High Order Approximation of Implicitly Defined Maps $\left(^{*}\right)\left({ }^{(* *)}\right.$.

Auberto Bressan (Padova)

Summary. - Approximations for the function φ implicitly defined by $\varphi(u)=\Phi(u, \varphi(u))$ are obtained via the iterative soheme $\varphi_{n}(u)=\Phi\left(u, \varphi_{n-1}(u)\right)$. In this paper the uniform convergence of high order derivatives of φ_{n} to the corresponding derivatives of φ is proved. This result yields a high order approximation theorem for the input-output map generated by a nonlinear control system, using linear combinations of iterated integrals of the control.

0. - Introduction.

Consider a smooth mapping $\Phi: E \times F \rightarrow F$ acting on Banach spaces. A wellknown consequence of the contraction mapping theorem is that, if the partial derivative of Φ with respect to the second variable satisfies,

$$
\left\|\frac{\partial}{\partial x} \Phi(u, x)\right\| \leqslant \varepsilon<1 \quad(u, x) \in E \times F
$$

then the equation $x=\Phi(u, x)$ implicitly defines a unique continuous function $x=$ $=\varphi(u)$. Moreover, the sequence of mappings

$$
\varphi_{0}(u) \equiv 0, \ldots, \varphi_{n}(u)=\Phi\left(u, \varphi_{n-1}(u)\right), \ldots
$$

converges to φ uniformly on bounded sets. If Φ is k-times continuously differentiable, such are φ and $\varphi_{n}(n \geqslant 0)$ as well. In this paper we show that the convergence of φ_{n} to φ actually takes place in the C^{k} norm. In theorem $1, \S 2$, the uniform, geometric rate of convergence of the derivatives $D^{j} \varphi_{n}$ to $D^{j} \varphi(j=0, \ldots, k)$ is established. In § 3 we consider a second map $\Psi: E \times F^{\prime} \rightarrow F$ which approximates Φ in the \mathcal{C}^{k} norm and give an estimate on the \mathcal{C}^{k} norm of the difference $\varphi-\psi$, where $\psi(u)$ is implicitly defined by $\psi(u)=\Psi(u, \psi(u))$. The proofs of the above results both rely on prolongation techniques, in the spirit of classical Lie theory [3, 4].

The primary motivation for the present study came from control theory. Indeed a control system of the form

$$
\begin{equation*}
\dot{x}=\sum_{i=1}^{m} g_{i}(x) u_{i}, \quad x(0)=\boldsymbol{\xi} \in \boldsymbol{R}^{n} \tag{1}
\end{equation*}
$$

(*) Entrata in Redazione l's settembre 1983.
(**) Lavoro eseguito nell'ambito del G.N.A.F.A. del C.N.R,
generates an input-output map $\varphi: \mathcal{L}^{1}\left([0, T] ; \boldsymbol{R}^{m}\right) \rightarrow \mathcal{C}\left([0, T] ; \boldsymbol{R}^{n}\right), \varphi(u(\cdot))=x(\cdot)$ implicitly defined by:

$$
x(t)=\xi+\sum_{i=1}^{m} \int_{0}^{t} g_{i}(x(s)) u_{i}(s) d s
$$

In general there exist no explicit formulas giving the trajectory $x(\cdot)$ directly in terms of the control. However, one can approximate φ in the following way. First replace the g_{i} 's by vector fields q_{i} having polynomial components. Then compute the Picard iterates $\psi_{n}(u)$ for the approximate system

$$
\dot{x}=\sum_{i=1}^{m} q_{i}(x) u_{i}, \quad x(0)=\xi
$$

Using our abstract results, in § 4 we show that these Picard iterates do indeed approximate the input-output $\operatorname{map} \varphi$ in the \mathcal{C}^{k}-norm of functionals. The uniform approximation theorem for φ in terms of iterated integrals of the controls u_{i}, given in [2] for the \mathcal{C}^{0} norm, can thus be extended to higher order norms.

1. - Preliminaries.

In this paper, differential calculus in abstract spaces is used throughout. Given two Banach spaces E and $F, k \geqslant 0$, we denote by $L^{k}(E, F)$ the space of continuous k-linear mappings A from $\bigotimes_{k} E=E \times E \times \ldots \times E$ (k times) into F with the norm

$$
\|\Lambda\|_{L^{k(E, F)}}=\sup \left\{\left\|\Lambda\left(u_{1}, \ldots, u_{k}\right)\right\|_{F} ;\left\|u_{i}\right\|_{E} \leqslant 1, i=1, \ldots, k\right\}
$$

In the following, subscripts to the norms will be suppressed whenever this cannot generate confusion. The closed ball centered at x with radius ϱ is written $B(x, \varrho)$. If ψ is a smooth mapping from an open subset V of E into I, its k-th Fréchet derivative at a point $u \in V$ is $D^{k} \psi(u), L^{k}(E, F)$. We use the conventions $D^{0} \psi(u)=$ $=\psi(u), L^{0}(\boldsymbol{E}, \boldsymbol{F})=\boldsymbol{F}_{.}$.

