifferential symmetric forms with values in B ».
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An element ¢ of this space is locally given by a collection

(P}(my &)
@, &) =
?9?(“" &)

of codifferential symmetric forms ¢i(z, £) 1<j<p on each coordinate patch U, e @
such that on U,N U,; we have

@@, &) = e;;(%) @, §) .

We note that the space of codifferential symmetric forms with values in ¥ is
no longer a ring but only a module over #(X). i

Given now the vector bundles F and F over X, given a differential operator
Az, D): X, B) -~ I'(X, F), given a grading on F and a grading on F compatible
with the differential operator A(x, D), we can then consider the symbol Ax, &) as
a P(X)-linear map (because of formula (1))

A(, &)
_—

P(X, E) P(X, F)

where by definition
P(X, B) = P(X)Qgx) I' X, E) , P(X, F) = P(X)Qgx) I'(X, F)

are the spaces of codifferential symmetric forms with values in ¥ and F respectively.
Finally let us consider a third vector bundle

G5 x.
of rank r (i.e. with fiber Cr). Assume that we have given a second differential operator
Bz, D): I''X, F) - I'(X, G)
and suppose fhat a grading
&, ..., P on &

is given such that it is compatible with the differential operator B(z, D).
We can then consider the space #(X, @) of codifferential symmetric forms on X
with values in @ and the symbol B(z, &) of B(w, D) as a #(X)-linear map

B, &)
R

P(X, F) PX, Q).



A. ANDREOTTI - M. NACINOVICH: Noncharacteristic hypersurfaces, ele. 23

From the multiplicative property of the symbol we derive the commutative
diagram

x, 5) 2@, px, )

Al
B:?‘i(ﬂﬂ,mA B, &)

PX, &)

3. — Complexes of differential operators, the symbolic complex, elliptic complexes.

a) We give on X a sequence F° E', E?, ... of vector bundles with fibres
CP, C™, C™, ... i.e. of ranks pg, P1, P2y ..., Tespectively.
We give a sequence of differential operators

Az, D): I'(X, B°) - I'(X, BY),
AV(@w, D): I'(X, BY — I'(X, B,
Az, D): (X, B?) - (X, E?),

------------------

with the property that

Ao A= 10, A% Ar=0, ... i.e. A0 d’=0 j=0,1,2, ...

We then say that we have given a complex of differential operators.
Setting for the sake of a simple notation

EN(X) = I'(X, B)

the given complex will be denoted by:

A%z, D) x, D)

gox) 210 D) L@ D)

(3) EN(X) E(X)

b) Suppose now that we have given gradings

a?, ..., a? on E°,
(i) ) . 1
by ooy by on H',
& oy ) on E?,

.............

for i € I, I being the index set of a covering % = {U,},; of X by coordinate patches
on which each bundle E‘ is tfrivial.
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We assume that these gradings are compatible with the differential operators
A, D), AY(x, D), ... 80 that for each operator Ai(x, D) we can consider the cor-
responding symbol Ai(x, £). We obtain then the following sequence of #(X)-linear
maps

B@,8) oy oy A@ 8]

@ 7(x, B 205 p(x, (X, B%)
This sequence is & complex by virtue of the multiplicative property of the symbols
i.e. by formula (2).

The sequence (4) will be called the symbolic complex on X associated to the
given complex (3).

Let us fix a point 2° € X and let ,.(X) c £(X) denote the ideal of £(X) of those’
functions which vanish at 4. We can tensor over &(X) the above sequence (4) by
C,. = &6(X)/w,(X) considered as an &(X)-module. Then for each j>0

]

PX, B)® E(X),0(X) = P

where & = C[é,, ..., &,] is the ring of polynomials in the variables & = (&, ..., &,).
From the complex (4) we then obtain the complex

Ao, §) , B0 §) , B2 )

(4). P e

We call this complex the symbolic complex associated to the given complex (3) at the
point »°c X. ’

¢) Finally we can fix #°c¢ X and &eR-— {0}, on the fiber of T*(X)
over #°. From (4), we then obfain another complex

Ao, &)

A@, &) o, A, &)

(5) 0 — C7 cn

where C” stands for the fiber over z° of the bundle Y.

We will say that the given complex (3) is an elliptic complex at »° € X if for any
choice of £ R~ {0} the sequence (5) is an exact sequence.

We may remark that one can consider the complexified cotangent bundle TZ(X )
(with fibers C* and the same transition functions #;(x) = 0x'?[ox'? of T*(X)). Then
the sequence (5) can be considered also for given #°c X and given & e Cr, the
fiber of TZ(X ) over 2°.

d) Replacing the symbols & with the symbols of differentiation D we obtain
- from (4),, the complex of differential operators with constant coefficients on R”

(6) é"(Rﬂ)mm g(Rn)plﬁl(mo’D) éa(Rn)pﬂA‘g(w",D) o

This is what is usually called the symbolic complex for the complex (3) at the point
e X. '
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The complex (6) is a Hilbert complex (cf. [4]) if and only if

H(4)g0 g0 A% E) 5, MA@y §)  HANE §)

is an exact sequence.
We recall the following theorems (cf.[5])

THEOREM 0. — Assume that at a point 2° € X the symbolic complex (6) is a Hilbert
complex. Then the given complex (3) admits the formal Poincare lemma at 2°.

Assume that the manifold X is a real analytic manifold, that the bundles E‘
are also real analytic (i.e. on a real analytic coordinate atlas % = {U}, the
transition funetions are real analytic functions ef): U, N U, — GL(p;, C) and the
differential operators 47(z, D) have real analytic coefficients). We have then (151)

THEOREM 1. — Assume that at a point 2° € X the symbolic complex (8) is o Hilbert
complex. Then (under the above assumptions) the given complex (3) admits the analytic
Poincaré lemma at x°.

THEOREM 2. — Under the same assumptions of analyticity. Assume thai at & point
2° e X the symbolic complex (6) is a Hilbert complex.

Assume also that at the point x° the given complex is elliptic (*).

Then the given complex (3) admiis the C° Poincaré lemma ot x°.

It is still an open quesfion to decide whether theorem 2 remains valid without
the assumptions of analyticity on X, E’ Vj, and Ai(z, D).

4. — Fiber transformations and change of grading.

a) Let H be a vector bundle on X, let % = {U,},.; be a covering of X by
coordinate patches on which the bundle E is trivial

Bly, ~ U;XC

o being the rank of E.
Let

M(», D): I'(X, E) - I'(X, E)
be a differential operator from E to Z.

A2, &) (o, 220", £)

(*) In the sense that the sequence C** C? — ... is exact for any

& eR*— {0} even if the first map is not injective.
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We assume that we have given gradings

o, ..., a? on K as the «source bundle »,
oL, ol on F as the «target bundle »,

compatible with the differential operator M(w, D). This means that locally on U,
the local representations of M(x, D)

M(i)(w; D) = (m(:s)(“', D))1<r<n,1<s<n
are such that
order of m{(z, D)<al’— &
for each ¢ €I. We can then consider the symbol
Mz, §) = (M, Hlia
of the operator M(x, D). We have the following

PrOPOSITION 1. — We assume that

i) M(x, D) is & differential operator of total degree zero. By this we mean that
P i P X
Sal =3 ol Viel
1 1

and therefore for each i eI det M(x, £) is @ homogencous polynomial in & of degree
zero, thus independent of &.

ii) For each ¢
det M (w, &) = det F@(x, 0) 5 0
Then there exists a unique differential operator
N(z, D): I''X, E) - I'(X, E)
compatible with the gradings

., a? on the source bundle E ,

o, ..., a? on the target bundle E ,
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such that

N(w, D)o M(%, D) = identity on I'(X, H),

M(z, D)oN(n, D) = identity on I'(X, E).
This is & consequence of the local theorem proved in proposition 2 of [5]. We remark
explicitly that if ¥, and N, are respectively left and right inverse of M we must have

N,= N,. Indeed from N,oM = identity, MoN, = identity, as the algebra of dif-
ferential operators from F to F is associative we derive

(NoM)oN,= N, thus Nyo(MoN,) =N,
hence N,= N, as we wanted.
If e;: U;nU; —GL(p,C) are the transition functions of F we must have
MOz, D)oty () = e,(x)o MO (z, D)
and

ﬂ(i)(w, &)oes(x) = e(») lﬁ(i)(“"? &) .

A differential operator M(x, D) satisfying the hypothesis of proposition 1 will
be called a «fiber transformation »; it establishes an isomorphism of I'(X, E) onto
itself:

Mz, D): I'X, B) S (X, B).
REMARK. — If the grading on F as source and target bundle is a classical grading
t.e. Yiel

a(f)z S dg;)z k= “(li)= ee = ocg)

for some keZ then M(x, D) is a differential operator of order zero thus locally
defined by matrices M®(x) not containing derivatives and with det M(zx) = 0,
VoeU,.

b) Suppose now that we have a complex of differential operators

(3) EO(X) M ED(X) AXw, D) £0(X) Az, D)

where £9(X) = I'(X, E’) for some bundle E’ of rank p,.
Assume also that we have given gradings
ad, ..., o on B°,
b, ..., b on E*,

¢, ey on %2,
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compatible with the operators of the complex, i€ the index set of the charted
covering % = {U};c; on which each bundle F’ is assumed to be trivial.
Suppose that we change grading on the bundles B’ into

Ay eyl om B with 3o = Saf),
h R
R " 1 . i b
B, . BY on B with 380 =380,
I R
. . 2 * i )
Wy 9h) on B with Y9 =3¢,
h h

and that for each bundle E’ we give a fibre transformation

My, D): £NX) - ENX),

compatible with the old and new gradings on 7,
Set, for j=0,1,2, ...

Bi(w, D) = M, ,(x, D)oA'(x, Dyo M; (%, D).

Then
Bi(z, D): &NX) — £9+1(X)

is a differential operator compatible with the new grading. We obtain thus a com-
mutative diagram

A%z, D)

0
A%, D) S0(X) )

EO(X) A\, D)

() iMo(w, D) lM 1(#, D) lM2($, D)

Bi(x, D) £0(X) B3(z, Dr)

SW(X)

B, D)
——

EO(X) EV(X)
in which the horizontal rows are complexes and the vertical maps are isomorphisms.
The complex of differential operators

Bz, D) B\(z, D) B, D)

(6) EO(X) EO(X) EO(X)

with the new gradings {a.}, {8}, {¥}, ... will be called the transformed of the com-
plex (4) by means of the fiber transformations M(x, D), M (z, D), My(x, D), ....

Let for j>0 Hi(X; 6*(X), A*) denote the j-th cohomology group of the com-
plex (3) i.e.

____)Af(x, D) ’g(fﬂ)(x)}
w) (g’m(x)}

Ker {ca@“')(X )
Im{£-9(X)

Hi(X; €%(X), A*) =
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(setting &-2(X) = 0). Similarly, by replacing the complex (3) with the com-
plex (6) we can define the groups H/(X; §*(X), B*). We have the obvious

PRrOPOSITION 2. If the complex (6) is obtained from the complex (3) by fiber irans-
formations then for every j>0 we have natural isomorphisms

Hi(X; 64X), A*) = H/(X; £*%(X), B¥) .
This isomorphism is induced by the differential operator
Mz, D): &MX) — &NX).
¢) Let 8 denote a closed subset of X. We set
FNX) = {s(z) € 69(X)|s(») is flat on S} .

