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A Vortex Free Boundary Problem:
Existence and Uniqueness Results
for the Physical Solution (*).

ALESSANDRO TORELLI

Summary. — I'n this paper it is studied a vortex free boundary problem using some Complex
Analysts and/or Harmonic Analysis techniques. It is obtained an existence and uniqueness
resull for the solution. A numerical method to approximate the problem is described.

1. — Introduction.

The present paper is devoted to the study of a free boundary problem connected
with the steady plane irrotational vortex motion for a non viscous and incompressible
fluid. Let us now formally describe this problem (a precise formulation will be done in
the next section).

Let us assume that £ is the region of the complex plane occupied by the fluid in
vortex motion and that 0 e 2 is the singularity of the vortex (see Figure 1). If ¥: Q —
— {0} - R is the stream function defining the motion, then we have that ¥ is a har-
monic function in 2 — {0} (since the motion is steady and irrotational). Near the sin-
gularity of the vortex we also have the following asymptotical behaviour:

1.1) Y(z) ~ ~log|z| as z—0.

We also assume that © is symmetric with respect to the imaginary axis and that Q is
«like a ball» which wraps around the singularity of the vortex in 0. Two conditions
apply on the (free) boundary of 2 (c,, ¢z, g being real constants, the constant g being
the gravity acceleration):

(1.2) W) =cp %|(V'I’)(z)|2+gImz=02,ze89.

(*) Entrata in Redazione il 28 settembre 1995.
Indirizzo dell’A.: Dipartimento di Matematica, Universitd di Pavia, Via Abbiategrasso 209,
27100 Pavia (Italy).
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y (z =2+ 1y)
¥ = stream function
A¥ =0 in Q- {0}
U ~log|z| asz—0 [(V¥)(ib)|=1

b

(V) (2)|? /249 Im z=c3

Fig. 1. — The vortex free boundary problem in terms of the stream function ¥(z) = Im F(z) —
—logz

The former of such relations tells us that the boundary of 2 is a stream-line; the
latter expresses Bernoulli law (assuming the external pressure as a constant). Notice
that in (1.2), the constant ¢, is arbitrary, whereas the constant c; is an unknown quan-
tity. To obtain a well-posed problem, we must add a further condition: for instance we
can specify the value of the speed in an assigned point of Q (see Problem A
later).

In what follows the previous problem is studied using elementary results of Har-
monic Analysis or (equivalently) elementary results of Holomorphic Functions The-
ory in the unit dise of C. This study is done in several steps.

1 begin giving a precise complex mathematical formulation of the problem (see
Problem A in seetion2) and stating the main results of the paper.
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In section 3 (by a suitable conformal transformation) I reduce the vortex problem
to an equivalent problem (see Problem B in section 3) defined in the unit ball of the
complex domain. Problem B (called conformal problem) consists in finding a confor-
mal map defined in the unit ball of C verifying a suitable boundary condition. In such
a way I can reduce a free boundary problem to a fixed boundary problem.

In section 4, I reduce Problem B to a new equivalent problem defined in the unit
cirele of the complex domain (which I call weak formulation of the problem). This re-
sult allows to represent the solution as the fixed point for a suitable operator: see
Problem W.

Afterwords (section 5) an existence theorem is given for the weak formulation
(for any value of g = 0), using a topological method. In section 6, a uniqueness theo-
rem is also given (when g = 0 is small enough), by the use of the contraction mapping
theorem. Consequently, using the equivalence between Problem A (the physical for-
mulation) and Problem W (the weak formulation), I can obtain an existence result
also for the physical formulation (for all non negative values of the gravity accelera-
tion g) and an existence and uniqueness result when g = 0 is small enough. Moreover I
shall prove that, if g = 0 is small enough, then the domain of motion & is a convex sub-
set of the complex domain.

The formulation of Problem W is very simple and is constructive, that it is easy to
approximate. In section 7 I briefly describe a method to compute an approximate sol-
ution obtained discretizing Problem W: the graph of figure 1, for example, is obtained
by this method (see also later figure 2).

In a sequence of papers ([6], [10], [11]) and [12]) Lezzi and the author have already
studied the vortex free boundary problem using a more complicated weak formula-
tion. In [6] an existence and uniqueness theorem for the weak formulation when g = 0
is small enough is proved. In[10], [11] and [12], the author gives the idea to obtain
an existence result for the weak formulation when g = 0 is arbitrary. In the present
paper I prove the equivalence between the physical and the weak formulation and
then I can give some existence and uniqueness result directly in the physical formula-
tion. Moreover we determine a condition for the convexity of the domain of
motion £.

In my opinion, the present problem is only a simple model problem. Later I think I
will apply the present method to other problems.

Now we are working in a more general vortex free boundary problem: see paper
[11 in which we study a vortex free boundary problem with an obstacle.

