High Order Approximation of Implicitly Defined Maps (*) (**).

ALBERTO BRESSAN (Padova)

Summary. – Approximations for the function φ implicitly defined by $\varphi(u) = \Phi(u, \varphi(u))$ are obtained via the iterative scheme $\varphi_n(u) = \Phi(u, \varphi_{n-1}(u))$. In this paper the uniform convergence of high order derivatives of φ_n to the corresponding derivatives of φ is proved. This result yields a high order approximation theorem for the input-output map generated by a nonlinear control system, using linear combinations of iterated integrals of the control.

0. – Introduction.

Consider a smooth mapping $\Phi: E \times F \to F$ acting on Banach spaces. A wellknown consequence of the contraction mapping theorem is that, if the partial derivative of Φ with respect to the second variable satisfies,

$$\left\|rac{\partial}{\partial x} arPsi(u,x)
ight\|$$

then the equation $x = \Phi(u, x)$ implicitly defines a unique continuous function $x = \varphi(u)$. Moreover, the sequence of mappings

$$\varphi_0(u) \equiv 0, \ \dots, \ \varphi_n(u) = \Phi(u, \varphi_{n-1}(u)), \ \dots$$

converges to φ uniformly on bounded sets. If Φ is k-times continuously differentiable, such are φ and φ_n $(n \ge 0)$ as well. In this paper we show that the convergence of φ_n to φ actually takes place in the C^k norm. In theorem 1, § 2, the uniform, geometric rate of convergence of the derivatives $D^j\varphi_n$ to $D^j\varphi$ (j = 0, ..., k)is established. In § 3 we consider a second map $\Psi: E \times F \to F$ which approximates Φ in the C^k norm and give an estimate on the C^k norm of the difference $\varphi - \psi$, where $\psi(u)$ is implicitly defined by $\psi(u) = \Psi(u, \psi(u))$. The proofs of the above results both rely on prolongation techniques, in the spirit of classical Lie theory [3, 4].

The primary motivation for the present study came from control theory. Indeed a control system of the form

(1)
$$\dot{x} = \sum_{i=1}^{m} g_i(x) u_i, \quad x(0) = \xi \in \mathbf{R}^n$$

^(*) Entrata in Redazione l'8 settembre 1983.

^(**) Lavoro eseguito nell'ambito del G.N.A.F.A. del C.N.R,

generates an input-output map $\varphi \colon \mathfrak{L}^1([0, T]; \mathbf{R}^m) \to \mathbb{C}([0, T]; \mathbf{R}^n), \varphi(u(\cdot)) = x(\cdot)$ implicitly defined by:

$$x(t) = \xi + \sum_{i=1}^{m} \int_{0}^{t} g_{i}(x(s)) u_{i}(s) \, ds \, .$$

In general there exist no explicit formulas giving the trajectory $x(\cdot)$ directly in terms of the control. However, one can approximate φ in the following way. First replace the g_i 's by vector fields q_i having polynomial components. Then compute the Picard iterates $\psi_n(u)$ for the approximate system

$$\dot{x} = \sum_{i=1}^{m} q_i(x) u_i, \quad x(0) = \xi$$

Using our abstract results, in § 4 we show that these Picard iterates do indeed approximate the input-output map φ in the C^k-norm of functionals. The uniform approximation theorem for φ in terms of iterated integrals of the controls u_i , given in [2] for the C⁰ norm, can thus be extended to higher order norms.

1. – Preliminaries.

In this paper, differential calculus in abstract spaces is used throughout. Given two Banach spaces E and F, $k \ge 0$, we denote by $L^{k}(E, F)$ the space of continuous k-linear mappings Λ from $\bigotimes E = E \times E \times ... \times E$ (k times) into F with the norm

$$\|A\|_{L^k(E,F)} = \sup \{\|A(u_1,...,u_k)\|_F; \|u_i\|_E \leq 1, i = 1,...,k\}.$$

In the following, subscripts to the norms will be suppressed whenever this cannot generate confusion. The closed ball centered at x with radius ρ is written $B(x, \rho)$. If ψ is a smooth mapping from an open subset V of E into F, its k-th Fréchet derivative at a point $u \in V$ is $D^k \psi(u)$, $L^k(E, F)$. We use the conventions $D^0 \psi(u) = = \psi(u)$, $L^0(E, F) = F$.