Let 2°e 8N U, and let us represent s(z) e £9(X) locally near «° by a set of O
functions

s,(x): U; —C",
We say that s(x) is flat at & if all partial derivatives of s,(x) vanish at #°;
D¥s,(m) = 0 Vo e N» .

We say that s(x) is flat on § if it is flat at every point 2 8.

The differential operator A/(z, D) sends F@(X) into FY*(X). We thus obtain
a subcomplex of (3)
A%z, D)
—_—

A'(@, D) A*(@, D)

(M F3(X) FP(X) FP(X)
whose cohomology groups will be denoted by
Hi(X; F4(X), A"), j=0,1,2,...

Taking the quotient complex of (3) by (7) we obtain the complex

(8) ENX) Aw, D) EN(X) ANx, D) &(X) A¥w, D)

FP(X) F5(X) FPX)

where we have denoted by 44(x, D) the operators induced by the differential opera-
tors A‘(w, D) on the quotient spaces. The cohomology groups of the complex (8)
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will be denoted by
Hi(X; 6"(X)|Fg(X), A¥) j=0,1,2, ...

We have the following straightforward

PROPOSITION 3. — If the complex (6) is obtained from the complex (3) by fiber trans-
formations then for every j>0 we have also natural isomorphisms

Hi(X; F3(X), A%) =~ HI(X; F4X), B
Hi(X; 6"(X)|F5(X), A*) ~ H(X; 6"(X)|#5(X), B) .

5. — Noncharacteristic hypersurfaces.
a) Let
o X >R
be a C° function on X, real valued. We consider the set
S = {we X|o(x) = 0} .
This is a closed set. We say thaﬁ 8 is a hypersurface if at each point 2° € § we have
do(x®) =0 .

If this is so at each point 2° € § we can select a system of local C* coordinates
@1y ..., B, Where ¥, = o(#). Therefore in a small neighborhood U of 2° we have

8= {we Ulp=0j.

One could define a hypersurface S as a closed subset 8 c X with the property
that for each point #°<c § we can find an open neighborhood U of 2° and a C*
function gy: U —R with the properties

dog# 0 on U,
8N U= {we Ulgylw) = 0} .

Assume we have a hypersurface § in this second sense and let % = {U};; be
an open covering of X by coordinate charts in which § is defined by the local equa-
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tions {p«x) = 0}. One verifies that on U,N U, we have
%) = hiy(w) 0,(®)

with hy,(z) 0° and h,(x) % 0.

We say that the hypersurface 8 is orientable if the covering # = {U},.; (that
we will suppose locally finite) and the local equations {g.(x) = 0};.; can be so chosen
that h,;(x) >0, Vi, jel.

‘We then claim that then and only then the hypersurface S can be defined by a global
equation {o(x) = 0} as in the first definition.

Proor. Assume S is orientable. Then if the local equations are properly chosen

h;; > 0 and thus one can consider log h,(x) for » e U, N U; as a uniquely defined
real valued funetion. We have con U, N U,N U,

log h;y(@) -+ log hy(#) = log hu(®) .
In particular for ¢ =k

log b (@) = — log hy (@) .

Let {0,},e; be & C™ partition of unity subordinated to the open covering # =
= {U_},e;- Set on U,

(@) = 3, 6,(w) log h,(@) .

This has meaning as the covering % is locally finite. Then we have on U, N U,
(@) — p(@) = 3, 0,(w){log hyy(@) 4 log hy.(@)}
Thus h;,(z) = ¢“@ e #® and therefore on U, N U,
91(99) 6ﬂi(w) — 95(00) 6#1(0') — Q(iv)

is a globally defined real valued C® function defining §. The converse statement
is obvious (take % = {X} and the unique local equation g(z) = 0).

As we will consider only oriented hypersurfaces we will stick to the first defini-
tion. In this case X ig divided into two distinet regions (closed in X)

X+ = {ze€ X|o(z)>0} and X~ = {we Xlo(x)<0}

having only the hypersurface S in common.

3 - Annali di Malematica
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b) Suppose now that we have given on X a complex of differential operators

Az, D) AY(z, D) A*(z, D)
— — —_— T,

3) E9(X) EN(X) EO(X)
with gradings on the fiber bundles B¢ j= 0,1, 2, ..., compatible with the given
differential operators.

One can then consider the corresponding symbolic complex
Aoz, &)
_—

A4, &) A2z, §)
Rl i A14 ndt LN

(4) Z(X, E°) 2(X, B") (X, B*)
Let S be an oriented hypersurface in X and let g(x) = 0 be an equation for §.

At each point 2° € § the vector
0 e
grad o(o*) = (£ (@0, . 5 (9

is defined. Another choice of the equation of § changes the vector grad o(z°) by
multiplication by a nonvanishing factor.

We will say that the hypersurface § is noncharacteristic for the given complex (3)
at the pomt 2 e 8, if the sequence

A%(a0, grad o(2°)) A(a0, grad o(2") )/’ o A*(x, grad o(2))

0 — Core Cr:

is an exact sequence.
Let e U,e% and let on U,

a?, ..., a® be the grading for E°,
b9, b(“ be the grading for E',

...................................

Choose an integer I>ol?, Va, 1>, Va, ... and let o(x) be another equation for S.
Let

grad o(a”) = A, grad p(s°)

with 2,> 0. We have then a commutative diagram

o Ao(m", grad g(m")) o ( , grad Q(x“)) Cre > ...
lzvou.,) l lNM)
on A grad 0@) o, Ao, grado@) o,
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where
Ny(4,) = diag (A5™%, .., A%y,
Ny (4,) = diag <%—b17 ooy %—bp1> ’

..................

This shows that the definition is independent of the choice of the equation of 8.
¢) Let

Bz, D) Bi(z, D) Bz, D)
——— —_— —————r .

(6) E9(X) EN(X) EB(X)
be another complex of differential operators between the same fiber bundles as before
and with a new grading compatible with the differential operators Bi(x, D).
Suppose that the complex (6) is obtained from the complex (3) by means of the
fiber transformations My(z, D), My, D), My(x, D), ....
From the commutative diagram (5) (see previous section) we derive then the
commutative diagram:

Aoz, &) Ar(a, §) A, &)
—_ —_——— —_— e

P (X, E°)
(9 lMo(w’ §) lMl(wy 3] l 2(, &)

B, &) Bvz, &)
—_— —_—

2(X, B 2(X, E?)

2(X, E) Z(X, BY)
Let us recall that at every point xe X, det M ,(x, & is independent of & and dif-
ferent from zero.

From the commutative diagram (9) taking o =a’c § and & = grad o(«°) we
derive the commutative diagram

A°(a°, grad o(%)) A2(2° grad p(2")) Cre A*(2", grad o(=°))

Cro
(10) lMo(w", grad o(2°)) [ x°, grad o(«°)) 11[ 20, grad o(x°))

B (xo, grad Q(wo)

Cn

B(x,, grad o(2°)) (a0, grad o(2°))

Cro Cm

where the vertical arrows are isomorphisms. We have therefore the following

PROPOSITION 4. — Assume that at the point x° € 8 the hypersurface S is nonchar-
acteristic for the complex of differential operators (3).

If () is another complex of differential operators obiained form the complex (3)
by o (graded) fiber tramsformation then the hypersurface S is also moncharacteristic for
this mew complex at the same point o° € 8.
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A hypersurface § in X is called noncharacteristic if it is noncharacteristic at each
one of its points (with respect to a given complex of differential operators).

If the given complex is elliptic at every point of X then any hypersurface is
noncharacteristic. Conversely if any hypersurface of X is noncharacteristic the given
complex must be elliptic at every point of X.

6. — Formally noncharacteristic hypersurfaces.
a) The local situation. We congider & coordinate patch on X identified by

its chart with an open set 2 cR*. On @ we have a (© function o: 2 — R and we
consider the set

So= {we Qlo(x) = 0} .

We assume that dos= 0 on Sp so that Sp is a smooth hypersurface. Finally we
replace £ by another open set relatively compact in 0.

LevumA 1. — We can find an open neighborhood U of Sq in Q and a new C° func-
tion ¢: U — R with

Se= {z e Uli(x) = 0} .
dt=£0 on U,

such that on U we have identically

(-

o,

ProoF. ~ On some neighborhood U of S, in 2 we have
-0
Replacing 2 by U and o by {3 (39/ow,)?} o we may assume that on So we
have
=)

We consider now the following set of equations

So

2 .
87(81,...,%)—}—8,-:9&'“ lsi<gn,

) o,
0(81y vey 8y) =0«
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The Jacobian determinant

O(%sy evey Ty 0)

det
0(Syy very Sny )

equals, up to the sign, the quadratic form

$ (6”+t 829(8))@@(8) do(s)

Bi=1 0w, 0x;) Ox; Om;

For se 8p and ¢ = 0 this form is different from zero. Thus it remains different
from zero in an open neighborhood U of 8o in 2 for [t| < ¢y for &y > 0 conveniently
small.

We can then solve equations (%) with functions
t = (2, o), 8; = 8;(%, 0) , 1<j<n,

defined for # in a small neighborhood U of Sp in 2 and for [g| < 5y With 5y > 0
conveniently small.
We consider now the functions defined on U

t = t(xz, 0) and 8; = 8,;(w, 0) .
We have identically

0 .
(%) t(w, 0) a—i(s(w, 0)) + s,(z, 0) =z, , l<ign,

o(s(x,0)) =0.
We first remark that from the nature of these equations

() thé quantities

7o 5.,0) = 1z, 0) 22 (s(7, )

Z

are proportional to the quantities (_ag/a;vi)(s(w, 0)).
Secondly from the identities onng

we derive that

(8) 3

(s{z,0)) = =0, 1<j<n,
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and
.9 02 0s .
) > 2 (s@,0) g2 (5(2,0) 52 (1,0) =0, 1<j<n.

=1

From the equations (#%) we derive also that

Hw, 0) = 3 (2, —s.(@, O))gg—(s(m, 0)).

Taking partial derivatives we get

ot(», 0) _ do
ox, 0

(s(z, 0))

because of (), (f) and (p). Therefore identically on U
ot(z, 0)\*

We thus have that the funection

t = t(x, 0)

satisfies the desired requirements. Note that #(x, 0) vanishes on Sp and its gradient
is different from zero.

REMARK. — The hypersurfaces ¢ = constant are hypersurfaces on U parallel
to So.

Restricting eventually 2 we may assume withont loss of generality that on 2
the function o satisfies the condition

b) We introduce on & the differential operators (vector fields)

8

w

R ACE

8@ 0

1<jgn.
34, am,.(‘”)ag’ t<i<n

7

We have the following formulae

(i) D, (oh) = oDh , Yhe &(82),
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(so shat D, is a tangential operator to § in the sense that it sends the ideal #(8)
of O functions vanishing on § into itself);

. 2 2 0 Y
@ [07e) = ooz 8 et
(i) E 6—9— ,=0.