It is well known that high-order derivatives are symmetric multilinear mappings. $D^{k} \psi(u)$ is therefore completely determined by assigning its values on elements of the form $u^{[k]}=(u, u, \ldots, u) \in \bigotimes_{k} E$. Partial derivatives of a function $\Psi=\Psi(u, x)$ defined on a product space $E \times F$ are denoted by $\partial_{u}, \partial_{x}$. High order total derivatives of a composite mapping $u \rightarrow \Psi(u, \psi(u))$ will also be used.

Leman 1. - Let $\Psi: E \times F \rightarrow F$ and $\psi: E \rightarrow F$ be smooth mappings, $m \geqslant 1$. Then the m-th total derivative $D^{m} \Psi(u, \psi(u))$ is given formally by a sum of $\leqslant(m+1)$! monomials having degree $\leqslant m$ in the terms $D^{i} \psi(u), i=1, \ldots, m$. Each one of these
monomials has the form

$$
\begin{equation*}
\partial_{u}^{i} \partial_{x}^{i} \Psi(u, \psi(u)) \cdot\left(D^{1} \psi(u)\right)^{\left[\alpha_{1}\right]} \ldots\left(D^{m} \psi(u)\right)^{\left[\alpha_{m}\right]} \tag{1.1}
\end{equation*}
$$

with

$$
\begin{equation*}
1 \leqslant i+j \leqslant m, \quad \sum_{l=1}^{m} \alpha_{l}=j, \quad i+\sum_{l=1}^{m} l \cdot \alpha_{l}=m . \tag{1.2}
\end{equation*}
$$

Moreover, there is a unique monomial for which $\alpha_{m} \neq 0$, namely $\partial_{x} \Psi(u, \psi(u)) \cdot D^{m} \psi(u)$.
Notice that in (1.1) the expression $\partial_{u}^{i} \partial_{x}^{j} \Psi(u, \psi(u))$ denotes an $i+j$-linear map from $(\otimes E) \times\left(\bigotimes_{i} F^{\prime}\right)$ into F, and the formal power $\left(D^{i} \psi(u)\right)^{\left[\alpha_{i}\right]}$ is interpreted as the vector with α_{i} equal components $\left(D^{i} \psi(u), \ldots, D^{i} \psi(u)\right) \in \bigotimes_{\alpha_{i}} L^{i}(E, F)$.

To prove the lemma, one checks that the assertions hold when $m=1$ and proceeds by induction. If (1.2) holds up to a certain m, differentiating (1.1) with respect to u we get the two terms

$$
\begin{align*}
& \partial_{u}^{i+1} \partial_{x}^{j} \Psi(u, \psi(u)) \cdot\left(D^{1} \psi(u)\right)^{\left[\alpha_{1}\right]} \ldots\left(D^{m} \psi(u)\right)^{\left[\alpha_{m}\right]} \tag{1.3}\\
& \partial_{u}^{i} \partial_{w}^{j+1} \Psi(u, \psi(u))\left(D^{1} \psi(u)\right)^{\left[\alpha_{1}+1\right]} \ldots\left(D^{m} \psi(u)\right)^{\left[\alpha_{m}\right]} . \tag{1.4}
\end{align*}
$$

Moreover, for every $l=1, \ldots, m$, we get the α_{l} identical terms

$$
\begin{equation*}
\partial_{u}^{i} \partial_{凶}^{j} \Psi(u, \psi(u))\left(D^{1} \psi(u)\right)^{\left[\alpha_{1}\right]} \ldots\left(D^{l} \psi(u)\right)^{\left[\alpha_{l}-1\right]}\left(D^{l+1} \psi(u)\right)^{\left[\alpha_{l+1}+1\right]} \ldots\left(D^{m} \psi(u)\right)^{\left[\alpha_{m}\right]} . \tag{1.5}
\end{equation*}
$$

Therefore each of the $\leqslant(m+1)$! terms in the expression for $D^{m} \Psi(u, \psi(u))$ yields no more then $m+2$ terms in the expression for $D^{m+1} \Psi(u, \psi(u))$. An inspection of (1.3) to (1.5) shows that all of these monomials have the form (1.1) and satisfy (1.2), with m replaced by $m+1$. The last statement is clear.

A map ψ defined on an open subset V of a Banach space is \mathcal{C}^{k} if it is k-times differentiable in the sense of Fréchet and the mappings $u \rightarrow D^{i} \psi(u)(j=0, \ldots, k)$ are continuous on V. The \mathfrak{C}^{k} norm of ψ on a subset $U \subseteq V$ is

$$
\|\psi\|_{\mathbb{C}^{*}(U)}=\sup \left\{\left\|D^{i} \psi(u)\right\| ; u \in U, j=0, \ldots, k\right\} .
$$

For the basic properties of differential calculus in Banach spaces, our general reference is Dieudonné [1].