It is well known that high-order derivatives are symmetric multilinear mappings. $D^k \psi(u)$ is therefore completely determined by assigning its values on elements of the form $u^{[k]} = (u, u, ..., u) \in \bigotimes_k E$. Partial derivatives of a function $\Psi = \Psi(u, x)$ defined on a product space $E \times F$ are denoted by ∂_u , ∂_x . High order total derivatives of a composite mapping $u \to \Psi(u, \psi(u))$ will also be used.

LEMMA 1. – Let $\Psi: E \times F \to F$ and $\psi: E \to F$ be smooth mappings, $m \ge 1$. Then the m-th total derivative $D^m \Psi(u, \psi(u))$ is given formally by a sum of $\le (m+1)!$ monomials having degree $\le m$ in the terms $D^i \psi(u)$, i = 1, ..., m. Each one of these monomials has the form

(1.1)
$$\partial_u^i \partial_x^j \mathcal{\Psi}(u, \psi(u)) \cdot (D^1 \psi(u))^{[\alpha_1]} \dots (D^m \psi(u))^{[\alpha_m]}$$

with

(1.2)
$$1 \leq i+j \leq m$$
, $\sum_{l=1}^{m} \alpha_l = j$, $i + \sum_{l=1}^{m} l \cdot \alpha_l = m$.

Moreover, there is a unique monomial for which $\alpha_m \neq 0$, namely $\partial_x \Psi(u, \psi(u)) \cdot D^m \psi(u)$.

Notice that in (1.1) the expression $\partial_u^i \partial_x^j \mathcal{V}(u, \psi(u))$ denotes an i + j-linear map from $(\bigotimes_i E) \times (\bigotimes_j F)$ into F, and the formal power $(D^i \psi(u))^{[\alpha_i]}$ is interpreted as the vector with α_i equal components $(D^i \psi(u), \dots, D^i \psi(u)) \in \bigotimes_i L^i(E, F)$.

To prove the lemma, one checks that the assertions hold when m = 1 and proceeds by induction. If (1.2) holds up to a certain m, differentiating (1.1) with respect to u we get the two terms

(1.3)
$$\partial_u^{i+1} \partial_x^j \Psi(u, \psi(u)) \cdot (D^1 \psi(u))^{[\alpha_1]} \dots (D^m \psi(u))^{[\alpha_m]},$$

(1.4)
$$\partial_u^i \partial_x^{j+1} \Psi(u, \psi(u)) (D^1 \psi(u))^{[\alpha_1+1]} \dots (D^m \psi(u))^{[\alpha_m]}.$$

Moreover, for every l = 1, ..., m, we get the α_l identical terms

$$(1.5) \quad \hat{\partial}_{u}^{i} \hat{\partial}_{x}^{j} \Psi(u, \psi(u)) (D^{1} \psi(u))^{[\alpha_{1}]} \dots (D^{l} \psi(u))^{[\alpha_{l-1}]} (D^{l+1} \psi(u))^{[\alpha_{l+1}+1]} \dots (D^{m} \psi(u))^{[\alpha_{m}]}.$$

Therefore each of the $\leq (m + 1)!$ terms in the expression for $D^m \Psi(u, \psi(u))$ yields no more then m + 2 terms in the expression for $D^{m+1}\Psi(u, \psi(u))$. An inspection of (1.3) to (1.5) shows that all of these monomials have the form (1.1) and satisfy (1.2), with *m* replaced by m + 1. The last statement is clear.

A map ψ defined on an open subset V of a Banach space is \mathbb{C}^k if it is k-times differentiable in the sense of Fréchet and the mappings $u \to D^j \psi(u)$ (j = 0, ..., k)are continuous on V. The \mathbb{C}^k norm of ψ on a subset $U \subseteq V$ is

$$\|\psi\|_{\mathbf{C}^{k}(U)} = \sup \{\|D^{j}\psi(u)\|; u \in U, j = 0, ..., k\}.$$

For the basic properties of differential calculus in Banach spaces, our general reference is DIEUDONNÉ [1].

