
Annali di Matematica pura ed applicata 
(IV), Vol. CLXXIII (1997), pp. 107-125 

On a Unifying Approach to Decomposition Theorems 
of Yosida-Hewitt Type (*). 

ACHILLE BASILE - ALEXANDER V. BUKHVALOV 

A b s t r a c t .  - In this paper we deal with a very general form of the Yosida-Hewitt theorem on the 
decomposition of measures into countably additive Gnormal,) and purely finitely additive 
Gantinormal,) parts. It expands a previous one by the authors with the aim of joining two 
different standpoints to the Yosida-Hewitt type theorems. The first goes back to the original 
publication defining the ~<antinormal, part as a certain disjoint complement to the ,~normal,, 
one. The second approach goes deeper and characterizes this disjoint complement intrinsi- 
caUy i.e. as a measure, functional or operator which is equal to zero on a huge set. These two 
points of view are common for the publications connected, respectively, with measure theory 
and theory of vector lattices; the second allows important applications. The unification of 
these approaches gives an opportunity to derive new information in the case of vector mea- 
sures. We have taken the opportunity of this paper also to furnish a survey of the topic. 

1.  - I n t r o d u c t i o n .  

The Yosida-Hewitt theorem [28] (the YH theorem, for short) asserts that  each 
bounded, finitely additive measure v can be uniquely represented in the form v = 
-- vl + v2, where vl is a countably additive measure, while v2 is a purely finitely addi- 
tive measure. The latter means that  v2 is disjoint to any countably additive measure, 
i.e. if a countably additive measure 0 is such that  0 ~< 0 ~< Iv2 ], then 0 = 0 (here ]. [ 
stands for the variation of :measures). As a consequence, one easily derives a decompo- 
sition for .any continuous functional on the Banach space L ~ into an integral (~,nor- 
mab,) functional (generated by a function from L 1) and a functional which is disjoint 
to any integral functional (an ,ant inormal ,  functional). 

The YH theorem has many versions and generalizations in diverse settings, e.g. 
functionals on vector lattices and spaces of vector-valued functions, measures with 
values in Banach spaces, topological groups and vector lattices, etc. Our paper has two 
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objectives. The first, but not the main, goal is in the presentation of a unified approach 
which includes all cases mentioned above and shows, moreover, that they can be easi- 
ly reduced to one theorem--the YH theorem for operators in vector lattices. The sec- 
ond, and the main, goal of this paper is to obtain in the same cases a deeper descrip- 
tion of the (,antinormal, part which allows many important applications (see refer- 
ences below). 

Taking into account the long history of YH theorems and the variety of settings, 
we have found reasonable to provide the reader with the following detailed Section 2 
which covers the principal settings and all preliminaries. The rest of our paper is or- 
ganized as follows. In Section 3 we give the strong form of the YH-decomposition for 
order bounded operators from a VL E with the Egorov property to an order complete 
VL F with the countable sup property (Theorem 1), pointing also out that the latter 
condition on F is essential. Then we introduce the strict singularity for operators and 
extend Lozanovskff's results to operators. Section 4 deals with operators between 
vector lattice normed spaces. In this context we establish the YH Theorem for ma- 
jorized operators (Theorem 4). Finally, in Section 5 the decomposition of o-weakly 
compact operators from a VL to a Banach space is obtained (Theorems 5 and 6) and 
then applied to the case of vector measures. 

It is probably worth to be noted that the setting of majorized operators is suffi- 
cient to deal with vector measures of bounded variation while results for the more 
general case of s-bounded measures come from considering o-weakly compact opera- 
tors. We like to point out the centrality of the role played by Theorem 1 in the proofs 
of Theorems 4 and 7. 

