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An Equivalence Theorem on Properties A, B 
for Third Order Differential Equations (*). 

M, CECCHI - Z. D0gLi - M. MARINI 

A b s t r a c t .  - Differential equations are often classified according to oscillatomj/nonoscillatory 
properties of their solutions as equations having property A or property B. The aim of the 
paper is to state an equivalence theorem between property A and property B for third order 
differential equations. Some applications, to linear as well as to nonlinear equations, are 
given too. Particularly, we give integral criteria ensuring property A or B for nonlinear 
equations. Our only assumption on nonlinearity is its superlinearity in neighbourhood of 
infinity, hence our results apply also to Emden-Fowler type equations. 

1.  - I n t r o d u c t i o n .  

Consider the linear differential equations 

(E+_) x " +  - q(t)x = 0 

where q is a positive continuous function for t/> 0. 
It is well known that there is an analogy between the space of solutions of (E +) 

and (E - ) .  For instance, by using the notion of equation of class I and II introduced 
by H~AN in [14], it is easy to show that (E + ) is nonoscillatory if and only if (E - ) is 
nonoscillatory. Another result in this direction is given in [24] (see also [22]) where it 
is proved that if there exists )~ > 0 such that 

] t 2 - ~ q ( t ) d t  = ~ , 

then (E +) have both oscillatory and nonoscillatory solutions. In addition, every 
nonoscillatory solution x of (E +) tends to zero as t -o ~ and satisfies, for all large t, 
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either the inequalities x(t) > 0, x'(t) < 0, x(t) > 0 or the inequalities x(t) < 0, 
x'(t) > 0, x" (t) < 0, while every nonoscillatory solution of (E - )  tends to infinity as 
t --* ~ and satisfies, for all large t, either x(t) > O, x' (t) > O, x" (t) > 0 or x(t) < 0, 
x '  (t) < 0, x" (t) < 0. 

Some authors referred to such property of (E +) as property A and of (E - )  as 
property B. Both properties have been extended in several directions to linear and 
nonlinear equations of n-th order. Among the wide literature on this field we refer to 
[6-13,16-20, 22, 23] and to the references contained therein. In most cases, these prop- 
erties have been studied or proved separately. However, CHANTURIA [8] (see also [16, 
Th. 1.3] showed a certain analogy between both properties, namely, (E + ) has proper- 
ty A if and only if (E - )  has property B. 

The aim of this paper is to extend this equivalence theorem to the linear equation 
of the form 

I l t l  )) 
and to apply the obtained results to the nonlinear equation 

(N) 1 ~-~1 - ~ x '  (t) + q(t)f(x(t)) = O, 

where 

(H1) r,p, qeC~ o~),R), r(t) > O, p(t) > O, q(t) > 0 on [0, 0o) 

f(u) 
(H2) feC~ f ( 0 ) = 0 ,  f (u)u>O for u e R \ { 0 } ,  lim inf - -  > 0  

' l u t  - - ,  ~ u " 

When the functions p and/or r do not have a continuous first and/or second deriva- 
tive, then (L) and (N) may be interpreted as a first order differential system for the 
vector (x [~ , x tl~ , x ~2~) given by 

t 

1_ 
(1) x E~ x !11= r x ' ,  x t2~= ~ x'  = ~ -  , 

where x is a solution of (L) or (N). Similarly, we denote with x T M  = (1/q)(x[2~) '. The 
functions x [i] are called the quasiderivatives of x. 

The plan of the paper is the following. In the first section we will prove an equiva- 
lence theorem on property A for (L) and on property B for the adjoint equa- 
tion 

((_~1 pt~)l )')' (L a) --;T:~, u'(t) -q(t)u(t)=O. 
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In the literature there are many papers devoted to property A or B independent- 
ly. Our equivalence theorem enables us to apply criteria on property A to give crite- 
ria on property B and vice versa. In addition the oscillation of (L) and (L a) is studied 
and new integral criteria in order for (L) [(La)] to have property A [B] are 
stated. 

