High Order Approximation of Implicitly Defined Maps (*) (**).

ALBERTO BRESSAN (Padova)

Summary. - Approximations for the function ¢ implicitly defined by g(u) = D(u, ¢p(u)) are
obtained wvia the iterative scheme @u(u) = ®(u, ¢, (w)). In this paper the uniform conver-
gence of high order derivatives of @, to the corresponding derivatives of @ is proved. This result
yields a high order approximation theorem for the input-output map generated by a nonlinear
control system, using linear combinations of iterated integrals of the conirol.

0. — Introduction.

Consider a smooth mapping @: ExF — F acting on Banach spaces. A well-
known consequence of the contraction mapping theorem is that, if the partial
derivative of @ with respect to the second variable satisfies,

0 D(u, x)

}5{;; <e<<l (u,)eEXF

then the equation x = ®(u, ) implicitly defines a unique continuous function x =
= @(%). Moreover, the sequence of mappings

gol) =0, ..., @, lu) = ¢5(u, (p,,_l(u)),

converges to ¢ uniformly on bounded sets. If @ is k-times continuously dif-
ferentiable, such are ¢ and ¢, (#>0) as well. In this paper we show that the con-
vergence of ¢, t0 ¢ actually takes place in the C* norm. In theorem 1, § 2, the uni-
form, geometric rate of convergence of the derivatives Dig, to Dip (j=0,..., k)
is established. In § 3 we consider a second map ¥: E x F — F which approximates @
in the C* norm and give an estimate on the C* norm of the difference ¢ — y, where
p(u) is implicitly defined by y(u) = ¥(u, y(#)). The proofs of the above results
both rely on prolongation techniques, in the spirit of clagsical Lie theory [3, 4].

The primary motivation for the present study came from control theory. Indeed
a control system of the form

1) =3 g0)u., a(0)=EeRr
i=1

%

(*) Entrata in Redazione 1'8 settembre 1983.
(**) Lavoro eseguito nell’ambito del G.N.A.F.A. del C.N.R,
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generates an input-output mép @: £([0, T]; R™) — C([0, T1; R"), ¢(u(-)) = «(+) im-
plicitly defined by:

A ;o ‘
1)=& - igfg,-(w(s))ui(s) ds .
0

In general-there exist no explicit formulas giving the trajectory x(-) directly
in terms of the control. However, one can approximate ¢ in the following way.
First replace the g.’s by vector fields ¢, having polynomial components. Then
compute the Picard iterates y,(u) for the approximate system

r= % gi{x)w,, x(0)=E&.
i=1

Using our abstract results, in § 4 we show that these Picard iterates do indeed
approximate the input-output map ¢ in the C:-norm of functionals. The uniform
approximation theorem for @ in terms of iterated integrals of the controls u,, given
in [2] for the C° norm, can thus be extended to higher order norms.

1. — Preliminaries.

In this paper, differential calculus in abstract spaces is used throughout. Given
two Banach spaces E and F, k>0, we denote by L*(E, F) the space of continnous
k-linear mappings A from ®E = AxXHX..xH (k timeg) into F with the norm

k

HA”L"(E,F)= sup {”A(uu s )5 lwlg<l, i =1,..., K} .

In the following, sﬁbscripts to the norms will be suppressed whenever this cannot
generate confusion. The closed ball centered at & with radius ¢ is written B(z, g).
If pisa smooth mapping from an open subset V' of ¥ into F its k-th Fréchet de-
rivative at .a point we V is Dry(u), IXE, K. We nse the - conventlons D°zp( ) =
= y(u), L'(E, F) = F. :

It is well known that nlgh -order derivatives are symmetric multlllnear mapplngs
D¥y(u) is therefore completely determined by assigning its values on elements of
the form u™ = (u, 4, ..., w) € H. Partial derivatives of a function ¥ = ¥(u,x)

k

defined on a product space E x F are denoted by o,, 0,. High order total derivatives
of a composite mapping u — ¥(u, p(u)) will also be used.

