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Abstract. - Given the abelian p-group M = (a) ~ (b) ~ C, where I a l = P ~ ~> I b I = P m > exp C = 
=p8 > 1, set R(M) = {q~ eP(M)  I H~ = H, qJIQs(M) = 1}. Our main result is the exist- 
ence of a well determined isomorphism of R(M) onto a well defined subgroup of 

- - m  

n[I PR(pn-k -m Rn-k)  • PR(pR,n). 
k=O 

Introduction. 

Let  M be an abelian p-group of finite exponent, p n say, and P ( M )  its group of auto- 
projectivities, that  is the group of automorphisms of the subgroup lattice l (M) of M. In 
case a basis of M contains at least 3 elements of order p ' ,  a well known result  of R. 
Baer [1] states that  every autoprojectivity of M is linear, that  is it is induced by a group 
automorphism; on the other hand ff the rank of M is less than 3 the elements of P ( M )  
have been completely described in terms of automorphisms of the poset C(M) of the 
cyclic subgroups of M [2]. 

The purpose of the present  paper is to bridge the gap, that  is to give a description of 
the autoprojectivities of M in the case M has the following structure: M = H @ C where 
H =  ( a ) @ ( b ) w i t h p  ~= lal >I Ibl = p m > ~ p ~ = e x p C ~  1, and where either lal > Ibl or 
lal = Ibl and s < n .  For  a fixed prime p, we shall call such a p-group an (n, m,  s)- 
group, or simply an (n,  s)-group in case m = n. 

In dealing with the group P(M), to begin with, we show that  P ( M )  is a product of 
two permutable subgroups, P ( M ) =  R P A ( M ) ,  with R A P A ( M ) =  1, where P A ( M )  is 
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and Statistics, Bachelor Hall, Miami University, Oxford, Ohio 45056 (USA). 
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the group of linear autoprojectivities of M. The main concern in this paper will be to es- 
tablish a very useful representation theorem of R as well determined subgroup of P = 

n - - ~ t  

= 11 P R ( p  n - k - ~ R~ _ k) • PR(pR~) ,  where Rv = Z i p  v Z and P R ( p  w R~) is the group of 
k=0 

automorphisms of the poset ~ ( p ~ R , )  of the cosets of pWR~. 
The analysis needed to reach our conclusion is quite involved and complex. The pa- 

per is divided in five sections. 
In the first section we establish the above mentioned factorization, derive some use- 

ful propositions and show that R can be embedded in P(H) .  In the second section it is 
shown that the subgroup P(p~-~b)(H) of P(H)  which stabilizes (pro-l  b) is isomorphic to 
P. In the third section we introduce a convenient subgroup ~ of P and show that R em- 
beds in ~. In the fourth section we deal with the case n = m and show that the embed- 
ding is actually an isomorphism. Finally in the fifth section we prove that in general the 
embedding is an isomorphism. 

Our notation is standard, relying essentially on [3], [4] and [5]. If  X ~< Y ~< G, X < Y 
means that X is a maximal subgroup of Y. 

~(R~) is the group of units of the ring R~ = Z i p  ~ Z .  

1.  - P r e l i m i n a r i e s .  

Given an abelian p-group M of finite exponent p ~, it will be convenient to view M as 
a Z-module as well as an Rn-module. 

For later references, let us define some specific subgroups of P ( M )  for a given 
abelian p-group M. For X ~< M 

P x ( M )  = {Q � 9  IX  ~ 

In the case M = H ~ C  is 

and a given integer s we set respectively 

= X } ,  Re(M)  = {~ �9 = 1}. 

an (n, m, s)-group, R ( M )  denotes the group {~ �9 
�9 R~(M) IH Q = H} .  I f ( a ,  b) is a basis of H, ~ = ((a), (b)) will be called the frame associ- 
ated to (a, b), and u = ( p ~ - m a  + b) a unit point; we set 

R a ( M )  = { Q � 9  I Cle = ~ } ,  Ra ,~ (M)  = {Q e R a ( M ) l u  Q = u } .  

We begin with a statement whose proof is straightforward. 

(1) Let M = A + B be an abelian p-group of finite exponent, with exp B = exp ( A n  
N B) = p 8, and p~ - 1A not cyclic. Then for given a, fl in P A ( M )  we have a = fl if and 
only if a l A  = i l i A  and a l B  = f l lB .  [] 

1.1. THEOREM. - Let  M = H @  C be an (n, m, s)-group, (a, b) a basis of  H with asso- 
ciated f rame  ~ and un i t  point  u. Then 

P ( M )  = Ra, u (M) P A ( M )  , Ra ,u  (M) n P A ( M )  = 1 .  

PROOF. - Let (ci) be a basis of C; then for agiven ~ in P ( M )  there exists a in P A ( M )  
such that for r = ~a  we get cY = c~, u ~ = u, (ci) ~ = (ci). Now r l t ~ ( M )  � 9  
so r I t9 ~ (M) is induced by an automorphism of the form 1 @ ~, where 7 is in Aut C. 
Set fl = 1 @ 7 - 1 in Aut M; then (with the obvious abuse of notation) vfl = qgafl lies in 
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Ra,~(M), and 9 is in Ra, u(M)PA(M).  If now Q e R a , ~ ( M ) A P A ( M ) ,  it is clear that 
QIH = 1 and QIQ~(M)= 1. Hence Q = 1 by (1). �9 

From (1.1) also follows the relation 

(2) R(M)  = Ra, u(M) (PA(M) A R(M)  ) . 

Given an abelian p-group M, 2(M) shall denote the set of all maximal cyclic sub- 
groups of M. Assume (a)~< A ~< M, we define 

{%/~A := ( X ] X e  ~(A),(a) < X ) .  

So exp {V~-~A = lalp h(~), h ( a ) b e i n g  the height of a in A [3], hence also ( a ) =  
: p h(a) ~ r - ~ A "  

It follows that 

(3) for cf in P(M), (a) ~= (a) ff ( V ~ :  {V~A, and conversely provided A r  In 
the case A = M, we simply write ( V ~ .  

We recall that if H is a homocyclic abelian p-group of rank 2, then 5: (x) ~ ~ can be 
extended (in a unique way) to an autoduality of H [6]; we shall refer to it as the expand- 
ing autoduality of H. A useful property of 5 is the following one. 

1.2. PROPOSITION. - Let H be a homocyclic abelian p-group of rank 2, 5 its expand- 
ing autoduality and Z in P(H). Then X5 = 5Z. 

PR00F.-(X)SZ = (  ( V ~ ) X :  ( V ~ = ( x ) z S .  �9 

It follows in particular that 

(4) for given t > 0 ,  i~l~gt(H) and x I H / p t H  are equivalent since t~t(H) is dual to 
H / p t H .  

Next we give two criteria for extending autoprojectivities. 

1.3. PROPOSITION ([4]). - Let M be an abelian p-group of exponent p~ with p~-  1 M  o f  
order p and ( q~ l, q~ 2) in P( Q n- I(M)) • P( M /p  ~ -1M). Then there exists a unique q) in 
P(M)  such that q) [ t~ ~_ 1 (M) = q~ 1 and q~ I M / p  n- 1M = q) 2 i f  and only i f  

Cfll I ~ 2 ~ - I ( M ) / p ~ - I M =  q92 I K 2 ~ - I ( M ) / p ~ - I M .  �9 

1.4. PROPOSITION. - Let M be an abelian p-group of exponent p ~, with p ~ - 1M of or- 
P 

der p ~, and ( ~V o , cp l , ..., Cp p, Q) be in l] P( V~i )  x P(  M / p  n - I M) ,  where Xo, ..., Xp are 

the minimal  subgroups of p ~ - l M .  Then there exists a unique 9 in P(M)  such 
that 

q~lV~i:~vi  and c f I M / p ~ - l M = Q  
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i f  and only i f  

(,) 

(**) 

qgi IQn- I (M)  = q)j I ~ - ~ ( M ) ,  

l l M = e l l M . 

PROOF. - Necessity. For  i # j  we get  V ~  ~ V~jj = ~9~_1(M). Hence cfi 1~2~-~(M) 

= q ~ l ~ _ ~ ( M )  = cfljlff2n_l(M); moreover c f i l V ~ / p ~ - t M  = c f I V ~ i / p n - l M  = 

Sufficiency. Given (c~0, ~1, . . . ,  cf~, e) define 

(2) 
T r  Tr if T < V ~ i  for some i ,  

[ Te otherwise.  