In section 2 we derive some applications to the nonlinear case. In particular, by 
using a linearization device, we obtain a comparison theorem for properties A and B 
which is more suitable for application than others existing in the literature. Sufficient 
conditions ensuring properties A and B are also given. Such results are presented as 
integral criteria involving only the functions p, r, q. 

We point out that, besides (H2), other conditions on the forcing term f such as, for 
instance, monotonicity, superlinearity or sublinearity in a neighbourhood of zero or in 
the whole R are not assumed. 

The obtained results will be compared with the ones existing in the literature in 
the framework of the paper. 

Throughout the paper the following notation will be used 

oo cc t 

I(u )=fu (t)dt, i , j =  1 ,2 ,  
0 0 0 

t s 

f  (t)fu ( )fuk( )d dsdt, i,j,k= 1,2,3, I(ui, uj, uk) = 
o o o 

where u~, i = 1, 2, 3, are continuous positive functions on [0, ~). 

Part I. Linear equation. 

1.1. An equivalence theorem. 

As usual, we say that x is an oscillatory solution of (L) if it has infinitely arbitrari- 
ly large zeros. Otherwise this solution is said to be nonoscillatory. Equation (L) is 
said to be oscillatory if it has at least one nontrivial oscillatory solution, and nonoscil- 
latory if all its solutions are nonoscillatory. 

Equation (L). is said to have property A if any solution x of this equation is either 
oscillatory or satisfies 

(2) IxE~3(t)l J, 0 as t ~ ,  i = 0 , 1 , 2 .  

Equation (L a) is said to have property B if any solution u of this equation is either os- 
cillatory or satisfies 

(3) lu[~l(t)] ]' ~ as t--,  ~ ,  i = 0, 1, 2, 



376 M. CECCHI - Z. D O ~ L A  - M. MARINI: An equivalence theorem, etc. 

where the notations y(t) Iv 0 and y(t) t co mean that y monotonically decreases to 
zero as t ->  ~ or monotonically increases to infinity as t--~ oo, respectively. 

As we already mentioned, there are some interesting relationships between the 
binomial equations (E +) and ( E - ) ,  which involve the oscillation and properties 
A and B. Indeed it is known (see, e.g., [16]) that 

(i) (E +) is oscillatory if and only ff (E - )  is oscillatory. 

The same situation does not occur for the equation (L) and 

(L - )  ( ~ ~ x' (t) - q(t) x(t) = O, 

J = r = .~, as the following example shows. even ff p i 

EXAMPLE 1. - Let e E (0, 1) and T > 1. Consider the equation 

[ (x.x'(t)lnt t + x(t) -0  te[T, ~) (l+) I t l n t  ] - -  ~ ~,1 ~ ) ' 2 r ' n " l + e  ' " 
\ 

By [4, Theorem 8], (1 + ) is oscillatory and, by [4, Theorem 5], (1 - )  is nonoscillatory. 

f Note that here r =  p =  ~.  

An analogous statement to (i) holds for (L) and the adjoint equation (La). Indeed 
it is known that  (L) is oscillatory ff and only ff (L a) is oscillatory (see, e.g., [14]). As 
regards the equivalence between properties A and B, it is stated by the following 
theorem which is our main result in this section. 

THEOREM 1. - (L) has property A if  and only if  (L a) has property B. 

To prove this theorem, the following auxiliary results and notations will be 
needed. 

Equation (L) is closely related to the following two linear equations obtained by 
means of an ordered cyclic permutation of functions p, r, q 

(L e) [ 1 1 ' ) '  

and 

(L ~c) 1 1 z' ~ (~) + p(t)z(t) = o, 

as the following statements show. 
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PROPOSITION 1. - I f  x is a solution of(L), then x ~1] is a solution of (L e) and x E2~ is a 
solution of (Lee). 

Similarly, i f  u is a solution of (La), then u [1] is a solution of 

)) (L ae) ~ v' (t) - p(t)v(t) = 0 

and u [~] is a solution of 

( ))"  (L ace) --;-y., w' (t) r(t)w(t) = O. 

PROOF. - It  follows by direct computation. �9 

Denote by g~(L) and by ~ ( L  a) the set of all nontrivial nonoscillatory solutions of 
(L) and (La), respectively. 