2. - The main convergence theorem.

THEOREM 1. – Let E, F be Banach spaces, $U = B(u_0, \varrho) \subset E, V = B(0, \varrho_0) \subset F$. Let Ψ be a \mathbb{C}^{k+1} mapping from an open neighborhood of $U \times V$ into F such that, for some $\varepsilon < 1$ and all $u \in U, x \in V$

(2.1)
$$\|\partial_x \Psi(u, x)\| \leq \varepsilon, \quad \|\Psi(u, 0)\| \leq \varrho_0(1-\varepsilon).$$

Let $\|\Psi\|_{k+1_{(U \times V)}} \leq M$ with $1 \leq M < \infty$. Then there exists a unique \mathbb{C}^{k+1} map $\psi \colon U \to V$ satisfying

(2.2)
$$\psi(u) = \Psi(u, \psi(u))$$

for every $u \in U$. If the sequence of mappings $(\psi_n)_{n\geq 0}$ is recursively defined by

(2.3)
$$\psi_0(u) \equiv 0, ..., \psi_n(v) = \Psi(u, \psi_{n-1}(u)), ...$$

then, for $0 \le m \le k$, the sequence of derivatives $(D^m \psi_n(u))_{n \ge 0}$ converges to $D^m \psi(u)$ absolutely and uniformly on U.

PROOF. - The existence and the uniqueness of ψ are a consequence of the classica contraction mapping theorem [1, p. 260], the regularity of ψ follows from the implicit function theorem [1, p. 268]. To prove the convergence of the sequence $(D^m \psi_n)$ to $D^m \psi$, we construct a prolongation $\tilde{\Psi}$ of Ψ as follows. Let the constants ϱ_i (i = 1, ..., k) be defined by

(2.4)
$$\varrho_1 = \frac{M}{1-\varepsilon}, \dots, \quad \varrho_i = \frac{M(i+1)!}{1-\varepsilon} (\varrho_{i-1})^i, \dots.$$

Let $\tilde{F} = F \times L^1(E, F) \times L^2(E, F) \times ... \times L^k(E, F), \ \tilde{V} = V_0 \times V_1 \times ... \times V_k \subset \tilde{F}$, where $V_0 = V$ and $V_i = B(0, \varrho_i) \subset L^i(E, F)$ for i = 1, ..., k.

Elements in \tilde{F} are denoted by $\tilde{x} = (x_0, x_1, ..., x_k), \|\tilde{x}\|_{\tilde{F}} = \sup \{\|x_i\|_{L^1(E,F)}, i = 0, ..., k\}$. Define a continuous map $\tilde{\Psi} \colon U \times \tilde{V} \to \tilde{F}, \tilde{\Psi}(u, \tilde{x}) = (\Psi_0, \Psi_1, ..., \Psi_k)$ by setting

(2.5)
$$\Psi_{i}(u, \tilde{x}) = D^{i} \Psi(u, \psi(u))|_{D^{j}\psi(u)=x_{j}} \quad (j = 0, ..., i) .$$

The *i*-th component of $\tilde{\Psi}$ is therefore obtained by formally computing the *i*-th total derivative of $\Psi(u, \psi(u))$ with respect to *u* and by replacing the terms $D^{i}\psi(u)$ with the free variables x_{i} $(0 \leq j \leq i)$ wherever they occur. Notice that all partial derivatives of Ψ are evaluated at (u, x_{0}) .

The system

(2.6)
$$\tilde{x} = \tilde{\Psi}(u, \tilde{x})$$

is thus a set of k+1 implicit equations that we will solve for \tilde{x} in terms of u by

means of the contraction mapping theorem. Define a sequence of mappings $\psi_n \colon U \to \tilde{F}$ by

(2.7)
$$\tilde{\psi}_0(u) = 0, ..., \tilde{\psi}_n(u) = \tilde{\Psi}(u, \tilde{\psi}_{n-1}(u)),$$

From (2.7) and (2.5) it follows by induction that for every $n \ge 0$

(2.8)
$$\tilde{\psi}_n(u) = \left(\psi_n(u), D\psi_n(u), D^2\psi_n(u), \dots, D^k\psi_n(u)\right).$$