01, q) l 1, "", (~pl, e - l )  define ~ ' .  Similarly for (~p 

a) 9 and ~ '  are well defined bijections: if T~< V ~ ,  T~< ~ for i ~ j ,  then 
T ~< ~9 ~_ I(M), so T r = T Cj. I f  T ~ V~i  for every i, then p ~ - ~M ~< T. Similarly for ~ ' .  
But now ~ F '  = c;'cf = 1, so that  cp and ~ '  are bijections. 

b) cf and ~ '  preserve inclusions. Le t  T1 < T2 ~< M. 

bl) T2 ~< V~i.  Then T1 ~ = TI~< T~ ~= T~; 

b2) T1 ~<V~i and p ~ - l M  <~ T2; then T1 <<. T1 + p~- I  M <<- T2 hence 

T~ = T~<~ (T~ + pn-1M)q~i = (T 1 + pn-1M)Q ~ T2 e = T2~; 

b~) pn -  l M <~ T1; then 

T ~ = T ~ < T ~ = T ~ .  

Similarly for cp '. 
Therefore ~ is an autoprojectivity with c ; I V ~  i =cf~ and cp I M / p ~ - I M  = ~. �9 

We end this paragraph with an analogue to (1). 

1.5. THEOREM. - Let M = H G C be an (n, m,  s)-group and r], ~ in P(M). Then ~] = 
i f  and only i f  ~] I H = 0 I H and 711 ~ s  (M) = 01 ~2~ (M). 

PROOF. - Set Q = ~7~-1. We have to show that  ~ = 1. Set r = r(M) = n - s; we begin 
with r = 1. 

a) I P ~- 1MI = p. We have ~) I t9 n - 1 (M) = 1, and bYl(1 ), with A = H i p  ~- 1M and 
B = ~ _ ~ ( M ) / p n - I M ,  Q I M / p ~ - I M  = 1; so by 1.3 ~ =  . 

b) Ip~- lMI  =p2. Let  0 < X < p ~ - ~ M ;  by a), Q I V ~ =  1, hence Q = 1. 

We now assume r > 1 and use induction. 

a) Ip~- lMI  =p. Since r( t )~_l(M))  = r -  1, by induction ~)] tgn-l(M) = 1. Since 
Q s ( M / p ~ - ~ M )  <~Q~_~(M)/p~-~M, e ] Q ~ ( M / p ~ - I M )  = 1; thus by induction 
Q I M / p ~ - I M  = 1 and so, by 1.3, Q = 1. 
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b) Ipn- lM[  =p~. ~ l tg~_~(M)=1,  by induction, hence ~l~9~_l(V ~ )  = 1  for 

0 < X < ~ p n - l M .  Since t2~(V~/X)  <<. t ~ _ ~ ( V ~ ) / X ,  ~]~2~(V~/X) = 1; thus by induc- 

tion ~ l v ~ / X  = 1, hence ~ I V ~  = 1 by 1.3; therefore ~ = 1. �9 

1.6. COROLLARY. - Let M = H ~ C  be an (n, m,  s)-group. Then the restriction 
map 

is a monomorphism. �9 

~V: R(M)---~R~(H), q~ ~ ~vIH 

Proposition 1.5 tells us that  a cp in P(H) can be lifted to a ~ in P(M) satisfying pre- 
scribed values on ~2~ (M) in at most one way. Actually our main purpose is to character- 
ize the image of R(M) under ~. 

2. - A  description of the autoprojectivities of R~(H). 

Let  H be a 2-generated abelian p-group. We then know that  if e (H)  is the poset of 
all cyclic subgroups of H, the map 

(5) f: P(H)---)AutC(H),  X ~ X I C ( H )  

defines an isomorphism [2]; this canonical identification of the two groups will be un- 
derstood whenever it turns out convenient. We also recall the known fact 

(6) if K<~H and H is homocyclic, then any ~/in Au t e ( K)  extends to a ~ in A u t e ( H )  [2]. 

Given an (n, m,  s)-group M = H@C,  to describe for a given c; in R(M) its action on 
H, it will be convenient to consider M embedded as a subgroup in a (n, s)-group 
K / I = H $ C .  Given a basis (a, b) of H, where we assume la I =p~, we choose one 
(5, b) for H such that  (a, b) = (5, pn-m~), while for •n-k(H) ,  0 <~k<<.n-m, we pick 
(ak, bk) = (pkS, pk~). 

Le t  z k: R~_ k--~ R~_ k- 1 be the canonical epimorphism, fi k the canonical module en- 
domorphism of R~_k defined by x ~ p x .  Since k e r z k = k e r f i k = p ~ - ( k + l ) R ~ _ k ,  we 
have the canonical factorization z k = fl k ~ k, so that  via ~ k the module p R  n _ k can be 
identified with R~_ (k + 1), as well as PR(pRn_ k) with PR(R~_ (k +1)) via the induced iso- 
morphism ~k: Q ~ ~ ~-1 ~)~2 k = ~) �9 Since, for a given i in pRn-  k we have (ak + ibk } = (ak + 
+ (i 'p)bk) = (ak + i ' z kpbk}  = (ak + i~kpbk}, it follows that  

(7) I (ak +/Qbk} = (ak + i~kQ '(pbk)}, 

[ (iQak + bk) ((i~k)Q'pak + bk) 

holds for every i in p R  n _ k" 
Some further  observations concerning R~ are in order. 
We know a given element i of the local ring R~ can be uniquely represented in its p- 

adic expansion i = io + il p + ... + i~ _ 1P ~ - 1, where ij e { 0, 1, . . . ,  p - 1 } c R~; obvious- 
ly i e p ~ R~ if and only if io = ... = i~ _ 1 -~ O, i ~ "[~(R n) if and only if i0 ~ 0. Modulo the ob- 
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vious identifications we have 

(8) l iZo = io + i~p + ... + i n_  2 p  ~- 2 , 

[ ( i lp  + ... + i ~ - l p n - 1 ) y o  = il  + . . .  + i ~ - l p  ~-2 , 

while Vo: io + i~ p + ... + in _ z p ~ - z ~--> io + il p + ... + i~ - 2 p ~ - 2 + O p ~ - ~ defines an in- 
jection of R~-I  into Rn such that iZoVo = io + i~p + ... + in_2p n-z.  

Set ~k= { ( x } ~ _ k ( H )  I Ixl = p ~ - k }  and C($k) = {p t { x } l ( x }e~ ' k ,  0~<t~<m}; 

we have r  U C(~k). 
k = 0  

To describe the action of )~ e P(H)  on C($k) it will be convenient to introduce coordi- 
nates in the set t~k with reference to the basis (ak, bk) of f2n_k(r/). 

{ $ k = { ( a k + i b k )  l i e p ' ~ - k - m R ~ _ k }  O < ~ k < n - m ,  

g',~_,~ = U u  V =  {(a~_m + ibn_m)li~Rm} u {(ia,,_,n + b n _ m ) l i e R m } ,  

U A V =  {(a~-m + ibm_m} I i �9 ~(R~)} ,  

U ' =  { ( a ~ _ m + i b ~ _ m } l i e p R m } ,  V ' =  { { i a n _ m + b ~ _ m } l i e p R m } .  

Now the maps 

Sk: p t ( a k + i b k } ~ i + p ~ - k - m - t R n - k ,  O < - k < . n - m ,  O < t < ~ m ,  

d '  " p t ( i a ~ _ m + b ~ _ , ~ } ~ i + p m - t R m  O<~t<.m 

define antiisomorphisms between the posets C($k), 0 <~ k < n -  m, C(U), C(V) and 
8~(p n -  k -  t u R n _  k).  By restricting i to pR,~, we see that d ~_ m and d ~_ m define antiiso- 
morphisms between C(U') ,  C (V ' )  and ~(pRm).  It follows that the map 

n - m - 1  n - m  
rI  AutC(~k)  x A u t C ( U ) x A u t C ( V ) - - - ~  I-I ~ - k - m  P R ( p  Rn - k) x P R ( R m ) ,  

k = O  k = O  

Zk ~ 6 k i z k 6 k  Oh, Z,~-m ~ 6 ~ l - m Z , ~ - m d n - m  = ( In -m , )~n -m  ~-'->~n-m)~n-m~n-m = 

---- "t" n - m is an isomorphism. 
By restriction we get the isomorphism 

(9) E: 
n--m--1 n--m 

1-I AutC(~k) xAutC(U)  x A u t C ( V ' ) - +  1-I P R ( p ~ - k - m R ~ _ k )  x P R ( p R m ) .  
k=O k=O 

2.1. REMARK. - The meaning of the automorphisms a k in P R ( p  ~ - k -  m R~_ k), v~_ m in 
PR(R,~) are best described for a given If in P(H)  (provided U x = U, V x = Vif  n = m) by 
the relations 

(10) 
(ak + ibk} x = (ak + iakbk},  i e p ' - k - m R n _ k ,  

( i a n - m + b n - m ) X = ( i V n - m a n - m q - b n _ m ) ,  i ~ R m ,  
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for i in %t(Ru), iv~_,~ = (i - l a n _ m ) - l .  In particular, in the case n = m, a and r as ele- 
ments of PR(R~)  must  satisfy anologous relations. �9 

2 . 1 .  L E M M A .  - Let  H = (a) @ (b) be a group with p n = I a l >- I b I = P m and 1 <<. s ~ m. 
Then 

n - m - 1  
O: P(H)(p~-~b)-~ I-[ AutC( t~)  • AutC(U) • Au tC(V ' )  = T ,  

k=O 

Z~->(Zo, . . . ,  Z n - m - 1 ,  ~,u, Xv')~ where Xk = zlC(,ff'k), Z u  =z IC(U) ,  Zv'  = z I C ( V ' ) ,  is a 
monomorphism.  A Q in T lies in P(H)~p~-~b) i f  and only i f  

(11) I Z k = Z k + l  on C(8~k)NC(~k+I) O < < . k < ~ n - m - 2 ,  

t Z n _ m _ l = Z U  o n  C ( ~ n _ m _ l ) ~ C ( U ) ,  

A ~ in P(H)~p,,-~b> lies in R , ( H )  ~ i f  and only i f  

(12) Z y l p m - " U =  l , Zv, I p ' ~ - " V ' =  l . 