In [4] we have proved that  (L) does not have weakly oscillatory solutions, i.e., sol- 
utions such that  x is nonoscillatory and x '  is oscillatory. In addition, ff x is nonoscilla- 
tory, then x Ill is nonoscillatory and x [2] is nonoscillatory too. In view of this fact the 
set ~ ( L )  can be divided into the following four classes: 

g~o= {Xe g~(L), 3Tx: x(t)x[1](t) < O, x(t)x[2](t) > O for t ~ Tx} , 

5Cl = {x �9 ~(L),  3T~: x(t)x[1J(t) > O, x(t)xE2](t) < 0 for t I> Tx}, 

~2 = {x �9 ~(L) ,  3Tx: x(t)x[1](t) > O, x(t)xE21(t) > 0 for t I> T~}, 

g~8 = {x �9 ~(L),  3Tx: x(t)xE~l(t) < O, x(t)x[2](t) < 0 for t I> Tx} 

and the set :~(L ~) into the following four classes 

:~o = {u �9 g~(La), 3Tu: u(t)u[1](t) < O, u(t)uE2](t) > 0 for t >>- Tu}, 

: ~  = {u �9 g~(La), 3T~: u(t)uE1](t) > O, u(t)u[21(t) < 0 for t >I T~}, 

g~2 = {u �9 :~(La), 3T.~: u(t)uIll(t) < O, u(t)uE2](t) < 0 for t t> T~}, 

g~8 = { u � 9  g~(La), 3T~: u(t)u[1](t) > 0, u(t)u[21(t) > 0 for t >i Tu}. 

Obviously, if x �9 ~ ( L )  satisfies (2), then x belongs to the class g~o. Similarly, if 
u �9 g~(L ~) satisfies (3), then u belongs to the class g[~3- This means that  if (L) has 
property A, then ~ ( L )  -- g~o and if (L a) has property B then g~(L ~) = g~3. 

In addition, if x �9 ~o ,  then the quasiderivatives x E~I, i = 0, 1, 2, 3, have eventually 
an alternate sign and in the literature they are called Kneser solutions. If  u �9 gr~8, 
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then the quasiderivatives u fil, i = 0, 1, 2, 3, have eventually the same sign and are 
called strongly monotone solutions. Their  existence is ensured by the following 

result. 

PROPOSITION 2. - (L ) has always a Kneser solution and (L a) has always a strong- 
ly monotone solution. 

PROOF. - The result  for (L) follows from results of Har tman/Wintner  (see [15, p. 

506]). The result  for (L d) follows from [17, Lemma 2]. (In this paper  conditions I p  = 

= f r = 0r are assumed, but  in the proof  of Lemma 2 such assumptions are not 

needed.) [] 

REMARK 1 .  - I t  is easy to show that  if x e ~o  then x verifies 

x(t)x[l](t) < O, x(t)x[2](t) > 0 

not only eventually, but  also for all t t> 0. Indeed, let x(t) > O, xE~(t) < O, xf2~(t) > 0 
for t I> T and suppose that  there  exists tl < T such that  x '  ( t l)  = 0, x(t) > 0 for t ~ I = 
= (tl ,  T). Then (x ~21 (t)) '  < 0 on I, i.e., x L21 decreases on I. Because x ~21 (T) > 0, we have 
xE21(t) > 0 on I, which implies tha t  x ElI is increasing on I. Because xrl](T) < 0, we 

obtain x EI~ (t~) = (1/r(tl))  x '  ( t l)  < 0, which is a contradiction. Then x(t) x E~] (t) < 0 for 
all t. By a similar argument  and using Proposition 1 we obtain also x(t)x  [2~ (t) > 0 
for all t. 

LEMMA 1. - Let x, y be two linearly independent solutions of (L) 
Then 

(4) u = x[IJy - x y  [1] 

is a solution of (L a) [(L)] and its quasiderivatives satisfy 

U [1] = X [ 2 ] y  - -  x y [  2] , U [2] = x [ 2 ] y [  1] _ X [ 1 ] y [ 2 ] .  