LEMMA 1. ~ Let W: EXF — F and y: B — F be smooth mappings, m>1. Then
the m-th total derivative D™ (u, w(u)) is given formally by & swm of <(m -+ 1)! .
monomials having degree <m in the terms Diy(u), i =1, ..., m. Hach one of these



ALBERTO BRESSAN: High order approximation of implicitly, efe. 165

monomials has the form

(1.1) 05 0L (w, p(@) - (D p(w)) ™ ... (D™ p(u)) ™,

with

(1.2) 1<itj<m, Sw=j, i+Slau=m.
1= 1=1

Moreover, there is a unigue monomial for which o, 0, namely 0, (u, p(u)) - Dyp(w).
Notice that in (1.1) the expression 20! ¥(u, y(x)) denotes an ¢ - j-linear map
from () E) x(X) F) into F, and the formal power (D'y(u))*? is interpreted as the
i i
vector with «; equal components (Déy(u), ..., Diy(u)) €(X) Li(H, F).
o

To prove the lemma, one checks that the assertions hold when m = 1 and
proceeds by induection. If (1.2) holds up to a certain m, differentiating (1.1) with
respect to 4 we get the two terms

(1.3) 0Ll W (uy p(w)) - (D yp(w)) ™ ... (D™p(w)),
(1.4) 0L oL 1 (w, p(w)) (D p(w)) ™ L. (D™ yp(u)) .

Moreover, for every I =1,..., m, we get the a, identical termsg
(1.6) 2500 ¥(u, p(u))(D (@)™ ... (Dlyp(u)) (DM 1 y(w)) et (D™ ()7 .

Therefore each of the <(m 4 1)! terms in the expression for D"¥(u, p(w))
yields no more then m + 2 terms in the expression for D™+'¥(u, y(u)). An inspec-
tion of (1.3) to (1.5) shows that all of these monomials have the form (1.1) and
satisfy (1.2), with m replaced by m - 1. The last statement is clear.

A map y defined on an open subset V of a Banach space is CF if it is k-times
differentiable in the sense of Fréchet and the mappings w — Diy(u) (j=0,..., k)
are continuous on V. The C* norm of y on a subset UCV is

¥lexm = sup {[D'p@)l; we U, j=0,.., k.
For the basic properties of differential calculus in Banach spaces, our general
reference is DIEUDONNE [1].
2. — The main convergence theorem.

THEOREM 1. — Let E, F' be Banach spaces, U = B(u,, o) C H, V = B(0, g,) C F.
Let ¥ be a C*! mapping from an open neighborhood of U XV into F such that, for
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some e <1 and all ue U, zeV

(2.1) 10: P (u, w)] <&, [¥P(u,0)]<go(l—¢).

Lot [P ]gr1igwr, <M with 1< M <oo. Then there exists a unique C*+* map y: U~V
satisfying

(2.2) pu) = P(u, p(w)
for every we U. If the sequence of mappings (y,),=, s recursively defined by
(2.3) Yo() = 0, wovy Pulv) = P(w, Yas(w)), ..

then, for 0<m<k, the sequence of derivatives (D™y,(u)),=, converges to D™y(u) ab-
solutely and wniformly on U.

Proor. — The existence and the uniqueness of y are a consequence of the classica
contraction mapping theorem [1, p. 260], the regularity of y follows from the implieit
function theorem [1, p. 268]. To prove the convergence of the sequence (D™y.,)
to D™y, we construct a prolongation ¥ of ¥ as follows. Let the constants g,
(i =1,.., k) be defined by

M M@+ 1)!

(2.4) Q= Q= "9 . (@ialy we -

Let ' = FX LB, F) X L¥B, F) x.. XxIB, F), V = Ve x Vyx...X ViC F, where
Vo=V and V,= B(0, g;) c Li{#, F) for i =1, ..., k.

Elements in F are denoted by &= (,, By ey Bg)y | & [] = sup {[#;|zzms ¢ =
=0, ..., k}. Define a continuous map ¥:UxV —F, !f/ = (W, ¥1y vy i) DY
setting
(2.5) T;(u, i) = Digl(u, 'l/) )IDjl/)(’llz) P (j = 0, cany '?:) .