The theorem will be proved by showing the absolute and uniform convergence of the sequence $(\tilde{\psi}_n)_{n\geq 0}$. This, in turn, will be a consequence of

i) $\tilde{\Psi}$ maps $U \times \tilde{V}$ continuously into \tilde{V} .

ii) There exists an equivalent norm $\| \|'$ on \widetilde{F} such that, for all $u \in U, \tilde{x}, \tilde{y} \in \widetilde{V}$,

(2.9)
$$\|\tilde{\Psi}(u,\tilde{x}) - \tilde{\Psi}(u,\tilde{y})\| \le (2\varepsilon - \varepsilon^2) \|\tilde{x} - \tilde{y}\|'.$$

A preliminary extimate is needed.

LEMMA 2. – Let Ψ_m $(0 \le m \le k)$ be defined by (2.5). Then for every $(u, \tilde{x}) \in U \times \tilde{V}$ the following bounds hold:

(2.10)
$$\|\hat{\partial}_{x_1} \Psi_m(u, \hat{x})\| = 0$$
 if $l > m$,

$$(2.11) \|\partial_{x_m} \Psi_m(u, \tilde{x})\| \leqslant \varepsilon,$$

(2.12) $\|\partial_{x_l} \Psi_m(u, \tilde{x})\| \leq M(m+1)! \varrho_m^m \quad \text{if } 0 \leq l < m.$

PROOF. - By Lemma 1, $\Psi_m(u, \tilde{x})$ is the sum of no more than (m + 1)! terms of the form

(2.13)
$$\Lambda = \partial_u^i \partial_x^j \Psi(u, x_0) x_1^{[\alpha_1]} \dots x_m^{[\alpha_m]}$$

where i, j, α_l satisfy (1.2). Thus (2.10) is clear, and (2.11) holds because $\|\partial_{x_m} \Psi_m(u, \tilde{x})\| = \|\partial_x \Psi(u, x_0)\|$. Differentiating Λ in (2.13) with respect to x_0 and x_l $(1 \le l \le m)$ one gets

$$\begin{split} \|\partial_{x_0}A\| &= \|\partial_u^i \partial_x^{j+1} \Psi(u, x_0) \, x_1^{[\alpha_1]} \cdot x \dots \, x_m^{[\alpha_m]} \| \leq M \cdot \varrho_1^{\alpha_1} \dots \, \varrho_m^{\alpha_m} < M \varrho_m^m \,, \\ \|\partial_{x_l}A\| &= \alpha_l \|\partial_u^i \partial_x^j \Psi(u, x_0) \, x_1^{[\alpha_1]} \dots \, x_l^{[\alpha_l-1]} \dots \, x_m^{[\alpha_m]} \| \leq \\ &\leq \alpha_l M \cdot \varrho_1^{\alpha_1} \dots \, \varrho_l^{\alpha_{l-1}} \dots \, \varrho_m^{\alpha_m} < m M \varrho_m^{m-1} < M \varrho_m^m \,. \end{split}$$

These two inequalities yield (2.12) in the cases l = 0 and l > 0 respectively. We can now give a proof of i). By Lemma 1, $\Psi_m(u, \tilde{x})$ is the sum of less than (m + 1)! monomials of the form (2.17) in the variables x_1, \ldots, x_{m-1} , plus the single term $\partial_x \Psi(u, x_0) \cdot x_m$. This yields the estimate

$$\|\Psi_m(u, \tilde{x})\| \leq M(m+1)! \varrho_{m-1}^m + \varepsilon \varrho_m \leq (1-\varepsilon) \varrho_m + \varepsilon \varrho_m$$

because of (2.4). Hence $\Psi_m(u, \tilde{x}) \in V_m$ for $1 \leq m \leq k$, $(u, \tilde{x}) \in U \times \tilde{V}$. The estimate for m = 0 is straight-forward.