PROOF. - Clearly v ~ is an embedding and (11) and (12) are to be satisfied. Converse- 
ly the compatatibility conditions (11) give rise to an automorphism of e(H) ,  so by (5) to 
an element X of P(H)  which clearly fixes (p~-  I b). Moreover X belongs to R~(H) if (12) 
is satisfied. �9 

We may now claim that  for a given basis (a,  b) of the group H where p~ = lal I> 
1 > l b l = P  ~ a n d  l ~ < s ~ < m t h e m a p  

(13) 
~ - m  

~1 = ~ :  R ~ ( H ) - ~  l-I P R ( p n - k - m R ~ - k )  • PR(pR ,O  
k = 0  

is a monomorphism. 

2.2. THEOREM. - Let Q = (a0, . . . ,  cry_m, r~_,~) be an element o f  

n - m  
1-I P R ( p n - k - ' ~ R ~ - k )  • PR(pRm) .  

k = 0  

Then Q lies in P(H)~p,-Ib) i f  and only i f  

a) a k Z k = Z k a k + ~ ,  O < . k < n - m .  

A ~ in P(H)~p~-~b) lies in R~(H) '  i f  and only i f  

b) i ~ k - - i  p~R~_k,  O<~k<<.n -m ,  i v , _ m - i  p~R,~. 

PROOF. -~ a) Given ~, assume there exists a X in P ( H ) ( p . - l b )  such that  Z ' = Q. Then 
using Remark 2.1 we get (ak + 1 q- i z  k a k + 1 bk + 1 ) = ( ak + 1 + i x  k bk + 1 )X ..~ p( ak + ibk )Z = 
= (ak+ 1 + iakerkbk+ 1), that  is Zkak+ 1 = akZk.  On the other hand, given Q satisfying a), 
by (9) there exists a ~ = (Zo, -.-, X~-m-1,  Zu,  gv ' )  such that  ~ = Q. But now p(ak + 
+ ibk) xk = (ak+l + iak~kbk+l )  = (ak+l + i~kak+lbk+l )  = (ak+l + izlkbk+l) zk§ hence 
by 2.1 there exists a Z in P(H)(p~-lb) such that  Z '  = Q- 
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b) Z lies in R~(H) if and only if: 

p~-~-~(ak + ibm) =p~-~-~(a~ + ibk) ~ =p~-~-~(a~ + i~b~)  

p'~-~(ia~_m + bn-m} = p'~-~(ian-m + b~-,~) ~ = p'~-~(iv~_~a~_m + b~-m}, 

i.e. if and only if ia~- - i  p~R~_~, i V n - m -  i pSRm. �9 

We shall denote this mutual relationship via ~] between the elements ~ of R~ (H) and 
n - m  

those (ao, ..., a ~ - ~ ,  Vn-m) of I-I P R ( p ~ - ~ - ~ R ~ - ~ )  • PR(pRm) as expressed in 2.2 
k = 0  

by writing Z'--'(ao, ..., ~ - ~ ,  v~_m) or simply by Z'--)(ao, ..., an-m,  V.-m) if ~7 is 
clear from the context. 

In case n = m the situation in 2.2 becomes very simple; in fact 

2.3. COROLLARY. - Let H be a homocyclic group of exponent p~, (a, b) a basis of it 
and 1 <. s <~ n. Then ~ defines an isomorphism of R~(H) onto the group {(a, v ) � 9  
�9 P R ( R ~ ) •  p~Rn, i v = i  p~Rn}. �9 

2.4. PROPOSITION. - Let I-I be a homocyclic group of exponent p ~, 1 <~ s <~ n, (5, b) a 
basis of It, ~ in R~(TI), ~,--,(5,~), H=(a)@(b)  a subgroup of I-I and ~ =  
= z o...~ ~ - ~: R~--> R~ _ ~ the canonical epimorphism. 

a) i f  (a, b) = (5, p~-mb), i <<. m < n, then 

H i = H  i f  and only i f  ( p ~ - ~ R  n)~ = pn-mRn; 

b) let Z o ( a 0 ,  ..., o~_~, V~-r~), 1 <~ s <. m; then 

= ~ IH i f  and only i f  I Q~ak = 5 ~ ,  Y. 
t ~ n _ m ~ n _ m =  T ~ n _  m 

c) i f  (a, b) = (ak, b~), 
Then 

on p n - ~ - m R  n, 

on pR,~ ; 

l<<.s<~n-k, for Z~ in Rs(p~I),  let Z~,~(a~,v~). 

Xk = ~IP kH i f  and only i f  Qkuk = 5~k, QkVk = VQk; 

d) if(nk, = b Xk=  I 
with Y.o(-~k, ~k); then 

Xk = ~ i f  and only i f  Qk~k = aQk, qkVk = VQk. 

PROOF. - a) {5 +ib)  ~< H if and only i f / e p n - m R ~ .  Hence (5 +ib)  ~ = (5 +i~b} ~< H if 
and only if i5  �9 p ~- m R~. 

b) ~ I H  if and only ff (ak+i~ke~kbk}=(ak+iekbk)Xk=pk(5+ib~ = 
= pk(5 +iDb) = (ak + iS~k bk); similarly for v~_,~. 

c) Z k = ~ l p k H  ff and only if for ieR,~, (ak+iQkakbk)=(ak+iQkbk} xk= 
= pk(5 +ib)  ~ =pk(5  +iDb)= (ak + iDQkbk); similarly for vk; 
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d) Follows from c) and (4). 

2.5. PROPOSITION. - Let H be a homocyclic group of exponent p~, 1 <<. s <<. n, (a, b) a 
basis of H and X in PA(H). Z is induced by the automorphism a ~ a + zb, b ~ Ab, rep- 

(10 z ) A i n ~ t ( R ~ ) ,  z in R~ i f  and only i f  for z ~ = ( a ,  ~)~ resented by the matrix A ' 

ePR(R~) x PR(pR~) we have a: i ~ i A  + z, v: i ~ i ( A  + iz)-< 
In this case we have 

a) a - l :  i ~ i A - l - z 2  -1, ~-1: i ~ A i ( l _ i z ) - l ;  moreover j a - i a = ( j - i ) 2 ,  
jv - iv = (j - i) A1, where A1 =A((2 + iz)(A + jz ) ) -<  

b) XIE2~(H) =1 i f  and only i f  A - 1  p~R,,  z=-O p~R~. 

PROOF.- Z is induced by (10 ~ ) i n  AutH, if and only if (a+ie~b)=(a+ib)~= 

= (a + (iA + z)b}, (ira + b) = (ia + b) ~ = (ia + (A + iz)b} = (i(A + i z ) - la  + b} holds. 

a) A straightforward computation. 

b) i~ + z - i pSR n for every i if and only if ;t - 1 pSR~, z - 0 p~R~; but then 
(A + iz) -~ - 1 p~Rn, i.e. i~ =- i pSR n. �9 

2.6. PROPOSITION. - Let H be a homocyclic group of exponent p~, 1 <~ s <. n, (a, b) a 
basis of H, y. in P(H) such that U ~ = U and X ~  (a, v). Let (~, b) be the basis of H with 
(~, b) = (b, a) and X ~  (~, ~). Then 

i5  = { ~v(i-l i f  i e ~(R~), 

i f  i e p R ~ ,  

P R O O F .  - Rn = ~(R~) 0 pR, .  For i in ~(R~): (5 +iDb} = (~ +ib)X~ (a + i -1 b}Z = 
= ( ( i - l a ) - l a  + b} = (~ +( i - lo ) - lb ) ;  for  i in pR~: (~ +iSb} = (~+ib) x= (b + ira)= 
= (~ +ivb}; for i in pR~ (i~ + b} = (a + ib)X= (a + iab} = (io~t + b). �9 

3. - C o n g r u e n c e  r e l a t i o n s  a s s o c i a t e d  to  autoprojec t iv i t i e s .  

