On the Nonlinear Parabolic Systems in Divergence Form.
Hélder Continuity and Partial Hélder Continuity
of the Solutions (¥) (**).

SERGI0 CAMPANATO (Pisa)

Sunto. - Q & un aperto limitato di B, n > 1. Nel cilindro @ = QX (— T, 0), &i punto X = (=, ),
81 considera il sistema non lineare, in forma di divergenza,

(1) 3 DA Xu,Du)—i-n——- f Bi(X, u) + BYX, u, Du)

1=¢

dove u, A°, B, B® sono wvettori di RY, N> 1. 8i suppone che il sistema (1) sia fortemente
parabolico e che i vettori A B, B® abbiano andamenti streliamente controllati. In queste
ipotesi, si studia la regolarita, o la parziale regolarita, hélderiana delle soluzioni

we I—T, 0, () 0 L*(— T, 0, I¥2)) .

Preliminare é lo studio dei sistemi non lineari del tipo
¢
@) S D, ADu) + a—": =0 ingQ

che hanno lo stesso ruolo che, nella teoria lineare, hanno i sistemi a coefficienti costanti e ri-
dotti alla parte principale. Questo studio, che ha inferesse in sé, viene fatto nei paragrafi 3,
4, 5 ¢ 6. Per le soluzioni del sistema (2), st dimostrano la locale differenziabilita, le maggio-
razioni tipo Poincaré e le cosidetie maggiorazioni fondamentali dalle quali si deduce, in par-
ticolare, che le soluzioni del sistema (2) sono hélderiane in @ se n< 2. Per maggiori dettagli
st veda Uintroduzione. ‘

1. — Introduction.

For the sake of simplicity, throughout the present work we will be concerned
with second crder differential systems, even if what we will prove could be extended
to systems of even order 2m.

Let 2 be a bounded open subset of R», with #n>1, whose boundary 0Q is as
smooth as necessary; @ is a point of R*; te R and X = (#,¢) is a point of R*X R.

¥ is an integer > 1 (%), (|) and |||, are the scalar product and the norm in R,
respectively. We will drop the subscript & when there is no fear of confusion.

(*) Entrata in Redazione il 27 luglio 1983.
(**) Lavoro eseguito nell’ambito di un progetto nazionale di ricerca finanziato dal Mi-
nistero della Pubblica Istruzione (409-1982).
(*) For the case N =1 (equations) see for instance [10].
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Set @ =Qx%(~T,0) with 7> 0.

If Xy= (2%1,) we define
Bz ¢) = {w e R» :‘ o — 2| < o}
Q(X,, 0) = B(2 0) X (fo— 0% 1) .

Moreover, we say that Q(X,, o) cc@ if
Bx*o)cc 2 and o*<t,+T<T.

If u: @ — R¥, we set Du = (D,u, ..., D,u) where, as usual, D,= ¢/owx;. Clearly
Du e E*¥ and we denote by p = (p%, ..., p*), p’e BE¥, a typical vector of R,

Let af(X, u, p), ¢ =1,...,n, and BY(X, u, p) be vectors of R¥, defined in A ==
= @ X R¥ X B*¥, measurable in X and continuous in (%, p).

Let us consider the nonlinear differential operator of second order

(1.1) Bu=— D.ai(X,u, Du) + %i:—BO(X, u, Du) .
=1
Having set

(1.2) { ANX, u, p) = a*(X, u, p) — a*(X, u, 0)

B{X, u) = — a*(X, u, 0)

it ean be written in the form

(1.3) Eu = By + 3 D;B{X, u) — BY(X, u, Du)
i
where
' ) ou
(14) Bou = — 3, D, A X, u, Du) 5

is the principal part of the operator E.
Let us suppose that the vector mappi_ngs p — a’(X, u, p) are differentiabie with
derivatives 0a’/0p;, measurable in X, continuous in (u, p) and bounded in A:

oal

ws | {528%

i hk

} <M, V(X,u,pled.
Set

= {4 with  AM(X, u,p) f o0 )gp“’ ) gy

k
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The 4., are N XN matrices, meagurable in X, continuous in (u, p). and
(1.6) AYX, u, p) = z Ay(X, u, p)p?

We will say that F is quasi-linear if

(1.8) A=A (X, %) .

We will gay that the operator F has linear principal part if
(1.9) ‘ A= A,(X).

Let us suppose that the operator E is strongly parabolic in the following gense:
there exists ¥ > 0 such that

(1.10) D3

i hk

aah X u’p)§h§k>vl1§”2

for every (X, u,p) e A and for any & = (&, ..., &) € R*¥,
Denote by H*= H%? and HE= HF? the usual Sobolev spaces and set

(1.11) a(u, @) :f; (e¥(X, w, Du)[EDiw)N——(u %—?)N ax
Q
(1.12) W(Q) = L¥—1T, 0, Hy(Q)) N HY(— T, 0, L*(£2)) .
Throughout this paper, by a solution of the system
Eu=0 1in @
we will mean a vector
(1.13) weIx—1T,0, H(Q)) N L°(— T, 0, L¥Q))
such that
(1.14) alu, ¢) = f (B(X, u, Du)lp) dX

Q

Vpe W(Q): plr, — T) = p(#, 0) =0 in 2 (%).

2) Remark that W(Q)c HY(Q), so that there exist the traces ¢(z, — T) and ¢(x, 0)in
HY0).
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We define ¢, this way:

Q=205

(1.15) go is any numbere(l,4), if n=2

go=4, ifn=1
then, it is known (see lemma 2.I) that
W(Q)c L}—T, 0, HY(2)) N L>(— T, 0, L*(Q)) c L*(Q) .

Therefore, to guarantee the existence of the integrals which appear in (1.14), it is
sufficient to assume that the vectors af and B® have the following growths that we
will say conirolled '

(1.16) |a4(X, w, p) <e(L + u]* + |pf)
(1.17) 1BUX, u, p)| <e(1 + [ul®+ [p[?) ()
with
, 1<a<n:2 fn>2
(1.18) 1 I1<a< 2 iftn=2
I<a<?2 ifn=1
1<ﬁ<%:4 if n>2.
(1.19) 1<p<3 if n=2
1<f<3 it n=1
1<y<Zi§, it n>2
(1.20) 1 1<y<$, ifn=2
1<y < $, ifn=1.

These growths assure that, if « verifies assumption (1.13), then

(1.21) o¥X,u,Duye LQ) and BYX,u, Du)c Lu(Q), [ql + le—, = 1]‘ .
] 0

If ¢ =pf=1y =1, we will say that the growths (1.16), (1.17) are Hnear.

(3) More generally, in the right-hand side, the constant 1 may be replaced with appropriate
integrable functions f(X) and fo(X)

. 1 1
f(X)eL¥@) and foe L*(Q), @ +=5=1.
0 0
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We observe that, from (1.6), (1.5), (1.2) it follows that

(1.22) [AX, u, p)| < M|p]

(1.23) |1BHX, w) | <e(L + [u]*) -

In this paper, like in [B], we will suppose that the growths of the vectors a’ and
Bo are strictly controlled, that is we will snppose that

n + 2

(1.24) 1<a< el ifn>2
I<a< 2, ifn=1

4
(1.25) 1<ﬁ<n: ) Hn=l
1<f <3, if n=1

+ 4
(1.26) 1<y<:_}'_2, ifn>2
1<y<$ if n=1

this aims to avoid some technical difficulties. Notwithstanding this I believe that
all the results of the present paper are true also in the case of controlled growths,
as it is proved in [2] for non-linear elliptic systems.

In this paper we will study the Hélder continuity, or the partial Holder con-
tinuity, of the solutions of system Hu = 0 (as meant in (1.13), (1.14)). Clearly, the
Holder continuity is related to the parabolic metric .

(1.27) #X,Y)=max{|jo—y|, t—z|}}, if X= (2t and Y= (y,7).

We recall that a vector v: @ — RY is said to be partially u-Holder continuous
in @, if there exists a subset Q,cQ (@, is the singular set of v), such that

Q, is closed in @

meas @,= 0

v e 0"(Q\GQo, d) .

The partial Holder continuity of the solutions is bein already studied for quasi-
linear systems with linear growth in [4], [14] and for quasi-linear systems with
strictly controlled growth in [5], [13]. Here we want to prove, for the non-linear
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parabolic systems of second order, results which are analogous to those proved in [1]
and [2] for non-linear elliptic systems (%).

The Holder continuity and the partial Hélder continuity will be obtained, as
it is usual by now, as a particular case of regularlty, or partial regularity, in the
£24Q, d) spaces (see [8], [6]).