I refer to [6] for a detailed physical motivation of the present problem and for an
extended bibliography on this subjet.

TERMINOLOGIC NOTE. — In what follows we use the notation:

D={zeC: |z| <1}, T=0D. =
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2. ~ Precise formulation of the problem and main result.

Recalling that ¥ is a harmonic function in 2 — {0}, relation (1.1) can be precised
by assuming that there exists a function B: Q >R with 4B=0 in £, such
that:

2.1) Y(z) = B(z) —log |z] in 2-{0}.

Since 2 is «like a ball», to the harmonic function B, we can associate a harmonic
function A: Q — R (with A(0) = 0) such that A + iB is a holomorphic function on .
At this point we eould consider the speed potential function @(z) = A(z) + arg (z/i),
where arg is the principal branch of the argument function. But we have that the com-
plex potential function @ + i¥ is a holomorphic function only in the open set:

R'=02—-{2eQ:Rez=0,Imz < 0}.

More suitable is the use of the holomorphic function F: Q — C given by A + iB. Re-
calling (2.1), we obtain that ¥(z) = Im F(z) — log |2|. Hence:

Y i ¥ - L ,
2.2) £ (2) +1 o () =F'(2) i ze 2.

Then, in terms of the function F, the problem described in section 1 can precisely be
stated in the following way:

PROBLEM. A - Physical formulation. Given g = 0, we look for an open subset 2 of
C with 0 e 2 and such that:

i) Q is the inner domain of a C”-Jordan curve,

i) Q is symmetric and balonced (later we will explain what this means) with re-
spect to the imaginary axis.

Moreover the function
(2.3) FeH®R)NC*(Q)
characterized by:
2.4) ImF(z) =log |z|, #2e0Q, with ReF(0)=0,
verifies the supplementary boundary conditions (where b = sup {y € R: iy € Q}):
(2.5) |F'(z) —if2|* + 29 Imz = constant, zedQ,
2.6) F'(ib)=(1-b)/b. =

REMARK 2.1. — We call y: T — C a C~*-Jordan curve if y e C*(T) with y'(¢) =0
(t e 'T) and y is simple and positively oriented. With this notation, the inner domain of
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v is called balanced with respect to the imaginary axis if Rey(f) <0 implies
Imy’(t) < 0. A consequence of this relation is that the point ib is the top of £ (hence
b>0). n

REMARK 2.2. — The relation F e H(R) N C®(R) means that F is a holomorphic
function in @ and that all the derivatives F™ have a continuous extension to
Q. =

REMARK 2.3. - Relations (2.4) and (2.5) are the translations of (1.2) in terms of the
function F' (with ¢; = 0). By relation (2.2), we can easily verify that relation (2.6) sim-
ply prescribes that the speed in the highest point of 92 is 1. Notice that the constant
in (2.5) is not a datum of the problem. m

REMARK 2.4. — From the physical point of view, the open set £ is expected to be a
convex set. Later we shall try to exhibit some condition connected with the case in
which £ is a convex set. =

REMARK 2.5. — If g =0 then 2 =D is a solution of ProblemA. ®m
The main result contained in the present paper is the following:

THEOREM 2.6. -~ For all g = 0, there exists at least one solution of Problem A. If

g =20 is sufficiently small, there exists one and only one convex solution of
ProblemA. =

3. — Transformation of the problem.
We now introduce:

ProBLEM B. - Conformal formulation. Given g = 0, we look for a conformal map
He HD)NC* (D) such that:

(3.1 90" (w) =0, weD,

3.2) Redc(1) =0, Imoc(1)>0, a¢'(1)=i, 90(0)=0,
(3.3) H(w) = - (w), weD,

3.4) Im[j—ﬁ x(eiﬂ)] <0, ©elo, .

35) E% 19C (e™)] "2 + 2g Re [ (¢)e?1 =0, de[-m, x]. M

Problem B is equivalent to Problem A (the physical formulation) as stated
by:
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THEOREM 3.1. — Given g = 0, we have:

a) if 2 is a solution of Problem A, then the function

(3.6) A:Q — C defined by A(z) = — izexp (iF(z)) .

1

is a conformal mapping of Q onto D and A ! is a solution of Problem B;

b) if 9C is a solution of Problem B, then 3¢(D) is a solution of Problem A.

Proor. - We begin proving parta) of the theorem. Recalling relation (2.4), if
z € 0Q it follows that:

[A(z)] = |z]exp(— ImF(2)) = |z| exp( — log|z]) =1,

which means that A(99) c dD. Moreover we have that A(0) = 0 (with multeplicity 1).
This fact (see, for instance, [8], Th. 1.9 and 2.6) proves that A is a conformal mapping
of @ onto D. Using the C“-regularity of the Jordan curve 62, we obtain that
A e HD)YN C* (D) and that relation (3.1) holds (see again [8], Th 3.5 and 3.6).