2. - The main convergence theorem.

Theorem 1. - Let E, F be Banach spaces, $U=B\left(u_{0}, \varrho\right) \subset E, V=B\left(0, \varrho_{0}\right) \subset F$. Let Ψ be a \mathfrak{C}^{k+1} mapping from an open neighborhood of $U \times V$ into F such that, for
some $\varepsilon<1$ and all $u \in U, x \in V$

$$
\begin{equation*}
\left\|\partial_{x} \Psi(u, x)\right\| \leqslant \varepsilon, \quad\|\Psi(u, 0)\| \leqslant \varrho_{0}(1-\varepsilon) \tag{2.1}
\end{equation*}
$$

Let $\|\Psi\|_{k+1(0 \times D)} \leqslant M$ with $1 \leqslant M<\infty$. Then there exists a unique \mathcal{C}^{k+1} map $\psi: U \rightarrow V$ satisfying

$$
\begin{equation*}
\psi(u)=\Psi(u, \psi(u)) \tag{2.2}
\end{equation*}
$$

for every $u \in U$. If the sequence of mappings $\left(\psi_{n}\right)_{n \geqslant 0}$ is recursively defined by

$$
\begin{equation*}
\psi_{0}(u) \equiv 0, \ldots, \psi_{n}(v)=\Psi\left(u, \psi_{n_{-1}}(u)\right), \ldots \tag{2.3}
\end{equation*}
$$

then, for $0 \leqslant m \leqslant k$, the sequence of derivatives $\left(D^{m} \psi_{n}(u)\right)_{n \geqslant 0}$ converges to $D^{m} \psi(u)$ absolutely and uniformly on U.

Proof. - The existence and the uniqueness of ψ are a consequence of the classica contraction mapping theorem [1, p. 260], the regularity of ψ follows from the implicit function theorem [1, p. 268]. To prove the convergence of the sequence ($D^{m} \psi_{n}$) to $D^{m} \psi$, we construct a prolongation $\tilde{\Psi}$ of Ψ as follows. Let the constants ϱ_{i} $(i=1, \ldots, k)$ be defined by

$$
\begin{equation*}
\varrho_{1}=\frac{M}{1-\varepsilon}, \ldots, \quad \varrho_{i}=\frac{M(i+1)!}{1-\varepsilon}\left(\varrho_{i-1}\right)^{i}, \ldots \tag{2.4}
\end{equation*}
$$

Let $\tilde{F}=F \times L^{1}(E, F) \times L^{2}(E, F) \times . . \times L^{k}(E, F), \tilde{V}=V_{0} \times V_{1} \times \ldots \times V_{k} \subset \tilde{F}$, where $V_{0}=V$ and $V_{i}=B\left(0, \varrho_{i}\right) \subset L^{i}(E, F)$ for $i=1, \ldots, k$.

Elements in \tilde{F} are denoted by $\tilde{x}=\left(x_{0}, x_{1}, \ldots, x_{k}\right),\|\tilde{x}\|_{\tilde{F}}=\sup \left\{\left\|x_{i}\right\|_{L^{i}(E, F)}, i=\right.$ $=0, \ldots, \hbar\}$. Define a continuous map $\tilde{\Psi}: U \times \tilde{V} \rightarrow \tilde{F}, \tilde{\Psi}(u, \tilde{x})=\left(\Psi_{0}, \Psi_{1}, \ldots, \Psi_{k}\right)$ by setting

$$
\begin{equation*}
\Psi_{i}(u, \tilde{x})=\left.D^{i} \Psi(u, \psi(u))\right|_{D^{j} \psi(u)=x_{j}} \quad(j=0, \ldots, i) \tag{2.5}
\end{equation*}
$$

The i-th component of $\tilde{\Psi}$ is therefore obtained by formally computing the i-th total derivative of $\Psi(u, \psi(u))$ with respect to u and by replacing the terms $D^{j} \psi(u)$ with the free variables $x_{l}(0 \leqslant j \leqslant i)$ wherever they occur. Notice that all partial derivatives of Ψ are evaluated at $\left(u, x_{0}\right)$.

The system

$$
\begin{equation*}
\tilde{x}=\tilde{\Psi}(u, \tilde{x}) \tag{2.6}
\end{equation*}
$$

is thus a set of $k+1$ implicit equations that we will solve for \tilde{x} in terms of u by
means of the contraction mapping theorem. Define a sequence of mappings $\psi_{n}: U \rightarrow \tilde{F}$ by

$$
\begin{equation*}
\tilde{\psi}_{0}(u)=0, \ldots, \quad \tilde{\psi}_{n}(u)=\tilde{\Psi}\left(u, \tilde{\psi}_{n_{-1}}(u)\right), \ldots \tag{2.7}
\end{equation*}
$$