[(L~)]. 

PROOF. - Let  x, y be two linearly independent solutions of (L). By straightforward 
calculation we get  tha t  u is a solution of (L a) and that  

u[t] = 1 , xy[1]), . = -~(~ Y -  =x~2]y-xyE21 -flu 1 oall 

The remainder  par t  of the s ta tement  follows by using a similar argument.  [] 

LEMMA 2. - The following conditions are equivalent: 

(i) ~ ( L )  = g~o, 

(ii) g~(L ~) = g ~ .  
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PROOF. - ( i i ) ~  (i): By Proposition 2, ~o  ~ 0. Assume there exists j e {1, 2, 3} 
such that  g~j- ~ 0. Le t  x e~ ~0 and y e g~-. Wtihout loss of generality we may suppose 
x(t) > O, y(t)  > 0 for large t. Then the function u defined by (4) is a solution of (L a) 

and satisfies, for large t, 

u(t)  < 0, u[1](t) > 0 ( i f j  = 1), 

u(t)  < 0, u~23(t) > 0 (if j = 2), 

u~13(t)>0, u [23( t )<0  (if j = 3 ) .  

This contradicts the fact that  all nonoscillatory solutions of (L a) are strongly mono- 
tonic solutions. 

The claim (i) ~ (ii) can be proved by using a similar argument  as given in the first 
part. �9 

The following two statements generalize for n = 3 a result in [23, Theorem 7] 
which requires I ( r ) =  ~ and I ( p ) =  ~ .  

LEMMA 3. - I f  there exists x ~ :go such that lira x Ei3 = 0, i = 0, 1, 2 then 
t --> az 

(5) I(q, p, r) = ~ , I(r,  q, p) = ~ and I(p,  r, q) = 

PROOF. - Without loss of generality suppose that  I(q, p, r) < ~ .  Le t  x be an even- 
tually positive solution of (L) which belongs to the class g~o such that  lira x Ei3 = O, 
i = 0, 1, 2. Integrating (L) three times in (t, ~ ), t large, we obtain t-~ 

x(t) : f r(s) f 
t 8 G 

c c  c ~  

x(t) f r(s) f f q(Od dods. 
t s o 

Thus 

c o  

1 << . fr(s, 
t 8 ~ 

Then, by interchanging the order of integration, we get a contradiction. 
I f  I(r ,  q, p) < ~ [I(p, r, q) < ~],  we use Proposition 1 and then considering (L e) 

[(Lee)] we proceed by the same way. �9 

LEMMA 4. - i) I f  there exists x ~ :go such that lira x ~ O, then I(q, p, r) < ~ .  
t"-> r 

ii) I f  there exists x e ~o  such that lim x ~1] ~ O, then I(r,  q, p) < ~ .  

iii) I f  there exists x e :go such that lira x ~21 ~ O, then I(p,  r, q) < ~ .  
t----> m 
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PROOF. - Claim 9. Let  x be an eventually positive solution of (L) in the class 5Eo 
such that  l i m x ( t ) = x ( o o ) > 0 .  Hence there exists T I>0  such that  x( t )>O,  

x~3(t) < O, x~23(t) > 0 for all t I> T. Three cases are possible: 

I) I ( p ) <  o~, I(r) < oo II) I ( p ) =  ~ ,  I(r) < ~ I I I )  I ( r ) =  oo. 

CASE I). Integrat ing (L) in (t, ~ ), t > T, we obtain 

ov 

xf23(t) = x~23( cr ) + ~ q(s)x(s)ds  >i xE23(~) + x( ~ ) f q(s)ds .  
t t 

T h e n I ( q ) <  ~ and so I ( q , p , r ) <  ~ .  