Let us, as usual, denote with M = H (9 C an (n, m, s)-group, (a, b) a basis of H with 
I a I = P ~. Due to Baer's result [1], if K @ C ~< M, where K ~< H and p s- 1K is non-cyclic, 
for any ~ in R(M) such that K ~ = K, q~ ' = r IK @ C/pS K lies in PA(K @ C/p~ K), hence 
it is induced by an automorphism a ~ t t  (determined up to a multiplication), where a 

e A u t K / p ~ K  and tt ~ "~(Rn), determined modulo p~R~, is a multiplication on p~K@ 
@C/pSK; by abuse of notation, for simplicity, we shall write ~ '  = (a; it). We start by 
gathering some information about a and tt in some specific situations relevant to us. We 
shall also denote by (A1, A2), for ;t~e ~(R~), the dilatation a ~ a A 1 ,  b~bA2,  and with 
trz, for z in R~ the transvection a ~ a + zb, b ~ b. 
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3.1. LEMMA. - Let  M = H ( B C  be an (n, m ,  s)-group, 1 <. s < m and 9 in R(M). Let  
Q9 t = q ~ { Q s + t ( M ) / p S Q s + t  . Then 

[ (~,; 1) 

q)t = (at; 1) 

;~ t ~ ~(R~)  with )~ 1 - 1 p ~ - 1R~, 0 <<. t <. m - s ,  

at  e P A Q  s +t(H) /pS Q s+t 

f ix ing  at least a cyclic subgroup of order p ~, m - s < t ~ n - s .  

P R O O F .  - By (4) 9 ] (2 ~ + t (H) /p~ Q ~ + t = i for 0 ~< t ~< m - s; hence q~ t = ()~ t; 1 ). Since 
1 ] ~'~s (M)/$"~ 1 ( H )  = 1, we must  have ;~ ~ =- lp~ - 1Rn. Let  H = <a> @ <b> with { b { = p m; 

consider X=<pm-~b>; then by (3) ( V ~ F = X / X - ~ = V  ~ ,  hence < V ~ , p ~ H ) / p ~ H  
is a fixed cyclic subgroup of order  p~, and now the conclusion follows easily. [] 

3.2. LEMMA. - Let M = H ~ C be a (n,  s )-group with n = s + 1, 0 < X < H, (a, b) a 
basis of  H such that X < <a} and 9 in P (M)  such that 9 { t'2 ~(H) = 1. Then the foUowing 
statements are equivalent 

i) H ~ = H  and g { C =  l;  

ii) cf{~9~(M) = (~tl; 1), q~{M/p~M = ()~2; 1) with Xi~ ~t(R)n (determined mod- 
ulo p ~ Rn); )) Zx . 1 with C ~ = C. iii) q) { V ~ / X  = ~ i ' 

PROOF. - By 1.3 9 ] H / p ~ H  = 1, hence i) implies ii); that  ii) implies i) is clear. 
ii) implies iii): since 9 { x / X  N H / X  has (pb, X ) / X  as fLxed point being 9 ] ~  ~(H) = 1, 

((X~ zx).  1). Now cp{V~/<X, pb) = (X~; 1)=()~2;  1), q~{(pb, C ) =  { x / - 2 / x  = , 

= (~t~; 1) = (~1; 1) hence )t~ - X i p ~ R n .  iii) implies ii): cf { t ~ ( M )  = ()~; 1) since 9 { C = 1  
and 9 { t~ ~ (H) = 1; moreover  cp ] <pb, C) = (;t 1; 1 ). But  now by (1) X - ~ ~ p S Rn ; similarly 
cPIM/P ~M = ().2; 1). " 

3.1. REMARK. - In case in 3.2 we have ~ 1~X2 pR~, clearly by  a proper  choice of a 
with X < <a> one can reduce zx to 0. 

3.3. LEMMA. - Let M = H • C  be an (n, s)-group and cf in R(M).  By  3.1 

q)IQs+l(M)/pSQs+l = ( ~ , ;  1 )  where ; ~  ~t(Rn) and X -- 1 p ~ - l R n .  

Then 

Qg{Qs+t (M)  / p S  Q s+t = (At; 1) 
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for  every 0 <~ t <. n - s. Moreover for  0 < X < H, 

((: ~I(V~)~+~(M)/p~(V~)a~§ = 4 t-1 ; 1  

(with reference to a basis (a, b) wi th  X < {a)). 

PROOF. - By 3 . 1  ~ lQs+t (M) /pSQs+t  = ( 4 t ;  1 and 4 = 4 1 = 1  p~- lR~ .  Assume 

4 ~ 1  p~Rn; since by 3.2 and Remark 3.1 q~l(V~)~+~(H)/p~(V~)~,+, = (4, 1), via 
the expanding autoduality of (V~)~,§ we get cfI(~C~)Q,§ )/p~(V~)a~+t = 
= (4, 1). Moreover 3.2 applied to t~ ~ + t (M)/P~ t~ 8 + t -  1 gives us by induction 

qg l ( vrx)~2s + t(M) / p  s ( V ~ ) ~ 8  + t = ( 4 t, 4t-1; 1) f o r 0  < t <. n - s; hence 4 t 4 -(t - ~ ) - 4 p ~ R~, 
that  is 4 t - ~ t p S R n ,  and using 3.2 one gets that  c f l lQs+t(M)/pSQs+t  = (4t; 1) 0 ~< t ~< 
~< n - s. Assume now there is a t > 1 such that  4 t ~ 1 p ~ R~ while 4 t -  1 - I p s R~; then by 
3.2 9 ] ( ~ ) ~ ,  + t(M)/P ~(~)~ ,+~  = (4 t, 1 ; 1 ) while 91 ( ~ ) ~  + gM)/X = (trz; 1 ) which is 
a contradiction to the expanding autoduality. The conclusion now follows using again 
3.2 applied t o  QglQs+t(M)/pSQs+t_l .  �9 

3.2. REMARK. - Let  M = H �9 C be an (n, m,  s)-group, s < m, (a,  b) a basis of H, with 
l a I = pn, Ct the associated frame and 9 in R(M) .  If  one decomposes cf according to (2): 
(p = ( P l ( a ;  1), where CflleRa, u(M) , a e P A ( H )  such that  a I Q ~ ( H ) =  1, then 

c f ] ~ s + l ( M ) / p S ~ s + l  = (4; 1) = (ill I Q s + I ( M ) / p S Q s + I ;  

moreover, as a consequence of (3) 

(14) ( b , p ~ Q ~ + t ) = ( b , p ~ Q s + t ) r  for t > m - s .  �9 

3.4. THEOREM. - Let  M = H @ C be an (n, m,  s)-group with s < m, (a, b) a basis of  
H with p n = l a ] ,  gt the associated f rame  and q~ in  R(M).  B y  3.1 
c f I Q ~ + l ( M ) / p ~ + l  = (1;it) ,  tt in  ~ (Ru)  determined modulo p~Rn and 
tt =- 1 p ~ - 1Rn. Then there exists a e P A ( H )  A R~ (H) such that 

(1; t i t ) ,  0 < ~ t < . m - s ,  

q ) l Q s + t ( M ) / p S Q s + t =  (1 ,1 t t - (m-s ) ;~ t t ) (a t ;  1), m - s < t < ~ n - s ,  

where at = a lQ  s+t(M) /PS Q s+t has (b, pS Q s+t) /PS Q s+ t as a f ixed point. 

PROOF. - Set r -- r(M) = n - m. I f  r = 0 the conclusion holds by 3.3 for ~ = 4 - 1. As- 
sume now r > 0. According to Remark 3.2 we write cp = ~ 1 (a;  1 ), a ~ P A ( M )  and cf 1 
eR a ,  u(M).  As a conseguence of (14), at  has the required property. Set M =  
= M / ( p n - l a ) .  By 3.2 for # = 4  -1 we get ( p l l Q s ( ~ - / ) = ( 1 , / t ; ~ ) ,  ( p l I Q s + l ( M ) =  

= (1,/~;/~2). Thus for • = r 1(1, # -1 :  # -1), r i t g s ( ~  ) = 1, Q l~gs+ I(M) = (1; #). I f  now 
r =  1, by 3.3 (1; t t ~ - I - ~ ) = Q I M / p ~ M = Q I M / p ~ M  , hence ~1 I M / p ~ M = (  1, it; td~-~), 
that  is for r = 1 3.4 holds. 