To prove ii), introduce the constant

(2.14)
$$C = 2Mk(k+1)! \rho_k^k \cdot (\varepsilon - \varepsilon^2)^{-1}.$$

Define on E the equivalent norm ||u||' = C||u||, and denote with $||\cdot||'$ the induced norms on the spaces $F_i = L^i(E, F)$ and $L(F_i, F_j)$. Notice that, if $\psi: E \to F$ is smooth at u and if $\chi \in L(F_i, F_j)$, we have

(2.15)
$$\|D^{i}\psi(u)\|' = C^{-i}\|D^{i}\psi(u)\|, \quad \|\chi\|' = C^{i-j}\|\chi\|.$$

Consider now $u \in U$, $\tilde{x}, \tilde{y} \in \tilde{V}$. Recalling the definition of the norm on the product space \tilde{F} we have

$$\|\tilde{\Psi}(u,\tilde{x})-\tilde{\Psi}(u,\tilde{y})\|'=\sup\left\{\|\Psi_m(u,\tilde{x})-\Psi_m(u,\tilde{y})\|', 0 \leq m \leq k\right\}.$$

Fix some *m* and let $\tilde{x} = (x_0, ..., x_k)$, $\tilde{y} = (y_0, ..., y_k)$. Then mean value theorem [1, p. 155] together with Lemma 2 yields

$$\begin{split} \|\mathcal{\Psi}_{m}(u,\,\tilde{x}) - \mathcal{\Psi}_{m}(u,\,\tilde{y})\|' &\leqslant \sum_{i=0}^{m} \sup\left\{ \|\partial_{x_{i}}\mathcal{\Psi}_{m}(u,\,\tilde{z})\|'\,;\,\,\tilde{z}\in\tilde{V} \} \cdot \|x_{i} - y_{i}\|' \leqslant \\ &\leqslant \sum_{i=0}^{m-1} C \cdot M(m+1) \,!\,\varrho_{m}^{m} + \varepsilon \|x_{m} - y_{m}\|' \leqslant \\ &\leqslant [k \cdot C^{-1}M(m+1) \,!\,\varrho_{k}^{k} + \varepsilon] \cdot \sup\left\{ \|x_{i} - y_{i}\|'\,;\, 0 \leqslant i \leqslant k \right\} \leqslant [(\varepsilon - \varepsilon^{2}) + \varepsilon] \cdot \|\tilde{x} - \tilde{y}\|'\,. \end{split}$$

This proves ii). The contraction mapping theorem aplied to $\tilde{\Psi}$ now implies the absolute and uniform convergence of the sequence $\tilde{\psi}_n(u)$ to some $\tilde{\psi}(u)k = (\psi(u), \psi^{(1)}(u), \ldots, \psi^{(k)}(u))$ in the new norm $\|\cdot\|'$, hence in the old norm as well. By (2.8), this means that for $m = 0, \ldots, k$, the sequence of derivatives $(D^m \psi_n)_{n \ge 0}$ tends to $\psi^{(m)}$ uniformly on U. A classical convergence theorem [1, p. 158] now implies

(2116)
$$\tilde{\psi}(u) = \left(\psi(u), D\psi(u), D^2\psi(u), \dots, D^k\Psi(u)\right),$$

completing the proof.

Notice that from (2.9) the geometric rate of convergence can be easily inferred.

3. - Further estimates.

Suppose we are interested in computing an approximation to the map φ implicitly defined by

(3.1)
$$\varphi(u) = \Phi(u, \varphi(u)) .$$

We do this by first considering a simpler mapping Ψ which is suitably close to Φ . Then we iteratively compute the mappings ψ_n defined at (2.3), which are approximate solutions of $\psi(u) = \Psi(u, \psi(u))$. The functions ψ_n can be themselves regarded as approximations of φ . Using the techniques of the previous section, an estimate on the \mathbb{C}^k norm of the difference $\psi_n - \varphi$ is now given. To eliminate the dependence on ε of the various constants, we make the simplifying assumption $\varepsilon < \frac{1}{2}$. The general case can be treated in a similar fashion.