CASE II). Firs t  let us show that  I(p) = oo implies xI21( ~ ) = 0. Because (x~23(t)) ' = 
= - q(t)x(t) < 0 for t > T, x t2~ is an eventually positive decreasing function. Assume 
xL23(~) > 0. Then xE23(t) > x~23(~) for t > T. By integrating we get 

t 

x~13(t) > xE13(T) + x:23( ) f p(s)ds, 
T 

which gives a contradiction as t--~ :r because x E13 is negative. Thus x E23 (o0) = 0. Inte- 
grating (L) twice in (t, ~ ), t > T, we obtain 

X [1] ( t )  ---- • [1 ] (  ~ ) - -  f p ( s )  f q ( o )  x(o) dads 
t s 

oo r ~ C~ 

t s t t 

Then I(q, p) < ~ and so I(q, p, r) < oo. 

CASE III). Using a similar argument  as given in the case II), we get that  I(r) = oo 
implies x ~ l ~ ( ~ ) =  0. Integrat ing (L) three times in (t, ~) ,  t > T, we obtain 

ar oo  oo ~ oo  

t s t s a 

and then, by interchanging order of integration, we get I(q, p, r) < oo. 
Finally claim ii) [iii)] may be proved by considering (L e) [(Lee)] instead of (L) and 

by using a similar argument.  [] 

P R O O F  OF T H E O R E M  1. - First w e  p r o v e  that 

(a) i f  (L) has property A ,  then (L ~) has property B .  
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Since (L) has property A, :E(L) = OZo and, in view of Lemma 2, :E(L a) = 3E8. By 
Proposition 2, 3E3 ~ 0. Let  u e 3E8, e.g. there exists T/> 0 such that  u ti~ (t) > 0 for 
t > T and i = 0, 1, 2. Suppose that  (L a) does not have property B, i.e., there exists 
i e {0, 1, 2} such that  u Eij is bounded. 

First,  let u E2] be bounded. By Proposition 1, w = u c21 is a solution of (LaCe), 
i.e., 

and w [i] = u, w [2] = u [1]. Then wt~J(t) > 0 for t I> T, i = 0, 1, 2 and w is bounded. Thus 
there exist ki > 0, i = 1, 2, such that  

(6) O<kl<~w(t)<<.k2 for t 1 > T .  

Integrating (L ace) three times on [T, t] we have 

(7) 
t t s 

w ( t )  = w ( T )  + w i l l ( T ) f q ( s ) d s  + w [ 2 ] ( T ) f q ( s ) f p ( o ) d o d s  + 

T T T 

t 8 (Y 

T T T 

Because u~il(T) > 0, i = :t, 2, from (6) and (7) we obtain 

(8) 
t 8 

T T T 

From Proposition 2, (L) has a Kneser solution. Since (L) has property A, any Kneser 
solution satisfies (2). Thus, by Lemma 3, the integral on the left side of (8) is diver- 
gent, which gives a contradiction. 

I f  u [11 [u] is bounded, in view of Proposition 1, we consider (L ae) [(La)] instead of 
(L ~ e e). Using a similar argument  as above and Lemma 3 we get again a contradiction. 
Hence claim (a) is proved. 

In order to complete the proof let us show that  

(b) i f  (L a) has property B, then (L) has property A .  

Since (L ~) has property B then :E(L a) = 3E3. From Lemma 2 and Proposition 2 
3~(L) = :E0 ~ 0. Assume that  there exists a Kneser solution x such that  for some 
i e {0, 1, 2}, lira xri~(t) = c ~ O. 

t ----> oo 
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(9) 

Firs t  suppose that  lim x(t) = c ~ O. Then by Lemma 4 we have 
t ---> ~ 

cr t 8 

o o o 

so also I(q) < ~ and I(q, p) < ~. 
Let  w be a nonoscillatory solution of (L a e e). Without loss of generality we may as- 

sume that  w is eventually positive. In view of Proposition 1, there exists a solution u 
of (L a) such that  w = u ~2]. Since (L a) has property B, u satisfies (3): hence w tends to 
infinity as t --> ~ and there exists T ~> 0 such that  w [~] (t) > 0 for all t I> T. In view of 
(9) we can take T such that  

(10) 
: ~  t s 

fq(t)fp( )fr( )d d dt< 1. 
T T T 

For  brevity denote 

t t s 

f(t)=w(T)+ w[1](T)fq(s)ds+ w[2] (T)fq(8)fp((~)dads, 
T T T 

8 a 

g(t) = f q(s) fp(a)  f r (v)dvdads.  
T T T 

Integrat ing (L dee) three times on [T, t) and taking into account that  w is a nonde- 
creasing function, it follows from (7) 

w(t) <~ f(t)  + w(t)g(t). 