Let dS denote the Fuclidian element of hypersurface area on S. We have that

0 ——~
a;mdS (= 1)5=1 dey ... A .. s

therefore

(iv) as =Y (— 89 dwl (i\(x vee Ai0y)5 .
Given a differential operator on 2

Az, D): 67°(Q) — &4Q),
D)= Y a,(@)D

lo]<®

with a,(#) matrices of type ¢xp with C® entries one can consider the (formal)
adjoint operator

A%(@, D): £4Q) - &7(9Q),
A*@w, D) = 3 (— )" D*(a (2)-) .

lo[<E
On has the following formula

fVAw, D)U dx = (4%, D)V) U do

Q

for U e @2%(Q), Ve 24Q) (i.e.  with compact support) and where dv = dw, ... dw,
For instance we have for the adjoint of 0/0p:

A
) Vo= —(g) =5+ 4e
where
_ vy
We have the following identity
. YoV . < 0 (do o

for U, Ve &) :



38 A. ANDREOTTI - M. NACINOVICH: Noncharacteristic hypersurfaces, ete.

Also we have for the adjoint of the «fangential » operators D,,

(vii) (D,)*=—D,,.

¢) Given a differential operator A(ws, D), using the above formulas, and the
fact that A**(x, D)= A(», D), we can always write A(s, D) in one of the forms

0 D o¥
55 —I— een + Ak(w, t)%i s

A(w, D) = Ao, D) + V,4,(@, D) + ... + VEA(z, D),

A(ﬂﬂ, -D) = Ao(w) Dt) + Al(wy -Dt)

where the A4,(x, D,) are operators containing only the « tangential derivatives » D,,.
Let

Q2 = {we Qo(x)< 0} .

Let ve 24Q) and u e 27(0). We have the following properties

(x) Let A(w, Dy): £7(2) — £4Q2) be a tangential operator and let A*(w, D,):
&) — &7(2) be its adjoint. Then '

fth(w, D)wdx =ft(A*(m, Dyv)ude .
ot

ot
This formula is easy to verify for an operator of the form a(x)D,, and thus in gen-
eral.

(B) Let the operator A(#z, D) be written in the form

A(w, D) = Ay(@, D;) + Vods(w, D)) + ... + V; A(w, D))
= Aq(», D;) + V, Cy(x, D)
= Ay(@, D;) 4+ V, 4dy(2, D,) + V3 Oy(2, D)

..............................

= Ao(w, D,) + Vody(w, D)) + ... 4- Vi Ci(w, D)
where

Ci(w, D) = Ay, Dy) + Vody(@, D)) + ... + V' Aulw, D)
Co(w, D) = Ay(®, D,) + Vo ds(w, D)) + ... + VZ_‘ZA'Ic(w7 D,)

..............................
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The following formula is then valid (Green’s formula)

f wA (%, D) wdw — f {A%(x, D)v)u do + 2 f (g;f) , D) u s .

- - s

The proof follows from repeated application of formula (vi):

fth(oc, Dyudw = ftv(Ao(cc, D,) -V, 0y(», D))u do =

_f Ag(», D udm—f(av) W(zy D udw+f’001 Dy dS =

_f (43(%, Dy)v udw—f (81;) D,) + V,Oy(@, D)) u dzz 4 |0y(x, D)u dS
8

s e o

L f‘vOl(w, Dyu d8 —f (S—z) Oz, D)udS = ...,
5 3

d) The sheaf F4(S). Let be given on X two vector bundles F and ¥ and a
differential operator

Aw, D): ['(X, E) -~ I'(X, F) .

Let 8 be an oriented hypersurface on X with the equation {o(») = 0} where
g: X —->R is 0 and dg|S+#0. We set

~={weX|o@)<0}, Q= {peX|o®)>0}.

Let E* and F* denote the dual vector bundles of # and F respectively. If on
the open covering % = {U;},.; B and F are given respectively by the transition
functions e,; and f,; then E*¥ and #* are given respectively by the transition func-
tions ‘e;;' and f;'. Let » = dim X and let Q" denote the bundle of differential
n-forms on X. If T#(X) is the cotangent bundle of X then with usual notations
we have Q"= A"T*X

There is a uniquely defined differential operator

A¥(x, D): ' X, F*RQ Q") - I'(X, B*® Q")
with the following property

Yodo e (X, F*E Q%) supp (v dx) compact,
Yu el(X,E) supp (#)  compact ,
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we have

f v, A(w, D)ud do — f (A*(@, D)o, u>do
X X

where (-, >dx denotes the natural bilinear form of duality
Cyvde: (X, F)x DX, F*Q Q") - T'(X, Q)
yvde: X, B)yxI'(X, B*Q Q") — I'(X, Q7).

The operator A*(w, D) is called the (formal) adjoint of the differential operator
Az, D).

It 29 = (", ..., 2?) are coordinates on U, and if A*?(x, D) is the local expres-
sion of the operator 4*(x, D) in those coordinates and if A®(x, D) is the local expres-
sion of the operator A(», D) in those same coordinates, then A*¥(x, D) is the formal
adjoint of A®, D) and on U,N U, we have

Daptd Dt

Py = detam—(z) t@;}l A*(j)(m, .D) .

A#0) (g, Dyotfit det

Let now U be an open set in X and let
we (U, E);

we will say that  is.in the domain of A(x, D) along S or that » has zero Cauchy
data on S for A(x, D), if for every

pdee (U, F*® Q%) , supp ¢ do compact in U
we have

[<g, 4@, D)) do =[<a%(@, D), uy o
2= 2=

We denote by Z(8, U) the vector space
J(8, U) = {ueI'(U, E)u has zéro Cauchy data on S for A(z, D)} .
If Vc U is open we have an obvious restriction map
Ju(8, U) — 4(8, V).

One verifies readily that

U - 48, U)

is not only a presheaf but a sheaf (denoted by 4(S)).
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If U is covered by the chart z = (zy, ..., #,).
If the equation ¢ of § in U is chosen as specified in point @) above.
If A(x, D) has the local expression on U given in () of point ¢) above.
Uy .
If w=1]: }represents a local section on U of the bundle E
Uy
then u e %(8, U) if and only if

Ci(m, Dyulg= 0, I<ikk.
If A(x, D) is a differential operator of total order % then Oz, D) is a differential

operator of order k— i.
In particular let

F(U) = {ue (U, B)ju flat (*) on §}.
From the previous remark it follows that
F(U) c S8, U) .

Also U —Z4(U) is a sheaf (denoted by F) so that we have an exact sequence of
sheaves

0> Fs—>FAS) > I8 Fs—0.
¢) Suppose now that we have given on X a complex of differential operators

Ai(w, D) A%z, D)

A D) ooy 220 D) gy gy A2@ D)

(3) ENX)

where &9(X) = I'(X, E7).

Let 8 be an oriented hypersurface in X. We can consider for any j>0 the
spaces (8, X). We have with self explaining notations, with ¢ d» compactly
supported,

f@g, AAiuyde = 0 =f<A*fA*j+1¢, u> dx
Q- Q-
- J (A*ig, Aiuyde  if we Ju(S) .
o
Therefore

.A"(ﬁ, D) JAJ(S, X) C J;im(S, X).

(?) By this we mean that for any point 2° € § and any chart # = (2,, ..., z,) at z° we
have (D*u)(z% = 0 Va e N,
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We have therefore the subcomplexes of (3)

() 508, ) 20D 55, 0y LO D) g5,y 20 D)
and obviously
(12) o) A0 D) gy ) A0 D) oy ) Ao, D)

where

FUX) = {we &Y X)|u is flat on 8} .

Therefore we have the quotient complex

I8, X) A%x, D)S (8, X) A} (2, D) F.(8, X) AXz, D)
F5(X) FHX) F3X) )

We will say that the hypersurface S is formally noncharacteristic for the given
complex (3) if the sequence

(13) 0 —

I8, X) A%z, D) I 28, X) A¥(w, D) S (8, X) AX(w, D)
F3(X) F5X) FHX) N

is an exact sequence.
We have the following

PropoSITION 5. — Suppose that the compleves

(3) EO(X) M EV(X) Az, D) £0)(X) A%z, D)
(6) £0(X) B'(@, D) EW(X) B(z, D) £0(X) B¥(z, D)

are graded with o classical grading on each bundle B (j>0). Suppose that (6) is obtained
from (3) by fiber transformations

M@): ENX) - E9(X)
(so that Bf= M,, ;0 Aio ;).

Then if the hypersurface S is formally noncharacteristic for the comples (3) it is
also formally noncharacteristic for the complex (6).

Proor. - Since the grading is classical the bundle E¢ must have the same grading
with respect to the complexes (3) and (6). Moreover the fiber transformations
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are not only of total degree zero but also in each of them each entry is an operator
of degree zero; they arise therefore from an isomorphism M;: B/ — Ei. It follows
that we have

efBj(S7 X) = M,-J’:(F(S, X) .
Hence we have commutative diagrams

I8, X) A, D) I (8, X)
FUX) T FMX)

s

Ius(8, X) Bi(w, D) Fgn(8, X)
FUX) FiX)

with vertical isomorphisms. This establishes our proposition.

) An example. Take X = R and let &(R) denote the space of C° functions
on R. Let ¢ be a Cartesian coordinate on R and let § = {0} = {t = 0}.
Consider the following commutative diagram of differential operators

(1 d/dt)
s — U, gm0, gom) U gy
1 —djat 1 0
1 1 67 6 )
ER) —r> E(R) —5—> £(R) > &(R)

1 0
(0 t(d/dt))

The two horizontal rows are complexes that can be considered obtained one
from the other with fiber transformations corresponding to convenient noneclassical
gradings.

We have

Faal0, R) ={uec &R)u(0) =0} =t&R),
Jo(0,R) ={ucé&R)}=ER),
Jf(l dlat )(0, R) = {(u, v) € EXR)|p(0) = 0} = ER) D !E(R) ,

0 t{d/dat)

f(l 0 )(0, R) = {(, v) e S*(R)} = 6*(R) .

0 ila/at)

We denote by @, the space of formal power series in the variable ¢.
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The sequence (13) reduces then to the following sequence, for the complex of
the top horizontal line: -

1 djdt )

0 #(d/dt)

wt ( -
[, g—2 s dy@ i, LU s

0 =D,

This sequence is an exact sequence, hence § = {0} is formally noncharacteristic for
that complex (3).
For the complex of the bottom horizontal line we have instead the sequence

: _(1 0 )
0 > 1, djit_ o, 0 #d/dr) o1

This sequence is not exact at the place before the last.

We conclude that the notion of formally noncharacteristic hypersurface is not
invariant under fiber transformations of general type (arising from noneclassical
gradings of the complex). The assumption in proposition 5 that the grading be
classical is therefore essential.

g) We revert to the situation considered in point ¢) above.

Setting
EY(X)

PO =Fam D

we derive from (3) and (11) a quotient complex of the form

Ay A Aj

(14) 9 (8) QW(8) ——— Q®(8) ——=— ...
where the Afg are induced by the differential operators A‘(z, D) but are not neces-
sarily differential operators. They are linear operators between the linear spaces
Q9(8) and QUHD(S).

The cohomology groups of the complex (14) will be denoted by

H/(8; @(8), 45) -
ProrosITION 6. — Let (3) and (6) be graded complexes of differential operators

endowed with classical gradings and obiained one from the other by fiber transforma-
tions.

(®) We tacitly assume that the domain along 8§ of the « empty» operator is the whole
space. Thus we have the space @) in the last place. (This may not be a correct view.)
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Let 8 be an oriented hypersurface on X and let
0 1 2
Qo(s) =22, gor() —25 gus) A, .

0 1 2
00(8) _.ES_> cn(8) _f_s_> c(8) _Bi>

be the corresponding boundary complexes. Then for j=0
Hi(8; Q"(8), A5) = H/(S; C"(8), By)
with a natural isomorphism induced by the fiber transformations.