THEOREM 2. – Let all of the assumptions in Theorem 1 hold, with $\varepsilon = \frac{1}{2}$. Let Φ be a second mapping that satisfies the exact same hypothesis made on Ψ , and let $\varphi \colon U \to V$ be the unique solution of (3.1). If $\|\Phi - \Psi\|_{C^k(U \times V)} \leq \eta$, then for all $n \geq 0$

(3.2)
$$\|\psi_n - \varphi\|_{C^{k}(U)} \leq L \cdot [\eta + (\frac{3}{4})^n],$$

where L is a constant depending only on $M = \max(\|\Psi\|_{\mathbf{C}^{k+1}}, \|\Phi\|_{\mathbf{C}^{k+1}}).$

PROOF. – Define the constants $\varrho_i = \varrho_i(M)$ (i = 1, ..., k) by

$$arrho_1 = rac{M}{2} \,, \, ... \,, \, arrho_i = rac{M}{2} (i+1)! \, arrho_{i-1}^i \,, \, ..$$

and define \tilde{F}, \tilde{V} and the prolongations $\tilde{\Psi}, \tilde{\Phi}: U \times \tilde{V} \to \tilde{V}$ as in the proof of Theorem 1. By setting

$$C = 8Mk(k+1)! g_k^k, \quad ||\cdot||_E' = C||\cdot||_E$$

and again denoting by $\|\cdot\|'$ the induced norms on the spaces $F_i = L^i(E, F)$ and on their product \tilde{F} , we have

$$\|\tilde{\Psi}(u,\tilde{x}) - \tilde{\Psi}(u,\tilde{y})\|' \leq \frac{3}{4} \|\tilde{x} - \tilde{y}\|'$$

for all $u \in U$ and $\tilde{x}, \tilde{y} \in \tilde{V}$, and the same holds for Φ . All of this is clearly a consequence of i), ii) in § 2.

We now seek a bound on $\|\tilde{\varPhi} - \tilde{\varPsi}\|'$. If $(u, \tilde{x}) \in U \times \tilde{V}, i + j < k$, $\sum_{l} \alpha_l < k$ then $\|\partial_u^i \partial_x^j \varPhi(u, x_0) x_1^{[\alpha_1]} \dots x_k^{[\alpha_k]} - \partial_u^i \partial_x^j \varPsi(u, x_0) x_1^{[\alpha_1]} \dots x_k^{[\alpha_k]} \| < \eta \cdot \|x_1\|^{\alpha_1} \dots \|x_k\|^{\alpha_k} < \eta \varrho_k^k$.

Using Lemma 1 this yields

170

$$(3.4) \|\tilde{\Phi}(u,\tilde{x}) - \tilde{\Psi}(u,\tilde{x})\|' \leq \|\tilde{\Phi}(u,\tilde{x}) - \tilde{\Psi}(u,\tilde{x})\| = \\ = \sup \{ \|\Phi_m(u,\tilde{x}) - \Psi_m(u,\tilde{x})\|; \ 0 < m < k \} < (k+1)! \eta \varrho_k^k \}$$

because the new norm $\|\cdot\|'$ is smaller than the old one on each space $L^i(E, F)$. To complete the proof, define the sequence of maps $\tilde{\varPhi}_n \colon U \to \tilde{V}$ by

$$ilde{arphi}_{0}(u)=0,\ ...,\ ilde{arphi}_{n}(u)= ilde{\varPhi}ig(u, ilde{arphi}_{n-1}(u)ig),\ldots.$$

We claim that

(3.5)
$$\|\tilde{\varphi}_n(u) - \tilde{\psi}_n(u)\|' \leq 4(k+1)! \eta \varrho_k^k$$

for all $u \in U$, $n \ge 0$. This is trivially true when n = 0. If (3.5) holds for a certain n, then (3.4) and (3.3) imply

$$egin{aligned} \| ilde{arphi}_{n+1}(u) - ilde{arphi}_{n+1}(u) \|' &< \| ilde{arPhi}(u, ilde{arphi}_n(u)) - ilde{arPhi}(u, ilde{arphi}_n(u)) \|' + \| ilde{arPhi}(u, ilde{arphi}_n(u)) - &- ilde{arPsi}(u, ilde{arphi}_n(u)) \|' &< (k+1) \,! \, \eta arrho_k^k + rac{3}{4} \| ilde{arphi}_n(u) - ilde{arphi}_n(u) \|' &< 4(k+1) \,! \, \eta arrho_k^k. \end{aligned}$$