Then 

f ( t )  
w(t) <. 

1 - g(t) " 

From (10) and the boundedness of f we get that  w is bounded, which yields a 
contradiction. 

I f  l i m x [ 1 ] ( t ) = c ~ 0  [ l i m x [ 2 ~ ( t ) = c ~ 0 ]  then by Lemma 4 I ( r , q , p ) <  
[I(p, r, q) < ~] .  Taking w as a solution of (L ae) [(La)], and using a similar argument  
as above we obtain again a contradiction with the boundedness of w. Hence also claim 
b) is proved and the proof is now complete. [] 

From Theorem 1 we obtain the following: 

COROLLARY 1. - I f (L)  has property A, then (LC), (L ee) have property A and (L ~), 
(L ae), (L ace) have property B. 
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PROOF. - Let y be a nonoscillatory solution of (Le). It is easy to show that x = y~2] 
is a nonoscillatory solution of (L) and x [11 = y, x r21 = ym. Because (L) has property A, 
the function x verifies (2) and so also (L c) has property A. A similar argument holds 
for (Lee). Finally the remainder part of the assertion follows from Theo- 
rem 1. �9 

We remark that the argument, which is employed in the proof of Theorem 1, gives 
us also the following result: 

COROLLARY 2. - Every Kneser solution x of  (L) satisfies lira x[i](t)= 0 for 
t---> ~ 

i = O, 1, 2 i f  and only i f  every strongly monotone solution u of (L a) satisfies 
lim u Ei] (t) = ~ for i = O, 1, 2. 

t - ->  r162 

1.2. Some applications. 

(i) Classification of equations having property A [B] involves both oscillatory 
properties of solutions and asymptotic behavior of nonoscillatory ones. The natural 
question which arises is whether or not property A [B] ensures the existence of both 
types of solutions occuring in its definition. 

The existence of a nonoscillatory solution of (L) [(La)] occuring in definition of 
property A [B] is ensured by Proposition 2. As concerns the existence of oscillatory 
solutions, for the binomial equation we have (see, e.g., [16]): 

(i) (E +) is oscillatory if and only if (E +) has property A, 

(i') (E - )  is oscillatory if and only if ( E - )  has property B. 

The following example shows that this equivalence fails for the complete equa- 
tion (L). 

EXAMPLE 2. - Consider the equation (1 +) given in Example 1. Then (1 + ) is oscil- 
latory and by [23] it has a Kneser solution tending to a nonzero constant, thus (1 +) 
does not have property A, see also [3]. Similarly the equation (T > 1) 

(()) x ' ( t )  x(t) - O t e [T, ~ )  
(1 a) lnt ~ t2(lnt)l+~ , 

is oscillatory and, from Theorem 1, it does not have property B. 

Proposition 2 and the following theorem show that property A [B] ensures exis- 
tence of both types of solutions occurring in its definition. 

THEOREM 2. - I f  (L) has property A [(L a) has property B] then it is oscil- 
latory. 
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PROOF. - i )  Let (L) have property A. Then any solution is either oscillatory or 
Kneser. 

From this and Remark 1 it follows that a solution x with the initial condi- 
tion 

x (0 )x ' (0 )  > 0 

is oscillatory�9 

ii) Let (L a) have property B. Then by Theorem 1, (L) has property A and, from 
claim (i), (L) is oscillatory. Then its adjoint equation is oscillatory too. [] 

oc 

REMARK 2. - If ~ r = [ p = oo, then Theorem 2 follows from Theorems 6 and 7 
3 . /  

in [7]. 