For this purpose we will first consider the nonlinear systems of the following
type:

(1.28) — Z D;a(Du) + % =0 in @Q

which satisfy the conditions (1.5), (1.10) and (1.16). Without any loss of generality,
we can suppose that a?(0) = 0; then

(1.29) let@)] = [A' @) < M|p], VpeR~.

In the theory of the L*A-regularity for non-linear parabolic systems, those of
type (1.28) play an analogous role to that played by linear systems, with constant
coefficients and reduced to the principal part, in the theory of linear or quasi-linear
systems (see [6], [4], [5]).

The solutions u e L*(— T, 0, HY(RQ)) of system (1.28) are locally differentiable
(see section 3), i.e

(1.50) Ducli(@ and  Heli)

and for every @(2¢) = @Q(X,, 20) cCQ

(1.31) 2 1 Duuf® dX < —-f | Du|®dX
ol " a(2s)

where ¢ does not depend on o.

From this we get that the solutions of system (1.28) verify the fundamental
estimates which follow (see section 5): :

There exists ¢ e (0,1) such that VQ(o) = Q(X,, )CCQ and V}te(O 1)

(132) [ S 1wt ax e [ 3 1o ax.
Q{io) v Q(o) N

There exists ¢ € (0, n/(n 4 2)) such that YQ(o) ccQ and Vie (0,1)

(1.33) [IDajr ax <orrranso | Dujr ax .
Q(4o) (o)

(4} In the elliptic case, quoted in the text, we have supposed a g-nomlinearity, with
g > 1, on the contrary here we confine ourselves to consider the case ¢ = 2,
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There exists ¢ € (0, #/(n -+ 2)) such that VQ(o) ccQ and Vie (0,1)

(1.34) [ = ttgip |2 A <0204 [ — w2 aX
(io) ' o Q)

where the constants ¢ which appear in (1.32), (1.33), (1.34) do not depend on ¢
and A, and :

1
(1.35) Uy = J[u(X) aX = ——— Afu axX .
A

4

In particular (see section 6) from inequality (1.34) it follows that, if n<2, then

1—¢
2

(1.36) we 0"Q,d) with p=2-— (n + 2).

Furthermore, if the derivatives da’/dp} are uniformly continuous in R, then the
vector Dw is partially u-Hélder continuous in @, Vu € (0, 1), and, @, being the gin-
gular set of Du,

(1.37) H, ., (@) =0 for some ¢>2.

Here H, is the f-dimensional Hausdorff measure with respect to the parabolic
metric d (see for instance (3.10) in [4]).
In section 7 we study the solutions of the strongly parabolic systems
(1.38) — > D, AXX, Du) -+ %—? = — Z D,;Bi(X, u) + BX, u, Du)
%

[

still with strictly controlled growth.

We prove (theorems 7.1, 7.II) that, if <2 and the vectors A X, p) satisfy an
uniform continuity condition with respect to X (see (7 .5)), then the result (1.36)
holds again:

For a suitable ¢ & (0, n/(n + 2))

1—¢

(1.39) we C**(Q,d) with u=2—

(n +2).

If the derivatives 04°/0p, are uniformly continuous in @ x B*¥, then, whatever n
may be, the solutions of system (1.38) are partially u-Holder continuous in @, Vu €
€(0,1). If @, is their gsingular set, one can merely say that

(1.40) meas @, = 0

(see theorem 7.1IV).
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In section 8 we study the solutions of the strongly parabolic systems of general
type
(1.41) — > D,aY(X, w, Du) = B%X, u, Du)
i
which have strietly controlled growth.
One proves (theorem 8.II) that, if n<2 and the vectors A¥X, u, p) satisty an
uniform continuity condition with respect to (X, u) (see (8.6)), then u is partially

p-Holder continuous in @ with p =2 — (1 — &)(n + 2)/2 and, @, being its singular
set,

(1.42) : Hy(Qo) =0.

Fuarthermore, if the derivatives 0¢'/0pi are uniformly continuous in /, then, for
any n, the solutions of system (1.41) are partially u-Holder continuous in @, Vu e
€(0,1). About their singular set Q,, one can merely say that

(1.43) meas Q=0

(see theorem 8.1V).

2. — Some notations and preliminary results.

Where there is no fear of confusion we will write simply B(s) and @(o) instead
of B(2* o) and Q(X,, o), respectively. We define uy,) as in (1.35), and we seb

(2.1 Wloga= ([I01 aX)", by it g=2.
4 .
(2.2) B, X, 0) = [|Du]* + 52 — gy dX
@(X,,0)
(2,3) B, Xy, 0) =1+ |4+ | Dul? + o~ — ug,)|* 4X
Q(X,,0)

where ¢, is defined in (1.15).

Lemma 2.1 - If we IX(— T, 0, H(Q)) N L°(— T, 0, (D)), then we L*(Q) and
Vg e[2, g

(24) (oo <o, )@ -sup [ul3- ([ Dul® + dzu]* aX
(~1T,0] 3
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where d, is the diameter of Q and
(2.5) —n 42 —”-2—9 .

Proor. - If n>2
(2.6) f | do =f Juj2-Ju]"® de< lufis (f”%”4/<4_a>dm)“—ﬂ)/2.

And, by Sobolev’s theorem, we have

(4—q)/2 n(4—0q) n
([iaee=a) ™ <otn, o [iput + gt putee-o o aa ™
Q 2

o(n, qd3E O f 1Dul + 43 jul do.
£

Inequality (2.4) easily follows from (2.6) and (2.7).
On the contrary, if n =1

(2.8) f ul* do< sup llullz.f“%“a—z do <sup et -3

Moreover, by Sobolev’s theorem,

(2.9) sup [ul*<edo | | Dul* + dg'|u]* do

Inequality (2.4) follows again from (2.8) and (2.9).

Ly 2.11. — If we I(ty— 0% to, H(B(0))) N H(t,— 0%, to, L*(B(0)), then

(2.10)  Blu, X,, 0)< {f][Du[[de+fd fuu(x’lt—’tlz )szwdt}.

Q(o) to—o?  Q(o)

This lemma is well known (see for instance [4] lemma 2.I).
LeEMMA 2011 — If we L2(to— 0%, to, H(B(0))) N H(1y— 0% 4, L¥(B(0))), then

8u

(2.11) ®(Du, X,, o) <e(n) fz | Dysue]® + ax.

Q(o)

Inequality (2.11) is well known too (see for instance [7] lemma 2.1I1).
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Tava 2.0V. — Let us suppose that we L*(— T, 0, H(Q)) N L>(— T, 0, L*(2))
and o satisfies the condition (1.24). Hawing set

(2.12) Y(u, Xy, 0) =f(1 + [u]*) X

Q(X,,0)

then, YQ(o) cQ and YA€ (0,1), we have the inequality

2.13)  P(u, X,, A0) <e(n, a) 2P (u, Xy, 0) + C(u)o"* =72 B(u, X,, o)
where

(2.14) O(u) = o(n, &) sup lulFs™ .
(=T7,0)

Proor. — For every Ae(0,1)

f”uhz“ dX <e(n, o) Z"“ﬁ[unz“ dX - e(n, oc)ﬂ]u — Ul AX .
Q(%o) (o) Q(o)

Inequality (2.13) follows from this estimate and from (2.4), where we assume ¢ = 2e.

Levua 2.V. - If w € L3(— T, 0, H(Q)) N L°(— T, 0, I12(9)) and BN X, u, p) verifies
the growth condition (1.17), then, VQ(X,, ¢) C @ and for every , with 2(n -+ 2)[(n + 4)<
<r<qlBA2[y .

(2.15) |BY(X, w4y D)}, g0y < O(0) 0" Dl X, 0)
where

_ 1_B,7
(2.16) d=2(n +2)(;-—QOV2)
and '

(2B/a,)Vy—1

(217) O(u) = c(n){fl -+ Jufeo + [[Du][de} .