The i-th component of ¥ is therefore obtained by formally computing the i-th
total derivative of ‘P(u,,zp(u)) with respect to # and by replacing the terms Diy(u)
with the free variables @; (0<j<i) wherever they occur. Notice that all partial
derivatives of ¥ are evaluated at (u, x,).

The system

(2.6) # = Y(u, %)

is thus a set of & -- 1 implicit equations that we will solve for & in terms of u by
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means of the contraction mapping theorem. Define a sequence of mappings
put U —F by

2.7 Folt) = 0, oy Pults) = Pty Foa(w)), ...
From (2.7) and (2.5) it follows by induection that for every n>0
(2.8) Pulw) = (wn(“)7 Dwn(u)y -Dzil)n('”')’ ey D"%(’M)) .

The theorem will be proved by showing the absolute and uniform convergence
of the sequence (7,),~,. This, in turn, will be a consequence of '

i) ¥ maps UxV continuously into V.

ii) There exists an equivalent norm | |’ on F such that,forallue U, & §e 7,
(2.9) 1P, &) — Plu, §)]' <(2e— )| &~ F]' -
A preliminary extimate is needed.

LEMMA 2. — Let W, (0<m<k) be defined by (2.5). Then for every (u, &) UxV
the following bounds hold:

(2.10) (190, Wity &) = 0 ifl>m,
(2.11) 190, Woulu, &) <é |
(2.12) 100, Foultsy B)| < Mim - 1) 1gr i O<l<m.

Proor. — By Lemma 1, ¥,,(u, &) is the sum of no more than (m 4 1)! terms of
the form

(2.13) A = 00 (u, wy) ... wlim

where 1, j, o; satisfy (1.2). Thus (2.10) is clear, and (2.11) holds because |0, ¥n.(%,
Z) = 10, P (uw, 2,)]. Differentiating A in (2.13) with respect to z, and z;, (1<i<m)
one gets

19,41 = 10,057 P (w, @) 2" 2 ... ™| <ML 07" .. o< Mgy,

8,0 = e[ 058L W oty 7)o . 10 o] <

<o M7t .. of L pir<m Mol < Mol

These two inequalities yield (2.12) in the cases I =0 and > 0 respectively.
We can now give a proof of i). By Lemma 1, ¥, (u, &) is the sum of less than
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(m + 1)! monomials of the form (2.17).in the variables z, ..., w;n_l, plus the single
term 0, ¥(u, %) #,. This yields the estimate

H?’ (’”’7 )u (m+1) Q$—1+£Qm<(1—8)Qm+€Qm

because of (2.4). Hence ¥,(u, &) eV, for 1<m<k, (u, )€ Ux V. The estimate
for m = 0 iy straight-forward. Y
To prove ii), introduce the constant

(2.14) \ C = 2MI(k 4 1)1 (e — e2)*

Define on E the equivalent norm [u|'= C|u], and denote with |-’ the induced
norms on the spaces ¥,= Li(E,F) and L(F,, F;). Notice that, if y: E - F is
smooth at « and if ye L(F,, F;), we have :

(2.15) [Dip@)|' = C=*|Dipu)], [x]'= C—lx] .

Consider now we U, & ¢ € V. Recalling the definition of the norm on the product
space F' we have

1, %) — Plu, §)]' = sup ([Pl &) — Fnlat, D)1, 0<m <1} ©

Fix some m and let &= (2g,..., %), ¥ = (Yo, ..., ¥z). Then mean value the-
orem [1, p. 155] together with Lemma 2 yields '

m

| Pty &) — W, §)] Z sup {2, Pulu, 2)|'5 Z€ P} o — y:]' <

20 Mm—l" "{_Enwm—" ?/mn
<[k~0—1M(m+1).gk—|— ] sup {||ac —Jlﬂ ,0<z<k}<[ e—¢?) +e]|8—F] . ‘

" This proves ii}. The eontra)ctionr mapping theorem aplied to !{—’ now implies the
absolute and uniform convergence of the sequence ¢,(u) to some P(u)k = (y(u),
YO(u), ..., p®(»)) in the new norm ||-|’, hence in the old norm as well. By (2.8),
this means that for m = 0, ..., k, the sequence of derivatives (D"y,),-, tends to
™ uniformly on U. A classical convergence theorem [1, p. 158] now implies

(2116) P(u) = (p(u), Dy(w), D2y(w), ..., D*¥(w)) ,

completing the proof.
Notice that from (2.9) the geometric rate of convergence can be easily inferred.
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3. — Further estimates.