(ii) In the literature there are many papers devoted to property A or B indepen- 
dently. Theorem 1 enables us to apply criteria on property A to obtain criteria on 
property B and vice versa. For example, by using criteria ensuring that (L) has prop- 
erty A, which we stated in [3], we immediately get the following criteria for prop- 
erty B: 

THEOREM 3. - Let  one o f  the fol lowing condit ions be satisfied: 

(i) I (r)  = I (p)  = I(q, r) = I(q, p) = ~ ,  

(ii) I (p)  = I(q) = I(r ,  p) = I(r ,  q) = ~ 

(iii) I (r)  = I(q)  = I(p,  q) = I(p,  r) = oo, 

(iv) I (p)  = ~ , I(q, p)  < ~ and  

)(f; ) f r ( t )  q(s)ds  p(s)  q (v )dvds  dt = 00, 

o t 

(v) I(q)  = oo, [(r, q) < oo and 

j p ( t ) ,  g r ( s ) d s  q(s) r (T)dTds  d t =  ~ ,  

o \ t l i t  s 

(vi) I ( r ) =  , I (p,  r) < oo and 

f q(t) p ( s )d s  r (s )  p (T)dTds  dt 
o t / \ t  

Then (L ~) has property  B. 

PROOF. - It follows from Theorem 1 and [3, Theorems 4 and 5]. I 
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REMARK 3. - If the condition (i) of Theorem 3 holds, then, by interchanging func- 
tions p, r in (L), we obtain that in this case (L - )  has also property B. 

REMARK 4. - Other papers, where criteria for properties A, B were separately 
studied or proved, are, e.g., [17] (here property B is studied for general n) and the re- 
cent papers [18, 19]. 

It is also worth to note that our Theorem 3 is applicable in some cases in which the 
above quoted results fail. For instance, consider the equation 

( lnt ) ' ) '  ~ 
1 ( l _ ! _ x , ( t )  + x(t)  = 0 t > 1 

( e + - )  i - , �9 

By Theorem 3-i), (e +) has property A and (e - )  has property B, but Theorem 3.1 
in [18] fails. Similarly, by Theorem 3-iv), the equation (L) with p = 1, r = t 2 and 
q = 1/t 3 has property A, but in this case Theorem 4.1 in [18] fails. 

Part II. Nonlinear equation. 

Here we use the results from Part I to study jointly property A and B for nonlin- 
ear equations 

(N) p~-~ ~-~ x' (t) + q(t) f(x(t)) = 0 

( 7~(_~1 pt~l ))" (N a) ~ u' (t) - q(t) f(u(t)) = 0 

when (H1)-(H2) are assumed. 
Any solution of (N) is said to be proper, if it is defined on R§ and nontrivial in any 

neighbourhood of infinity. A proper solution is said to be oscillatory (nonoscillatory) 
if it has (does not have) arbitrarily large zeros. 

Equation (N) is said to have property A if any proper solution x of this equation is 
either oscillatory or satisfies 

(1) Ix[i](t)l ~ 0 as t---~ ~ ,  i = 0, 1, 2. 

Equation (N a) is said to have property B if any proper solution u of this equation is 
either oscillatory or satisfies 

(2) luE~l(t)l ~ o: as t ~  ~ ,  i = 0, 1, 2. 

It follows from (H1), (H2) and [1, Lemma 1 and Theorem 1] that all proper 
nonoscillatory solutions x of (N) belong to the four classes g~i, i = 0, 1, 2, 3, and all 
proper nonoscillatory solutions u of (N a) belong to g~i, i = 0, 1, 2, 3, defined in Part I. 
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LEMMA 5. - A s s u m e  (H1) and (H2). I f I ( r )  = co [I(p) = ~] ,  then for every solution 
u o f ( N  ~) such that u e : ~ 3  we have u E 1 ] ( ~ ) =  ~ [ u ( ~ ) =  ~].  

PROOF. - Let  u be a solution of (N ~) which belongs to the class grC~. Without loss of 
generali ty we may assume that  there  exists T~ such that  uE~l(t) > 0 for all t i> T~, 
i = 0, 1, 2. Then, from (Na), the functions u Ei~, i = 0, 1, 2, are increasing for all 
t I> T~. Because ut21(t) = (1/r(t))[utll(t)] ', we have 

t t 

u i (t) = + f r(s)u 2 (s)d  f r(s)ds. 
T~ T~ 

As t---> ~ we get  the first assertion. 
Similarly it follows the second one. 