Q

PrOOF. — It is easy to obtain the following inequalities:

2/r 2BlasVy .
(J‘ ”Bo”r dX) <c(n)0-2('n+2)(1/r~ﬁ/aovyﬂ)(f “BOHqu/ﬁ/\ZIV dX) <
Qo) Q(o)

<c(n)o‘"(fl + Ju|% + | Du|? dX)<
(o)

<e(n)o® DP(u, Xy, G)(fl A4 Jufe + | Du)l? dX)(
¢

2B/a,)Vy—1
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Let 4,(X), 4 =1,...,n, be N XN matrices defined in @, and suppose that

(2.18) A,eI*(@) and sup {Z [|A1.,.[12}%: M
Q i
(2.19) S (Au&E) >v|E2, »>0, VXeQ and VEeRw,

3

Let BYX), i =1,...,n, and BX) be vectors of R¥, such that
(2.20) BieI*Q) and BbeFrt2inrdgy,

The following result is well known (see [11], [10], [12]):

LEMMA 2.VI. ~ There exisis a wnique u € LI*(— T, 0, HL(R)), which is the solution
of the Cauchy-Dirichlet [C.D.] problem:

(2.21) Z (4 Dju|D;gp) —(u %) dX :fz (Bi|D;p) + (Bjp) dX,
Q
Yo e W(Q): p(x,0) =10 in £

and the following inequality holds

0
(222) f ”D’M”z ax _{_fd,[f ”M(ﬂ’), t) - ’M(J/', T)szw dt<
Q -T @

[t —f?
<ol M) {3 |Bh.a + [Bloswsarnrana) -

In particular, YQ(X,, 0) CQ

(2.23) By Xo, o) <(v, ) {3 B o + B sorovnsanal -

More generally, in section 4 of [5] the following L -regularity result for the
vector Du is proved (%):

LeMmva 2.VIL. — There exist ¢ > 2 and a continuous and increasing function r(q),
defined on [2, ql, with these properties:

2042 <2, timrgg =202

(2.24) n + 4 o n+4

(5) In [5] 1 considered the case n > 2, but in case n = 1 and n = 2 the proof remains
the same.
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such that, if we L¥(— T,0, H(Q)) N L*(— T, 0, L3(Q)) is a solution of system

0 ) :
(2.25) z (4. Dyu|D:p) —(u —E%) ax =f z (Bi|D,¢) + (B'lp) dX, Vpe cr(Q)
3 L4 b ?
under the hypotheses (2.18), (2.19) and

(2.26) BeIq), BeLQ), 2<¢<g

then, for every Q(X,20)c @ and Vi€ RY

ean (frourax)” <o f 3 pmeax] +

@(o) (fjd {J[ | Bojjr@ dX}W(Q) + c{ f | Du|® + o=2|u —7|* dX}%

a(z0) @(20)
where the constants ¢ do not depend on o.

Denote by Aj; the adjoint of the matrix A,;; set

(2.28) AF =3 (A,+ AL, A =4~ A43)
and define
E
(2.29) M_= sup {Z IIAB\V} .
49

LEMMA 2.VIII. — For every u>0 and V&€ R~

(2.30) sup {; (M + p)&— gAi,-E"HZ}% <{M—v Vi + )]

Moreover, if pu> (M2 —v*)[2v, then
7

_ S e
M v—l—\/,u -}—M_<

1.
M4 p

(2.31) K(p) =

Ag it concerns inequality (2.30) see [3] section 1 and [Q] lemma 8.111, p. 88. To
verify (2.31), an elementary caleulation is enough.

Leyma 2.IX. - If Ay, ij =1, ...,n, are N XN matrices which satisfy the condi-
tions (2.18), (2.19), and if e Lty— 0% b, HY(B(0))) is @ solution in Q(Xo, o) of
system

ot

(2'32) 2 (Ai" L,-ZLIL 593) (u
]
Q(o)

Dax—o0, Vpe0r@o)
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then there exists e(v, M) € (0, 1), such that YA e (0,1)

(2.33) [1Du)2 ax <e(v, 3) asso [1Daf? ixX .
Q(io) (o)

PrOOF. — Fix u = (M2—?)jy. In Q(s) we decompose % as % = v + w, where
weLz(to— o2 &, H;(B(a))) is the solution of the Qanchy-Dirichlet problem
(2.34) f (M + ) 3 (DawlD ) ( \at) =

Q(0)
f}; (M + u) Dau— 3 Ay DulDg) X,
Q(o)
Yo e W(Q(0): p(w,t,) =0 in B(o)

whereas ’UELZ(L‘O—- a2, 1y, H‘(B(o‘))) is a solution of system

ess) 0L+ 03 @olpin) —(o]F)ax =0, Ve cziow).

Q(o)
From the linear theory, it is known that w verifies the inequality
|Dw)? dX < (M—I— fZ[[ M—}-,u)Du—ZA,,Du”de
(o) -
therefore, by lemma 2.VIII,

(2.36) f | Do d.X < K2(u) j | Duf® dX
(o) Qo)

v satisfies the fundamental inequality which follows (see [6] and [4], lemma 2.IT)

(2.37) [1Do)r ax <o, 3202 f IDoj*dX, Vie(0,1).
Q(Ac) Q(o)

From (2.36) and (2.37), it easily follows that ¥Ae(0,1)
(2.38) 1Duly, g <{e(l + K)2"+22 4 K} Duly (o) -

As K e(0,1), from (2.38), we get the estimate (2.33) by means of lemma 1.V, p. 12
of [Q]. '
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One can prove the following Caccioppoli’s type inequality:

Lemma 2.X. - If Ay, ij=1,..,n, are NXN mamces, which satisfy the condi-
tions (2.18), (2.19), and if we L (— T, 0, HY(Q)) is a solution in Q of system

L)ax =0, ¥pe @

(2.39) _ %:(AH D;u|D,p) —(u 7

then, YB(®, 20) cC 2, Y2a € (0, T), and Vye RY

) 0

(2.40) fdtf{]])u]}zdw<c(v, M)(&é—l—l)fdtfﬂu——nﬂzdm.

a
—a B(9) —2a B(20)

Proor. — Let 6(z) € C5(R") be a function with these properties
(2.41) 0<b<l, 0=1 in Ble), 0=0 in R"\B(o), |DO|<cs.

Let o,(t), with m integer > 2/a, be a function defined on R this way

. 2

on(t) =1, if ——a<t<_l_n..@
. 1

R Qm(t)zoa 1ft>—n—® or t<<—2a
(2.32) ;

Qm(t)=c—t—|—2, if —2a<t<—a
. 2 1

n(t) = —(mt +1), if —— <I<——.

Finally, let {g,()} be a sequence of symmetric mollifying functions

g9:() e O5(R), ¢:()>0, g:(t) = g:(=1)
11
Supp ¢ C [——8-, g]

fgs(t) di—=1.
R

(2.43)

As (2.39) is true for any g€ W(Q): p(@, — T) = ¢(x, 0) = 0 in £, then, if s>
> m\V1/(T — 2a), we can assume in (2.39)

(2.44) P(X) = 0%0ul(gnl® — 1)) * g:]
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and we get that
(2.45) f&wmz (As; Dyul(on Diu) * g,) 4X +
%)
Q

+ 2fegm > (44 Dul DO [(oulw —1) * g.]) dX —

k2]

. f (= 710200l (oulw— 7)) # g.]) AX = f (4= 71800l ntu — 1)) = .]) X .

By symmetry of the g,(t), the integral in the right-hand side equals zero; further-
more, when s — - oc, then

[0n(t — ] * g gu(u — 1) in L*(—1T,0, H(Q)) .
And se, from (2.45), taking the limit for s — 4 co, we cbtain that

(2.46) f 6°0% S (4 DyulDy) X =

13

kM

¢ = ZJ' 0o2 > (4 DjulD.6-(u—n)) dX -!—f@zgmgin”u —n|zdX.
) Q

Q

We may estimate the integral in the left-hand side by the ellipticity condition
(2.19), and we easily estimate the terms in the right-hand side by the Holder's
irequality. Therefore we obtain that Ve > 0

v [6% L1 Dul* 4X <63 | Dulf X +
Q Q

+ ole, 1) [ 3| D8|*u — n|* 4X + [0 g, gl — ] AX .
Q Q

Choosing ¢ sufficiently small and taking into account that gnon.<0, if t> — 2/m,
we get that

—2/m —2/m
fdtf”Du”zdw<c(v, M)(% +%)fdtf i — ]2 do .
—a B(o) —2a B(20)

Now the thegis, i.e. the (2.40), follows by taking the limit for m — 4 co.

Let ai(p), ¢ = 1, ..., n, be vectors of R¥ of class C*(R~), which satisfy the condi-
tions (1.8), (1.10) and (1.29). Let us suppose that Bi(X), ¢ =1,...,n, and B°X)
are vectors of R¥, which satisfy condition (2.20). Then, we can prove the following
existence lemma.
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Levva 2.XI. — For any we L*(— T, 0, H()) there exists a unique vector u €
e L¥— T, 0, Hy(RQ)), which is the solution of the C.D. problem

| :

(2.47) f S (@(Du + Dw)|D,g) —(u a_‘j) ix = f S (BDg) + (Blp) ax,
Q Q

Ype W(Q): ¢(2,0) =0 in Q.