PRrOPOSITION 7. — Let (3) be a given complex of differential operators on X. Let 8
be an oriented hypersurface on X and let (4) be the corresponding boundary complex.
Assume that 8 is formally noncharacteristic for the complex (3). Then we have
for any j>0
HI(8; Q7(8), 45) = H/(X; 6(X)|F5(X), 4%) .

Proor. — We have an exact sequence of complexes

I8, X)  EXX)
FLX) T FHX)

0 —

—~Q*(8) > 0.

By the assumption that S is formally noncharacteristic it follows that the com-
plex £*(8, X) /5“;(3_’ ) is acyelic in all dimensions (including zero). Therefore @*(S)
and &"(X)/F5(X) have the same cohomology.

7. — Local canonical form of a graded complex.

a) We want to prove the following local theorem:
THEOREM 1. — Let 2 be an open set in R* and let

A%z, D) A\(z, D) A, D)

() &(Q) En(Q) &n(Q)

be a graded finite complex of differential operators with gradings
Uy ey @y 5 byy oy by 5 0, c

o Dy ? vy Upay oo

respectively on &£7(Q), £*(Q), £7(Q), ....
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Let 8 be an oriented hypersurface on £ with equation {o(x) = 0}.
We assume that at ¢ point &* € 8, 8 is noncharacteristic i.e. that the sequence

Py

o s coo Aol grad o@) o, Aoy grado(@)) (., Ay grad o(y))

i8 an exact sequence. ,
One can find an open neighborhood w of x° in 2 and graded fiber. transformations

Moz, D): 6™ (w) — 67(w) of grading (a;, o)
My(x, D): &(w) — E™(w)  of grading (b;, Bs)
My(z, D): 8(w) — 6" (w) of grading (¢;, v.)
with
Oy weey Oy y /317 '“7/9171; Y1y coos Vo, 3
permutations respectively of

Ayy ey @y 5 byy ey by 5 0y s 05

and such that the transformed complex

Bz, D) Bi(2, D) B2, D)

(6) En(w) &n{w) En(w)
has the following properties
i) 8o = 0N 8 is formally noncharacteristic for (6);

ii) in the boundary complex of (6)

0 1 2
C0(8,y) _B_,;_> 00(8,) _BL> 0(8) jﬁ.,

for each j>0 we have (denoting by &(So) the O° functions on Sw)

C9(8y) = (8w) (some ¢q;>0)
and
Bi: 09(8,) — 09+1(g,)
is o differential operator;
iii) the sheaf on w, U — S(8, U) and therefore also the sheaf
U — S8, U)|FLTU)

are soft sheaves.
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We derive from this statement that if the grading of the given complex is clas-
gical then the considered fiber transformations M, do not contain the symbols of
partial derivations. One can thus apply proposition 5 to the situation considered.
We obtain therefore from the above theorem the following

COROLLARY. — Let there be given on X o graded complex

Az, D) AYz, D) A2z, D)
_— — —_— ..

(2) £O(X) £0(X) £0(X)
of differential operators, and let us asswme that the grading s classical.

Let 8 be an oriented hypersurface on X which we assume to be noncharacteristic
for the complex (2) at every one of its poinis.

Then

i) The boundary complex

(14) Qo(8) —A5, gug) A2, gug) A

is @ complex of differential operators on the manifold S.
ii) The sheaves
U — 58, U)
and
U > S48, U)|FHD)
are soft sheaves.

iii) The hypersurface S is formally noncharacteristic for the given complex (2).

The last statement iii) follows from the statement ii) since we have an exact
sequence of soft sheaves (ef. [11], theorem 3.5.4, p. 154)

0 —%on(S)/gfrg—%jAl(S)/g; —%jAz(S)/ﬁg > eee s

b) PROOF OF THEOREM 1. — (a) Let us assume that «° is at the origin of the
coordinates and that those are so chosen that o(x)=w,. This can be cbtained by
replacing £, if necessary, by a smaller open neighborhood of #°.

We set
&= (Yyy -y Yuo1; 1) 3 = N1y s M1y T) s

Y= Y1y oeey Ynoa) ; ‘ N = (N1 ey Nu1)

4 — Annali &i Matematica
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80 that the operator Ai(w, D) and its symbol Ei(m, &) will be denoted also by
Ay, t; 0[0y, 0[ot) and A’(y, t; 7y T).

By assumption we have an exact sequence

0 > C%e 400,03 0,1) AY0,0;0,1)

Cn Crs A2(0,0;0,1)
Therefore
Do = Qo = rank AAD(O, 0;0,1),
P1— Qo= o, = rank A1(0, 0; 0, 1)
Po— 0= Q2= rank A2(0, 0;0,1)
ie.

P;=0;+ 0ia (01=10), j=0,1,2, ...

Let # = C(5, 7) be the field of rotational functions in 7 and v. We have for
any j>0

0;< ;= rankg fI"(O, 0;79,7).

Since the sequence

0 99%%110(07 039, 7:)§ Fpm jil((), 059, 7)

%mfiz((), 0; 7, 7)

is a complex we derive that for all j>0

Therefore

Since the complex is finite we can then find a small open neighborhood w of #°
such that for # = (y, t) € ® we have

0, = rank, Af(y, t; , 7) Vi, hew.

Indeed if §,(y, f) denotes this rank we have g, = g,(y, ¢) for all j and a con-
venient w. On the other hand as before we derive the inequalities

0y, 1) + 8;(y, 1) <p; (é~1(?/.’ 1) = 0) (cf. [5], lemma 1).
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(B) Let C,[v] denote the graded ring of homogeneous polynomials in the
variable 7. By .#,,,(Ci[t]) we denote the ring of p Xp matrices with entries in
Cyf7r]l. By a homogeneous matrix of grading a,, ..., a5; oy, ..., o, (abbreviated
(@;, @) in A, ,(Col7]) we mean a matrix M(z) € .4, ,(Cylz]) with M(z) = (my(7))
where the m,;{7) are homogeneous polynomials of degree a, — «; (the zero polynomial
if @,— o;<< 0). The number » a;— > o, is called the total degree of M(z). By [5],
lerama 2, we can find homogeneous matrices R(7) € .4, ,(Col7]) and L(z) € A, .,
-(C,[7]) of total degree zero and determinant different from zero of gradings (a,, ),
(b,, B:) as specified in the statement of the theorem, such that '

0
L(2)A°0, 0; 0, 7) B(z) = | 7™
gt

If we apply the fiber transformations R(5/0t) te £7°(£2) and L(0/0t) to £(£2) then

0 9\ . 0 o 0 )
AO(% t; @’E) is replaced by L(a—t)A,O(y, t; @’@)R(é—t)’

Al(% t 3% ,—aa—t) is replaced by Al(y, t; é%/ ,%)L—l (g_t)

and the other operators are unchanged.
‘We can thus assume that

0
A%0,0; 0, 7) = | ™

ke

and that b,>b,>...>b,,.
Then in A%(0,0; 0, 7) the last g, columns must be zero since

A0, 050, 7)A%0,0;0,7) =0.

(y) We can find homogeneous matrices E(r) € %elxel(‘co[ﬂ) and L(v) € M, «p,
“(Col[7]) of total degree zero and determinant different from zero amd of gradings
(b;, B) and (¢;, v,) as specified in the statement of the theorem such that, by

replacing

-1
0,000, vy (U070 J)av0 00,7,
o & 0
£0,050,1 by zod0,050,1(%7 ),
we have
0 0 0
A°0,0;0,7) = { ™ ,  AY0,0;0,7) = | ™
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and
bi>by>...>0b,,, 01> 0> .. 2> 0p,
. R(ojet) 0
We apply the fiber transformation 0 7 to &) and L19/0t) to &**(Q).
Then A° and A! are transformed in the way indicated above, A2 is replaced by

A2y, t; 2 2 e 2 , Wwhile the other A4’ are unchanged .
oy’ ot ot

We can therefore assume that A° and A* have the forms indicated above. More-
over in A2(0, 0; 0, 7) the last o, columns will be zero.

Operating with A1(0, 0; 0, ) and 420, 0; 0, 7) as we did before with 4°(0, 0; 0, 7)
and A(0, 0; 0, 7) and so on, we realize that we can assume without loss of generality
that

0 0 0
fIO(O? 0;0,7)= Tkl-.. 3 jil(O, 0;0,7)= Thln, )
" e, “gte 0
0 0
A0, 050, 7) = [ ", ;
Sl 0

With b;>...>b; €,>...> 605 -...

(0) According to [5], lemma 3, in an open neighbourhood  of the origin in R»
we can find fiber transformations

M on £%(w) of grading « (a;, «;) »
N on &%w) of grading « (b;, £, »
P on &%w) of grading « (¢;, i) »

......................

such that the gradings are as specified in the statement of the theorem and with the
following properties: write
AD 4D
Ai(x, D) = ( )

49 4P

AP
.AO({L', D) :( (0)) 3
AP

MAD, NAD, PAD, ...

with A(z") of type g,Xo; (thus

then the matrices
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are of the form

. ak‘ ak%
MAQ = diag <ét—kx 1oy B > + R

. "1 a ey
NAY = diag <a7“, o B R I

8’1 ali’z
(2) __
P4 = ding (g7 o i) + T

.................

with B = (ry), 8 = (84;), T = (i), ... such that

0
Tl

order of s,; in

0
a <o

order of r,; in

8
order of t,; i 8 <l;,

Then the systems MAY, NAY, PAD, ..

We apply the fiber transformations

I 0
(0 M) to

I 0
(0 N) to  &7(w

I 0
(0 P) to & (w

and thus we replace

. 0
0 0
A with 0 ]l[)A ,
. I 0 I
1 1
A with (0 N)A (0
. I 0 I
2 = 2
A with (0 P)A (0

0 d\-
y? 78'/ at
0 0
Y, ’a 7@)7
(?/, 78 7875)

.......

gr(w),

),

)5

. will lead to well posed Cauchy problems
on t =0 in the sense that those systems are in Cauchy-Kowalewska form.

This will not affect the canonical forms already obtained for the symbols A (0,030, 7).
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We can thus assume also that

Oeq 0 0
AP _dlag<atk e S >+R( ; 3 ’Bt)’
. ot Ol ¢ 0
A(l):dla‘g<m, ...,ath >+S( Y, ,a 7at),

0 0
A5 = diag <8tl1 " Bt )+T(y’ oy 8t)

........................

with R, 8, T, ... of the form specified above.
() We apply now lemma 5 of [5] and write
AP = A L R,,
AD =@ AP L R,
AP =Q, AP + B,

-----------

with @, and R, differential operators (of proper gradings) with

Ry=(r) and order of rY in gt<kj7 1<j<go,
R (1) (1) 0 3

v = (r;7) and order of 1} in é_< h; , 1<j<o,
R A(2) (2) 0 H

, = (#37) and order of 7% in §<l 1<i<p;.

Performing the fiber transformations

(I ‘IQ") on Er(w),

0 .
I —6 71
(0 I) on E(w) ,

| (ﬁ “QII) on Er(w) ,

these fiber transformations have the gradings specified in the statement of
the theorem; moreover for
At()j) _Agi)
;= (Aéj) Agj)) ’ 7 = 07 17 27

we realize that
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we can make the assumptions specified in points (y), (6), and suppose also that

. .0 .
in AP = (&), order of af in 5 <F s 1<j<0o,
: W W w i O ;
in A" = (o), order of oy in E—ﬁ<hj, 1<ji<eoy,
: (2) (2) @) s a 7
in AY = («;7), order of oy in é—t<lj, 1<j<ps,

................................