By induction this proves (3.5) for all *n*. The contraction mapping theorem applied to the map $\tilde{x} \to \tilde{\Phi}(u, \tilde{x})$ yields

(3.6)
$$\|\tilde{\varphi}_n(u) - \tilde{\varphi}(u)\|' \leq \sum_{j=n}^{\infty} (\frac{3}{4})^j \|\tilde{\varPhi}(u,0)\|' \leq 4M(\frac{3}{4})^n$$

for all $u \in U$, $n \ge 0$. Putting together (3.5) with (3.6) and using (2.15) we get an estimate involving the old norm:

$$\|\tilde{\varphi}(u) - \tilde{\psi}_n(u)\| \leq C^k \|\tilde{\varphi}(u) - \tilde{\psi}_n(u)\|' \leq C^k [4(k+1)!\eta \varrho_k^k + 4M(\frac{3}{4})^n].$$

By (2.8) and (2.14), this yields (3.2) with

(3.7)
$$L(M) = [8Mk(k+1)!\varrho_k^k]^k (4(k+1)!\varrho_k^k + 4M).$$

Notice that ϱ_k , and hence L, depend only on the constant M, as required.

171

4. - Approximation of control systems.

Consider the control system (1), which we now write in the more compact form

(4.1)
$$\dot{x}(t) = G(x(t)) \cdot u(t), \quad x(0) = \xi.$$

G is then an $n \times m$ matrix valued function defined on \mathbb{R}^n and $u(t) \in \mathbb{R}^m$. Assume $G \in \mathbb{C}^{k+1}$ and call $G^{(j)}$ its *j*-th derivative. Taylor's formula is

$$G(x) = \sum_{j=0}^{k} \frac{1}{j!} G^{(j)}(x - x_0)^{[j]} + O(|x - x_0|^{k+1})$$

Define the mapping $\Phi: \mathfrak{L}^1([0, T]; \mathbf{R}^n) \times \mathrm{C}^0([0, T]; \mathbf{R}^n) \to \mathrm{C}^0([0, T]; \mathbf{R}^n)$ by

(4.2)
$$\Phi(u, x)(t) = \xi + \int_{0}^{t} G(x(s)) u(s) \, ds \, .$$

Notice that $\Phi = \Phi'' \circ \Phi'$ with $\Phi'(u, x)(t) = (u(t), G(x(t)))$ and

$$\Phi''(u, Z)(t) = \xi + \int_0^t Z(s) u(s) \, ds \, .$$

Clearly Φ' is a k + 1 times Fréchet differentiable substitution operator and Φ'' is bilinear, hence Φ is C^{k+1} . In particular, $\partial_x^j \Phi(u_0, x_0)(t)$ is the *j*-linear map

$$y^{[j]} \to \int_{0}^{i} G^{(j)}(x_0(s)) \cdot y^{[j]}(s) u_0(s) ds ,$$

 $\partial_u \partial_x^i \Phi(u_0, x_0)(t)$ is the multilinear map

$$(u, y^{[j]}) \rightarrow \int_{0}^{t} G^{(j)}(x_{0}(s)) y^{[j]}(s) u(s) ds$$

and $\partial_u^i \partial_x^j \Phi \equiv 0$ for i > 1, because the dependence on u is linear.

By an iterated integral of the control $u = (u_1, ..., u_m)$ we mean a scalar map of the form

$$I(u, t) = \int_{0}^{\tau} \int_{0}^{\sigma_{1}} \dots \int_{0}^{\sigma_{r-1}} u_{i_{r}}(\sigma_{r}) d\sigma_{r} \dots u_{i_{1}}(\sigma_{1}) d\sigma_{1},$$

where $i_1, \ldots, i_r \in \{1, \ldots, m\}$. Some basic approximation theorems in terms of iterated integrals are given in [2]. Using the previous abstract results, we now show that

the input-output map $u(\cdot) \rightarrow x(\cdot)$ generated by (4.1) can be approximated by linear combinations of iterated integrals of u, in a high-order norm, uniformly on compact sets.