Moreover, we have the inequality

(2.48) fnpuuwx +f f”” 28 =@ O 4y gy <

lt—TP

<e(v, M {Z |Bi— a(Dw) Io et IB Io 2(n+2)(n+1), Q}

We give a proof for the reader’s convenience.
PROOF. — Fix y = (M2>—»?)/y. For any u € L¥— T, 0, H}(Q)) the condition
(M 4+ u)D,u— a'(Du + Dw) € L¥Q)

holds, and then (see lemma 2.VI) there is a unique solution U = B(w) € L*(—
0, H(2)) of C.D. problem

(2.49) f(M + u) ; (D.U|D.p) —(U %—‘f) axX =

¢ =J.; (IM + p] D;u — ai(Du + Dw) + Bi|D,p) + (Blp) dX
Vo e W{Q): <p(w,00) =0 1in 2.

B is a contraction mapping sending the Banach space L¥(— T, 0, H:(2)) into itself.

In fact, if U = G(u), V = B(v), U=U-—V and & = u— v, then from (2.49) it
follows that U e L¥(— T, 0, HY®)) is the solution of the C.D. problem

(2.50) J (M + p) Z (D, U|D.¢) —(17 1%) axX =

=f2 ((M + p] D.fi — a*(Du + Dw) + a*(Dv + Dw)|D,g) dX ,
Q 1
Vpe W(@): ¢(x,00=0 in Q.

After the N XN matrices

1
A= (A% with A’F?‘:—f oai(v Du 4+ (1—=) Do + Dw)
2J ¥ (2] apk
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have been introduced, problem (2.50) becomes

st [0+ 3 00D —(0]2F)ax =
‘ f;([M—l—,u]Du——zA”Du]D,tp) ix,

Ype WQ): ¢(x,0)=0 in Q.

As A;;e I7(Q) satisfy the conditions (2.18), (2.19), by lemma 2.VIII we get this
inequality (see (2.36)):

(2.52) [P0 ax < B2 | Dity? ax
Q Q

where K(u) < 1. We conclude that B has a unique fixed point # which is the solu-
tion of problem (2.47).

As far as inequality (2.48) is concerned, we argue as follows:

Introduce the N X N matrices

1 .
= {4}, with A= f aj(c Du + Du) ;.
4 0P,

then problem (2.47) may be written this way

253) 3 (4, DyulD.g) ——(u

%?ti) Ix = f S (B'— a/(Dw)|D.g) + (Blg) 4X
Q
Voe W(@): ¢(z,0) =0 in 0

so that ue L*(— T, 0, Hy()) is the solution of a C.D. linear problem with coeffi-
cients A;; which satisfy the conditions (2.18) and (2.19). Then, from (2.22) inequality
(2.48) follows.

THE CASE Ai= Ai(p)

3. — Local differentiability of the solutions.

Let w e L*— T, 0, H(2)) be a solution in @ of system

(3.1) — 3 D.A{(Du) + %% =0

in the sense that

(3.2) fz (a*(Du)|D;p) — ( 6<p) dX =10, Vpel3(Q)
Q

0t




100 SERGIO CAMPANATO: On the nonlinear parabolic systems, etc.

Ai(p), i = 1,..., n, are vectors of R¥, of class C'(R"~), which satisfy the conditions
(1.5), (1.10) and (1.29).
We prove the following

TEROREM 3.1. — The vector u is locally differentiable in Q, i.e. there ewist

5.3) DcT@), e Ii@)
and YB(a®, 20) cc @, V2a € (0, T)
0 \ ' 0
(3.4) fdt ) 1|D,-,-u|12+”%—”;” dz < elv, M) (§;+2)fdtfnpuuzdw.
—a B(«r)w - —2a B(20)

Proor. — Let (), Qm(t)b and {g,(t)} be defined as in (2.41), (2.42), (2.43); {93
being a sequence of symmetric mollifying functions. Define

(3.5) Trpth = (@ + her, 1) — w(X)

where {¢7} , is the standard base of R, and suppose that

=1y wuny

h<s.

Since (3.2) is valid Yo e W(Q): p@, — T) = p(x, 0) = 0 in £, for each fixed m and
Vs > mV1/(T — 2a), we may assume in (3.2)

@ = T‘r,—h{ezgm[(gm Tr,h'u) * gs]}
and hence we obtain that

66) |3 (eat DD gallenror)  0.) 1X =
Q

° :J‘ (Tr,hulez{gm[(gmfr,hu) % gs]},) dX .
Q

Account taken of symmetry of gs(t),.it turns out that

(3.7) f (T 4]02 0l (OmTr ) % g.)') 4X = 0
Q

If, moreover, we set

A,={4,}, with A= a’)“’*(lm + 17, Du) dy

") opi
o
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we have that

(3.8) ) : Tr a0 (Du) = Zn A(Trn Diu) .

Ge=1

By keeping in mind (3.7) and (3.8), from (3.6) we obtain

(3.9) f629m E (As7e Dit|(0nTrn Do) % g,) dX = |
4 42
= 2'[69,,, Z (4:s7vs Diu|D 6 [(0nT, %) % ¢]) dX —{-fﬁzg,’n (Tra®|(0mTrau) * ;) dX .
42
2

When s — -} co, then

(OmTra®) % gs—> 0uT,p%  in L(— T, 0, H(Q)) .
Therefore, from (3.9), taking the limit for s — + co, we get that

(310) 4 :f@zgf,, > (4, p Diulz,, Diu) dX =
%
a
= —2]0@3,, zﬂ (4sitrp Dju|D,0 7, yu) dX —I—J.ngm omlt au|?dX =B + C.
2 Q
By hypothesis (1.10)

(3.11) 459[0°¢3x,, Dul? aX
Q

and moreover, by (1.5) together with the Holder’s inequality, we have for every
e>0

(3.12) |B] <[00 |7,,, Dulf 4X -+ (e, M) [|D0]? 2|7, ] AX .
‘Q ’ ) Q. ’

Finally, as 0,0, <0 if ¢ > — 2/m,
~2/m
(3.13) 0< gfdtf 2, au]® do .

—2¢ B(fo)
From (3.10) ... (3.13), choosing & small enough, it follows that
—2{m 0

f dt f [T, Dul? dw<c(v, M) (% + 2) f dtf Iz, at? do<

~a B(o) —2a  B(3o) 0
<6y, M)(% +%) ih]zfdtf | Du|? du

—2a B(20)
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and taking the limit for m — 4+ oo .
0
(3.14) f dtf | %0 Duf|? d<o(w, M)(i )[k[zf J"”Du[}2 da .
—a B(o) —2a B(20)

From this, because of a well known Nirenberg’s lemma (see for instance [Q], p. 26),
we conclude that there exist D, Du € L*(B(¢) X (— a, 0)), r =1,...,n, and the fol-
lowing inequality

0 0
(3.15) J‘dt 2 | Dusul® dw<e(v, M) (-;—2 -+ %L) f dtf [ Du|? dw
—a B(o) Y —2a B(20)
holds. From this it easily follows that

(3.16) H%GD(B( o) X (—a, 0)) .

In fact, from (3.2) we get that, Yp € C7 (B(o) X (— a, 0))

o faf(E)efaf (oo

and, because of (1.5) and (3.15)

Du)

k

ZDia’i(Du ZZDw lc Lz( ( ) (-—-(I/, 0)) .

From (3.17) and (3.15) we can furthermore get

0 0 0
(3.18) fdtf aa——“ =|at| |3 D.a'(Du) Sdn <o, M)(-;;Jr-}d)fdtflll?ullzdm-

—a B(o) —a B(06) ~2a . B(26)

This completes the proof of the estimate (3.4).

4. - Poincaré’s type estimates for the solutions in Q of system (3.1).

Let u € L¥(— T, 0, HY(Q)) be a solution in @ of system (3.1), under the hypo-
theses (1.5), (1.10) and (1.29). .

Let @(X,, 20) cc Q. Becauge of theorem 3.I, the vector % belongs to L“’(to— 4¢?,
ts, H(B(20))) N H'(ty— 40% 1, T*(B(20))).
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THEOREM 4.I. — The following Poincaré’s type inequalities

(4.1) B(u, X,, ) <e(v, M) f | Duj dX
Q(20)
(4.2) B (Du, X,, o) <olv, M f S |Duul? dX
e ¥

hold (D is defined in (2.2)).