Suppose we are interested in computing an approximation to the map @ implicitly
defined by

(3.1) o) = B(u, plu)) .

We do this by first considering a simpler mapping ¥ which is suitably close
to @. Then we iteratively compute the mappings v, defined at (2.3), which are
approximate solutions of y(u) = ¥(u, p(u)). The functions yp, can be themselves
regarded as approximations of ¢. Using the techniques of the previous section,
an estimate on the C* norm of the difference y,— ¢ is now given. To eliminate
the dependence on ¢ of the various constants, we make the simplifying assumption
e<3}. The general case can be treated in a similar fashion.

THEOREM 2. — Let all of the assumptions in Theorem 1 hold, with ¢ = L. Let @

be a second mapping that satisfies the exact same hypothesis made on ¥, and letp: U —V
be the unique solution of (3.1). If |® — ¥|ewxyy<mu, then for all n>0

(32) ”Wn_ (p“C"(U)<L'[77 + (%)n] ?
where L is a constant depending only on M = max (|¥]eess, |Dlern)-

Proor. — Define the constants o,= o,(M) (¢t =1,..., k) by

M M
9125—7 b \. (/L +1) Qz—l’ b

and define F, ¥ and the prolongations ¥, @: UxV — ¥ as in the proof of The-
orem 1. By setting

= 8MEE 4 1)1gE, | ly= O],

and again denoting by ||’ the induced norms on the spaces F,= L(E, F) and
on their product F, we have

(3.3) 1P, &) — Plu, P < 3|E— g1’

for all we U and # jeV, and the same holds for @. All of this is clearly a
consequence of i), ii) in § 2.
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We now seek a bound on |& — ¥|. If (w,#e UxT,i+j<k, > a;<k then
i
|95 05 Blusy wo) 2y ... ™ — 0,0 (wy @)™ oo i | <o o | . [ < -
-Using Lemma 1 this yields

34)  |B(w, &) ~ Flu, B)| <| P, &) — Plu, &) =
= sup {|Pn(ts, &) — Pty B)|; 0<m <k} < (ke + 1) 10k

because the new norm |« |’ is smaller than the old one on each space Li(E, F).
To complete the proof, define the sequence of maps @,: U — ¥ by

Golw) = 0, ..., Gu(u) = B(u, u_s(w)), ... .
We claim that

(3.5) [@n(u) — Pa(w)]' <4(k 4 1) 190}

for all w € U, n>>0. This is trivially true when » = 0. If (3.5) holds for a certain n,
then (3.4) and (3.3) imply

H¢n+1(M) - 1,5n+1("/")l|’< H@(% (ﬁn(“)) — lfl(”” (73%('”’)”1’ + )—{7(”” ¢n(u)) -
— P(uy Po(w)]' < (T + 1) 1ok + 3| @Fa(u) — Pu(w)]|’ <4(k + 1) toyok .

By induction this proves (3.5) for all #n. The contraction mapping theorem
applied to the map & — @(u, &) yields

(3.6) [@a(w) — Gw)]' < T ()] B, O)]' <4 M (})"

=0

-,

for all we U, n>0. Putting together (3.5) with (3.6) and using (2.156) we get an
estimate involving the old norm:

@) — Fal)] < C*| () — Fal)|'< OTA(R 4 1) g} -+ 4M(3)"] .
By (2.8) and (2.14), this yields (3.2) with
(3.7) L(M) = [8Mh(k + 1) giT{(4(k + 1) 10} -+ 431) .