Using Lemma 5 we can prove the comparison theorem between the linear 
equation 

1 1 x '  (Lk) ~ ~ (t) + kq(t) x(t) = O , k > O 

and nonlinear equations (N), (Na) .  

THEOREM 4 . -  Assume (H1), (H2) and I(r) = I(p) = ~. I f  (Lk) has property A for 
every k > O, then (N) has property A and (N a) has property B. 

PROOF. - a )  Let  us prove that  (N) has proper ty  A. 
Le t  x be a proper  nonoscillatory solution of (N) defined on [to, ~ ). Suppose that  x 

is eventually positive, i.e., there  exists T I> to such that  x(t) > 0 for t I> T. Then, from a 
result  in [22], we have 

(11) x ~ ~o  (2 tQ  

and x e ~o  satisfies x~i](~)  = 0, i = 1, 2. 
Suppose that  (N) does not have proper ty  A. Then either x e ~2 or x e ~o  satisfy- 

ing tim x(t) = 1 > 0. Then there  exists c > 0 such that  

(12) x(t)/> c > 0 for t sufficiently large. 

Consider the following equation, which is obtained by linearization of (N), 

' f(x(t)) 
(Lf) 1 1 v' (t) + q(t) ~ v  = O. 

Then v = x is a nonoscillatory solution of (Lf) for t sufficiently large. 
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In view of (12) and the continuity of f, there exists K such that 

f ( (x ( t ) )  
(13) x(t------)- ~ K for x ( t ) >  0 and t sufficiently large. 

Since (Lk) has property A for every k > 0, by a classical comparison theorem (see, e.g., 
[6]), also (Lf) has property A. It means that every solution v of (Ly) is either oscillatory 
or a Kneser solution tending to zero for t --> ~.  Being v = x a nonoscillatory solution of 
(Lf), this contradicts (12). 

b) Let us prove that (N ~) has property B. 
Let u be a proper nonoscillatory solution of ( N  a) defined on [to, ~ ). Suppose that u is 
eventually positive. Then, by a result in [22] (see also [16]), we have 

u �9 g~l (2 g~a, 

and u �9 g1~ 3 satisfies u~il( ~ ) = ~,  i = 0, 1. It means that u is eventually increasing 
and so u(t)  >t c > 0 for all large t. Suppose that (N a) does not have property B, i.e., ei- 
ther u �9 g~l or u �9 g~3 and uL21( ~ ) is bounded. Using the same linearization method 
as above and taking into account Theorem 1, we obtain a contradiction with the fact 
that (Lk) has property A for every k > 0. �9 

REMARK 5. - Unlike other comparison results (see, e.g., [6], [9]), Theorem 4 does 
not require assumptions on growth of the nonlinearity in the whole R. 

Theorem 4 together with integral criteria ensuring property A for (Lk) gives the 
following result. 

COROLLARY 4. - A s s u m e  (H1) and (H2). Then (N)  has property A and (N  a) has 
property B in the case any  of  the following conditions is satisfied: 

(i) I (r )  = I(p)  = I(q, r) = I(q, p)  = ~ , 

(ii) I (p)  = ~ , I(q, p) < ~ and 

I r( t )  q(s)ds  p(s)  q(~)dTds dt = ~ .  
0 t' \t 

PROOF. - From Theorem 3 it follows that (Lk) has property A for every k > O. Now 
Theorem 4 yields the assertion. �9 

A typical example when 
equation 

Corollary 4 can be applied is the Emden-Fowler 

(E-F) 1 1 x ' ( t )  ~ - q ( t ) l x l ~ s g n x = O ,  4 > 1 .  
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COROLLARY 5. -- Let one of the conditions (i)-(ii) of Corollary 4 be satisfied. Then 
(E-F)  has property A and equation 

1(1 ~-~ x' (t) - q(t)ixl sg  x = O ,  Z > I  

has property B. 
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