ProoF. — From lemma 2.IT and estimate (3.4), where one assumes ¢ = ¢?, ine-
quality (4.1) follows by taking into account that

f” w?TZ— szacdt<ca2f %

t—o® Qo) Q(0)

2

ax .

Inequality (4.2) follows from lemma 2.IIT together with the fact that, in Q(c)
we have

oull?

[

T Z 1Dyl -

5. — Some fundamental estimates for the solutions in @ of system (3.1).

Let e L¥(— T,0, H(R)) be a solution in @ of system (3.1), under the hypo-
theses (1.5), (1.10) and (1.29). Let Q(X,, ¢) cc@. Because of theorem 3.1 it turns
out that

we L2(t0— 0% to, H¥(B(0))) N H(to— 0%, t, L*(B(0))) -
From (3.2), assuming ¢ = D,y, s =1, ..., n, with y € 07 (Q(0)), we obtain

Jox =

f S (D.ai(Du)D.y) —(Dsu oy

ot
a(9)

and getting

: dax(p)
133 _ k
= {44}, with A¥(p)= Tk
We have
(5.1) f > (Ay(Du)D; DyulD,vy) —(D aa—w) dX=0,

oty ©

Vye 07(Q(o)) and s =1,..,u,
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Furthermore, we introduce

U= Du

(5.2) n? blocks

then, from (3.1) it follows that UeLz(to— % 1y, Hl(B(o'))) is a solution of system

(5.3) > (#4(U) D, U|D,P) —(U {%l‘;’) iX=0, VY¥el(Q)) -
9 i

We observe that #£;(p) are nN xnN matrices, bounded, continuous and elliptic, i.e.

(6.4) S (A:4(p)E|E) >v)E|2, Ype R and VEe R .

i .
Then, we can prove some fundamental estimates for the vectors #, Du and D,u.

TuEOREM 5.1. - If u e L*— T, 0, HY(Q)) is a solution in Q of system (3.2), then
there exists an &€ (0,1), such that, YQ(X,, ¢) ccQ and YA€ (0,1),

(.5) fz 1Dgu? dX <elv, M) AE(WH)J‘Z |Diu)2dX .
o) alo) N

Proor. — System (5.3) can be regarded as a linear, strongly parabolic, system
of second order, with coefficients #,,(U(X)) e L*(Q(o)). Therefore, estimate (5.5)
is a consequence of inequality (2.33) of lemma 2.IX.

TrEOREM B.IL. — If we L¥(— T, 0, HY(Q)) is a solution in Q of system (3.2), then
there exisis an &, 0 <e<<mf(n - 2), such that, VQ(X,, o) cc @ and Vi€ (0,1),

(5.6) f | Dul? 4X <o(v, M) r+ewin f | Du|? dX .
Q(Ac) Qo)

" PROOF. — Let us suppose 0 <A< 7t<$%. Then,

A n+2 )
(5.7) f | Du|2 dX <o(n) (;) f 1Du|2 dX + | | Du — (Du)agoy|? 4X .
Q(z0)

Q(Aa) Q(z0)
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On the other hand, account taken of inequalities (4.2) and (5.5)
[ 192 — Dot dx <otwor [ 3 1Doul ax <ot Myorereses [ 3 D ax
(7o) a(zo) alosz)
where &(v, M) € (0,1). In conclusion
A\nt2
(5.8) f{]l)u[[z dX<c(;) f[ll)u”z aX + co?rretd | S 1 Dul?dX .
a(io) afro) a(or2)
Now chose ¢ << n/(n 4 2); then by lemma 1.I, p. 7 of [Q]
A\ ote(nta)
| Du? dX<c(;) |Du|? dX 4 cg? Artelnta Z | Douf? dX .
@(io) a(zo) a(er2)
Taking the limit for 7 — %, we obtain that, Y0 < 1 < {,
f [.Du]? dX<ci2+8‘"+2){ f |Du|? dX + azfz [ D:sul? dX}
Q(40) Qo) 9(6/2)“

and, because of inequality (3.4)

(5.9) [IDuj ax < epevenss [Ipujzax .
Qo) Qo)

This shows the thesis when 0 << 4 < L, however (5.6) is clearly true also for 1<i<<1
too.

THEOREM B.III. - If w e L*(— T, 0, H\(£2)) is a solution in Q of system (3.2), then
there exists an &, 0 < e < nf(n + 2), such that, VQ(X,, o) ccQ and YA e (0, 1),

(5.10) J16 = g1 AX < e, B AF 4D — a2 A .
Qo) - Q(o) .

ProOF. — Let us suppose 0 < A< . Inequality (5.6) is valid

(3.11) f | Du|? 4X < (v, M) j2+etntd f | Dul? 4X .
Q(220) Q(o/2)

Also the Poincaré’s type inequality (4.1) is true

(3.12) f 1 — 11| 4X <o(v, M) 220° f | Dul? dx .
Q(Ao) Q(240)
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Finally, system (3.1) may be written in the form (see (1.6))

(5.13) =3 Di{4(Dw) Dyw) +57=0 inQ

where

1

: Ry
{Azi y  with  AF(p) = op;

Therefore, the system has the form of a linear, strongly parabolic, system with
coefficients A,,(Du(X)) € L°(Q). Then, estimate (2.40) of lemma 2.X

(5.14) f Duj ax < 22 f 4 — tige]? 4X
Q(a/2) Q(o)

holds. From (5.12), (5.11), (5.14), inequality (5.10) follows when 0 << A < }; however
inequality (5.10) trivially holds for <A <1 too.

COROLLARY 5.1. - If u € L*(— T, 0, HY(R)) is a solution in @ of system (3.2), there
ewists an &, 0 << e < nf(n 4+ 2), such that, YQ(X,, ¢) ccQ and Vi€ (0, 1),

(5.15) D(u, X, Ao) <c(y, M)ix+erta Py, X,, o).

In fact, (5.15) is a consequence of theorems 5.I1 and 5.IIT.
Congider now gystem

(5.16) — 3 D.A(Du) +aa”t‘ 3
under the conditions (1.5), (1.10), (1.29) and the hypothesis
(5.17) Bi(X) e L¥Q) .

THEOREM 5.IV. — Let u € L*(— T, 0, HY(Q)) be a solution of system (5.16), that is

i o) — G i eo
(5.18) !;(a(Du)|D2¢) ( "’)dx fz (Bi|Dip) X, VpeC3(Q)

Then, YQ(X,, o) ccQ and YA€ (0,1),

(5.19) B(u, X, 20)<e(v, M) {zmmw B(u, Xoy 0) + 3 |B"[§,e(p)}

where, as usual, & € (0, n/(n + 2)).
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Proor. - In @(¢) we decompose # as % = v — w, where weL?(to—— o*, b, H},(B(a)))
is the solution of the C.D. problem

(5.20) f S (@/(Dw + Du)|D.g) —( —) ax f > (¢i(Du) — B|Dyg) d
Q(o) ¢
Vo e W(Q(0): p(a,4) =0 in B(a).

As ot — Bie L*(@)), by lemma 2.XI such a w exists and is unique. Moreover, w
verifies inequality (2.48). Hence YA & (0,1)

(5.21) B(w, Xy, Jo) < 2 B3 009 -

Clearly v eLz(to—— o, by, Hl(B(a))) is a solution of system

(5.22) f; (2*(Dv) | D, ) —(@

Q(o)

%)dxz 0, Vpel7 Q).

Then, by corollary 5.1, there exists ¢ e (0, n/(n + 2)), such that Ve (0, 1)
(5.23) D(v, Xy, Ao) <e(y, M) ixrenid d(w, X,, o) .

As u = v—w, from (5.21) and (5.23) estimate (5.19) easily follows.

HOLDER CONTINUITY AND PARTIAL HOLDER CONTINUITY
6. — The case A¢= A4p).

Consider now system

(6.1) —ZD aﬁDu)—{—%:O in @

under the hypotheses (1.5), (1.10) and (1.29). From theorem 5.IIT it follows that

THEOREM 6.1. — If uwe L¥(— T, 0, HY(R)) is o solution in @ of system (6.1), and

n <2, then
(6.2) we C%A(Q,d) with :2——1_8(1’»—1—2) eel0, ——
. s &)y m ’ ‘n+ 2
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and for every cylinder A cc@
(6.3) [}, i <ollo ()

where ¢ depends on M,y and on the distance between A and the parabolic boundary
of @ ().