From (2.7) and (2.5) it follows by induction that for every $n \geqslant 0$

$$
\begin{equation*}
\tilde{\psi}_{n}(u)=\left(\psi_{n}(u), D \psi_{n}(u), D^{2} \psi_{n}(u), \ldots, D^{k} \psi_{n}(u)\right) \tag{2.8}
\end{equation*}
$$

The theorem will be proved by showing the absolute and uniform convergence of the sequence $\left(\tilde{\psi}_{n}\right)_{n \geqslant 0}$. This, in turn, will be a consequence of
i) $\tilde{\Psi}$ maps $U \times \tilde{V}$ continuously into \tilde{V}.
ii) There exists an equivalent norm $\left\|\|^{\prime}\right.$ on \widetilde{F} such that, for all $u \in U, \tilde{x}, \tilde{y} \in \tilde{V}$,

$$
\begin{equation*}
\|\tilde{\Psi}(u, \tilde{x})-\tilde{\Psi}(u, \tilde{y})\|^{\prime} \leqslant\left(2 \varepsilon-\varepsilon^{2}\right)\|\tilde{x}-\tilde{y}\|^{\prime} \tag{2.9}
\end{equation*}
$$

A preliminary extimate is needed.
Lemma 2. - Let $\Psi_{m}(0 \leqslant m \leqslant k)$ be defined by (2.5). Then for every $(u, \tilde{x}) \in U \times \tilde{V}$ the following bounds hold:

$$
\begin{array}{ll}
\left\|\partial_{x_{l}} \Psi_{m}(u, \tilde{x})\right\|=0 & \text { if } l>m \\
\left\|\partial_{x_{m}} \Psi_{m}(u, \tilde{x})\right\| \leqslant \varepsilon, & \\
\left\|\partial_{x_{l}} \Psi_{m}(u, \tilde{x})\right\| \leqslant M(m+1)!\varrho_{m}^{m} & \text { if } 0 \leqslant l<m \tag{2.12}
\end{array}
$$

Proof. - By Lemma 1, $\Psi_{m}(u, \tilde{x})$ is the sum of no more than $(m+1)$! terms of the form

$$
\begin{equation*}
\Lambda=\partial_{u}^{i} \partial_{x}^{j} \Psi\left(u, x_{0}\right) x_{1}^{\left[\alpha_{1}\right]} \ldots x_{m}^{\left[\alpha_{m}\right]} \tag{2.13}
\end{equation*}
$$

where i, j, α_{l} satisfy (1.2). Thus (2.10) is clear, and (2.11) holds because $\| \partial_{x_{m}} \Psi_{m}(u$, $\tilde{x})\|=\| \partial_{x} \Psi\left(u, x_{0}\right) \|$. Differentiating Λ in (2.13) with respect to x_{0} and $x_{l}(1 \leqslant l \leqslant m)$ one gets

$$
\begin{aligned}
& \left\|\partial_{x_{0}} \Lambda\right\|=\left\|\partial_{u}^{i} \partial_{x}^{i+1} \Psi\left(u, x_{0}\right) x_{1}^{\left[\alpha_{1}\right]} \cdot x \ldots x_{m}^{\left[\alpha_{m}\right]}\right\| \leqslant M \cdot \varrho_{1}^{\alpha_{1}} \cdots \varrho_{m}^{\alpha_{m}}<M \varrho_{m}^{m_{n}} \\
& \left\|\partial_{x_{t}} \Lambda\right\|=\alpha_{l}\left\|\partial_{u}^{i} \partial_{x}^{j} \Psi\left(u, x_{0}\right) x_{1}^{\left[\alpha_{1}\right]} \ldots x_{l}^{\left[\alpha_{i}-1\right]} \ldots x_{m}^{\left[\alpha_{m}\right]}\right\| \leqslant \\
& \\
& \quad \leqslant \alpha_{l} M \cdot \varrho_{1}^{\alpha_{1}} \ldots \varrho_{l}^{\alpha_{l}-1} \ldots \varrho_{m}^{\alpha_{m}} \leqslant m M \varrho_{m}^{m-1} \leqslant M \varrho_{m}^{m}
\end{aligned}
$$

These two inequalities yield (2.12) in the cases $l=0$ and $l>0$ respectively. We can now give a proof of i). By Lemma $1, \Psi_{m}(u, \tilde{x})$ is the sum of less than
$(m+1)$! monomials of the form (2.17) in the variables x_{1}, \ldots, x_{m-1}, plus the single term $\partial_{x} \Psi\left(u, x_{0}\right) \cdot x_{m}$. This yields the estimate

$$
\left\|\Psi_{m}(u, \tilde{x})\right\| \leqslant M(m+1)!\varrho_{m-1}^{m}+\varepsilon \varrho_{m} \leqslant(1-\varepsilon) \varrho_{m}+\varepsilon \varrho_{m}
$$

because of (2.4). Hence $\Psi_{m}(u, \tilde{x}) \in V_{m}$ for $1 \leqslant m \leqslant k,(u, \tilde{x}) \in U \times \tilde{V}$. The estimate for $m=0$ is straight-forward.