By the symmetry of £ and the boundary Dirichlet behaviour of ImF, it
follows:

(8.7 F(-3)=-F@), F(-2=F'(), zef.

Henee A(—2) = A(2) (z € 2), which implies (3.3). Using again (3.7), we have that
Re F(ib) = 0. Hence, since b > 0 and recalling (2.4), it follows that:

A(ib) = bexp( — ImF(ib)) = bexp ( — log(h)) =1,
which proves that ReA '(1)=0 and ImA1(1) =5 > 0. By (3.6), we have that:
3.8) A'(2) =2[F'(2) — i/2]exp(iF(2)), zeQ— {0},

which implies, using (2.6), A'(ib) = — i, hence (A ') (1) =1i. Also relation (3.2) is
proved. By (3.2) and (3.3), already proved, 9¢ = A ~' maps the upper semidisk into
2nN{zeC: Rez < 0}. We remark that A ~': T — C is a parametrization of 69 (the
conformal parametrization): since the tangent direction of a curve does not depend on
the parametrization, we obtain (3.4) as a consequence of the hypothesis that £ is a bal-
anced set. By (3.8) and (2.4) we have:

A" @) = |z] |[F'(2) —i/z|lexp( — ImF(z)) = |F'(z) —i/z|, zedQ,

which, recalling (2.5), implies |A'(2)|? + 2g Imz = constant (z e Q). Taking z =
= A" (e™), we obtain:

(A1 (e®)] 2+ 29Im[A "' (e”)] = constant, ze 09,
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hence:
—j—ﬁ |(A‘1)'(e“’)| 2+ 2gIm[ie? (A1) ()] =0, 2e€0Q,

which implies (3.5). Part a) is completely proved.

Now we shall prove part b). Taking y(t) = 3¢(e™) (¢t e [ —x, «]) and by (3.1), we ob-
tain that Q = 3C(D) is the inner domain of a C”-Jordan curve, which is symmetric
with respect to the imaginary axis (by (3.3)). Recalling (3.4), 2 is balanced with re-
spect to the imaginary axis.

Let now A = 3¢"1. We also have that A € H(Q). Since A(z) = 0 if and only if z = 0
(with multeplicity 1), there exists F € H(Q2) such that:

(3.9) @ =iA())z, zeQ-{0}.

By (3.3) we have that A(—2) = A(z) (z € Q). Since Re 9¢(1) = 0 and Im 3¢(1) > 0, we
obtain that i4(z)/z > 0 for all ze @ N {Rez = 0}. Then we can choose F such that
Re F(iy) = 0 for all y € R verifying iy € 2. Hence we have Im F(z) = — log | A(2)/z],
(ze 2 — {0}). Recalling that |A(z)| > 1 as z—w e 92, we obtain:

lim ImF(z) =log [w|, VwedQ

and, by the C *-regularity of 392, it follows that ImF e C* (Q) a_r_l_d that (2.4) holds. We
have also that Fe H(Q) N C* (Q) (and that A e H(Q2) N C*(R)). Since:

Rel[oC'(e?)e?] = — Re [z Ed{i 36(6“9)] = Im[j—ﬁ :)C(ew)], del-m, 7],

relation (8.5) can be written:

|’ (9ce®))|? + 29 Im IC(e™”) = constant, Fe[—x, x].
If we put z = 3(e™) e 8R, this relation becomes:
(8.10) |A'(2)|? + 2gImz = constant, z2e9Q.

Differentiating relation (3.9) we have:

A(2)

4

(B.11) eFP[1+ i2F'(2)] =1 [1+3F'(2)]=1A4'(z), zeQ-{0}.
If z € 32 then | A(z)| = 1. Hence |i/z — F'(2)| = |A'(2)| (2 € 3RQ). Thanks to relation
(3.10), we obtain (2.5).

It only remains to prove relation (2.6). Since 3C(1) belongs to the positive imagi-
nary axis, we can put: 3((1) = ¢b. By (3.4) ib is the top of 3%2. Then we have: A(ib) = 1
and A'(ib) = —i. Using (8.11), we have 1/b— F'(ib) =1 and relation (2.6) fol-
lows. ®m
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4 - Weak formulations of the problem
a) Preliminary considerations.

NOTE 4.1. - A conformal map f defined in D and such that f{0) = 0 is called a con-
vex (resp. starlike) function, if f(D) is a convex subset of C (resp. a starlike subset
of C with respect to the origin). It is well known that a funection fis convex if and only
if the function wf'(w) is starlike (for more details see, for instance, [3], Seec-
tion 2.5). =

Now we assume that JC is a solution of Problem B and £ the corresponding sol-
ution of Problem A (as stated in Theorem 3.1). We can introduce the following
funetion:

4.1 £:D — C defined by: £(w) = —i3C (w).