In fact, from the fundamental estimate (5.10) it follows that for every cylinder
Acc@

[u]£2,4+e(n+2)(A’d) <OIIM’IO,Q .
If n<2, then 4 + g(n + 2) > n + 2, and thus (see [8], theorem 3.I)
[’Il/]ﬂ,‘z<0[u]£a,4+5(n+2)(A’d)<C‘lul0’” .

If the derivatives d'a/9p, are uniformly continuous in R*¥, then also the vector
Du is partially p-Hélder continuous in @, Vi << 1, and this fact holds for any n.
Indeed (see section 5) the vector U = Du, at least locally, is a solution of the quasi-
linear and strongly parabolic system

(6.4) S (40) D,0Dg) —(V ) ax =0, Vpe3(@)
Q

where coefficients #£;;(p) are uniformly continuous in R*¥. Therefore, the following
theorem holds (see [9], [4]) :

TEREOREM 6.11. — There exists a set Q,CQ, closed in Q and with measure zero,
such that

(6.5) U= Due 0™ (Q\Qy,d), VYu<l.
Furthermore,
(6.6) H, o ,(Q) =0 forag>2.

By (3.18) of [4] and inequality (4.2), the singular set of the vector Du may be
defined this way

(6.7) Q= {XeQ: im' o= | | Du)® + 3 | Dyul* dY > 0}.
a—0 Q(X,G) 4 N
X)y—uw(¥Y
) ], 3 = sup, LD =D

xrea X, Y)
(M) Le. [2x{—T}Hu [22%x(—T, 0)].
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However, % is a solution of system (5.13), strongly parabolic in @ and with coef-
ficients AM-(Du(X)) € L”(Q), whereas U = Du is a solution of system (6.4), strongly
parabolic and with coefficients #;;( U(X )) € L*(@). Therefore, becanse of lemma 2. VI
and inequalities (4.1) and (4.2), there exists & ¢ > 2, such that

(6.8) {:’c [ Dule + 3> | Dsyule dY}l/q <o{D(u, X, 20) + B(Du, X, 20)} <

Q(X,0) %
<Q{(i£puu -3 iDyul dY} :

Equality (6.6) follows from (6.8) (see for instance [Q] theorem 0.I, p. 142).
Account taken of theorem 6.1, the following conjecture seems to be reascnable:

If n>2 and Q’; is the singular set of the vector u, then

(6.9) H,-(Qh) = 0

7. — The case A‘= Ai(X, p).

Consider the system

(7.1) -zDA X, Du) — 3 D,BHX, u) + B(X, u, Du), in Q

[

where A‘(X, p) are vectors of R¥, which satisfy conditions (1.5), (1.10) and (1.29),
whereas B? and B° are vectors of BV, measurable in X and continucus in % and (%, p)
respectively, each having strictly controlled growth

(7.2) 1BYX, w)] <e(1 + [u]%)

(7.3) | BAX, w, Du)|| <e(1 4 []? + [p[7)

where «, f, y are subject to the conditions (1.24), (1.25), (1.26).
Let u € L*(— T, 0, H{(Q)) N L>(— T, 0, 12(2)) be a solution of system (7.1)

(7.4) f S (D) - ( )dX f S (BD.g) + (Bilg) dX, Ve G3(Q).

In order to study the Holder regularity of the # we consider two cases: n<2
and »n > 2.
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The case n<2.
Suppose that vectors A’ satisty the following uniform continnity condition in X'
There exists a bounded non-negative function w(o), defined for o > 0, which is non-

decreasing and goes to zero as ¢ —> 0, such that VX, Y €Q and Vp € R

(7.5) b3 | 44X, p) — A(Y, pP<o(dX, 1)1 + [p]*) .

Fix @Q(X,, 20) ccQ and let weL”(to— o2, 1y, H},(B(a))) be the golution in @(a) of
the C.D. problem

(7.13) fz (4(X,, Dw + Du)|D,p) ——(w %) dX =
Q(o) ¢
=f2 (44X, Du)|D.g) — (BYX, u, Du)|p) dX ,
Q(o)
Vo € W(Q(0)): plw,t) =0 in B(o).
By lemma 2.XT, such a w exists and is unique, in fact (see (1.21))

A{X,Du)eIQ) and BYX,wu, Du)e L2t gy

Set v = % + w. Obviously, veL2(t0— o2, by, Hl(B(a))) is a solution of system

(1.14) f S (44X,, Dv)|Dyg) ——(v %%) X — f S (B{(X, w)|Dyg) X,
Q(0) ’ (o) !
Vpe C7(Q(0)) -

Estimate on w.

Using lemmas 2.XTI and 2.IT, we get the following estimate on the vector w:
Yie(0,1] '
(7.15)  Blw, X,, Ae)<olw, M)fz | 44X, Du) — AYX,, Dy)|?dX +
o -+ o(v, M)|BYX, w, Du)[2

0,2(n+2)/(n+4),Q(c) *
On the other hand, because of the hypothesis (7.5),

[ 3144, Du) — 44Xy, Du)|* 4X <0x(0) Bty Koy 0)
el *
and taking into account lemma 2.V

2 4-2 2)}(Bla, {2
|BYUX, 4, Du)|§ o+ 2yin+ 000y < Ow) g T2 DENVED g 7 ),
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We conclude that, Vie (0,1),
(7.16) D(w, X,, lo)<o(c)D(u, X,, 0)

where o(¢) goes to zero in respect of o.

Estimate on v. — By theorem 5.IV, we get the following estimate on v»:; There
exists an ¢ € (0, n/(n 4 2)) such that Ve (0,1)

(7‘17) (ﬁ(vy X07 lO’)<0(V, M) {}'2+8(n+2)dj(vy X07 G) + Z |Bi(X7 “)lg,e(a)} .

?

On the other hand (see (2.12))

3 B, 0w <[ (L + [u]**) 4X = oP(u, Xy, 0)
¢ Q(X,,0)

moreover, because of lemma 2.1V, Yie (0,1)
(7.18) P(u, Xy, A6) <l 2P (u, Xy, 0) + C)e™ ™2 B(u, X,, 0) .

Account taken of lemma 1.II, p. 8 of [Q], from (7.17) and (7.18) it follows that
¥ie(0,1) and Ve'e (0, ¢)

(1.19) D@, X,, Ao) <e(v, M)A2T D Gy, X, o) + _
+ 0@(%, X07 0){}'2+e'(n+2)+ 6n(1—o¢)+2} .

As w = v— w in Q(o), from (7.16) and (7.19) we conclude with the theorem below
TuEoREM 7.1. — If we L¥—T,0, H(Q) N L>(— T, 0, L*Q)) is a solution of

system (7.1), under the assumptions (1.5), (1.10), (1.29) and (7.2), (7.3), (7.B), then
YQ(X,, 0) ccQ and Yie (0,1) the following estimate holds

(7.20) D(u, Xy, 40) <eD(u, Xy, 0){A2T 2 4 0(0)}
where 0(c) goes to zero with o.
PROOF. — As % = v — w in Q(c), from (7.16) and (7.19) we obtain that VA € (0, 1)»
(7.21) D(u, X,, Ao) <cD(u, X,, 0){A2T¢ @D L 0(0)}
where 0(¢) — 0 when o — 0. To the left-hand side of (7.21) we can add the integral

[+ Jujeax
Q{ic)

8 ~ dnnaeli di Matematica
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because

J1+ g dx <o) 2742 [1 4 Juj aX + ofm)[|u — ugp)| aX
Qo) Q(o) Qo)

and from (6.37) of [5], if n > 2, or from (2.4), if n<2, we have

[ = g1 @ X < 6@ 0(0) Dlot, X, )
Qo)

where 0(c) goes to zero in respect of ¢.

Inequality (7.20) allows us to achieve the Holder continuity in ¢ of the vector «
when n<2. '

In fact, from (7.20) and from lemma 1.I1I, p. 9 of [Q], it follows that Ve'<< e
there exists a o(¢') such that, YA€ (0,1) and 0 < o<o(e’)

(7.22) D(u, Xy, Ao) <el2TE DDy, X, o) .

This inequality is quite analogous to the fundamental estimate (5.15) which holds
for the solutions of system (6.1). In particular, from (7.22) we obtain

(7.23) f [ — thgsmy|? X <0IBT B, X, 0) .
Q(10)

Therefore,

(7.24) u € LA+ 2 q)

and certainly it results 4 + &'(n -+ 2) > n -+ 2, if n<2. In general, the validity
of the previous inequality depends on the value of ¢, which in its turn depends on
the constants » and M of the system. .