To prove ii), introduce the constant

$$
\begin{equation*}
O=2 M k(k+1)!\varrho_{k}^{k} \cdot\left(\varepsilon-\varepsilon^{2}\right)^{-1} \tag{2.14}
\end{equation*}
$$

Define on E the equivalent norm $\|u\|^{\prime}=C\|u\|$, and denote with $\|\cdot\|^{\prime}$ the induced norms on the spaces $F_{i}^{\prime}=L^{i}(E, F)$ and $L\left(F_{i}, F_{j}\right)$. Notice that, if $\psi: E \rightarrow F$ is smooth at u and if $\chi \in L\left(F_{i}, F_{j}\right)$, we have

$$
\begin{equation*}
\left\|D^{i} \psi(u)\right\|^{\prime}=C^{-i}\left\|D^{i} \psi(u)\right\|, \quad\|\chi\|^{\prime}=C^{i-j}\|\chi\| \tag{2.15}
\end{equation*}
$$

Consider now $u \in U, \tilde{x}, \tilde{y} \in \tilde{V}$. Recalling the definition of the norm on the product space \tilde{F} we have

$$
\|\tilde{\Psi}(u, \tilde{x})-\tilde{\Psi}(u, \tilde{y})\|^{\prime}=\sup \left\{\left\|\Psi_{m}(u, \tilde{x})-\Psi_{m}(u, \tilde{y})\right\|^{\prime}, 0 \leqslant m \leqslant k\right\}
$$

Fix some m and let $\tilde{x}=\left(x_{0}, \ldots, x_{k}\right), \tilde{y}=\left(y_{0}, \ldots, y_{k}\right)$. Then mean value theorem [1, p. 155] together with Lemma 2 yields

$$
\begin{aligned}
& \left\|\Psi_{m}(u, \tilde{x})-\Psi_{m}(u, \tilde{y})\right\|^{\prime} \leqslant \sum_{i=0}^{m} \sup \left\{\left\|\partial_{x_{i}} \Psi_{m}(u, \tilde{z})\right\|^{\prime} ; \tilde{z} \in \tilde{V}\right\} \cdot\left\|x_{i}-y_{i}\right\|^{\prime} \leqslant \\
& \quad \leqslant \sum_{i=0}^{m-1} C \cdot M(m+1)!\varrho_{m}^{m}+\varepsilon\left\|x_{m}-y_{m}\right\|^{\prime} \leqslant \\
& \quad \leqslant\left[k \cdot C^{-1} M(m+1)!\varrho_{k}^{k}+\varepsilon\right] \cdot \sup \left\{\left\|x_{i}-y_{i}\right\|^{\prime} ; 0 \leqslant i \leqslant k\right\} \leqslant\left[\left(\varepsilon-\varepsilon^{2}\right)+\varepsilon\right] \cdot\|\tilde{x}-\tilde{y}\|^{\prime}
\end{aligned}
$$

This proves ii). The contraction mapping theorem aplied to $\tilde{\Psi}$ now implies the absolute and uniform convergence of the sequence $\tilde{\psi}_{n}(u)$ to some $\tilde{\psi}(u) k=(\psi(u)$, $\left.\psi^{(1)}(u), \ldots, \psi^{(k)}(u)\right)$ in the new norm $\|\cdot\|^{\prime}$, hence in the old norm as well. By (2.8), this means that for $m=0, \ldots, k$, the sequence of derivatives $\left(D^{m} \psi_{n}\right)_{n \geqslant 0}$ tends to $\psi^{(m)}$ uniformly on U. A classical convergence theorem [1, p. 158] now implies

$$
\begin{equation*}
\tilde{\psi}(u)=\left(\psi(u), D \psi(u), D^{2} \psi(u), \ldots, D^{k} \Psi(u)\right) \tag{2116}
\end{equation*}
$$

completing the proof.
Notice that from (2.9) the geometric rate of convergence can be easily inferred.

3. - Further estimates.

Suppose we are interested in computing an approximation to the map φ implicitly defined by

$$
\begin{equation*}
\varphi(u)=\Phi(u, \varphi(u)) \tag{3.1}
\end{equation*}
$$

We do this by first considering a simpler mapping Ψ which is suitably close to Φ. Then we iteratively compute the mappings ψ_{n} defined at (2.3), which are approximate solutions of $\psi(u)=\Psi(u, \psi(u))$. The functions ψ_{n} can be themselves regarded as approximations of φ. Using the techniques of the previous section, an estimate on the \mathcal{C}^{k} norm of the difference $\psi_{n}-\varphi$ is now given. To eliminate the dependence on ε of the various constants, we make the simplifying assumption $\varepsilon \leqslant \frac{1}{2}$. The general case can be treated in a similar fashion.