The following result contains some preliminary properties of the funection £

ProposITION 4.2. — We have that:

(4.2) Le HD)N C= (D),
4.3) L) =Lw)=0,weD,
4.4) L()=1.

Moreover we have that Q = 2((D) is a convex set if and only if the function w e D —
— wL(w) is starlike.

PRrooF. — Relations (4.2)-(4.4) are easy consequences of the definition of £. Using
Theorem 3.1, we have that Q is a convex set if and only if the function ¢ is a convex
function, and, by Note 4.1, this is equivalent to the condition that the function waC (w)
is a starlike function. m

Let us now consider the classical complex Poisson kernel:

1+ pe®?

Hr(ﬁ) = Py

rel0,1, deR.
1—re

Put also P,.(9) = ReH,(#) and Q,(¥#) = Im H,(?) which are (respectively) the ordi-
nary Poisson kernel and the conjugate Poisson kernel. Then we can easily obtain:

ProposITION 4.3. - The function £ may be represented as:

45)  £(re™) = exp 51; [ H.0—tlog | ee™]dt)(r, $) €10, X[~ x).
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It is well known that (see for instance [5]):

4.6) lim 1 j Q, (0 — Y h(t)dt = (Bh, ), 9eR, he C®1(T),
r11 20

where Z is the so-called comjugate operator defined by:

1 f’h(ﬁﬂ)—h(ﬂ—t)

4.7 (ER)(®) = (Eh, 9) = — 5— 2tg (t/2)

dt.
2

REMARK 4.4. — Notice that the definition of =, suitably adapted by the use of a
principal-value integral, ean be extended to A e L'(T) (see again[5]). &

Given a €]0, 1] and # € N, let C™ “(T) the space of the functions defined in T such
that the derivatives 2® e C%*(T) (k < n), i.e. are Holder continuous functions (with
exponent a), with the norm:

4.8) |l o =sup {|W(D)|, ¥ e[—m, wl} +

& [R® (D + t) — B® (9]
+ 2 sup
k=0 |t]®

,Hhtel—m, m] with £ = 0;.

Taking into account of the extension of the conjugate operator described in Re-
mark 4.4, if k e C®“(T) the conjugate operator Zh can be expressed as in (4.7) using
an ordinary Lebesgue integral. We have that (a0, 1)) Z: C**(T) - C>*(T) is a
linear and continuous map. This is a result due to Fatou (see, for instance, [2] or [4]). It
is elementary also to prove the following results (a €]0, 1[):

4.9) if ke C™*(T) then Zh e C™*(T) and (ER)® = Zn® (k < n)
(4.10) the map Z: C™*(T) - C™*(T) is linear and continuous .

By (4.2)-(4.4) we can introduce the following function (as usual, identifying T with
the interval [ —ux, x]):

(4.11) @: T—R such that: @(0) =0, £e?) = |e(e™)| exp (ip()),
that is ¢ is (a branch of) the argument of £(e®).

ProposiTiON 4.5. — We have that ¢ e C® (T). Moreover:

(4.12) (-9 = -, del-m x]
(4.13) 0<d+e@@)<a ,Vde]0,n,
9
4.14) | L) 2=1+3g f sin(p(t) + t)ydt, ¥ e[ ~x, 7],

0

(4.15) @(8) = (Eh, »), b e[ —m, x],
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where the function % is defined by A(®) =log|L(e®)| (¥ eT). Moreover we
have:

(4.16) H(D) is a convex set if and only if ¢'(¥) = -1, $€[0, x].

PRrROOF. — Since £eC*(D) and sinece £ never vanishes in D, it follows that
@ e C”(T). We also have that relation (4.3) implies (4.12). By (3.5) we have:

% |£(e™)]| 2~ 2gIm[e® L(e?)] = Zi% [ £(e™?)] 2 = 2g]L(e™)| sin(¥ + @) =0
Since £(1) =1 and by the identity:

i#Y-1_ad W) -2 2 d i#}) -3
| 2le) | d0|£(e )] = ﬂm(e )|
we obtain relation (4.14). Taking the limit when » T 1 in relation 4.5, it follows:

A

|.£(e™)|exp (ip(®) = |Le™)| exp lifn1 E%‘K— J Q. (% — t)log | £(e™)| dt |,

hence (recalling that ¢(0) = 0 and by the fact that |£(e™)| is an even function and the
funetion ¢ — @,(¢) is an odd funetion):

o(9) = -21— [ Q. - vlog|.2(e™]at,

-

and by the property (4.6), we obtain relation (4.15). Sinee:

eiz‘}ve(eiﬁ)_ ww%/(ew)_ _E_ﬁ_[x(em?)]
and, recalling relation (3.4), we obtain that Im [e¢™ £(e?)] > 0 (¥ €]0, ), which eas-
ily implies (4.13).
Recalling Proposition 4.2, we obtain that (D) is a convex set if and only if the
function @ — argle® £(e®)] =9 + () is non decreasing. This fact concludes the
proof of the present Proposition. ™