Notice that g, and hence L, depend only on the congtant M, as required,
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4. — Approximation of control systems.
Consider the control system (1), which we now write in the more compact form

(4.1) B(t) = G(a(t) u@), #0)=E&.

@ is then an »n xXm matrix valued function defined on R» and #(f) € R». Assume
@ e G+ and call G its j-th derivative. Taylor’s formula is

k
6e) = 3 5698 — o)+ 0(|o —aft+)
i=o0]:
Define the mapping &@: £1([0, T7; R™) x €([0, T1; R") — €([0, T]; R*) by

. t
(4.2) Blu, z)(t) = & + f G (a(s))uls) ds .
0

Notice that @ = @"o P’ with @'(u, z)(t) = (u(t), G(w(t))) and
s

& (u, Z)(t) = £ + f Z(s)u(s) ds .
0

Clearly @' is a k + 1 times Fréchet differentiable substitution operator and &"
is bilinear, hence @ is C*+1. In particular, 0D(u,, #,)(f) is the j-linear map

4
y7 [ 69(a(6) -y s a(s) ds
1]
0, 0L D(uy, ,)(t) is the multilinear map

i
(1, 9) [ 6D (a0()) § () (s) ds
0

and 0.0/® =0 for ¢ > 1, because the dependence on « is linear.
By an iterated integral of the control # = (u,, ..., 4,) We mean a scalar map
of the form

T 6; Oreg

1@, 1) =] [...[u,(0) do ... u, () doy,
00 0

where i, ..., 4.€ {1, ..., m}. Some basic approximation theorems in terms of iterated
integrals are given in [2]. Using the previons abstract results, we now show that
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the input-output map u(-) — x(-) generated by (4.1) ean be approximated by linear
combinations of iterated integrals of «, in a high-order norm, uniformly on compaect
sets.

THEOREM 3. — Let G in (4.1) be a C*' mapping from R* into R**™. Then for
every compact K c R*, T and &> 0, there exists a finite family of polynomial maps
Py R — R* and iterated integrals I, such that the map

(4.3) Y(& uy 1) = 3 pa(8)- I (n, 1)
satisfies
(4.4) 10.y(&, u, 1) — 00(&, u, )] <e

for every t€[0,T),§ = 0,..., k, £ € K and every control 4 with |u,(s)|<1 (¢ =1, ..., m)
and such that the corresponding solution t — x(£, u,t) of (4.1) lies entirely inside K.

Proor. - Fix KcR*, T and ¢> 0. It is clearly not restrictive to assume that
the support of ¢ is compact. Otherwise one can replace @ with a map G which
coincides with G on a neighborhood of K and has compact support.

Let M = |G|rsrny<< oo, let K c B(0,7) and define the sets

U= {weti([0, T]; R"); lui(s)|<1,i=1,..,m,s€[0, T}
V = {we ([0, T]; R"); a(s) € B(0, r + m(M + 1)), s [0, T} .

For every integer »>1; a clagsical approximation theorem [5, p. 155] guaran-
tees the existence of a map F,: R*— R**™, having polynomial components, such
that

|, — Gl eea(o,r+marr1y) <1y .

Consider the map ¥, defined by
¢
Y (uw, @)(t) = & +fF,,(w(s)) w(s) ds .
0

For each § € K, »>>1, both @, defined at (4.2), and ¥, map U XV into V. More-
over, by using a suitable equivalent norm on C°[0, 7], of the form

Jo(+)[[t = sup {exp [— A]|w(®)|; te [0, TT},

we have |0, D|t<%, |9,¥,|T<i on UXV, for 4 large enough.
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Let y, be the »-th Picard iterate for the system

x(t) = F,,(m(t)) u(t)7 ’ 2(0) = £.

Theorem 2 implies that
1039,(8 4, +) — (& u, )T >0 as v —>oo,

for j = 0,..., k, uniformly with respect to € K, w e U. It is well known [2] that
every ¥, can be written as a linear combination of iterated integrals. Hence, by
setting y = y, with v suitably large, the theorem is proved.
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