Theorem 2. - Let all of the assumptions in Theorem 1 hold, with $\varepsilon=\frac{1}{2}$. Let Φ be a second mapping that satisfies the exact same hypothesis made on Ψ, and let $\varphi: U \rightarrow V$ be the unique solution of (3.1). If $\|\Phi-\Psi\|_{\mathbb{C}^{k}(U \times V)} \leqslant \eta$, then for all $n \geqslant 0$

$$
\begin{equation*}
\left\|\psi_{n}-\varphi\right\|_{\mathbb{C}^{k}(U)} \leqslant L \cdot\left[\eta+\left(\frac{3}{4}\right)^{n}\right] \tag{3.2}
\end{equation*}
$$

where L is a constant depending only on $M=\max \left(\|\Psi\|_{\mathbf{C}^{k+1}},\|\Phi\|_{\mathcal{C}^{k+1}}\right)$.
Proof. - Define the constants $\varrho_{i}=\varrho_{i}(M)(i=1, \ldots, k)$ by

$$
\varrho_{1}=\frac{M}{2}, \ldots, \quad \varrho_{i}=\frac{M}{2}(i+1)!\varrho_{i-1}^{i}, \ldots
$$

and define \tilde{F}, \tilde{V} and the prolongations $\tilde{\Psi}, \tilde{\Phi}: U \times \widetilde{V} \rightarrow \tilde{V}$ as in the proof of Theorem 1. By setting

$$
C=8 M k(k+1)!\varrho_{k}^{k}, \quad\|\cdot\|_{E}^{\prime}=C\|\cdot\|_{B}
$$

and again denoting by $\|\cdot\|^{\prime}$ the induced norms on the spaces $F_{i}=L^{i}(E, F)$ and on their product \tilde{F}, we have

$$
\begin{equation*}
\|\tilde{\Psi}(u, \tilde{x})-\tilde{\Psi}(u, \tilde{y})\|^{\prime} \leqslant \frac{3}{4}\|\tilde{x}-\tilde{y}\|^{\prime} \tag{3.3}
\end{equation*}
$$

for all $u \in U$ and $\tilde{x}, \tilde{y} \in \tilde{V}$, and the same holds for Φ. All of this is clearly a consequence of i), ii) in § 2.

We now seek a bound on $\|\tilde{\Phi}-\tilde{\Psi}\|^{\prime}$. If $(u, \tilde{x}) \in U \times \tilde{V}, i+j \leqslant k, \sum_{l} \alpha_{l} \leqslant k$ then

$$
\left\|\partial_{u}^{i} \partial_{x}^{j} \Phi\left(u, x_{0}\right) x_{1}^{\left[\alpha_{1}\right]} \ldots x_{k}^{\left[\alpha_{k}\right]}-\partial_{u}^{i} \partial_{x}^{j} \Psi\left(u, x_{0}\right) x_{1}^{\left[\alpha_{1}\right]} \ldots x_{k}^{\left[\alpha_{k}\right]}\right\| \leqslant \eta \cdot\left\|x_{1}\right\|^{\alpha_{1}} \ldots\left\|x_{k}\right\|^{\alpha_{k}} \leqslant \eta \varrho_{k}^{k} .
$$

Using Lemma 1 this yields

$$
\begin{align*}
\|\tilde{\Phi}(u, \tilde{x})-\tilde{\Psi}(u, \tilde{x})\|^{\prime} & \leqslant\|\tilde{\Phi}(u, \tilde{x})-\tilde{\Psi}(u, \tilde{x})\|= \tag{3.4}\\
& =\sup \left\{\left\|\Phi_{m}(u, \tilde{x})-\Psi_{m}(u, \tilde{x})\right\| ; 0 \leqslant m \leqslant k\right\} \leqslant(k+1)!\eta \varrho_{k}^{k}
\end{align*}
$$

because the new norm $\|\cdot\|^{\prime}$ is smaller than the old one on each space $L^{i}(E, F)$.
To complete the proof, define the sequence of maps $\tilde{\Phi}_{n}: U \rightarrow \tilde{V}$ by

$$
\tilde{\varphi}_{0}(u)=0, \ldots, \tilde{\varphi}_{n}(u)=\tilde{\Phi}\left(u, \tilde{\varphi}_{n-1}(u)\right), \ldots
$$

We claim that

$$
\begin{equation*}
\left\|\tilde{\varphi}_{n}(u)-\tilde{\psi}_{n}(u)\right\|^{\prime} \leqslant 4(k+1)!\eta \varrho_{k}^{k} \tag{3.5}
\end{equation*}
$$

for all $u \in U, n \geqslant 0$. This is trivially true when $n=0$. If (3.5) holds for a certain n, then (3.4) and (3.3) imply

$$
\begin{aligned}
\left\|\tilde{\varphi}_{n+1}(u)-\tilde{\psi}_{n+1}(u)\right\|^{\prime} & \leqslant\left\|\tilde{\Phi}\left(u, \tilde{\varphi}_{n}(u)\right)-\tilde{\Psi}\left(u, \tilde{\varphi}_{n}(u)\right)\right\|^{\prime}+\| \tilde{\Psi}\left(u, \tilde{\varphi}_{n}(u)\right)- \\
& -\tilde{\Psi}\left(u, \tilde{\psi}_{n}(u)\right)\left\|^{\prime} \leqslant(k+1)!\eta \varrho_{k}^{k}+\frac{3}{4}\right\| \tilde{\varphi}_{n}(u)-\tilde{\psi}_{n}(u) \|^{\prime} \leqslant 4(k+1)!\eta \varrho_{k}^{k}
\end{aligned}
$$

