
Periodic S o l u t i o n s  of  a Class of  Nonlinear Evolution E q u a t i o n s  (*). 

A. SC~LI~.FFI~O (Roma)  - K.  Scn~I~T (Salt Lake  City, U.S.A.) 

Summary, - In  this paper we prove the existence of periodic solutions of abstract evolution equa- 
tions which are modelled after parabolic problems. More precisely we prove that existence 
results follow from degree type hypotheses on the (~ projection >) of the problem onto a suitable 
finite dimensional space. 

1. - Le t  t9 be  a bounded  open set in R" hav ing  sufficiently smooth  bounda ry  

3z9 and  let  / :  R •  be a cont inuous funct ion such t ha t  

/ ( t + l , x , u )  = ] ( t , x , u ) ,  ( t , x , u )  e R • 2 1 5  

I n  this pape r  we shall  be in teres ted  in the  existence of 1-periodic solutions of evolu- 

t ion equat ions,  which are  model led a f t e r  the  p rob lem 

~-{ = A u  + el(t  , x ,  u ) ,  t e R ,  x e .C2 

(1) ~u[ = 0. 

F r o m  our abs t r ac t  results  we may ,  for example  , deduce t ha t  (i) will have  a 
t-periodic <~ mild  ~> solution u(t, x) of per iod one for  all  s Small �9 whenever  there  exist  

Constants a and: b, a < b Such t h a t  

(2) g(a)g(b) < O, 

where g is the  m a p p i n g  g: R - + R  defined b y  

(3) 
1 

g20  

in which case u in addi t ion  satisfies 

a < u(t, ~v) < b .  

(*) Entrata in Redazione il 28 maggio 1983. 
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I n  case ] is independent  of ~, this, of course, reduces to a well-known result  for 
ordinary  differential equat ions (see e.g. [3] and  [6]). 

RE~A~K 1. - A <~ mild ~> solution is a solution in a weak sense (to be specified 
later). I f  / satisfies enough smoothness requirements  (continuity suffices in case / 
is independent  of $) such mild solutions are in fac t  classical. 

2. - Le t  E be a real  Banaeh  space and  l e t / :  R x E  -> E be a cont inuous mapping, 
such tha t  /(t d- l ,  u) ---- /(t, u), (t, u) s R • Let  A with domain D(A) c E  be a 
l inear operator  which is the infinitesimal generator  of an analyt ic  semigronp (see [3]) 
{T(t)}~> A .  We shall be interes ted in the  existence of solutions u: R - ~  E, which 
are 1-periodic, of the nonl inear  evolution equat ion 

d ~  
dG = Au(t) +  l(t, �9 

The addit ional  hypotheses  imposed on A (see below) will easily be seen to be satisfied 
by  a large class of l inear  elliptic second (or higher) order operators on bounded 
domains provided the coefficients of A and the boundary  3~9 are sufficiently smooth.  

The assumptions on A are the following: 

(H1) The semigroup {T(t)} genera ted  by  A is compact ,  i.e. for each t > O, T(t) 
is a compact  operator ,  T(t): E -+ E. 

(tt2) Le t  iV ---- ker A and assume tha t  iV ----- ker  (id --  T(1)). 

I~E~ARX 2. - I t  follows f rom (H1) t h a t  N c ker  (id -- T(t)), t > 0 and  hence iV 
is a finite dimensional  subspace of E and (H2) asserts t ha t  A has no e igenvahes  
of the  form 2ksi,  k sa 0, an integer.  

(H3) E = iVG M where M is lef t  invar iant  under  T(t), i.e. the  algebraic and 
geometric mult ipl ici ty of 0 as an eigenvalue of A coincide. 

(H4) There  exists a Banach  space V, D(A) c V, such tha t  V c E  in both  the  
algebraic and topological sense, and V = N O  (VtJ  M), moreover  V is as- 
sumed compact ly  embedded in E. 

(Hb) The evolution opera tor  

t 

iT(t - s)/(s) /(t) gs 
0 

maps c([0,1], compactly into C([0, 1], V). 

I%E~A~J< 3. -- I t  has been shown in [1] t h a t  the convolution operator  considered 
in (Hb) does not  map C([0, 1], E) into C([0, 1], D(A)), even if A i s  a bounded aboye 
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self-adjoint opera tor  in a Hi lber t  space. Because of this we shall consider the ex- 
is tence of <~ mild ~) solutions of (4), i.e. continuous maps u: [0~ 1] -+ ]~ such tha t  

t 

(5) , ( t )  = T(t)u(x) + f y ( t -  s)/(s, ,,(s)) a,, o < t < l .  
0 

Such solutions, since T(0) = id will satisfy u(0) = ~t(1) and will hence be 1-periodic 
solutions of (4). 

Rv,~A~K 4. - Any  mild solution of (4) (a solution of (5)) will in fac t  be H61der- 
cont inuous with respect  to t and will t ake  values in suitable interpolat ion spaces 
between D(A) and /~ provided ] satisfies suitable t t6 lder  conditions,  and u will 
then  in fac t  be a classical solution (see [!]). 