With all these conditions verified, we call the complex in « canonical form ». A com-
plex of differential operators in canonical form is therefore a complex of the fol-
lowing type

0 > Eo() =20 £0(0) @ S0(0) —r () @ E0 () —n ..

with gradings on the spaces &%w)@ 6%*(w) (6°*(») = 0) compatible with the
differential operators
) o 9
41(115 52 7)€ @ o) > E01(0) @ 6w
) A(]’) A(i)
A7 = (Azi) Agj)) ’

where A§ is of the type g, x g; With

, 0 0 o’ ok 0 0
(5 . i X § .
A (y’ b oy’ 8t) = diag <8t’“‘1” T k) " )(y’ b oy’ at)’

where each entry #,, in RY is an operator with

. 0 .
order of 74, in 3—t< ED

and where the operator A((,“ has every entry «,, with

0 .
order of o, in < A2

We set

4=k 4+ .+ ED.

It is also assumed for the gradings {a;}, {b;}, {¢;},... that

bi>..2b, ;5 ¢,>6>..>0,;
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and that

2 0 0

A%0,0; 0 =\ .

0,050, = (G o)
with
A90,0; 0, 7) = diag (%7, ..., 79> .
In all this picture § = {¢ = 0} is the basic noncharacteristic hypersurface that

has determined the eanonical form.

(£) We consider for every j>0 the linear map

g: §%w) - &% w)P Q) ,

ou) =uPo.
LEMMA 2. ~ Let
fr
f=1:[eévw).
T

The following are equivalent conditions
i) fe (8, o),
ii) 0°fn0timo = 0, 0<s<k—1, 1<h<p,,
iii) o(f) € L 4(8, w).

ProOOF. — The equivalence of i) and ii) follows from Green’s formula.
With the notations used in number 6 b), for the operator AY we have

(5 ()
oY —1 Do) —1

Oz, D)= diag <atk(?"" vy 8t’°‘e§"1> + lower order,

) ()
R -2 oe; 2

Cy(z, D) = diag <8t’“§”—2’ ey 8t’°‘e§"‘2> +- lower order,

where in C,(x, D) «lower order » means that in the entry (r, s) the order in o/ct
is <k9— h.
It follows then that the conditions
01(m7 D).ﬂszo ’ Gz(w’D)fIS:-O,

are equivalent with the conditions given by ii).
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Now let o(f) € £5(8, w). This is equivalent to saying that

f e (8, w)
and

fe LS, w).
Thus iii) =~1i). But if f € £w(8, w), because of ii) and the cancnical form of AP
we deduce that automatically fe (8, w). Thus by the above remark o(f) e
S JZH(S? (D)

Let &(8) be the space of C° functions on § = {(y, ) cw[t = 0}. Note that

E(w)|Fs(w) = EB){{}}, the space of formal power series in ¢ with coefficients in

&(8). From the equivalence of conditions i) and ii) in the previous lemma and
from the canonical form of A% we deduce the following

LeMMA 3. — For any j>0, given f e (E(8){{t}})¥ we can find o unigue u € (&(s) .
{{8}})¥ such that

. o 0
[E2X A [ Y
AZ (3"7t7ay7 at) (4 f
uEfA(Zj)(w, 8)| F¢(w) .
Lemma 4. - We have the following
i) for any j>0
I8, w) = At aSyg(8, ) + 0 5p(S, 0) + Fio)

with Fiw) = (fs(w))g““‘-”"l.
ii) the map

Eo(w) o) @ Eom(w)

TGS w) T I w)

is an isomorphism.
Proor or i). — For j =0 u e §%w) is such that

e L8, w)

if an only if

% € F40(8, o)

(as this has for consequence that ue J»(8, w) also).
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Therefore in this case

(8, w) = Fe(8, w) .

Here ¢ is the identity map on &*(w). This shows the validity of i) for j = 0.
Let us assume that j>1. Let f = (z € 6% w)Q &% w) with fe F,4(S, w). By
lemma 3 we can find w € S9-5(8, ©) such that A9 Vw =» mod (Fs(w))?.

By lemma 2 ¢(w) = 7:)) € 44(8, w) and therefore Ai-1g(w) € £,;(8S, w). Moreover

M—A((,j_l)w
(%) f—Alo(w) = 0 mod (F(w))eite-:,

By lemma 2, 4 — 4w e S(8, w). This proves our contention.

Proor oF ii). ~ By lemma 2 ¢ is injective. To show-that ¢ is surjective we pro-
ceed as before. If j = 0 there is nothing to prove. Let f= (:) € &% w) @ &4 w)

with j>1. As before we can find we Fu¢-u(8, o) such that (%) above holds. As
A g(w) € £,4(8, o) we obfain the desired statement.
As a corollary we obtain the following

LEMMA 5. — The sheaf on o
U-4,8,0)

is & soft sheaf, (§>0).

Proor. — To prove this fact we use the following criterion,
On a paracompact locally compact space X a sheaf & of abelian groups is a
soft sheaf if the following holds

for any point # € X we can find an open neighborhood U of # with the property
for any compact set Fc U,
for any section sel'(U, &),

we can find a section sye I'(U, #) such that

supp syc U,

SUIFZ S,

(we can assume U relatively compact).
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Now this property follows immediately for the sheaf considered from formula i)
of the previous lemma. One has only to remark that the sheaf U -» F4(U) is a
fine sheaf as it is a sheaf of modules over the sheaf & of 0« funections on X,

From the fact that U — £,,(8, U) is soft and that U — F%(U) is also soft
(being a fine sheaf) it follows that the sheaf U — .7,(8, U)/#%(U) is also a soft
sheaf (cf.[11], theorem 3.5.3, p. 154).

Statement iii) of theorem 1 is therefore proved.

(n) We can now prove statement i) of theorem 1, i.e. that the sequence

Sp(8, w) A° Fu(S,0) A1 Iu(S, ) A

0= Zrw) Fw Fiw

7 aea

is an exaect sequence.

Let us consider first an f € £,.(8, o), and assume that 4°f € Fg(w). We have to

show then that f € Fg(w). Now A‘z‘”f is flat on 8. By lemma 3 f must be flat on 8
ie. fe FYw) as we wanted, because (as we have already seen) fe .Z(S, w).
%
0
This is possible by lemma 4i). If A'fe Fi Y(w) then AP w is flat on S. Because
of lemma 2 % e (8, w). By lemma 3 we deduce that  is flat on § ie.

Let now j>1 and choose we Jy6-0(8, w) so that f— A lo(w) = mod Fi(w).

fe Ai-lg(w) + Filw) .

This proves that f is in the image of A7 and thus the exactness of the sequence
at the j-th place.

(6) Tt remains to prove statement ii) in the formulation of the theorem.
To this purpose it will be enough to show that we have a commutative diagram

E%(w) - Af,ot E%u(w) A () AP
Jngo)(S, ) ngx)(S, w) ‘ jA‘,’)(‘S’ w)

I I lF
En(w) A % w)DEr(w) Al Eu(w)d % w) A°
Fp(8, w) Ju(8, o) J(8, o)

where the vertical isomorphisms are those given in lemma 4.
Let u e %w) be given. We can find by lemma 3 w e S¢'(8, o) such that

APw = ADw mod Fs(w)? .

Clearly « and % — w belong to the same class mod JQ(;’(S, ).
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Now

Aio(u—w) = (ﬁ‘;’fiﬁzizﬁi) — (Agj)(‘(‘)_ “’)) mod Fi(w).

This shows that in the above diagram we have commutativity (at the j-th place)
sinece Fi(w)C L8, w).
We remark explicitly that, by lemma 2,

_G¥w) ‘ g o
jA’(aJ')(S, CU) — éa(S n C()) '77 (QI - kl _'_ b + kgj) .

~

One then verifies that each operator Aff) can be written as a differential operator

B;: (8 N w)* — (8 N w)in

because A(? is in canonical form.
This statement could also be deduced from Peetre’s theorem and the fact that B;
is linear continuous and

supp B,u C supp « .

With this the proof of theorem 1 is complete.

¢) Let now ¢ be any paracompactifying family of supports ([11], p. 150) and
let (2) be a complex of differential operators on the manifold X.
Let 8 be an oriented hypersurface on X defined by the equation {p = 0}.
We set

Xt = {ze X|o(x)>0}, X = {reX|o(»)<0},
and we define the groups
Hiy(X, &%), HLX*, &%, HLX, &%)
as the cohomology groups with supports in ¢ of the complexes

A Al
EP(X) —> EP(X) — EP(X) —...

&Y AO (1) At (2)
@ (Xi) —— (r)(d¢ (Xi) —_— éd¢ (Xi) > aee

where

£ = fps S9N upp s € )
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and where &9(X%) represents the C* sections of B/ on X* up to the boundary S
but not beyond it, while

SYXE) = {se 69X suppse g N X4 .

Similarly we can define the boundary eomplex with supports ¢ by means of exact
sequences of the form

0 = S4X, 8) - EPX) - QP(8) -0

(fj,(X, 8) = I(X, #,.)) and the groups HQ(S, ()*), these being the cohomology groups
of the boundary complex

0P 225 gp(5) L 0P(3) > ...

From a standard argument we derive the following

THEOREM 2. — Let (2) be a complex of differential operators on X endowed with a
classical grading. Let ¢ be a paracompactifying family of supporis.
Assume that the hypersurface S is noncharacteristic. Then we have o Mayer-Vietoris
exact sequence '
0 — H;(X, &%) — Hg(X+, &%) @ Hy(X~, 6*) — Hy(S, Q%) —
— HY(X, 6%) - HY(X*, 6% @ HyX-, 6% — H}(S, @*) — ...

ProoF. — By the corollary to theorem 1 we have an exact sequence of soft sheaves

I 4o I B
0 94‘?—2%%—9%9

From this, by taking sections with support in ¢ we derive an exact sequence

jﬁ“(sy X) jﬁ‘(‘g’ X)
& O TEm T FHT)

where
%8, X) = {s € £,5(8, X)|supp s € ¢} .
Indeed one has
Jo\ I8, X)
I ( X __4_) — AV
@ 7%—‘;
because the sheaves £, and F% are soft.

From the exactness of the sequence () we derive the Mayer-Vietoris sequence
by the usual argument (ef. [3]).
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8. — An example: boundary values of pluriharmonic functions.

a) Let X be a complex manifold. For every open set £ c X we set ‘

A"(Q) = space of C* forms of type (,s),
ANQ) = @ 4™(@),

r+s=j
d = exterior diﬁeren’ﬁial, d = 0 -+ 0 where ¢ (resp. 0) is the exterior differentiation
with respect to antiholomorphic (resp. holomorphic) loeal coordinates.
We consider the following complex of differential operators

(@) A%(Q) iAll(g) ._d_>A12(_Q)@A21(_Q) —j-—>

a et d d d
o e @) APHH(Q) > AC(Q) s .~ ACNHQ) 50

j=1

If 2 is open and s#(Q2) denotes the space of (complex valued) pluriharmonie
functions on £ we have the exact sequence (which gives an augmentation to the com-
plex («))

i 00
(¢) 0 > H(Q) —— AQ) — ANQ).
Let S denote the sheaf of germs of pluriharmonic functions on X and let @

denote the sheaf of germs of holomorphic functions on X. We have the exact
sequence of sheaves

B) 0—»0—-9‘—%0@5__”7_,3{/90

where
a(a) =a®Da (aeC),
W@y =f—g fe0,ge0,

the bar over O denoting complex conjugation so that @ is the sheaf of germs of
antiholomorphic functions.