By induction this proves (3.5) for all n. The contraction mapping theorem applied to the map $\tilde{x} \rightarrow \tilde{\Phi}(u, \tilde{x})$ yields

$$
\begin{equation*}
\left\|\tilde{\varphi}_{n}(u)-\tilde{\varphi}(u)\right\|^{\prime} \leqslant \sum_{j=n}^{\infty}\left(\frac{3}{4}\right)^{j}\|\tilde{\Phi}(u, 0)\|^{\prime} \leqslant 4 M\left(\frac{3}{4}\right)^{n} \tag{3.6}
\end{equation*}
$$

for all $u \in U, n \geqslant 0$. Putting together (3.5) with (3.6) and using (2.15) we get an estimate involving the old norm:

$$
\left\|\tilde{\varphi}(u)-\tilde{\psi}_{n}(u)\right\| \leqslant C^{k}\left\|\tilde{\varphi}(u)-\tilde{\psi}_{n}(u)\right\|^{\prime} \leqslant C^{k}\left[4(k+1)!\eta \varrho_{k}^{k}+4 M\left(\frac{3}{4}\right)^{n}\right] .
$$

By (2.8) and (2.14), this yields (3.2) with

$$
\begin{equation*}
L(M)=\left[8 M k(k+1)!\rho_{k}^{k}\right]^{k}\left(4(k+1)!\rho_{k}^{k}+4 M\right) . \tag{3.7}
\end{equation*}
$$

Notice that ϱ_{k}, and hence L, depend only on the constant M, as required,

4. - Approximation of control systems.

Consider the control system (1), which we now write in the more compact form

$$
\begin{equation*}
\dot{x}(t)=G(x(t)) \cdot u(t), \quad x(0)=\xi \tag{4.1}
\end{equation*}
$$

\boldsymbol{G} is then an $n \times m$ matrix valued function defined on \boldsymbol{R}^{n} and $u(t) \in \boldsymbol{R}^{m}$. Assume $G \in \mathcal{C}^{k+1}$ and call $G^{(j)}$ its j-th derivative. Taylor's formula is

$$
G(x)=\sum_{j=0}^{k} \frac{1}{j!} G^{(j)}\left(x-x_{0}\right)^{[j]}+O\left(\left|x-x_{0}\right|^{k+1}\right)
$$

Define the mapping $\Phi: \mathcal{L}^{1}\left([0, T] ; \boldsymbol{R}^{m}\right) \times \mathcal{C}^{0}\left([0, T] ; \boldsymbol{R}^{n}\right) \rightarrow \mathcal{C}^{0}\left([0, T] ; \boldsymbol{R}^{n}\right)$ by

$$
\begin{equation*}
\Phi(u, x)(t)=\xi+\int_{0}^{t} G(x(s)) u(s) d s \tag{4.2}
\end{equation*}
$$

Notice that $\Phi=\Phi^{\prime \prime} \circ \Phi^{\prime}$ with $\Phi^{\prime}(u, x)(t)=(u(t), G(x(t)))$ and

$$
\Phi^{\prime \prime}(u, Z)(t)=\xi+\int_{0}^{t} Z(s) u(s) d s
$$

Clearly Φ^{\prime} is a $k+1$ times Fréchet differentiable substitution operator and $\Phi^{\prime \prime}$ is bilinear, hence Φ is \mathcal{C}^{k+1}. In particular, $\partial_{x}^{f} \Phi\left(u_{0}, x_{0}\right)(t)$ is the j-linear map

$$
y^{[j]} \rightarrow \int_{0}^{t} G^{(j)}\left(x_{0}(s)\right) \cdot y^{[j]}(s) u_{0}(s) d s
$$

$\partial_{u} \partial_{x}^{i} \Phi\left(u_{0}, x_{0}\right)(t)$ is the multilinear map

$$
\left(u, y^{[j]}\right) \rightarrow \int_{0}^{t} G^{(j)}\left(x_{0}(s)\right) y^{[j]}(s) u(s) d s
$$

and $\partial_{u}^{i} \partial_{x}^{j} \Phi \equiv 0$ for $i>1$, because the dependence on u is linear.
By an iterated integral of the control $u=\left(u_{1}, \ldots, u_{m}\right)$ we mean a scalar map of the form

$$
I(u, t)=\int_{0}^{\tau} \int_{0}^{\tau} \ldots \int_{0}^{\sigma_{1}} u_{i_{r}}^{\sigma_{r-1}}\left(\sigma_{r}\right) d \sigma_{r} \ldots u_{i_{1}}\left(\sigma_{1}\right) d \sigma_{1},
$$

where $i_{1}, \ldots, i_{r} \in\{1, \ldots, m\}$. Some basic approximation theorems in terms of iterated integrals are given in [2]. Using the previous abstract results, we now show that
the input-output map $u(\cdot) \rightarrow x(\cdot)$ generated by (4.1) can be approximated by linear combinations of iterated integrals of u, in a high-order norm, uniformly on compact sets.