TEEOREM 7.II. - If w € I¥(— T, 0, HY(Q)) N L°(— T, 0, L*(R)) is a solution in Q
of system (7.1), under the assumptions (1.B), (1.10), (1.29) and (7.2), (7.3), (7.B), then

1—e¢
2

(7.25) we C"MQ,d), with p=2— (n +2).

Ag it is known from (7.24), by theorem 3.I of [8], (7.25) follows.

The case n > 2.
As (see (1.6))
AYX, p) =3 Ay(X, p)p’

i
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system (7.1) may be written in the form

(1.26) — D,A,(X, Du) Dyu + %%‘ — — 3 D,BYX, u) + B'(X, u, Du) .

d i
Let us suppose that the derivatives 0a'jop’, as well as the matrices 4,,(X, p), are
uniformly continmous in @ X R"™. As the 8a’/0p) are also bounded (see (1.5)), it
follows that there exists a non-negative function w(o), defined for >0 with w(¢) = 0,

non-decreasing, continuous, bounded and concave, such that VX, Y €@ and Vp,

3
(7.27) {g [40(X, ) — AT, W} col@(X, T) + |p—Dl7) -

We premise a result of L{ -regularity for the vector Du. This result can be proved

for systems of the general type.

Luvva 7.1 — If we L(— T, 0, H(Q)) N L°(— T, 0, L*(Q)) is a solution in Q of
the system

(7.28) - z D, ANX, u, Du) + T - z D;BY(X, w) + BX, u, Du)

which is strongly parabolie, with strictly controlled growth, and satisfies hypothesis (1.5),
then dg

= o
. 2 < =
(7 . < g< -
suoh%that Vg (2, 7] and YQ(X,, 20) cc Q, with o<1,
2/q
(7.30) (f | Dule dX) <e(u) gt 22—V Py, X, 20)
Q(9)

where C(u) is defined in (2.17) (8).

PROOF. — As (see (1.6))

ANX, u, p) = Z A (X, u, p)ipi

3

system (7.28) can be regarded as a linear strongly parabolic system with coefficients
A.(X, w(X), Du(X)) € L*(Q).

(8) An analogous result for quasi-linear parabolic systems is proved in [5], section 5.
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Because of lemma 2.1
BY(X,u)eI®™Q) and BYX,u, Du)e LWPAC Q).
Therefore, by lemma 2.VII, there exists g

(7.31) 2 <g<

R

such that Yq e (2,q] and VQ(X,, 20) cc@

(7.32) 2D <
and
2/q 2/q
@33 (f1oulr ax)” <o f S1mpeax)”+
(ny, SRR

Jria) -
+oor( f 18 dX)2 "t cotrro d(u, Xy, 20).

Q(20)

On the other hand, account taken of (7.31),

(7.34) ( Jf > B dx)m <cJ£1 + Julo dX < 6o~ D(u, X,, 20)
Q(20) ’ Q(20).

and by lemma 2.V and (7.32),

2/r(a)
@z (f1mreax)" <omeeawoven o, X, 20).

Q(20)

Since ¢ <1, estimate (7.30) easily follows from (7.33), (7.34), (7.35).
That being stated, we prove the following theorem which, in case # > 2, replaces
theorem 7.1. '

TuEOREM 7.I1. — If w is a solution of system (7.1), under the hypotheses (1.5),
(1.10), (1.29), (7.2), (7.3) and if the derivatives 0’ |2pi, are wwiformly continuous in
Q X R¥, then YQ(X,, 6) cCQ, with ¢<2, YAe (0,1) and Ve € (0, ne)

(1.36)  D(u, Xy, h0)< |
< AD(u, X,, ) {An+2—s + o(o) + [w (az + JC | D — (D) o)) 2 dx)] - /q}
(o)

where o(c) goes to zero in respect of ¢.
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ProOF. — We argue as in theorem 7.I. System (7.1) can be written in the form
(7.26). Fix Q(X,, 20) cc @, with o<1, and, for the sake of simplicity, set

(7.37) Ay = Ay(Xo, (D)) -

Let weL( — o1, H (B(a))) be the solution of the C.D. problem
(7.38) fz (A, Dyw|Dig) — ( ‘at) z( — 44(X, Du)] Dyu|D.p) AX +
%
a(s

Tf (BY(X, u, Du)lg) dX, Vpe W(Q(0): p(e,t) =0 in B(o).
Q(o)

Clearly, v = 4 — weLz(to— o2, 1y, Hl(B(O'))) is a solution of the system
(7.39) — 3 D4 Dyv) + % = —Y D,Bi(X,u) in Qo).

Hstimate on v. — (7.39) is a linear system with constant coefficients; therefore,
by lemma 2.11 of [4], we have that VA€ (0,1)
B(v, Xy, 1) <el, {12 B0, Xoy 0) + 3 [BUX, 0) et}
%
Since

3B, Wi em<e 1+ |u** dX = eP(u, Xy, 0)
' a(o)

using lemma 2.IV and lemma 1.IX, p. 8 of [Q], we conclude that Y1e(0,1) and
Ve € (0, nec)

(1.40)  B(v, X,, Ao)<o(v, M) A" *B(v, X,, 0) + ¢D(1, X,, 6){A"F27¢ f g"1=2+2)
Estimate on w. — Because of lemma 2.VI, we have thet VAie (0,1]
(143) B, Xy, Ao <ol )| 3 [Au(X, Du) — Ayl | Du* dX +

Q
@ + ey, M)|BYX, u, Du)|5,200+2)i(n +4),0() -

On the other hand, taking into account (7.27), lemma 7.1, the boundedness and
concavity of w, we obtain

(7.42) | > [Au(X, Du) — A,,)*- ]|Dun2dx<fw )| Du)® dX <
oM alo)

2/a 1—-2/¢
<o 10 ax)”( f ot ax) "<
Q(o)

Q)

<o(u) Plu, Xy, 20) [60 (Gz + f | Dy — (Du)go)}? dX)]l—zm .
‘ ()
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Finally, B3 s(us2)im+4),ac) €21 be estimated as in lemma 2.V. Then, we conclude
that VA€ (0,1] . S ‘ ‘ ’

(7.43)  B(w, X,, Ao)<oD(u, X,, 20) {o(a) + [w (az + f 1 Dy — (Dw)ai)® dX)]l—z/q} .
. . . o Q(o) . -

As w = v -- w in Q(o), from (7.40) and (7.42) we conclude that ¥4 € (0, 1) and Ve > 0
Blu, Xy, 40) < 0Blu, Xy, 20) {473+ 0(0) + [(...) 14}

and, from this, (7.36) follows as the integral

[1+ Juax
Q(Ac)

can be added to the left-hand side for the same motivations we pleaded in the proof
of theorem 7.1.

The following theorem on partial Holder continuity of u is a consequence of
theorem T7.I1T,

Set
(7.44) Q= {X cQ: hm"Jf | Du — (Dw)ocx.o2 Y > o} .
o0 .
Q(X,0)

The properties_ of Lebesgue integral imply that
(7.45) _ E meas @, =10.

THEOREM 7.IV.:-'- If u s a solution‘of'sys‘tem (7 .i), under the hyportheses (1.5),
(1.10), (1.29), (7.2), (1.8), and if the derivatives 0a'[0p}, are umiformly continuous in
@ X B, then there exists a set Q,, closed in Q, with

(7.46) Q,CQ., and therefore measQ,=10
such that
(7.47)  we0HQ\Qy, d), Yp<l.

This theorem may be proved by reascning exactly as in the proof of theorem 5.1
of [2].
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8. — The case A= A(X, u, p).
Consider now a system of the general type
ou

— 2 D,a*(X, u, Du) + = BY(X,w,Du), in @

which may be written in the form (see section 1)

61— 3 DAK, w, Do) + = DB, ) + B(X, u, D)

where AY(X, u, p), B{(X, %), BY(X, u, p) are vectors of B¥, which satisfy conditions
(1.5), {(1.10) and have strictly controlled growths

(8.2) 1|Ai<X’ %, p)| <e(M) “p”
(8.3) [BHX, w) <e(1 + [u]*)
(8.4) | BUX, u, p)| <e(1 + [ul? + [p]7)

where «, §, ¥ are subject to the conditions (1.24), (1.25), (1.26).
Let e I*(— T, 0, H(Q)) N L>(— T, 0, L*(2)) be a solution of system (8.1) i.e.

85 [3 @10 —(u

Dax =[5 By + @9 X, Voo,
Q

Algo for these systems, in order to study the Holder regularity of the vector u, we
congider the cases n<2 and » > 2 separately.

The case n<2.