REMARK 4.6. — Relation (4.15) gives a representation of the argument of the bound-
ary value of £, that is the value of @, in terms of the boundary value of |£|. We also
remark that relation (4.15), connected with equality (4.14), suggests a fixed point pro-
cedure to characterize the value of ¢. Actually, if we propose a starting value of ¢ on
T = 9D, we can evaluate the value of {£(e”)| (using relation (4.14)). Then replacing
this value in (4.15), we must find again the starting value of ¢. This fixed point proce-
dure will be used to study the present problem (see later). This method will also be
employed for the numerical treatment of the present problem. ®
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b) Weak formulation.
Let us introduce the following linear space:

X={ueC’(T,R): u(® = —u(—9), del—n, xl},
with the norm:
4.17) |ul| = max { |u(®)|, ®e -, xl}.
Then (2, || ||) is a Banach space. Define now:

M={ued: 0<ult)+t<n, tel0,nl},
My ={nedk: ut)—uis)zs—t,0<s<t<na}.

Later we will also need the set (1 = 0):

L={ueX: 0O +u® <a+¢(0),del0,xl},

where £(0) = /2 and, if A > 0, £(4) = min {n/2, 1/(6Ax)}. Notice that M c X c X (A =
2z 0). Let us also introduce the space:

Y={heC(T,R): h(0)=0, (¥ =h(—-D), de[~-x, 7]}
with the norm: '
(4.18) 2]l = max { |k (3|, del~-m, xl}.

The space Y, with this norm, is a Banach space. We can now introduce the following
operator S;: X; —> Y (A = 0), defined by:

@
(4.19) (S u)d) = — élog (1 + 34 J sin (u(t) + t) dt).
0 .

For every u e &; the function S; 4 has a meaning since the argument of log is always
= 1/2. Since the function u is an odd function, we have that (Sgu)(®) = (S,u)(¥ + 27)
(#eR). Hence S;: X; — Y is well defined. Moreover we have:

PROPOSITION 4.7. - Given A = 0, for every u e &; (hence for all u € 1) we have that
ESLH € X.

ProoF. - Since the function x is an odd function, we obtain that (S;u)(®) =
= (Su)N(—93) (P eT). Hence (ES,u)(P) = —(ES;u)(—¢). ®m

Let us now consider the following:

PrOBLEM W. - Weak formulation. Given g = 0, we look for a function ¢ € 9T such
that ZS, ¢ = ¢. ®m
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Problem W and Problem B (or Problem A) are equivalent as stated by the
following:

THEOREM 4.8. — We have:

i) if 3C is a solution of Problem B, then the function ¢ defined in (4.11) (the
function £ being introduced in (4.1)) is a solution of Problem W.

ii) given ¢ solution of Problem W, if we put:

14

L(re’) = exp % jH,(ﬁ—t)qu;(t)dt ,  (r,Mel0, [ X][—m, x],
then the function e H(D), such that ' =€ with 3(0) =0, is a solution of
Problem B.

iif) we have that (D) is a convex set if and only if ped,. ™

Part i) of Theorem 4.8 is an obvious consequence of Proposition 4.5. Part iii) is im-
plied by parts i) and ii) and by (4.16). To prove part ii) we need some preliminary
results.

LEmMA 4.9. - If g 2 0 and if ¢ e X, with ES;¢ = ¢, then ¢ € C” (T). Moreover
there exists a sequence k, > 0 such that, for all 1 € [0, g] and for all ¢, € X, verifying
ES ¢, =@, we have @[, o < k-

Proor. - It is enough to prove that for all » € IN, we have that ¢, belongs to a
bounded subset of C™ “(T). Sinece ¢, € X, then ¢, belongs to a bounded subset of
C°(T), hence S, ¢, belongs to a bounded subset of Y and then, by (4.10), we can deter-
mine ko> 0 such that @, [y o < k-

By induction, we assume that there exists k, > 0 such that ||, [, o <k,. Then
S; ¢, belongs to a bounded subset of C”* ! *(T) and then, by (4.9) and (4.10), there
exists k, ,, >0 such that |@llps1 0 <kper. ™

PROOF OF PART ii) OF THEOREM 4.8. — By Lemma 4.9, if ¢ is a solution of Problem W,
it follows that ¢ e C* (T). Using the fact that ¢ € X and £ + @(?) €10, =l (¢ €10, 2]}, it
follows that:

4
Jsin(t + o) dt =0, de[—mx, 7,
0

hence we obtain that S,¢ € C* (T). Put now:

R(ret) = 51; [ H®-0S,00dt, @8 el0, Ux[~,l,

-

we have that Re % is a harmonic function in D which has C* boundary value given by
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S,9. Then ReX e C” (Tﬁ_)_ and so X e H(D)N C* (D). This result implies that £=
= exp(X) e HD) N C~ (D). We easily obtain that (d e[ —mx, #]):

&

(4.20) |£(e®)| ® = exp (- 8S,0(8) =1+ 3¢ J sin(t + g(t)dt # 0,
0

(4.21) (arg £)(e?) = (), de[—mx, 7],

(4.22) L) =Lw),weD.