Theorem 3. - Let G in (4.1) be a C^{k+1} mapping from \boldsymbol{R}^{n} into $\boldsymbol{R}^{n \times m}$. Then for every compact $K \subset \boldsymbol{R}^{n}, T$ and $\vec{\varepsilon}>0$, there exists a finite family of polynomial maps $p_{\alpha}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ and iterated integrals I_{α} such that the map

$$
\begin{equation*}
y(\xi, u, t)=\sum_{\alpha} p_{\alpha}(\xi) \cdot I_{\alpha}(u, t) \tag{4.3}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\left\|\partial_{u}^{j} y(\xi, u, t)-\partial_{u}^{j} x(\xi, u, t)\right\| \leqslant \varepsilon \tag{4.4}
\end{equation*}
$$

for every $t \in[0, T], j=0, \ldots, k, \xi \in K$ and every control u with $\left|u_{i}(s)\right| \leqslant 1(i=1, \ldots, m)$ and such that the corresponding solution $t \rightarrow x(\xi, u, t)$ of (4.1) lies entirely inside K.

Proof. - Fix $K \subset \boldsymbol{R}^{n}, T$ and $\varepsilon>0$. It is clearly not restrictive to assume that the support of G is compact. Otherwise one can replace G with a map \bar{G} which coincides with G on a neighborhood of K and has compact support.

Let $M=\|G\|_{\mathbb{C}^{b+1}\left(\boldsymbol{R}^{n}\right)}<\infty$, let $K \subset B(0, r)$ and define the sets

$$
\begin{aligned}
U & =\left\{u \in \mathcal{L}^{1}\left([0, T] ; \boldsymbol{R}^{m}\right) ;\left|u_{i}(s)\right| \leqslant 1, i=1, \ldots, m, s \in[0, T]\right\} \\
V & =\left\{x \in \mathcal{C}^{0}\left([0, T] ; \boldsymbol{R}^{n}\right) ; x(s) \in B(0, r+m(M+1)), s \in[0, T]\right\}
\end{aligned}
$$

For every integer $\nu \geqslant 1$; a classical approximation theorem [5, p. 155] guarantees the existence of a map $F_{\nu}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n \times m}$, having polynomial components, such that

$$
\left\|F_{\nu}-G\right\|_{\mathrm{C}^{k+1}(B(0, r+m(M+1)))} \leqslant 1 / \nu
$$

Consider the map Ψ_{ν} defined by

$$
\Psi_{\nu}(u, x)(t)=\xi+\int_{0}^{t} F_{\nu}(x(s)) u(s) d s
$$

For each $\xi \in K, v \geqslant 1$, both Φ, defined at (4.2), and $\Psi_{v} \operatorname{map} U \times V$ into V. Moreover, by using a suitable equivalent norm on $\mathrm{C}^{0}[0, T]$, of the form

$$
\|x(\cdot)\|^{\dagger}=\sup \{\exp [-\hat{\lambda} t]|x(t)| ; t \in[0, T]\}
$$

we have $\left\|\partial_{x} \Phi\right\|^{\dagger} \leqslant \frac{1}{2},\left\|\partial_{x} \Psi_{\nu}\right\|^{\dagger} \leqslant \frac{1}{2}$ on $U \times V$, for λ large enough.

Let y_{ν} be the ν-th Picard iterate for the system

$$
\dot{x}(t)=F_{v}(x(t)) u(t), \quad x(0)=\xi
$$

Theorem 2 implies that

$$
\left\|\partial_{u}^{j} y_{v}(\xi, u, \cdot)-\partial_{u}^{j} x(\xi, u, \cdot)\right\|^{\dagger} \rightarrow 0 \quad \text { as } v \rightarrow \infty
$$

for $j=0, \ldots, k$, uniformly with respect to $\xi \in K, u \in U$. It is well known [2] that every y_{ν} can be written as a linear combination of iterated integrals. Hence, by setting $y=y_{v}$ with v suitably large, the theorem is proved.

REFERENCES

[1] J. Dreudonné, Foundations of Modern Analysis, Academic Press, New York, 1960.
[2] M. Fliess, Fonetionnetles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France, 109 (1981), pp. 3-40.
[3] P. J. Olver, Applications of Lie groups to differential equations, Mathematical Institute, Un. of Oxford, Lecture Notes.
[4] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982.
[5] F. Treves, Topological vector spaces, distributions and kernets, Academic Press, New York, 1967.