This complex is a complex of differential operators with constant coefficients
in any holomorphic ceordinate patch.

b) For the complex (x) the bundle E° is the trivial bundle, the bundle E! is
the bundle 7*(X)® J *(X) where J*(X) is the holomorphic tangent bundle, the
bundle E? is the bundle 7*(X)® A2 T *(X) @ A2T*(X)® T *(X) etc. Gradings will
be chosen classically so that there will be a jump of two units from E° to E' and
of one unit from every bundle B’ to the successive F/*1,
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To write the symbolic complex of («) at a point we will nse the following nota-
tions:

P= C[El? te0s ény 51, very gn]

ring of polynomials in the indeterminates & = (&, ..., &,) and & = (&, ..., &,).

P"* = space of exterior forms of type » in d&, ..., d&, and of type s in
dg,, ..., d&, with coefficients in P,
P(J’) — @ Pr,s’
r+s=j

=Z¢§idfz‘7 &=z§id§i-
1 1

A direct verification shows that the symbolic complex of (x) at any point z,e X
(i.e. the complex denoted before as (4)%) is the complex

AXNE INCES) (OH-“)

Pll PIZ @ P21

(8) Poo

“+“()P"f @+3) poy At @ At po, g

We know that (x) is an exact sequence on any countable open set of holomorphy;
in particular on any open set £ convex in a holomorphic coordinate patch [9].

A

This proves that the transposed complex (&) of (@) is exact. Taking into account
the isomorphism

Pr,s ~ Pw—r, n—s

the complex #&) can be written in the form
Pn-«l.’n—z

e

Pn—-l,n—-l @

[P

Pn——z,n—l

é/\(oe—H'é)

AEN& Aot 4+ &)
B S L e ..,

€8) 0 < N < Pon

Al - &)

ves JSNE X gy

Al + &)

po-n o . L E T po g

where N is the cokernel of the last map. The exactness of the sequence *d) can
also be established directly by the results of [4] (corollaries 1 and 2, pp. 606-607).
The complex (x) is a particular Hilbert complex.
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) Let § be an oriented hypersurface given on X by an equation g = 0.
Writing 2, = ®; 4 @,,; for the local holomorphic coordinates on X we write the
gradient of o in terms of holomorphic and antiholomorphic coordinates

e olo) = (£, 2, 2, 22)
We have
a(grad o) = 3 a%%dgi —%,
Hgrad o) = 3 72 08, = o

We also set

€™ = gpace of exterior forms of type r in d&,, ..., d§, and of type s in
d&,, ..., A&, with coefficients in C,

C(a’) — @Cr,s ,

r+8=j

and note that C** ~ C"~""7%,
Now remark that the map

Pn.n (/\ 0(/\ « ]Pm—l,n-—l

is given by the matrix of one row

(51515 eery ‘fiéa‘y erey Snén) = MO(E, E)
so that in C** where &, ..., &, &, ..., &, are independent variables the variety
V = {(§ &) e C|MUy(§ &) = 0}

has no point, except the origin, where £ is the conjugate of & (4).
In particular ‘

_ (2 o9 00 @g
grad o _(le’ ""%75571""’55—")¢V.

(9) V is the union of the two linear spaces L = {£, = 0,1<i<n} and L = {§, = 0,
i<i<n}l
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From [5], proposition 1, we derive that we have an exact sequence:
Cn—l,n—z
/\f@/
/\8@/\5@ C-n——l,n—l
/\TaQ\
Cw—z,n—l
NBe +80) o, AP0 +00)

LT oy,

e -+ o)

t(A/) 0 <« Cn.n < @

v < Gl <

From this exact sequence or better from the exact sequence obtained by transpo-
sition:

ABoAGo -, A(Bo+0p) A(Be+3)
> C —_—

() 0 —C» > Cr@ e >

— C("H‘l) M@l C(?’H—f&) — .. /\ (a@ +§Q C(Zn) — 0

we deduce that the given complex is elliptic at every point and that any hypersurface
S is noncharacteristic.

d) We have now the following

LEMMA. — Given the complex (x) and the hypersurface 8 = {o = 0} in Q, the suc-
cessive domains of the operators 90, d, d, ... of the complex () along S are given by

S (8, Q) = 0* A*(Q),
.fd(S, Q) = QAH(‘Q) + ag/\gg A%(82),
S8, Q) = o{Ad™(Q) + A (Q)) + do A(Q),

.........................

.........................

I8, ) = gAe(Q) + dg ACr1(Q) .

PROOF. — «) Let g € A%(R2) and let e 2" ") where & denotes compactly
supported forms. We have

J@&p/\u zfa—(}”/\% —I—fsv/\au—f(}?g@u :
o 8 s o-
Thus ¢ € S5(8, Q) if and only if Yue 21 1(Q)

() f@(p/\u +f<p/\au=o.
S 8

5 — Annali di Matematica
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Take 2, 8 at the origin of the coordinates. Setting 2, = a, - iy, we may
agsume that 8§ N Q is given by

0 =Yn— (%, -rr) 21, Ta)
with ¢ (% and vanishing at the origin of second order. Taking
W = (0UZ1y +ey Zn_ty Tn) + Yu— 0) P21y vvey Pu_sy Tn)) oy ... A2y_y 0By ... dZ,_,
with o and f§ compactly supported we realize that if
p = ¢z, ..., Zn_q, ¥) + OPH(B1y wrvy Buy Tu) + ...

we must have ¢° =0, ¢' = 0 i.e. g€ g2 A4°(Q). Conversely, if this holds then (%)
holds and ¢ e (8, ).

p) With selfexplaining notations we have for ¢ € A1(Q)
fd¢A(“"_1 n—2 ‘l‘ yn—2 1) =f¢/\(un-—1 n=2 ] gyn—2 n—1) _{_f(p/\ (5un—1m—z + aun—zm-1) .
o2- 8 Q-

Thus ¢ € £(8, Q) if and only if
f(p/\%n—l n—2 — 0 =J(P/\un—2 71
: 5
Yuyr—1r—2g Q-1 n—2(g) and Yyr—2r—1 c Gn—2 n—l(Q).

Taking into account lemma 1 of ([2], part II, p. 755) we get the desired con-
clusion as we must have

(P/\a-le =0,
pAOels=0,

where the restriction means restriction of the coefficients of the form considered.

V) Let ¢ = @2 - @ e A13(Q) | A2(Q2). To have ge £(S, ) we must have
0 ___f(plz/\ g1 n—3 =J(¢12 4 ) A g2 vz =f¢21A%"_3 n—1
8 8 )
Yyr—1 n—3 c gn—1 n-—3(9) ) Vur—2n—2 g Qn=2 n—z(g) y Yyr—3n-1¢g Gn-3 n—l(Q) .

From the first and last integral we derive that

P12 = o2 |- 5@/\,311 ,
@ = gy - Gp\ S,
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with convenient forms «?, f, 21, 't in 2. From the middle integral we get then

f(g'@‘gn + ag o1ty g2 =2 =

S
ie.

fgg(ﬂu — fyyrEn—2 =0
8

since f do 61 y»—2n—2 = 0 because the form do induces the 0-form on §. Thus dg 1 =
8

= 0p 811} p6?! and therefore

(p12 + gpzl j— Q({x12 + 921 + ,})21) + d@ 611 .

d) The general argument is the same as in y).

We define therefore on S,= 8N Q

A0
QO(8e) = E—I’("(—.f)g) =~ AO(8p) + 9. A®(8g) .
A1(Q)
(1) = =
O (Sa) = CA0) T+ 20nG0 AMD)”
z Ar,s(g)
s for 2 1
(M)S — t21,82 T < < —
Q ( 9) 0 z AT’B(.Q) - dQ z _Ar,s(g) _0 n<n i
r+s=u+1 r+8s=u
r=zl,821 rzl,s=21

QW(Sg) = AWD(8g) for n<p<n—2.

where A9(S) denotes the space of forms of degree j on 8. The boundary complex
has therefore the form

QO(8) —@% QU(8) —d—s> Q®(8) & %df Qm(8) —d>~Q("+1’(;S’) —d+ —d> QE-A(8) = 0.

Note that the last part from @®(8) on coincides with the de Rham complex of
exterior differentiation

A(g) a4 AE(8) 4.4 AFT(S) >0

¢) Explicit expression of the operator (00)s. Let z,€ 8 be at the origin in its
coordinate pateh £2. We can assume that there

@Eyn—o(zly vy Bpyy xn) ’ . zn:mn"}“lyn
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with ¢ vanishing at the origin with its first partial derivatives. In a small neigh-
borhood of the origin we will have expressions of the form

n—1
dz, = ado + Y a; dz,,
1
_ a—1
) 1
with «(0)50, «;(0) =0, 1<j<n—1. Actually

—1
a=~2(i—{—§§) and oc5=a-a—?-

n azi '
Also

n—1 n—1 n—1
000 = > l;;dz; dZ;, 4 00 > B, dZ,— 0o > B.dr; + y dpN\0p .
1 1 1
Note that the analytic tangent space to § at the origin is {z, = 0} and that
n—1 )
> 1,(0) dz; dZ; is the Levi form of ¢ at the origin restricted to the analytic tangent
1

space.
We can take 2, ..., #,_, and x, as local coordinates on 8§ near z,.
Let

uy + gu € A%S) + pA%(S)
with

Ug = Ug(Ry vevy Zn_yy ) Uy = Uy(Bry oory gy D) «

The equations (00)s(to - ou;) = 0 can be written as

00(uo -+ ouy) ADgls= 0,

(9) - -
00(uo + oui) Adpls=10,
taking into account the form of the space Q®(8). Here restriction to § means
restriction of the coefficients of the form.
This allows an explicit calculation of that system of equations.
We set, for 1<, j<n—1,

0? 1. o° 1 02 1 _ o
L = 02, 0%; Ty Dz, oy, Ty 0%, 0wy, +Z“i“j8_9ﬁb’
2 1 ~ 82
8 “{azzaxﬁ“z zamﬂ}’
A e
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Then the system of equations (20)s(u,+ ou,) = 0 reduces to the system of (n—1)-
-(» -+ 1) equations

Lot + Ly = 0,
{ 1<, j<n—1,

Siug + Touy= 0,
{ I<ig<n—1,

giuo + Tﬂh: 0,
I<igsn—1.

REMARK. — Assume that the Levi form of ¢ along the analytic tangent space
to § is different from zero. If u, -+ ou; and u, 4 gu’: are two solutions of the equa-
tions (d) then wu, = u’: Moreover, locally, we can, from one of the first set of equa-
tions, obtain u, in terms of 4, and substitute in the remaining equations. There-
fore u, satisfies in that case a set of differential equations of second and third order

(ef. [13]).

f) Hartogs type theorem. We assume now that § is compaet in X and that

X = {weX|o(x)<0} is compact ,
Xt = {geX lo(@) > 0} has any connected component noncompact ,
{o = 0} being an equation for S.