If we introduce the function ¢ by the conditions ' = i£ with 3€(0) = 0, then we
have that e H(D) N C* (D) and that (3.1) and (3.3) hold. By (4.20) and (4.21), we
have £(1) = |£(1)|exp (ip(0)) = 1. Since £ never vanishes, we obtain that £(r) > 0
for all re[—1, 1]. Then ' (1) = i£(1) = i and relation (3.2) is proved too. We also
have:

a WY et (0, f piYy i
dﬁsc(e )=3C(e™)e™1i Le¥)e™,

hence (since ¢ € IN):

Im[é%:)c(em)] = —Im |£(e?)]e™® o) = — | e(e?)| sin(¥ + () < 0, ¥ [0, 7]

and (3.4) follows. By (4.20) we obtain:
3|ee®)|2 L )| = 3oy L | e(e)| 2 = 3gsin (@(d) + )
dd 2 do ’
hence:
% | 2(e)] 2 = 2g].£(e™) |sin (p(9) + &) = 29 Im[.(e?) '?].
Since £(e?) = —i3C'(e™), it follows:
i[‘&C’(ew)l_zz —92g Iml[io¢ (e?)e™],
dy
which implies relation (3.5).
It only remains to prove that 9 is a conformal map on D. To this end, we begin
proving that Red((w) <0 for all weD* = {weD: Imw > 0}. By (3.3), already
proved, we have that Re 3((x) = 0 for all x e [ -1, 1]. By contradiction, if Re 3¢ has a

non negative maximum in D% , then (using the maximum prineciple for harmonie func-
tions) there exists { €10, z[ such that:

Redc(e®) = 0; Redde®) = Reac(e™), €0, a.
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By the Hops principle ([9], Th. I1,7), we obtain that:

JRedC
or

(eié) = M

(e®)>0,

which gives a contradiction compared with (3.4). Hence Re 9C(w) <0 fg all we D%.
Similarly we can prove that Red((w) >0 for all weD* = {weD: Imw < 0}.
Hence:

(4.23) Red(e™®) > 0 if 9] — m, O, Reac(e™) < 0 if ¥€l0, =l.

We can now prove that 3¢ is a conformal map. By (3.4), the map @ € [0, 7] — 3¢(e™) is
an injective map. Similarly the map #e[—x, 0] = 3(e™) is an injective map too.
Using relations (4.23), it follows that the map & e [ -, 7] — 9C(e*?) is a Jordan closed
curve. Sinee H(0) = 0 (multeplicity 1), we can conclude that C is a conformal map in
D (see [8], Th. 1.9). =

5. - An existence result for the solutions of Problem W.
We shall now prove the following existence result:

Theorem. 5.1. — For every g = 0 there exists at least a solution of Problem
W. =

REMARK 5.2. — Recalling Theorems 3.1 and 4.8, Theorem 5.1 states that, for every
g = 0, there exists at least a physical solutions € defined by Problem A. ®

We now begin the proof of Theorem 5.1.

PROPOSITION 5.8. ~ Given g > 0 and 4 € [0, g], if 4 e X, verifies relation ZS;u = u,
then u e 9. Moreover if 1 >0, then u(:#) >0 (P el0, n[). ™

If =0 and ESyu = u, it easily follows that 4 = 0. Then the statement of the
Proposition 5.3 is obvious in the case 1 = 0. Hence we can assume 1 > 0 in the proof of
Proposition 5.3. We need now the following auxiliary function (where u e X verifies
the hypothesis of Proposition 5.3):

56.1) Gre?) = rei”exp(—zl?t— J H, (¢ - t)(Su)t)dt |, (r, 9)el0, U X[ —m, =].

\ -7
We can easily control (by Lemma 4.9) that:
(5.2) G e HD)N C*D); G@w) = G(w), weD.
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The first step of the proof of Proposition 5.3 is contained in:

LEMMA 5.4. - Given u e X verifying the hypothesis of Proposition 5.3, we have that
&+ u(@) <z (§el0, al).

ProOF. — By contradiction, we can assume that there exists ¢* €] — &, s such
that:
(6.3) T <O+ u(P*)<3x/2, I +u@*)z9+ud), del-mn, al.