RE~A~K 5. -- The compactness  condit ion (H5) will be satisfied if, for  instance,  
the no rm of T(t) as an opera tor  f rom E to V is in tegrable  in a neighborhood of 0 
(see [7]). 

3. - Le t  i ~ and Q denote  canonical  projections (with respect  to A) o f / ~  onto N 
and M, respectively,  and consider the  continuous mapping 

t 

a ~ g(a) -~IPl(t ,  a) tit. (6) 
0 

Concerning g we shall assume: 

(H6) There  exists a bounded  open subset 0 ~ c N  such tha t  

g-~(o) n ~o~ = r  d~(t, o~, o) ~ o ,  

where riB( ' , ' , '  ) denotes Brouwer  degree. 

We shall establish the  following existence theorem.  

T~EORE~ 1. -- Le t  (HI)-(t t6)  be satisfied, then  for all small s equat ion (4) has a 
1-periodic mild solution, i.e. there  exists ~t e C([0, 1], E) solving (5). 

P~OOF. - Our proof is pa t t e rned  af te r  some ideas ear ly  used in [2]. We consider 
the Banach Space 

= C([0, 1], E) | ( V n  M),  

a bounded open neighborhood OM of 0 e M (with respect  to the M norm),  a bounded 
open neighborhood 0v of 0 e V n  M (with respect  to the V-norm) such tha t  

m 

T(1)(e~) c ev .  
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In  8 we define the  open set 0 b y  

0 = {(u, b) ~ 8: u(t) ~ 0 ~ =  0 ~ 0 0 M ,  O < t < l ,  b e Or} �9 

and the fami ly  of completely continuous vector  fields k~.~(u, b ) =  (v, fl) given by  

(7) 

where 

a(t,~) 

Pv(t) = Pu(~) + efP/(s, P~(s, 4) + 2Qu(s)) as 
0 

t 

Qv(t) = T(t)Qu(1) + asf r(t-s)O/(s, u(s)) as 
0 

= Qv(1), 

a(t, 2) --~ 2t + (1-- ~t), 0 < 4 < 1 ,  O < t < l  

~t(t, 2) = 2-pu(t) + (1 -- 2)-Pu(1), 0 < 4 < 1 .  

We nex t  show tha t  there  exists g > 0 such t h a t  for any  e e [ - -  g, ~], e ee 0 and  2 
e [0, 1], ka.~ has no fixed point  in t 0 .  For  if this were not  the  case we m ay  find 
sequences {e,}, s~ -+ 0, {~} _c [0, 1], {(u., b.)} c 10 such tha t  

ka..e.(u~ , b~) ~-- (u, ,  b~). 

Since k~.~ is completely continuous we m a y  assume tha t  2~-+ ~, u.--> u, b~--> b as 
n -+c~  and we obta in  

-pu(t) - -p~(1) 

(8) Qu(1) = T(1)Qu(1) 

b = QuO). 

Thus b e M is a fixed point  of T(1) implying t h a t  b--~ 0 (see H2).  Moreover, 
a ---- Pu(1) ~ t 0 ~  implying t ha t  g(a) r O. Put t ing  t = 1 in the  first equat ion of (7) 
we obtain 

1 

o =fP/(s ,  P~(s ,  2.) + ~Qu.(s)) as 
0 

and  as n - + c ~  
1 

g(a) -=f P/(s, a) ds -~ 0 ,  
0 

a contradict ion.  
We hence obtain tha t  the Leray-Schauder  degree dLs(id -- k~,~, O, 0) is constant  

for small lsl > 0, 0 < 4 < 1 ,  and we thus m a y  compute  this degree for ~ = 0, i.e. we 
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ma y  consider the  maps 

(9) 

-pv(t) = -p~t(1) -J- ~f-p](s, -p~t(s)) ds 
0 

Qv(t) : T(tlQu(1) 

fl = ~(1)Q(1) 

The last  two equat ions define a nonsingular  l inear operator  whose degree in C([0, 1]; 
B) (9 (M (~ V) is different f rom 0, hence the  degree of ko, ~ is given by  the first equa- 

t ion,  i.e. 

dL~(id -- k~,~, O, O) ----- d~(id -- ko,~, O, O) ---- 

= d,(g, 0~,  O) V= 0 , 

thus showing tha t  kl, ~ has a fixed point  in 0 for s :/: O, sufficiently small. 

I~E~A~K 6. - I f  for g < e < l ,  kl, ~ has no fixed points in 30, then  in fac t  (5) will 
have  also a solution for e = 1, as follows f rom a homotopy  a rgument  using s as a 
homotopy  parameter .  

4. - In  this section we shall consider some applications of Theorem 1; the ex- 
ample given at  the beginning is easily seen to be contained in the first of these. 

Consider the sys tem of parabolic par t ia l  differential equations of the form 

(10} 8t - -  ZkU + Sf~(t,x, Ul, "", U,) , t ~ R , x ~ f 2 ,  l<k<m, 

where for 1 <  k < n ,  Lk is a given uni formly  elliptic second order operator  together  
with l inear homogeneous boundary  conditions 

(11) Bk~tk ----- 0 ,  I < k < m .  