Let H°(X ™, #) denote the space of C° funetions on X~ which are pluri-
harmonic in X~

Let H°(S, #Y) denote the space of couples of funetions w, 4- pu, € A%(S) -+
+ 0A°(S) satisfying the equations (9):
(00)s(up + gui) = 0.
Let
r: HY(X ™, #) — HY(S, #Y))
be defined by |
r(h) = o+ ot

where
Uy = hlg,
. dah
Uy == dols’

We have then the following
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THEOREM 3. — Under the above assumptions if the manifold X is (n— 2)-com-
plete (n>2) and HAX, C) = 0 then the natural map

r: H(X™, #) — HS, #Y)
is an isomorphism.

Proor. — From the Mayer-Vietoris sequence with compact supports we deduce
that we have an exact sequence

0 — H(X, o) > HYS, #)  AYX, 7).
From the exact sequence of sheaves (§) we deduce the exact sequence
HY(X, 0)® HYX, 0) > H(X, #) > H}(X, C) .

By the assumption that X is (n — 2)-complete and by the duality theorem we
derive :

HYX, 0) ~ H(Q, Q") = 0

where Q» is the sheaf of holomorphic n-forms (cf. [1]).
By assumption also H:(X, C) = 0. Thus Hy(X, #) = 0 and from this we deduce
our conclusion. :

REMAREK. — The above agsumptions are verified if X is a Stein manifold of dimen-
sion #>3 [0] or if X is Stein of dimension 2 and HE(X, C) = Hy(X, C) = 0. In par-
ticular for X = C* n>2. We have indicated with s the sheaf on § defined by
the exaet sequence of sheaves

(09)g

0 > #P - Qo5 gw
where for 8y open in § @ and @ denote the sheaves
Sy — Q@ (8y) , Sy — QV(8y) .

We denote by 5 the sheaf of germs of ¢° funetions % on 8§ such that we can find
a germ of C” function v on § with

(@0)s(n 4 gv) = 0.
If

L AM) A9
¢ @2_A00(!2) QAOD(Q)
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for every £ open in X is the natural map we deduce, at the sheaf level, a natural map
o: QO > A®

where A©® is the sheaf of O germs on §.
From the above considerations we have a natural surjective map

Jffgl)i Hy— 0.

Taking into account the remark at the end of point ¢) of this section we obtain
the following

PROPOSITION 8. — Let the hypersurface 8 in X have the property that the Levi form
of o on the analytic tangent space to S is nowhere zero. Then the natural map o is an
isomorphism of sheaves:

HY = Ay

COROLLARY. — Under the assumptions of theorem 3 and of proposition 8 the natural
map

H(X™, #) — HY(S, #s)
(given by h — hls) is an isomorphism.

REMARK. — Let & be a C° function on X~ which is pluriharmonic in X~ (so that
00h = 0). Then

o=0h, B=0oh,

are closed forms on X~ with O coefficients up to the boundary. Fix z,€ X~ and
let z be a variable point and assume that HY(X™, C) = 0. Then

f(2) :f“ is 0° on X~ and holomorphic in X~,

g(=) =f,3 is ¢ on X~ and antiholomorphic on X,

and

Mz) — h(z) = [(2) + 9(2) .
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g) The sheaf #5. For 2 open in X we set S, = SN 2 and define

AOO(Q)

e4%(Q)
A0(0)

0A™(Q) + T A®(Q)’

A(85) = = A(S5) ,

A%(8g) =

The operator 0 on X induces then a boundary operator s (ef. [1], [2]) and we get

a complex
Js s
A®(Sg) 5 A%Be) = ...

Denoting by AY the sheaf 8, -—>AY(S,) at the sheaf level we have a complex of
sheaves
00 a-S 01 8_5'
(C) O_>(OS~>AS9AS—+...
where by definition 05 = Ker {49 ‘l%Agl}.

Passing to the complex conjugate we define analogously the sheaves A%, the
operator 0y and the complex of sheaves

() 0 >0 > AY > AL — ...

We define Fg(Q2) = {pec A™(Q)|p is «flat» on §}. By «I'» we denote the usual
functor « sections ». .

LeMuMA 6. — Let f € I'(8y, O5). There exists a representative fe A"(8) of f such
that

of e F310)
(and fls=1.
This is lemma 2.2 of [2], part I, p. 240.

LEMMA 7. - Let wu, - ou; € I'(So, #W), there ewists a representative i € A%(L)
“of U+ ouy such that ’ '

0ot e FF(Q)
(and @ls = uy, diijdols = uy).

ProoF. - We denote by u, and u, any fixed extensions of these functions to
as C% functions. We have

00(uy -+ o) = goyy -+ pA\00 B
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with a, € A1) and B, € A°(Q). Then with «, € A1(£2) conveniently chosen
aa—(uo + o — § 0261 = Q“i
and as 0 and 0 applied to the left hand side give zero, we get

angc;]sz 0, 8-9/\<x;|s: 0.

Hence
oy = oo, + 8@/\8‘9/)’2
with convenient o, and f§,. Thus we have
00(uo + o — % 021) = 0%+ 0 90A\00 B
and with a convenient ey,
00ty + our— F 0 i~ G 0°Fs) = ¢*cu.
Moreover one has
doAoals =0, doMauls =0
so that

o2 = oot + B0\ Gg AP

with convenient oy and g,.
Proceeding in this way we see that we can solve the equation

00(uy -+ ouy 4 ...) = 0

with a formal power series in ¢ with coefficients C* on S, where OF denotes
« vanishing of infinite order on §» By the use of Whitney extension theorem
(cf. [2], I, proposition 22, p. 337) we conclude as desired.

Let A™ denote the sheaf of ( exterior forms of degree r and let F denote
the subsheaf of those forms with coefficients « flat » on §. We set

W = AD|FD
Exterior differentiation induces a natural map

d: W = W |
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LeEMMA 8. — The following is an exacl sequence of sheaves
0>Cowoh wok wo l

Proor. — Only the differentiable structure is concerned in this lemma. We may
assume to work in R~t! near the origin where (v, ..., #,, ) are coordinates and
where § = {t = 0}.

The exactness is obvious on W,

Let

(B, do) 1 dt ¥ V2, dw))

e
-
cMS

be an element of W¢), with r>1. Here g and o¥'~" denote germs of exterior forms

of degree r and r-— 1 respectively.
Let d, be the exterior differentiation on the variable . The eondltlon dw =0

is equivalent to the conditions

a9 (@, dr) = 0 Vn, ‘
(n 4+ 1) 82 (», dov) = d 0"V (w, dz) Vn .

n+1

From the first set of equations we derive that we can find forms AV (z, dz)
such that

BN w, dw) = d@,p7 Y (w, dx) Vo .

From the second we get d (o (z, dw)— (n - 1) 7P (w, dw)) = 0. If r>2 then
we can find forms 6”2 (s, dz) such that

oz, dw) = @,0" P (w, dzx) + (0 + 1) BT (@, dw) ;
thus w = d{Zt”(ﬁﬁf‘”(w, dx) — dt 6", dzv))}. This proves the lemma if r>2. If
[\) .
r =1 only a slight modification of the above argument is needed.

PROPOSITION 9. — We have an exact sequence of sheaves

where
afdg=7—9g

and where £ = Os N ES.
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PROOF. — Given fe& O, , for z,€ § by lemma 6 we can find an extension  of f
such that of e #§'. Then 00f € F5'. Expanding f in power series of g we have
f=1+ og - ... and (00)s(f + 0g) = 0. Thus Oy is a subsheaf of . Similarly
Oy c # and therefore « is well defined. Clearly Ker o = 2.

We have to show that « is surjective.

Given w € #, by the definition of the sheaf #s we can find a germ of ¢* fune-
tion v on § at % such that u - go e AL ie. (80)4(u 4+ ov) = 0. By lemma 7 we

8,24

can find an extension % of w + gv such that 004 € #5'. By lemma 8 from d(3i) e F&
we deduce that we can find a germ ¢ of function at z in the space such that

0i = do mod FP .
Hence
doe F3

and

Set v = @ — 0. From the above equations we derive that

ols€ O, 7ls€ O
and that
U = T|S + G]S .
This proves our contention.
ProprosITION 10. — Let SoC S be the open subset of S where the Levi form of o

restricted to the analytic tangent plane to 8 is different from zero.
We have on Sq

F~C
(C the constant sheaf) so that in the ewact sequence of sheaves
0->C ——®> L - N =0
t being the natural injection, we have A ‘|5n= 0.
Proor. — Clearly C is a subsheaf of . Let z,€ 8, and let f, € #,. Letf be

a (% extension of f to an open neighborhood U of 2, in X. If U is sufficiently small
we have

- Of = gut 4 Jo
of = gy + dg o™,
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with a, f, y, 0 convenient C° forms on U. Indeed these equations translate the
fact that J4f, = 85/, = 0.
Therefore we have

af = ol + ) + e + 900 .

Set y=o -+ y. As ddf = 0 we derive that

0 =dou+ odu + 00pf— d¢df - dop o0 — B do

i.e. at each point of SN U

880(f — o) + Bolp — df) + delu— do) = 0 .

From this we deduce that
00N\ ABOQN(B— 0)fs,= 0 .

By the assumption the form dgpA\dgA0dp on Sy is different from zero (with the
n—1
notations of point ¢) of this section that form equals ( >y dzidéj) 89/\8_@). Therefore
on 8y f=o. t
Hence

af = o(a 4 y) +dof .

But this proves that df, = j* df, j being the natural injection of Sy in U. There-
fore 7, is constant in a neighborhood of 2, i.e. f, € C.

COROLLARY. — If the Levi form of o restricted to the emalytic tangent space to 8 is
everywhere different from zero and if H'(S, C) = 0 then we have an evact sequence

0 — I'(8,€) — I'(8, 0) @ I'(8, Ts) > I'(S, #5) — 0 .
We do not know if in the case S compact with H(S, C) = 0 the above state-

ment still holds without any assumption on the Levi form of .

h) The case of a Levi form or rank. >2. Let us start again with the considera~
tion of the complex («).
We set :

Jo(8, 9) = QAOO(Q) ’
JU8, ) = gAY (D) + 00 4" Q) + Fp A(R) + 00g A™(RQ) ,
IS, Q) = o(A*(Q) + A7(Q)) + do A™(Q) = H(8, 2),
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and in general for u>2
Ju(S, Q) = F(8, Q).
We realize that
00 d
(n) F8, Q) = JY8, Q)—> J2(8, Q) I8, Q) —
is & subéomplex of (). Moreover the sheaves

Q — Ji(8, Q)

are fine (therefore soft) sheaves.
Note that the subcomplex of (x) given by the domains of the various operators

(0) I55(8, Q) = (8, Q) — J(8, Q) - F(8, Q) —

is a subcomplex of ().
We set

0O(8p) = A®(Q)[5°(8, Q),
00(8g) = A™(Q)[SX(8, Q),
Cw(8o) = QW(8p) for u>2.

At the sheaf level, we have therefore a commutative diagram of sheaves and linear
maps:

0 > #P _>Q(o>_(aa_), Q= Qmﬂi Qmﬁi

SN

@ @ ds dg

0 >T sy —C00Zs 0w go g K

where (30)® and d*® are the induced linear maps of sheaves by the operators 00 and d

. 00
in the surrounding space, and where, by definition % = Ker C(°>(—)—> gwi,

Note that C© ~ A©® = &, the sheaf of germs of O functions on 8. The sheaf
C® ig a sheaf of &3 modules.