THEOREM 3. – Let G in (4.1) be a \mathbb{C}^{k+1} mapping from \mathbb{R}^n into $\mathbb{R}^{n \times m}$. Then for every compact $K \subset \mathbb{R}^n$, T and $\tilde{\varepsilon} > 0$, there exists a finite family of polynomial maps $p_{\alpha} \colon \mathbb{R}^n \to \mathbb{R}^n$ and iterated integrals I_{α} such that the map

(4.3)
$$y(\xi, u, t) = \sum_{\alpha} p_{\alpha}(\xi) \cdot I_{\alpha}(u, t)$$

satisfies

(4.4)
$$\|\partial_u^j y(\xi, u, t) - \partial_u^j x(\xi, u, t)\| \leq \varepsilon$$

for every $t \in [0, T]$, j = 0, ..., k, $\xi \in K$ and every control u with $|u_i(s)| \leq 1$ (i = 1, ..., m)and such that the corresponding solution $t \to x(\xi, u, t)$ of (4.1) lies entirely inside K.

PROOF. - Fix $K \subset \mathbb{R}^n$, T and $\varepsilon > 0$. It is clearly not restrictive to assume that the support of G is compact. Otherwise one can replace G with a map \overline{G} which coincides with G on a neighborhood of K and has compact support.

Let $M = ||G||_{C^{k+1}(R^n)} < \infty$, let $K \subset B(0, r)$ and define the sets

$$egin{aligned} U &= ig\{ u \in \mathfrak{L}^1([0,\,T];\,oldsymbol{R}^m);\; |u_i(s)| \leqslant 1,\, i=1,\,...,\,m,\,s\in[0,\,T] ig\} \ V &= ig\{ x \in \mathrm{C}^0([0,\,T];\,oldsymbol{R}^n);\; x(s)\in Big(0,\,r+m(M+1)ig),\,s\in[0,\,T] ig\} \,. \end{aligned}$$

For every integer $\nu \ge 1$; a classical approximation theorem [5, p. 155] guarantees the existence of a map $F_{\nu} : \mathbb{R}^n \to \mathbb{R}^{n \times m}$, having polynomial components, such that

$$||F_{\nu} - G||_{\mathbf{C}^{k+1}(B(0,r+m(M+1)))} \leq 1/\nu$$
.

Consider the map Ψ_{r} defined by

$$\Psi_{\nu}(u, x)(t) = \xi + \int_{0}^{t} F_{\nu}(x(s)) u(s) \, ds \, .$$

For each $\xi \in K$, $\nu \ge 1$, both Φ , defined at (4.2), and Ψ_{ν} map $U \times V$ into V. Moreover, by using a suitable equivalent norm on C⁰[0, T], of the form

$$||x(\cdot)||^{\dagger} = \sup \{ \exp \left[-\lambda t \right] |x(t)|; t \in [0, T] \},\$$

we have $\|\partial_x \Phi\|^{\dagger} \leq \frac{1}{2}$, $\|\partial_x \Psi_{\nu}\|^{\dagger} \leq \frac{1}{2}$ on $U \times V$, for λ large enough.

Let y_{ν} be the ν -th Picard iterate for the system

$$\dot{x}(t) = F_{v}(x(t)) u(t), \quad x(0) = \xi.$$

Theorem 2 implies that

$$\|\partial_u^j y_\nu(\xi, u, \cdot) - \partial_u^j x(\xi, u, \cdot)\|^{\dagger} \to 0 \quad \text{ as } \nu \to \infty,$$

for j = 0, ..., k, uniformly with respect to $\xi \in K$, $u \in U$. It is well known [2] that every y_{ν} can be written as a linear combination of iterated integrals. Hence, by setting $y = y_{\nu}$ with ν suitably large, the theorem is proved.

REFERENCES

- [1] J. DIEUDONNÉ, Foundations of Modern Analysis, Academic Press, New York, 1960.
- M. FLIESS, Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France, 109 (1981), pp. 3-40.
- [3] P. J. OLVER, Applications of Lie groups to differential equations, Mathematical Institute, Un. of Oxford, Lecture Notes.
- [4] L. V. OVSIANNIKOV, Group analysis of differential equations, Academic Press, New York, 1982.
- [5] F. TREVES, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.