Assume r > 1. Since r(M) = r -  1, by induction ~ l M / p  ~M = (1,/~ ~- 1 -m;#~-1-~) ;  
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but then q ~ l M / p S M = q ~ [ M / p S M = ( 1 , # ~ - m ; ~ - ~ ) ,  and the conclusion fol- 
lows. �9 

Following the notation introduced in n. 2 we have 

3.5. LEMMA. - Let M = H @ C be an (n, m, s)-group, s < m, (a, b) a basis o f  H with 
p ~ =  lal, q~ in R ( M )  and tt in ~ (R~)  as given in 3.1. I f  now, according to (13), 

( r  ~ = (ao, . . . ,  a~ -m,  V n - ~ )  in l-I P R ( p ~ - k - ' ~ R ~ _ k )  • PR(pR~) ,  for  any  c in C 
we have k = o 

( a k + i b k + c } ~ = ( a k + i a k b k + # n - k - S C } ,  O<~k<~n-s, 

( ian-m + bn-m + C} ~ = { i V n - ~ a ~ - m  + b~-m + #'~-~c}. 

P R O O F .  - (10) implies 

( ak+ ibk+  c} ~= ( a k + i a k b k + l c ) ,  0 <<.k < ~ n - s ,  

(15) ( ian-m + b~-m + c} ~ = ( i v ~ - m a ~ - m  + b~-m + l '  c}. 

On the other hand, using 3.4 we have 

f {ak + ibk + c} ~ = (ak + i '  b,k + t t ~ - k - S c  + PS(Yak + zbk)) 
(16) ~ ( i a n - m + b ~ - m + c } r  i a~ -~  + b~-,~ + /~m-S c + p~(y '  a~-m + z '  b~-,~)) 

= ( ( l + y p ~ )  ak + ( i '  + zp ~) bk + / tn -k -~  C} = (ak + i" bk + t t~ -k -S  c) , 

= ( ( i '  + p ~ y ' )  an_m+ (1 + z ' p  s) bn_m+~tm-sc}  = ( i "a~_m+ b~_m+tt '~-~c}.  

Comparing (15) with (16) and picking a c in C of order p~, one concludes. �9 

We are now in the position to establish the announced congruence relations. 

3.6. THEOREM. - Let M = H O C  be an (n,  m ,  s)-group, s < m, (a, b) a basis of  H 
with p n =  la b Cl the associated f rame  and ~ in R(M).  We know f r o m  3.1 that 
cf l Q s + l ( M ) / p  S Y2 s + l = (1; it), where tt lies in ~g( Rn ) with tt - l p S - l Rn . According to 

(10), (cpIH)~ (a0, -- an -  v~-m) lies in l-I n - k - m  = ., m, P R ( p  R , - k )  • PR(pR~) .  Then 
the followig relations hold k= o 

a) ak~k=~k(~k+~,  O < . k < ~ n - m - 1 ,  

b) i a k - i  p~R~_k,  O < k < . n - m ,  i V n - m - i  p~R~.  

(17a) j - i  p f R ~ - k  ~ j a k - - i a k - - ( j - - i ) #  f p ~ + f R ~ - k ,  

for  every O < . k < . n - m ,  n - m - k < ~ f < . n - s - k ;  

(17b) j - i  p fRm ~ j T ~ - , ~ - i V n - r ~ - ( j - i ) t t  f p~+fR ~ ,  

for  every 0 <~ f <~ m - s. 
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PROOF. - 2.4 takes care of a) and b); moreover,  according to Remark  2.1 ii), we have 
to deal only with ak, since we derive the congruence relations for v~-m from those for 
a~_m. We remark  that  due to limitations 0 ~< k ~< n - m and n - m - k ~<f~< n - s - k, 
for any h in R~_k, (hpfbk § c) is contained in t ) ~ ( M ) .  Thus, if for h ~ 0 we decompose 
h = p ~ h  ', h'  in ~ (R~-k) ,  from 3.4 we get, for some wep~E2~_k_(f+~)(M), 

(18) 
(hpfbk+C) ~= I (hpfbk+ttn-k-ff+e+s)C+W)' if f < n - k -  ( e+s ) ,  

[ (hpfbk + c}, if f>~ n - k - (e + s). 

I f  we choose a c in C of order  p ~, by  3.5 we have 

(19) (ak + (i + hp f) bk + c• = (ak + (i + hp f) akbk + ttn-k-~c).  

On the other  hand (ak + (i + hp f) akbk + ttn-k-~C} <~ (ak + iakbk) + (hpfbk + C) ~. Tak- 
ing into account (18) and (19) one gets 

(ak + (i + hp f) akbk + tt~-k-~C} = 

= {{ak+iakbk+vhpfbk+v#~-k-( f+e+~)c+~nv) ,  i f f < n - k - ( e + s ) ,  

(ak + iakbk + v '  hpfbk + v'  c} ff f>~ n -  k -  (e + s). 

Thus 

V ~ [ 2  f+e  pSRn_k, v '  _ ~ n - k - s  pSRn_k. 

But then 

(20) (ak+ ( i+hpf )  ukbk+#n-k - sc}  = 

e s+f+e (ak+iOkbk+tt f+ehpfbk+tt~-k-~c+tt f+ p (yak+zb~)) 

= if f < n - k -  (e + s) ,  

{ak+i(~kbk+#n-k-~hpfbk+ttn-k-SC} if f > ~ n - k -  ( e+s ) ,  

[ (ak (1 + p ~ +f+ e y~t f+e)  § (ia k + P f h ~  i f + e )  bk + ~t f+ e p ~ +f+e zbk + ttn - k - s e} 

I i f f < n - k -  (e + s) ,  

(ak+iukbk+Itn-k-~hpfbk+t tn 'k -~C} ff f > ~ n - k -  ( e+s ) ,  

(ak + e(ia k + Pfh# f+ e) bk + ~ f+  e p ~ +f+e zb k + [~ n - k - s C) 

= i f f < n - k - ( e §  

(ak+iakbk+t t~-k-~hpfbk+t t~-k-~c)  if f ~ n - k -  ( e+s ) .  

Since e = 1 p~+f+eRn_k, comparing the coefficients of bk in (20) and taking into ac- 
count tha t  tt e-- 1 p ~-1R~_ k, set t ing j = i + hp ~, the conclusion follows for ok. �9 

3.3. REMARK. - i) (17a)  and Oak = 0 pSR n impiies iak =-i p~R~ for every  i; 
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ii) (17a) and ok in Symp~-k-mR~_k implies a~ in PR(pn-~-'~R~_~). 

Similarly for v ~ _,~. �9 

At this stage we set ~ ( n , s ) = { [ # ] e ' ~ ( R ~ / p ~ R ~ ) ] # - l p ~ - l R ~ } .  This is a 
cyclic group of order p -  1 if s = 1, of order p if s I> 2. Now we introduce a par- 

~ ' t - - m  

ticular subgroup O~,m,~ of l-I PR(P~-k- '~R~-k) xPR(pR~)  x "~(n, s): r  
k=O 

= {(a0, ..., a~_~,  v~_~,[#]) ] the relations a), b), (17a) and (17b) of 3.6 hold}. When 
n = m we simply write ~ ~, ~. That this group is relevant to our investigations stems 
from the fact that 3.6 gives us an embedding of R(M) into r ~, ~, ~. Let us be more pre- 
cise. With the help of the monomorphism ~] in (13) define (with abuse of notation) the 
monomorphism 

n - m  

(21) ~]: R~(H) x ~t(n, s ) ~  1-[ PR(p~-k -~R~-k)  x PR(pR,~) x ~t(n, s), 
k = 0  

(X,[#]) ~ ( X  ~, [#]). Then Theorem 2.2 tells us that ~ , ~ ,  ~ ~< (R~(H)x ~(n,  s)) ~ and 
using 1.6 

(22) w: R(M)-->R~(H) x ~(n , s ) ,  9 ~ ( 9 ] H , [ # ] )  and (1; #)=q~]~+~(M)/p~2~+~, 

is a monomorphism ~ in ~(R~) determined modulo pSR~). 
Thus by 3.6 

(23) j=w~7: R(M)-->q)~,~,~, 9~((cp]H)~,[#]))  is a monomorphism. 

The main result of n. 5 will be the statement that actually j is an isomorphism onto 
. . . . . .  giving us a very handy representation of R(M). The identification of On ,~ 8 <~ 

<~ R(H) x ~(n ,  s) via ~ with q~, ~, ~ (uniquely determined modulo a basis of H) will be 
understood whenever we shall need it, and for it again a notation like (X, [#] )o  
~-'(~o, .--, o~_~, v~_~,[#]) will be used. 