We define 

D(Z~) ----- {q~ e 01(~)  : Bk~ : 0 a n d  ~ k ~  ~ 0~  

and let  Ek the closure in C0(h) of / ) (Z~) .  We suppose tha t  L~ is the genera tor  of an 
analy t ic  semigroup. 

I%E~A~K 7. - Both  the usual l~eumann and Dirichlet,  as well as more general 

boundary  conditions give such examples (see [9]). 
We pu t  

E ----El |174 

D(~) = D ( L J  @ ... @ D(L,~) 
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u = u ~  |  

Lu  = Z~u~ | ... |  

Bu ----- B lu l  �9 ... @ B~u~ 

and we find tha t  (H1)-(H5) are satisfied. Also 

-~ = N1 @.. .  @ 2V~, N~ = k e r / ~ .  

(11)-(12) m a y  then  be wr i t ten  as 

(13) --~ = Lu + el(t, x, qz), t e R, x r  

B u  = O , x ~ ~D . 

Associated with (13) we have the l inear  homogeneous problem 

Zu = 0 ,  x e D  

(14) B u  = 0 ,  x ~  ~D 

and  we obtain as a Corollary to Theorem 1: 

Tn~O~E~ 2. - Ze t  5V be the  finite dimensional  space of all solutions of (14) and 
suppose dim N > 0, fu r ther  assume tha t  no eigenvalue of (14) has the  form 2k~i ,  

k ~ 0 an integer.  Le t  g(a) be defined b y  

1 

g(a) = J P / ( . ,  t, a) dt 

o 

and let  there  exist  a bounded open neighborhood O~ of 0 e N with g-~(0) ~ 80~ = 0 
and  dB(g, 0~, 0 ) #  0, t hen  (13) has a ! -per iodic  mild solution for all e # 0, small. 

To i l lustrate this result,  let  us consider the  special case: 

(15) 

= a, Au 4- ell(t, x, u, ~) 

by t 
= d~ A~ + elf(t, x, u, ~), 

Subject  to the  bounda ry  conditions 

(16) 
U--=O 

~v 
~ = O ,  

~R, xef2~  dl>O~ d 2 > 0 .  

l t e R ,  x e ~ 2 .  
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Here  N = O @ R  and g : R - ~ R i s  given by  

1 

t 2 0  

thus we need to require the existence of constants a~< a2 such tha t  

g(a~)g(a2) < O 

and we conclude the existence of a mild periodic solution of (15)-(16) for e r O small 
and if 1~ and 1~ are H61der continuous this mild solution will be classical. 

We conclude by  re turn ing  to the example at  the beginning and we impose the 
stronger requ i rement :  

There  exist  constants  a < b such t h a t  

(17) ](t, x, a) > o > 1(t, x, b)(t, x) ~ R x ~ ,  

t hen  in fac t  (1) will have  a periodic solution for e = 1. To see this, we observe tha t  
(17) clearly implies (2). In  this example 0 = {u e C~ a < u(t, x) < b} and we see 
by  the max imum principle tha t  for e > 0, (1) cannot  have periodic solutions u E ~Y2~ 
thus the  r emark  following Theorem 1 applies. 

Similar results, using the  ideas of invar iant  regions, m a y  be obta ined for systems 
of parabolic equat ions (see e.g. [8]). To i l lustrate this we cons ider  the following 
two dimensional  sys tem 

(18) 

~qk 

~v 

~7 

Ou 

av 

= d ~  A u - k - e a ~ u ( 1 - - n - - b l v )  

= d~ Av + e a 2 v ( 1 - - v - - b 2 u )  

O, ( t , x ) ~ R •  

(t ,x) e R x ~  

where a,(t, x), b,(t, x) are cont inuous positive funct ions of period 1 in t and  d l >  O, 
d2> O. 

One m a y  then  show tha t  if 

max  bi(t,x) < ! , 
( t , z ) e R  x 

t hen  the  square 

Z = {(u, v): c$< u <  1, c~< v <  1} , 

0 < 3 KK 1 will be such tha t  every  solution of (18) whose range lies in Z must  a l ready 
have its range conta ined in Z, for  all e > 0. We hence m a y  apply  the r emark  fol- 

l g  - ~drtrtali d i  M a t e m a t i e a  
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lowing T h e o r e m  1 once  we show t h a t  t he  B r o u w e r  degree  of the  m a p p i n g  

1 1 

~ 0  D O  

= (Ale(1  - -  ~1 - -  ~ l u v ,  22v(1 -- v )  A~uv) 

where  A~, ~ are  pos i t ive  n u m b e r s  wi th  ~ <  A ~  i ---- 1, 2, re la t ive  to  ~ is u n e q u a l  

to  zero. A n  easy  c o m p u t a t i o n  shows t h a t  th is  degree  is 1. 

This  e xa m p l e  gives a n  ex t ens ion  of  a resu l t  in  [5]. 
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