We can now consider the restriction of the function G to the open set: D* =
= {w e D: Imw > 0}. Since G never vanishes in D", we can consider a branch of the
logarithm of G on D*, which is given by:

log G(w) = log |G(w)| + iarg G(w).
The function argG can be chosen such that (extended to a smooth function in

D* —{0}):

A 7, ifxel[-1,0[
/“? =19.+ 19 _ _ ’ s b
arg G(e ) ’u('ﬁ), E[ T, -71'], arg G(W) { 0’ if x E]O, 1].

It is also easy to prove that:

54) max lzim arg Gw)<m, Cel[—1, 1].
The function arg G verifies:
(65 wsarg Ge™)=0*+u(®*); arg Ge™') = arg Gw), weD* —{0}.

By the Hops principle ([9], Th. IL7), we obtain: (arg G/dr)(e™") > 0. Since the funec-
tion arg G is the harmonic conjugate of the harmonic function log|G(w)|, we obtain
that (dlog |G| /d9)(e™") < 0. On the other hand, we easily obtain that: log |G(e¢®)| =
= (§; u}(). Hence:

Asin (9 + u(9))
)
1+ j sin (¢ + u(t)) dt
0

dlog |G|
ad

(e") = -

and this relation implies (recalling (5.3)) that (dlog |G|/d®)(e™") = 0, which gives a
contradiction. The proof of Lemma 5.4 is complete. =

Let now:

M={ueX:0<ut)+t<mtel0,x]}.
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LemMMA 5.5. — We have that:
Dif weM and A >0, then (ES;u)() >0 (Fe] —xn, al);
ii) if ue M and A =0, then (ES,u)() =0 (Se[~m, x]).

ProoOF. ~ We only prove part i), since the proof of part ii) is similar. Using the hy-
potheses, we can easily verify that:

5.6) [a%(Sm)](ﬂb—[%(Sm)](—ﬁkf), 9el0, af, 2>0, uedm.

Consequently:
(.7 (S, u)ty) < (S;u)t) <0, fO<|t] <ty <m, 1>0, ueir.
At last we have:
(5.8) Sy = S)([t]), i [t|sa, 4>0, pedn.
We can prove now:
(5.9) Su)P+t) < (S -1 <0, P,tel0,al, >0, ue.
To prove this relation we must consider three cases:
First case: O — ¢, % +te] — oz, al. This case is obvious.

Second case: O —tel0, x], 3 +ieln, 2a{. This fact implies 0 <P -t <m—
—t<2x — ¢ —t<a. Hence (by the periodicity) (S,u) (@ —t) > (S,u)(27 — ¢ —t) =
= (Syu) (=70 — 1) = (S,u)(¥ + t). The second case is proved.

Third case: & —tel—m, 0], O +teln, 2af. This fact implies 0 < — (¢ —1) <
<2x—10-t<m Hence: (S;u)d—1)=(S,u)(—(F—1)>Su)2r—9—1t)=
= (S,u)(® + ). This completes the proof of (5.9).

By an easy calculation we can verify that the value (ZS,u)(?) can be written
as:

(8, m) D+ £) — (S, u)(D — t)
(8,00 = - & | 2 /29” dt

Using this representation of (ZS,u)({#) and recalling relation (5.9), we can complete
the proof. R

CONCLUSION OF THE PROOF OF PROPOSITION 5.3. — If u € X satisfies the hypotheses
of Proposition 5.3, thanks to Lemma 5.4 and 5.5, we obtain that:

,ue%; P+u(P) <m, 9]0, .
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Using Lemma 5.5, it follows that u(#) =0 (& e [0, «]), hence:
0sd<sd+u(d)<nm, *el0, af,

which implies that x.e 9. If & €]0, #f and A > 0, it follows that u(9%) > 0. Proposition
5.3 immediately follows. ™

To conclude the proof of Theorem 5.1 we use a topological method based on Schae-
fer’s fixed point theorem (see, for instance, [7], Th. 4.4.11).

DEFINITION 5.6. — Let .Z be a normed space and N a bounded subset of Z. A map-
ping T: N — Z is called compact if: i) T is continuous; ii) T(N) is a compact subset
of Z. ®

DEFINITION 5.7. — Let Z be a normed space and N a bounded subset of Z. The map-
ping W: [0, 1] X N— Z is called a homotopy of compact transformations on N if:

i) for all te[0, 1] the map y e N — W(t, ) e Z is compact.
i) for all » € N' the map ¢t e [0, 1] — W(t, n) € Z is continuous. M

THEOREM (SCHAEFER). — Let Z a normed space and N a bounded , closed, convex
subset of Z containing the origin in its interior. Let W:[0, 1] X N — Z be a homotopy
of compact transformations such that:

(56.10) W0, ON) cN; W(t, n) # n,(t, 1) [0, 1L XN .
Then there existgéﬂ pe N such that u= "W, u). N

If g = 0, Problem W has one and only one solution given by # = 0. Then we can as-
sume g > 0. Put now Z = 3N C'(T), which is a Banach space with the norm:

lyllz = max{|n' (], # e[, al}.
Put also (k; being the positive constant introduced in Lemma 4.9):
N={neZnx,: ;< k},

which is a bounded, closed, convex subset of Z containing the origin in its interior. Let
also W: [0, 1] X N'— Z defined by W(t, ) = ZSy,. Given t € [0, 1], the map n e N —
— 8, € C*(T) is continuous. By (4.10) the map 7€ N — ES;yn € Z is continuous and
compact. Similarly we can prove that, given € N, the map t [0, 1] > 5S;;ne Z is
continuous. This means that the map W:[0, 1] X N — Z is a homotopy of compact
transformations. We also have that W(0, N') = {0} c N, hence the former relation
(5.10) is fulfilled. By Lemma 4.9 and Proposition 5.3, we also have that if 4 € N verifies
ESiu = u, then u belongs to the interior of N. Then we have W(t, #) = 5 (t €]0, 1],
7 e ON) and so the latter relation (5.10) is satisfied too.

Using Schaefer’s Theorem, we can conclude that there exists u e N' such that
pu="W(1, u) = ZS,u. This completes the proof of Theorem 51. m
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6. — An existence and uniqueness result for the solutions of Problem W.

Put now:
My = {ueX: |u@) —us)| < |t—s]}.
We have:

PROPOSITION 6.1. ~ Given g = 0 sufficiently small, if ¢ is a solution of Problem W,
then p e M,. =&

To prove this result we need:

LEMMA 6.2, ~ Given g = 0 and u € I, we have:

(6.1) a(Z8,u) < 29[(1 + 6gm)alp) + 1) + 3g],
where:
(6.2) alp) = max { |u($) — u(&)|/|9 - &|, 9 = &},

Proor. — If F(t) = (S,u)(¥ + 1) — (Syu)& + 1), it follows that:

= (5 -1 ﬂ___________F(t)_F(_t.). ' 1 (i
(E800) ~ @500 = 3 | [ Ty < & o,

where [{(t)] < |i]|. By an easy calculation we have:
[F'@@)| < |9 - &|lg(1 + 6gm)(alu) + 1) +3¢7],

which completes the proof. =

Proor oF PROPOSITION 6.1. — Let ¢ a solution of Problem W. Thanks to Lemma 6.2,
we obtain:

a(@) < 2¢[(1 + 6gm)a(e) + 1) + 3g].

Recalling that ¢ = 0 is small enough, we can conclude the proof. ™
We can now prove the main result of the present section:

THEOREM 6.3. — If g = 0 is small enough, then Problem W admits one and only one
solution ¢ € ;.

Proor. — Using Lemma 6.2 we easily obtain that (ZS,)(J1;) c J%;. By a simple cal-
culation we obtain:
ISg17 = Syulls < g(1 + 89y — ull, , w e M1,
where the norms || || and || ||; are defined in (4.17) and (4.18). Recalling (4.10), it follows
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that the map 5: C'([—x, 1)) — C%([ —m, x]) is a linear and continuous map, hence
there exists a constant C > 0 such that ||Zk|| < C|jl,; for all & € Y. Therefore:

128, — ES,ull < ClISyn — Syull < Co(1 + 6gm)lg — ull, 1, ue oy

and then the map ES,: 9%; — JN, is a contraction mapping (if g is small enough). This
completes the proof. ™

REMARK 6.4. — Recalling Theorem 4.8, Theorem 6.3 states that, if g = 0 is small
enough, then there exists one and only one physical solution 2 defined by Problem A.
Moreover, by the part iii) of Theorem 4.8, since ¢ e I; C My, L2 is a convex subset
of C. =

y (z=2x+1iy)

Fig. 2. - Monotone behaviour of the set 2 as a function of g.
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7. — Some numerical experiment.

The weak formulation of the problem can be used to obtain an heuristic approxi-
mation of the problem. Diseretizing the integral which appears in the definition (4.19)
of operator S, we can introduce an approximate operator S;‘. In a similar way we can
define an operator =, starting from the definition (4.7) of operator Z. Setting now
@ =0 and computing (by the program MATLAB) ¢, ., = E’th"qan, we can experi-
mentally obtain, after 7 — 8 iterations, that |@, ., — ¢, | < 107°. Choosing the values
of g=0, .3, 1, 5, 50, we can determine the corresponding shape of Q. The results,
printed using the software POSTSCRIPT and deseribed in Figure 2, show us a mono-
tone behaviour of 2 as a function of g: I am not able to verify this property from the
theoretical point of view.
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