In case M is an (n, s)-group, as already pointed out in 2.3, the situation in 3.6 be- 
comes simpler as expressed in the following 

3.7. COROLLARY. - Let M = H @ C  be an (n, s)-group, (a, b) a basis of H and ~ in 
R(M). We know that q~[Qs+l(M)/pSQs+l = (1;#), where # lies in ~(R~) with 
# = 1 pS-lR~. According to (10), (~]H) ~ = (a, v) lies in PR(R~) x PR(pR~). Then the 
following relations hold 

b) i a - i  p~R~, i v - i  pSRn, 

(24) I j ~ - i  p f R n ~ j a - i a = - ( j - i ) #  f p~+fR~, O<~f<-n - s ,  

[ j=-i  p f R n ~ j v - i v - ( j - i ) #  f p~+fR,~, O < . f < ~ n - s .  

We end this paragraph with 

3.8. PROPOSITION. - Let ~1 = ITt @C be an (n, s)-group, M = HE3 C an (n, m, s)-sub- 
group of ~/1 with s < m~ and ~ in R(~/I). Pick a basis (5, b) of FI and suppose (a, b) = 
=(5, p~-mb) is a basis of H. According to (23), let ~ = ( ~ , ~ , [ # ] )  be in On, s. 
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Then M ~ = M i f  and only i f  (p ~- ~ R  n)5 = p ~- mRs. Moreover for a given 
(a0, ..., a~-m, V~-m,[tt ']) in r we have (~ IM) j = (ao, ..., a~-m, v~-,~,[tt ' ])  
i f  and only i f  the following relations hold: [/~'] = [#~ Qkak = 5Qk on pn -k -URn  
for 0 <.k <. n - m  and Q~_mvn_~ = vQ~-m on pR~. 

PROOF. - Straightforward using 24 a) and b). �9 

4. - A representat ion  theorem of  R(M), M an (n,  s)-group. 

In this number we begin with the homocyclic case. The general situation will be 
dealt with in n. 5. 

4.1. LEMMA. - Let H be a homocyclic group of exponent p~, 1 ~< s < n~ (a, b) and 
(~, b) bases of H and for X in Rs(H), according to (13), let 9~ = (~, ~), X ~ = (5, ~). 
Then 

(a, v,[tt]) �9 r i f  and only i f  (5, ~,[tt]) e ~b~,~. 

PROOF. - For symmetry reasons it is sufficient to prove one implication. Notice that 
%t(R~) ~  %t(R~), (pR~) ~  pR~ since i a - i  p~R~. 

1) (5, b) = (b, a). 

Using 2.6, one gets 

i S = ( i - l a ) - l - i p ~ R ~  for i � 9  i S = i v - - i p ~ R n  for i e p R n ,  

i~ = ia =- i pSRn for i �9 pR~. 

Hence for j =- i p~ Rn, we have j 5  - i 5  - (j  - i)# ~ pS Rn, j v - ~ v  - (j - i)It ~ pS Rn. As- 
sume n o w j  - i p f R n ,  0 < f ~  n - s, and observe that here j �9 ~t(Rn) ff and only if i �9 
�9 "l~(Rn). Using again 2.6, a straightforward computation leads to conclude that 
(5, ~, [~]) �9 ~ , ~ .  

2) (~,b) = (a,)~b), ~ � 9  %t(R~). 

(lo By 2.5 = (a i ,  v l ) ePR(R ,~ )xPR(pRn) ,  where Ul: i ~ i ~ ,  7:1: i ~ i ~  -1. 

Since 5 = a l a a ~  1, ~ :=v lvv f  1, taking into account 2.5 a), one easily sees that 
(5, ~, [#]) �9 r  

3) (5, b) = (a + b, b). 

(lo By 2.5 = (Ol, Vl) � 9  x PR(pR~), where a l :  i ~ i  + 1, vl: i ~ i ( 1  + 

+ i )  -1. Since 5 = a l a a f  1, by 2.5 a) one concludes that for j - i  pfRn, 3 ~ - ~ -  
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- ( j  - i ) H  f ps+fRn, 0 <-f<~ n - s. Since again ~ = "gl "t'rl 1 we get 

j r  - iv j - i _ 

j '  ~ - i '  ~ = (1 - j r)(1 - i t )  - (1 - j~ ) (1  - i t )  # f  = 

being 

(1 - j ) ( 1  - i) 1 - j  1 - i /'if--- 
( j '  - i ' )  ~i f p ~ + f R , ,  

t t f ( j  - -  i) (1 - i)(1 - j )  - (1 - i t)(1 - j r )  _ 0 p s + f R  n . 

( 1 - i~)( 1 - j r )  

I t  follows that  (5, ~, [/~]) ~ ~ ~, s. 
Since any basis (~, b) of H can be obtained from (a, b) by applying successively ele- 

mentary  transformations, the conclusion follows. 

4.2. LEMMA. - Let  H be a homocyclic group of  exponent p~, 1 <~ s < n - 1, (a, b) a 
basis of  H and  (o, r ,[ t t])  in  r  According to (21) there is X in  R~(H) such that 
(z, [#]) '  = (0, r ,  [M). 

a) Set H I = p H ,  and choose the basis (al, b l ) = ( p a ,  pb). I f  (zIHI,[ t t ] )  
(0 t ,  r l , [ t t]) ,  then (01, r l , [H])  lies in  q~ ~-l ,~.  

b) Set H = H/ f21  (H), and choose the basis (~, b) = (a + s (H), b + f21 (H)). I f  
()/IH,[/~]) ~ (~, T,[/~]), then (a,T,[H]) lies in  q ~ - l , ~ .  

PROOF. - a) By 2.4 c) 

Moreover 

i z o o l  = i0~o - ixcopSR~_l ,  

i zo  v l = i rzo  =- i zopS  Rn-1  �9 

j z o o l  - i z o o l  = ( jo  - io) Zo -- (jTCo - iX~o) t t  f P S + f R n - 1  , 

j Z O V l  - -  i z o v l  = ( jr  - iv) ~o - ( j zo  - i zo)  tt f p s + f R n _ l  , 

that  is (01, r l , [ # ] )  e g ) n - l , ~ .  

b) Using 2.4 d) one again concludes. �9 

We remark that  due to 4.1 the conclusions of 4.2 are independent of the choice of 
the basis (a,  b) of H. 

4.3. LEMMA. - Let  H be a homocyclic group of  exponent p ~, 1 <~ s < n and 0 < X < 
<H.  Let  (a, b) be a basis of  H such that X =  <p~-la>. Choose the basis (-d,-b) = (a + 
+ X ,  pb + X )  for  V ~ / X ,  and let (0, v,[tt]) be in  q)n,~. Let  Z in  Rs (H)  be such that 
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(gr = (a, ~,[tt]), and put ) r  I f  z~x = (ax,  vx) in PR(R~_~) x 
x PR(pR~_ ~), then 

b) iax=- i  p~-~Rn_~ i v x = i  p~+~R~_~, 

c) I j =- i p f R  n_ ~ j a x  - i a z  - (j - i) tt f+ 1 p~ +fRn_ ~, 

[ j =- i p f R ~ _ ~ j v x  - i v z  = (j - i)tt f -1  p s + f R n _ l ,  

O < . f < ~ n - l - s ,  

O < . f < ~ n - l - s .  

PROOF. - Using Remark 2.1 and (7) one gets: (-g+iax-b)=(-d+ib} zx= 
= (a + i r o l b ~ x / X  = (a + i ~ , l a b ) / X  = (a + i T o l a T o p b } / X =  (d +ia'b), hence a x -  

a ' ePR(R~_~)  where a = 7 o l a 7 0 .  Notice that j - i  p fRn_ l  if and only f f  
j T o l - i ~ o l p f + l R ~ ;  but then: i a x = ( i T o l ) a T o - i  p~- lR~_  1 and j a z - i a x =  
= (J~o l a - i 7 o  la)  7o--- ( J - i )  tt/+1 P~+fRn-1. 

We proceed now to determine vx. Having in mind Remark 2.1, we may con- 
sider v as an element of PR(R,):  (iZoVx~ +-b) = ( izo~ + b) Xx= (ia +pb) z + X / X =  
= (i '  (pa) + pb} ~ + X / X  = (i '  vpzo-~ + b}, that is izo Vx = i '  ~pzo. It follows that 
i Z o v x = i ' v p z o = - i ' p z o = i ~ o p ~ + l R ~ _ i .  Observe that j = p j ' - i = p i ' p f R ~  if 
and only ff j ' - i ' p f - ~ R ~ ,  l < f i  but then j Z o v x - i Z o v z = j ' v p z o - i ' v p z o  - 
- (J' - i ' ) t t f -~PZo = (J~o - i$~o) ~ t f - 1  PS+fRn-1. �9 

We are now in the position to prove the main result of this paragraph. 