ProrosiTioN 11. — On the set So where the Levi form bf o restricted to the analytic
tangent space to S is different from zero the sheaf OV is a locally free sheaf of modules
of rank (n—1)2—1.

Proor. — Indeed if 2z, Se we can choose a system of (n— 1)2— 1 forms of
type (1, 1) linearly independent over the C® functions &(U) in a small neighbor-
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hood U of % in X, say

Wy Doy vreey Big—1y2—1

so that
(n~1)"—1 _ _
ATy = Y E(U)w,+ 830 E(U) + dg AXU) + Jop A(T) .

1

COROLLARY. — On Sg the linear maps (00)® and d*® are given by differential ope-
rators.

Proor. — Indeed C®, (W, @» can be viewed as the sheaves of germs of C®
sections of appropriate 0° vector bundles on Sp. The operators (00)% and d® are
continuous for the usual Schwartz topology and preserve supports. One can there-
fore apply Peetre’s theorem.

Also a direct calculation gives the same conclusion. We note that (90)% is a
differential operator of the second order. It is the zero operator if n = 2.

From the commutativity of the above diagram we derive a natural inclusion

HscT 5.

Indeed 5 is just the image of # in J5 by the map A.
We set

FHQ) = {se Fi(8, Q)]s is flat on §}.

We know that since the complex (x) is elliptic we have an exact sequence of soft
sheaves

J&_’-} 86_ jd djd d\
@ N e

We can also consider the complex of sheaves (all soft)

() 020 B s a4 S d
# 7y Fi F

ProrosImioN 12. — Let € 8, and Tt L(0) lpy(s) Fenote the Levi form of o restricted
to the analytic tangent space at 2, to 8.

i) If Z(0)|p, sy s different from zero then the sequence (u) is exact at the place
SO F3.

i) If Z(0)lpeys) s different from zero and has rank >2 then the sequence ()
is exact also at the place J'|Fy and therefore everywhere.
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Proor. — The exactness of the sequence

J1od s d

7y 7

follows from the exactness of (1) and the fact that £ c S
We prove ¢). Let w = gue % Assume that

00(ou) € F
ie.
0 00w -} 0p \Ou — Op\ou - 00p u e Fa
therefore ‘

0oN\0gN\00p u)s=0 .

Because of the assumption u]s= 0 i.e. 4 = gv and w = gu = p*v € Sj3. Because
(1) is exact we derive that we F§ as we wanted.
We prove ii). Let, with obvious notations, be

gt = outt + g f + oy + g o™ € S
Then po® < #° and
gt — 00(go™) = @'t - 9o 61 - O 60 .

Assume that dg'' € F2: We have also d(g'* — 00(po™)) € F5. This gives

0 001 - 9p(611 — 06°) — D 06 + 9dp 00 e F}
and an analogous relation with 0 replaced byv 0. We deduce then that

20 N\0o NG N[5 =0 .

Because of the assumpfion we must have

010 = A - 89/400 .

a-~1

(we can assume o as in the form of point ¢) of this section with Y I, de; dz;=
n—1 1

= > ¢;dz;dZ;, in diagonal form at the origin and & %0, & 0. Setting 6% =
1
n—1

= > a,dz; + p0 0p + oA we deduce that ;=0 for 1<j<n— 1 at the origin.
1

From this we get our conclusion.)
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Similarly
601 — 9101 - po0 a—g .
Hence

gri— 85(@0“’“) = o(611 - Do 01 - 3'9 A1) - 9@/\5@(?}0"— pw)

Therefore gt — 00(go™) € ., and consequently by the exactness of (1) we get
gt — 90(ga™) € F5.

Let X be an open portionjof 8. We can consider on X the following complexes
for any family of supports ¢:

(i) Ty(Z, A®|FY) ﬁz Ty(Z, A FY) —i Ty (2, (AP A (FED grgl))i vy

) T, @) 208 1z gy % s, g %
(i) 7=, 00 95 s omy B s, gen % L

We set
Z _ Z00 09 1T W (aE)S
# = Ker {AO"/,/'s =—> AvjFEL HP = Ker{Q<0>__>Q<1>},

Ty = Ker{C® —@)—R> ow}

and we denote the cohomology groups of the above complexes with the notations,
for any j>0

HY(Z, [#]), HUZ ), H(Z15]).
From the previous proposition we deduce then the following
CoRrROLLARY. — Set
8P = {x € Srank L(0)|T,(8)>2} .

Let X be any open subset of 82. Then for any family of suppbrts @ (paracompacti-
fying) we have

H)(Z, [#9]) = H)(Z, [#]) = H(Z, [7])

for any j>0.
In particular for j = 0 and ¢ the family of closed sets, germifying X at any point
of 8% we get that

A H#P - Ty
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is an isomorphism of sheaves over 82. Thus on 82
COROLLARY. — If 8% = § we have a Mayer-Vietoris sequence

0 — HYX, #) — HY X", #)D HYX ", #) > Hy(8, [T5]) —
— HY(X, #) - Hy X", #)D H (X, H#) - Hy(8, [Z]) — ...

REMARK. — We have denoted with the peculiar notation Hfb(Z', [f#]) etec. the
cohomology groups of the complexes (i), (ii), and (iii) above as they may not be
isomorphic to the cohomology groups with values in the corresponding sheaves.
Indeed the complexes of sheaves

~ 11 12 21
0 # A A AP A

—_ — > e >
g;o() 11 12 g’zl
8 Fs F @ s
0=#F ~ QW — @» —  @» ..

0>TJs - 0O 'CH —» (&

may not be exact. This situation will be discussed in the next point.

i) We consider the locally closed region X~ = {z € X|o(2)<0}. We have defined
(section 7 ¢)) the cohomology groups H/(X™, 0), H/(X", @) and Hi(X™, 5#) by means
of the complexes of Dolbeault, of its « conjugate » and of the complex (z).

We can also consider the usual cohomology groups H (X, C).
We first claim that )

Lemma 9. — Hi(X™, C) is the j-th cohomology group of the complex

ANXT) —d> ADXT) —d> AB(XT) i
where AD(X™) is the space of O° forms of degree j defined on X~ up to the boundary
but not beyond it, and where d is exterior differentiation.

Proor. — This lemma deals only with the C* structure of X. We are reduced
to prove the following. Let X = R™ and X~ = {(#y, ..., ,) € R*|z, <0}. Similarly
for X*. Let A® be the sheaf of (° forms on R» of degree j and let F = {se AW|s
is «flat» on X'} so that setting AP = A9/ F9 we have AD(X) = I'(X, AD).
One has to show that at a point 2° = (20, ..., #%_,, 0)€0X~ we have the Poincaré
lemma, i.e. that the sequence

d d d

0—C— AQ, = AW, = 4@ S

6 ~ dnnali di Matematica
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is an exact sequence. This follows with the usual proof of Poincaré lemma for the
operator d, or by the use of the Mayer-Vietoris sequence on a small ball centered
at a®.

Let us now consider the map for j>1

o: Hi(X~, O)® Hi(X", O) - Hi(X", #)

given as follows: Let {¢"}, 9¢* = 0 and {p?}, 0p’ = 0 be cohomology classes in

Hi(X™, 0) amd H/(X", 0) so that ¢ (p”) is a C* form of type (0, ) ((j, 0)) defined
on X~ but not beyond. We define

o({g"} @ {97}) = {99 + g} .
This map is linear and well defined.

LEMMA 10. - If HI(X,C) = 0= Hi* (X", C) and j>1 we have that ¢ is an
isomorphism:

H(X™, )@ HI(X™, 0) s Hi(X™, o).

Proor. — The map ¢ is injective. Assume that j>2 and that with obvious nota-
tions,

097 + B = Al = .. 1Y)
Then since dg¥ = 0 = dgp’ we get
gV + =Tt — L — ) = 0.
By lemma 9 we deduce then, since H/(X ™, C) =0,
@O b @0 — liml— i1l (G091, o} fi-10)

Hence ¢ = 06°-! and ¢ = 06>-1°, This proves our contention.
The map ¢ is surjective. We ghall assume j>2. Let

Qb + @it L it
with
dg¥ 4+ ... +¢) =0

represent a class of Hi(X™, o). Since H/"(X~, C) = 0 we have, by lemma 9,

gV gt L it = (0¥ - 6451 . - 0)
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ie.
06% = 0,
@Y = 06 |- 961 -1,
@il = 9o i1 | gg2 i,
@t = 00-11 - g
067 = 0.

Hence

@Y .o - @it = 369 4 50 4 QO .. - 01

This proves the surjectivity of o.
Tt remains to treat the case j = 1. Let ¢ and ¢ be such that dg = 0,
0p = 0 and assume that

Ot -+ O™ = 000 .
Then
(g + g — 3°) =0 .
Since HY(X ™, C) = 0 we must have
¢+ 10— 9% = dn®
ie.
¢t = 0% -+ on™ , @10 = on® .

This shows the injectivity of ¢ also for j = 1.
Consider now ¢t with de'* = 0. As H*X,C)= 0 we have

git = dln + ).
Therefore
Q1 = Oy - Oy
with
=0 = oy .

Thus ¢ is surjective also in the case j = 1.
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THEOREM 4. — Let 2, € 8 be a point where the Levi form of o restricted to the analytic
tangent space to S is nondegenerate with p positive and n — 1 — p = q negative eigen-
values. Then in the boundary complex of sheaves

QO _@2_3__)_% Qo _‘_Zg o is;

The Poincaré lemma fails to be true at Qg’) and at Qg‘j’ but holds at any other place.

ProOF. — The theorem being of local nature we can assume that X = C», that
2 is at the origin of the coordinates and that g is in the form used at point ¢) of

this section.
Set

B, ={zeC"

Saf<i),  Bi={seBes}.
B, ={z2eB.le<0}, 2., =8NB,.

For j>1 and = large we have H'(B,, C) = H(B}, C) = H'(B,, C) = 0. There-
fore for n large

Hi(B,, #)~ H/(B,, 0) @ Hi(B,, 0) = 0.
Hence from the Mayer-Vietoris sequence we derive that, for j>1,
HI(Z,, [#Y) = BBy, #)® H(B,, #) .
Also by lemma 10
(B}, #) = H'Bf, )@ H'(B}, 0),

*) o
( H(B;, #)= H'(B], 0)® H'(B,, 0).

Taking direct limits we get
lim H(X,, [#™]) ~1lim Hi(B;, #)Dlim H(B;, #) .
e n

—
w

Taking into account the isomorphisms (%) and theorem 3 of ([2], II, p. 795) we get

lim Hi(BE, #) =0 if #40,p,9.
— >

n

Thus the Poincaré lemma holds for j =0, p, q.
For j = p, ¢ and for a proper sign of ¢ we have

Er)nHP(B;,*, ) is infinite dimensional,
n

!E)nHQ(B;,,, H) is infinite dimensional,’
n
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(by

that

theorem 4 of [2], 1I, p. 798; see also [1], theorem 9.6.1, p. 165). This shows

Lim Hi(Z,, [#®]) 0 for j=p, j=q¢
w

(indeed these spaces are infinite dimensional). Hence the statement of the theorem.

(13]
[14]

[13]
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