Our proof is quite analogous to that of the case n<2 in section 7.
Suppese that the vectors A? verify this uniform continuity econdition with
respect to (X, u) (see (7.5)): '

There exists a non-decreasing, bounded, continuous, concave function w(c), defined
for >0 with w(0) = 0, such that VX, Ye@, Yu, v R¥ and Yp € R

(8.6) 2 44X, u, p) — AU, v, p)P<o(d(X, Y) + [u —o]?)[p]*.

(]

This condition is easily fulfilled if, for instance, A€ 01(A) and, in agreement
with (8.2),

P

(8.7) ~

<d|pl .

A
+2 %,

0A4°¢ 0A?
+ 3l
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In faet, from (8.2)

(8.8) 144X, u, p) — AYY, v, p)| <ei(M)|p]
and by (8.7)

(8.9)  [4%X, u,p) — AT, v )] =

<6, VT|p|-{&(X, X) + |u—o]3t.

- “le%‘f“(”(x_y) + Y, n(u—) + v, p) dn)
J _

Therefore, it is enough to assume

(8.10) w(0) = ne(M) min {e,(M), e/T+/ 5} .
Having fixed Q(X,, 2¢) ccQ, with g<1, we set, for simplicity,

(8.11) Ai(p) = A(X,, Ugy, D) -

Let w ELZ(t(,—— 02, 1y, H},(B(o'))) be the solution in Q(¢) of the C.D. problem

(8.12) fz #Dw + Du)|D;p) ( lat)

Qo) .

:fz (44X, u, Du)|D,p) — (BYX, u, Du)|p) dX ,
Qo) K

Yo e W(Q(0)): ¢(#,%) =0 in B(o).

Because of lemma 2.XI and of (1.21), w exists and is unique.
Set v = 4 -+ w. Clearly v eL“‘(to— o2, 1y, HI(B(G))) is a solution of system

(8.13) fz (A#(Dv)|Dsg) — (
Q(o)

Yo € C3(Q(0)) .

)dX_—J.Z Bi(X, w)Dip) d

Inequality (7.19) holds on v i.e.: e€ (0, n/(n 4 2)) sueh that VA€ (0,1)
8.14) B, X,, do) <elzrnd (v, X, 0) + ¢D(u, Xy, 0){A+0+2 L o(0)} .
Inequality (7.15) holds on w, therefore, Y4 e (0,1],

(8.15) d(w, X,, Ao)<o(c) D(u, X,, 0) + 6(v, M)f Z | A X, u, Du)— A4Dwu)|? dX .
oo *
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On the other hand, taking into account hypothesis (8.6), lemma 7.1, the concavity
and boundedness of w, we get

816) [ 314X, u, D) —~BDu)[* AT < [olo* + [~ o) | Dul* aX <
Q(o) a(o)

<00"+2(J[ | Dule dX)Z/d( Jf of.) dX)1—2/q<

(o) Q(o)
< C(u) D(u, Xy, 20)[w(co— D(u, X,, o)) J:-2/.
We conclude that Yie (0,1]

(8.17) d(w, X,, 1o) <e®(u, X,, 20){0(0) + [w(co D(u, Xy, )]} .
Therefore, the following theorem helds

THEOREM 8.I. — If wel*— T,0, H(Q)) N L°(— T, 0, L}Q)) is a solution of
system (8.1), under the hypotheses (1.5), (1.10), (8.2), (8.3), (8.4), (8.6), then there exists
e € (0, nf(n + 2)) such that YQ(X,, ¢) cCQ, with ¢ <2, and YA€ (0,1)

(8.18)  B(u, Xy, Ao) <oD(u, X,, 0){Arre+2 4 o(a) + [w(eo— D(u, X,, 0)) ]~}
where o(c) goes to zero with o.
In fact, as 4 = v — w in @(o), from (8.14), (8.17) it follows that VA1e(0,1)
B(uy Xy, Ao) <e@(u, Xy, 20){Aren+2 L o(g) + [w(...)]*-24} .

The previous inequality is trivial for 1< 1< 2. Finally, to the left-hand side we
can add the integral

[t + e ax
Q(4o)

for the same reasons we pleaded in the proof of theorem 7.1,
From the previous theorem we draw forth the partial Holder continuity of the
vector #, by reasoning exactly as in [4] section 3.

Set
(8.19) Qo= {XEQ: lim’ o ®(u, X, ) > 0}
c—>0
we have that
(8.20) H, (@) =0

(it is sufficient to argue as in theorem 2 of [9]).
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TaEoREM 8.I1. — If % is a solution of system (8.1), under the hypotheses (1.5),
(1.10), (8.2), (8.3), (8.4), (8.6), then Q, is closed in @ and

8.21) we CHQNG, @), V<2~ m +2).

The case n > 2.

Our proof is quite analogous to that of the case n>2 in section 7.
System (8.1) can be written as follows (see 1.7)

(8.22) — Z D (A (X, u, Du) Dyu) + %‘é = — Y D.Bi{X, u) + BX, u, Du).

Let us suppose that the derivatives 0a'/op}, and so the matrices A;(X,u, p), are
aniformly continuous in 4. Since they are also bounded (see (1.5)) it follows that
there exigts a non-decreasing, bounded continuous and eoncave funetion w(c), de-
fined for ¢>0 with w(s) = 0, such that V(X, «, p), (¥, v, p)eA

(8.23) X |4u(X, u,p) — Au(Y, 0, )P <oo(@(X, ) + Ju —o[*+ lp — 212 -

Fix Q(X,, 20) ccQ, with o<1, and, for the sake of siniplicity, set

(8.24) A, —

3

Ay(Xo, Ug(a) (D“)Q(g)) .

Reasoning like in the case n > 2 of section 7, in Q(o) we write » = v -+ w, Where
we Lz(to— a2, &, H},(B(a))) is the solution of C.D. problem (7.38), while v eLz(to— a?
ty, Hl(B(o'))) is a solution of system (7.39).

Vectors © and w must fulfil respectively inequalities (7.40) and (7.41), which
enable us to conclude that, YA e (0,1) and Ve e (0, an)

(8.28) D(u, X,, Ao) <eD(u, X,, 0){Ar*¢ + o(0)} +
+olv, M Z |44(X, w, Du) — A2 | Du)? dX
ooy
where o(c) goes to zero in respect of o.

On the other hand, taking into account (8.23), lemma 7.I, the boundedness and
concavity of w, by reasoning as in (8.14), we obtain that

820 [ S14u(X, 0, D) — - Dufr aX <

G) (] ol
20w oW, X, 20) [w(ca—"cﬁ(u, X,, 0) +quDu—<Du>o<u>nZdX)]‘ .

Qo)
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From (8.25), (8.26) we get that YAie (0,1) and Ve (0, an)

(8.27) B(u, Xy, Ao) <eP(u, Xy, 20){A"+2=¢ + 0(g) + [w(...)]T-21} .

Thig inequality is trivially true for 1<l <2, moreover to the left-hand side we
may add the integral

[1+ u)-ax

Q(io)

for the motivations we pleaded in the proof of theorem 7.I.
We conclude with the following theorem

THEOREM 8.II1. — If u is a solution of system (8.1), under the hypotheses (1.b),
(1.10), (8.2), (8.3), (8.4)-and if the derivatives 0a'|0p], are wniformly continuous in A,
then YQ(X,, ) cc Q, with <2, VA€ (0,1) and Ve (0, an)

(8.28) D(u, X,, do)<

<AD(u, X,, 0) {Z"H_s + o(o) + [60 (00'_" @(u, X,,0) + J[ ]|Du _ (D“)Q(a)]]z dX)]l—Zla}
Q(o)
where o(c) — 0 when o — 0.

From the previous theorem, the partial Holder continuity in @, of the vector #,
follows.

Set
(8.29) Q= {X €Q: l},ﬂ: J[ | Du — (Du)g|? dY > 0}
(8.30) Q.= {Xe Q: lgirx})’ o D(u, X, 0) > O} . |
It turns out that
(8.31) meas @, = 0
and (see [9], theorem 2)
(8.32) H,(Q,)=0.

Reasoning exactly as in theorem 5.I of [2] we prove that

TurOREM 8.IV. — If 4 s o solution of system (8.1), under the hypotheses (1.5),
(1.10), (8.2), (8.3), (8.4) and, morcover, if the derivatives 0a'[0pl, are uniformly con-
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tinuous in A, then there exists a set Q,, closed in Q,

(8.33) ©,cQ,cQ,VQ, (hence meas Q,= 0)

such that

(8.34) ue 0" (Q\Q,, d), Yu<1.
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