4.4. THEOREM. - Let (a, v,[~]) be an element of q~,~, M = H @C an (n, s)-group 
and (a, b) a basis of H. Define on e(M) the following map q~: 

(pk(a + ib) + c) ~ = (pk(a + iab) ~- ~ln-s-kc), 

(pk(ia + b) + c) ~ = (pk(iva + b) + t t~-~-k c}, 

q ~ = l ,  

i e R n ,  O < . k ~ n - s ,  

i epR~ ,  O<<.k<~n-s,  

on e(Y2~(M)), 

Then there exists a unique ~ in R(M) such that ~ I C(M) = q~. 

PROOF. - The uniqueness is clear since an autoprojectivity is uniquely determined 
by its action on the Cyclic subgroups. We remark that if ~ exists, then it lies in R(M) 
and c~ I Y2~+t(M)/pSY2~+t = (1; ttt), being ia - i p~Rn, iv -- i p~Rn. 

Let ~ in R~(H) be such that (~, [it]) ' = (a, 3, [tt]). To prove the existence of ~ we 
shall use induction on r = n -  s. 

a) r = l .  

Pick any minimal subgroup Xi of H. According to 4.1, without loss of generality we 
may assume Xi = (pn- la) .  By 4.3 c), for :~ = ~ [V~i A H/Xi  we have (notice that here 
f =  O) iax~=itt +Oax~, and since (pb} x~= (pb}, Y.i is induced by the automorphism 

(10 z i ) , w h e r e z i = O a x ~ - O p ~ - l R ~ , t t ~ ( R n ) , t t - l p ~ - l R ~ . X t f o l l o w s t h a t q ~ l V ~ / X i  

is induced by the automorphism ; ~ ; hence by 1.3 q) defines an autoprojeetivity 
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cp i on V~/ .  Since cpl C(M/p~M) ,  as it has been defined, is induced by ( 1; tt), one checks 
that  conditions ( . )  and (**) of 1.4 are satisfied by (cp0, . . . ,  ~p,  ~), where ~ is the auto- 
projectivity of M / p ~ M  induced by the automorphism ( 1; ~). But now the existence of 
is assured by 1.4. 

b) r > l .  

bl) From a) we know that  c p l e ( ~ ( V ~ / X ~ ) )  is induced by the automor- 
phism 

((: 
Consider on V ~ / X ~  the automorphism ((: 1)) - O ~ x ~ / ~  

a , =  ; 1  �9 
i t - :  

then, by 2.5, we have 

a~: i ~ itt (25) I -1 _ Oox.tt-1 for i e R , _ :  , 

[ vv: i ~ i t t ( 1 - i O a x . ) - l = i  p~R~_: for i e p R n _ : ,  

being Oox~ = 0 p ~ - : R ~ _ :  by 4.3 b), and tt-= l p ~ - I R ~ - : .  
But then for i e R ~ _ : ,  i a x = O a x + i t t  +jp~ for some j e R k _ :  by 4.3 c). Hence 

i ~ x o v = ( O o z + i t t + j p ~ ) t t - l - O a z ~ t t - : = i + j p ~ t t - : - i p ~ R ~ _ : .  On the other 
hand, for i ~ pR~ _ : by 4.3 b) and (25) we get  iv x~ r ~ - iv x~ -- i p ~ R~ _ 1. We have there- 
fore proved 

{ i a x o v = - i  p~R~_I for i e R n _ l ,  

(26) iv x~ r ~ - i p ~ R~_ : for i e pR~_ : .  

Final ly ,  taking into account 2.5 a), 4.3 c) and (26), we have for j -  i p fRn-1  

(27) Ja x~ o ~ - ia ~ a ~ = ( ja  z~ - ia x~) tt -: =- ( j  - i) t% f p~ + f R  n _ 1 , 

j r x v v -  i r z v ~  = ( j r z ~ -  irx~)tt~-: ,  where ~ = (1 - i0az~)(1 - jO~x~)  = 1 p~R~- I .  
Hence (jrx~ - irx~) tte -1 = (jrx~ - i~x~) tt pS + f R n _  1 ;  but ( j rx .  - i rx . )  tt = 
-~- ( j  -- i )  ~ f  p s + f R n -  1. Therefore 

(28) j r z  r ,  - i r x  r~ - ( j  - i) t% f pS+fRn_ 1 . 

We conclude from (26), (27) and (28) that  ( a z a ~ ,  r x r , ,  [/~]) lies in ~ - 1 ,  8. Hence by 
induction ~rv l e (Vr-~/X, )  defines an autoprojectivity on V~, /X~:  hence cp determines 

an autoprojectivity ~ 'v on V ~ / X ~ .  

be) By using 2.4 c), a straightforward verification shows that  ( a : ,  r : , [ t t ] )  lies 
in r ~_ 1, ~, where ~ I Q ~- 1 (H) ~ (a 1, r :). Hence by induction ~ I C(~9 n - 1 (M)) deter- 
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mines an autoprojectivity 9. But then, by (1, 3), (~p, cp ',) defines an autoprojectivity ~ 
on V~ ,  induced by the map cp. 

b3) Using 2.4 d), a direct computation shows that (~1, ~1, [it]) e @~-1, 8, where 
]H/52 I(H) o (ol, rl), so it defines an autoprojectivity on M / t 2  I(H) which modulo the 

automorphism (1; it) induces the same map as 9 on e ( M / t ) I ( H ) ) .  Call ~ the autopro- 
jectivity of M/52 I(H) induced by cp. Applying 1.4 to (cp o, ..., 9 p, Q) one concludes that 
there is ~ in P(M)  such that ~ I e ( V ~ )  = ~1 c ( V ~ ) .  Hence ~ is the autoprojectivity of 

M determined by cp. �9 

4.5. COROLLARY (representation theorem). - Let M = H ~ C be an (n, s)-group and 

(a, b) a basis of H. Then the monomorphism j:  R(M)--->@~,8 of (23) is an isomor- 

phism. 

PROOF�9 - This follows from 4.4�9 �9 

4.1. REMARK. Define a - O ~ , ~ = { ( o , r , [ t t ] ) e r  Or=O}.  T h e n j ] R a ( M )  

defines an isomorphism of R a ( M )  onto r 8, while j IRa, ~ (M) defines an isomorphism 

o f R a  ~(M) onto a' ~ , ~-)n,s ---- {(~, V,[#])~ ~ , 8  llo= 1}. 

5. - The  genera l  r e p r e s e n t a t i o n  t h e o r e m .  

Let M = H @ C be an (n, m, s)-group. We begin with the case m = s. We treat this 
case separately since it is radically different from the case m > s. 

5�9149 LEMMA. - Let M be an (n, s, s)-group, (a, b) a basis of  H with l a] = p% and 9 

i n R a ( M ) .  Thenc f lQs+t (M) /p852s+t=( (10  0) ,  ) �9 f~t , w h e r e l . t t - 1  pS-1Rn,  0< t<~  
< ~ n - s .  # t  

PROOF�9 - Set q~ t = q~ I $~s + t (M) /pS  Q s + t ~ PA(52s + t (M) /pS  t2s + t )�9 Since ~ e Ra (M), 

it follows that ~ t is induced by an automorphism of the form ((10 0) ,  ) �9 # t  �9 To conclude 
tit 

we only need to assume s ~ 1. Since 1 ~ Q ~ + t - 1 (M! /p  ~ 52 ~ + t < 52 ~ + t (M) /p  S 52 ~ + t we 
get ].lt:-~it_ 1 p ~ - l R  n. 

Now assume t = 1 and write X = <p n - 1 a). Let y in Aut (52 ~ + 1 (M)/X) induce cp 1. 
Now (p'~-~a + c + X ) =  (pn-~a  + c + X}r = (p~-Sa  + l.tc + X). Since Ip'~-~a + X] = 
= p ~ - l ,  choosing an element c in C of order p8-1 one concludes that # 1 - 1  
p S - l R  n. �9 
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5.2. THEOREM. - Let M = H G C  be an (n, s, s)-group, (a, b) a basis of  H with 
I a I = P ~, tt in %t(Rn) n with tt - 1 p~ - 1 R n  ' and q~ in Ra ( ~  ~ - 1 (M)). Then there exists 

i n R a ( M )  s u e h t h a t ~ l M / p S M = ( ( l o  ~ ) ; t t  ). 

PROOF.  - Set r = n - s. 

1) r = l .  

H e r e c f = l a n d f o r M / p ~ M p i e k q ~ ' = ( ( 1 0  ~ ) ; / ~ ) . T h e n c f ' l ~ ( M ) / p ~ M = l ,  so 

by (1.3) (cp, of') defines a ~ in R e ( M )  with the required properties. 

2) r > l .  

We use induction on r. There exists fl = #,  ; # '  �9 

~o = q)fl I D n- 1 ( M)  /p  '~ - 1M lies in Ra ( D ~_ 1 ( M)  /p  n - 1 M). NOW by induction ~ extends 

to a such ~ ) ~ ,  ; ~ '  . But now 

~ f l - i  I ~ n _ i ( M ) / p ~ - ~ M  = q), hence by 1.3 (~o, ~r defines an element ~ of Ra(M) 
and one can cheek that it has the required properties. �9 

5.3. EXTENSION LEMMA.- Let s < m < n be positive integers. I f  (~o, . . . ,  a~-m,  
v~_m,[#]) lies in Cn,~,.~, then there exists a (5o, . . . , 5 ~ - ~ - I ,  Vn-~-I,[Z]) in 
r s such that for  0 <~k <<- n - m  - 1, ak = 5k [pn-~- '~R~-k ,  5 ~ - m - l Z n - ~ - I  = 
---- 2"gn_m_ l (Tn_m~ ~ n _ m _  l ~ n _  m-1----  ~ r g n - m -  l T n - m  �9 

PROOF.  - Let i �9 Rn, and let i = io + ... + i n -  1P ~- 1 be its p-adic expansion as intro- 
duced in n. 2. Set r = n -  m. We begin with 

al) r = l .  

Define 

iao if i �9 pR~,  

(io+ ... + i n - s - 1  zOalVO + (in- + ... + i n - l P  n 

if i e %t(R~), 

-~ �9 n - s - l ~  * n - s  . . .  l p n - 1 ) / 2 n - s  
~ v = ( i l p + . . . + ~ n - s - l P  J ~ O V l V O + ( ~ n - s P  + + i s -  

if i � 9  �9 

Clearly (5, ~) lies in Sym Rn • SympRn, and we have 

(29) i 5 z o = i O o z o = i Z o ~ l  for i e p R ~ ,  

by 3.6 a). 
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Take now i e %t(R~); then for j = i0 + + i~ _ ~ _ 1 . . .  p n - s - 1  

tha t  
we have j -= i p ~- ~ R~, so 

(30) j z o a l  i z o a ~  ( j z o  i z o )  # ~ - ~  " ~-~ ... . . . . .  ( ~ _ ~ p  + + i ~ _ l p ~ - ~ )  ~ot t  ~ - s  

I t  follows from (30) that  

(31) i 5 ~ o  = J z o a l  + i~o~1  - j z o O l  = izo(~l �9 

In particular for i e R ~  we have i 5  =-i p~R~;  moreover  by (29) and (31) we get  

(32) 5Zo = Z o a l  �9 

Since i - i z  o u o P n - 1 Rn ' using (32) we obtain for j ,  i in R~ 

(33) 2~ -~(y - j~o (~ lvO  - i ~ o o l v o  p n - l R n .  

(33) with (17a)  shows that  

3 ( l - ~ a - ( j - i ) # f p s + f R n  for j - - i  p f R ~ , O < . f < n - s .  

Morever,  for f =  n - s by the definition we get  j 5  - i 5  = ( j  - i )~ ~-~. Since 0 5 = 
= 0~o =- Op~Rn, by Remark  3.3 we conclude that  5 lies in PR( R~ ) .  With a similar proce- 
dure one can deal with ~. 

We come now to the case 

a2) r > l .  

We observe that  ( a l ,  . . . ,  a n - m ,  T~-m,[t t ])  lies in q)n-l, ,~,~. By induction there  
exists a ( 5 1 ,  ...,Sn_(m+l),~n_(m+l),[/A]) in q)n-~ m+l s such that  for l < ~ k < < . n -  
( m + l ) ,  5 k ~ P R ( p n - k - ~ - l R n _ k )  with a k = ~ k  ' n -~ ' -~  IP R n - k ,  (~n-m- lX~n-m-1  
: 2 " f n - m - l t T n - m ,  T n - m - l i r g n - m - l  : 3 " g n - m - l  T n -  m .  

Since p n - m - 1 Rn = p ~ - ~ R~ U p ~ - "~ - 1 "~(R~), similarly to a 1 ) w e  introduce Do on 
p n - m - 1 Rn, defining 

iao ff  i e p ~ - ~ R ~ ,  

�9 n - m - 1  n - s - 1  
( ~ - ~ - l P  + . . .  + i ~ - ~ - i p  ) z o ~ U o +  

�9 n - s  . . . .  l p n - 1 ) ~ n - s  + (~n - sP  + + in if i e p n - ' ~ - 1 % t ( R )  n . 

A similar routine checking as in al)  leads us to recognize that  (50, 5 1  . . . ,  

5 ~ - ~ - 1 ,  ~ - ~ - l , [ t t ] )  lies in ~b~,~+l,~, which concludes the proof. �9 

5.4. THEOREM. - Le t  s < m < n be posi t ive  integers, ~ k: R~---> R~_ k the canonical  

e p i m o r p h i s m  and  (ao . . . . .  ~ -  m ,  T n -  m ,  [ ~ / ] )  i n  (~)n. m. s "  Then  there exis ts  a (5, ~, [it]) 
i n  q) ~, ~ such  that  f o r  0 <. k <. n - m, 5 Q k = ~ k t~ k , ~ ~ ~ - ,~ = ~ ~ - m V ~ - m hold on the ob- 
v ious  domains .  

PROOF. - Set r = n -  m. I f  r - - 1 ,  the conclusion follows from 5.3. We assume 
now r >  1. By 5.3 there  exists a (a~, . . . ,  a ~ - , ~ - l ,  v ~ - ~ _ l , [ t t ] )  in r  such 
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, ! 

t ha t  a ' k l p ~ - k - ~ R ~ _ k = a k ,  a n _ m _ l Z n _ m _ l : Z n _ m _ l ( ~ n _ m ,  7 ; n _ m _ l Z n _ m _ l :  
-~  2 " C n -  m -  1 T n- m .  By induction, the re  exists a (5, ~, [it]) in r ~. ~ such tha t  for  0 < k ~< 
< . n - m - 1  we have 5 Q k = ~ k a ~  on p ~ - k - ~ - l R n ,  ~ _ , ~ _ t = Q ~ _ m _ l v ~ _ ~ _ l  
on pR n. 

Since a ~ I P ~ - k - ~ R~ _ k = a k and v ~ _ ~ _ 1 z ~ - m - 1 = Z ~ - ~ - 1 T ~ _ ~,  the  conclusion 
follows. �9 

5.5. THEOREM (the genera l  r ep resen ta t ion  theorem).  - Let M = H @ C  be an 
(n, m,  s)-group, with s < m~ (a, b) a basis of H with p~= lal. Then the monomor- 
phism j of R (M)  into r  as given in (23) is an isomorphism. 

PROOF. - Given a (a  o, . . . ,  a ~_ ~,  v ~_ m, [/~]) in (/)n, ~,~ by  5.4 the re  exists a (5, ~, [it]) 
in r  such tha t  5 ~ k = ~ k a k  O < ~ k < . n - m ,  ~ n _ m = ~ n _ m T n _ m  . L e t  

= H @ C  be an (n ,  s ) -g roup  with a basis (~, b) such tha t  a = ~, b = p ~ - ~ b .  B y  4.5 we 

know tha t  t he re  exists a c~ e R(/P/) such tha t  ~ = (5, ~, [/~]); m o r e o v e r  by  3.8 M ~ = M 

if and only if ( p ~ - ~ R ~ )  ~ =  p n - m R  n which actual ly  is the  case, since 5 Ip~-mRn = ao. 

Finally,  us ing 3.8 again, one concludes tha t  ~ I M e R ( M )  and ( ~ I M )  j =  

= (ao ,  . . . ,  o ~ _ ~ ,  T n - ~ , [ # ] ) .  

5.6. COROLLARY. - L e t  M = H G C  be an (n ,  m ,  s)-group with s < m, (a ,  b) a basis of 

H with p~=  lal, u =  ( p n - m a + b }  a unit  point and j:  R(M)-->O~,m,~ the isomor- 

phism of 5.5. Then (~o, ..., an-m,  V n - ~ , [ t t ] ) e R J , ~ ( M )  i f  and only i f  

Oao = O, 1(~_,~= 1 and Ova_m= O. 

PROOF. - In  fact  (a} r = (a)  ff and only if 0 a o = 0, (p ~ - ~ a  + b }~ = (p ~ - m a  + b } ff and 

only if l a ~ _ m  = 1 and (b} ~ = (b} if and only ff OVn-~ = O. " 
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