Despite of the great generality of our setting, the results of our work are new for 
many classical spaces of measurable functions, L ~ being the main example. The 
equivalence between the weak and strong forms of YH-decompositions is clear in the 
case of spaces where there is an o.d.i, with order continuous norm (e.g. for Orlicz and 
Marcinkiewicz spaces, more generally, for all rearrangement invariant spaces exclud- 
ing L ~ ). But this is not the case, say, for such spaces with mixed norm as L 1 [L ~ ] and 
L ~ [L 1 ] to which our theory also applies. 

We are conscious that a good part of the material presented (in particular Theo- 
rems 1 and 7) is not dependent on linearity and can be extended to such things like C- 
groups, topological groups and homomorphisms. However, we decided to remain con- 
fined to the concrete case of vector spaces. Our notation mainly follows that of classi- 
cal treatises like [11], [29] and [1]. 

2 .  - P r e l i m i n a r i e s .  

2.1. Weak and strong forths of the Yosida-Hewitt decompositions. 

The variety of YH theorems deals with the splitting of a given object into the sum 
of a -normal, part and its -disjoint- complement (,antinormal- part). At the first 
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sight the terms of ,,disjointness- look rather different in the diverse settings. What is 
common is that if -something- is ,,majorized, by such a disjoint complement and is 
,,normal, then this ,something, is zero. 

The results of this type, look somehow tricky because the existence of a linear pro- 
jector is, usually, considered as a non-trivial fact in the framework of linear analy- 
s i s - i t  is well-known how difficult is to construct projections onto infinite-dimension- 
al subspaces of Banach spaces (in non-Hilbert space setting). But there is a wide class 
of linear spaces where the existence of a lot of special projectors is a triviality--this is 
the class of order complete vector lattices. In every order complete vector lattice 
there are special band projections onto every band--and there are a lot of bands. For 
example, every element generates a principal band. These are undergraduate facts 
from the theory of vector lattices (cf. [1,11,12,19,25,29]) known, mainly, from 
1930s. 

We will prove that, in fact, all the types of the YH theorem, mentioned above, can 
be easily reduced to the vector lattice setting where the result is trivial. 

Any decomposition into ,normal,  and ,,antinormal, parts where the ,antinormal, 
part is described in terms of disjointness to the ,,normal, one is referred to as the 
weak form of the YH-decomposition. The majority of works on vector measures is ex- 
actly devoted to this kind of decompositions but, as far as we know, there are almost 
no applications of these results outside this theory itself. The point is that here we 
have too poor information about the ,antinormal, part. 

We are mostly interested in the strong forms of the YH-decomposition, where an 
intrinsic description of the ,antinormal, part is given by characterizing this part as a 
functional, operator, or measure which vanishes on a ,huge,  subset of the domain. 
Such a kind of an antinormal part is referred to as a singular one. This strong form 
was, apparently, known only in the vector lattice setting. We will expand our investi- 
gations to all of the settings mentioned in the beginning. Naturally, if a certain weak 
form of the YH-decomposition is already known, the only thing we should prove, to 
get the corresponding strong form, is that any ,antinormal, object is ,singular,. 

In the case of functionals, the strong form of the YH-decomposition has a variety 
of different and unexpected applications. The idea is just opposite to the interest to 
such a kind of pathology as ,antinormal- objects. In fact, the description of the anti- 
normal part in many cases gives an opportunity to prove that the object is ,,normal, 
using the decomposition and proving that the ,antinormal, part is really zero (of 
course, the starting point is the consideration of the huge set where it vanishes). Im- 
pressive examples are giwm by Khavin's proof of the Mooney-Khavin theorem from 
complex analysis (the idea of using the YH theorem belongs to G. Ya. LOZANOVSKI~), 
D U B O V I T S K I I - M I L Y U T I N  approach to control theory in infinite-dimensional setting, ap- 
plications to subdifferential calculus. Moreover, some generalized forms of the YH 
theorem are also behind tlhe ,,theory of optimization without compactness,, invented 
in the paper by BUKHVALOV and LOZANOVSKI~ [7] (see [6, 7, 11]). In its turn, the cited 
theory has a wide range of applications to optimization, geometry of Banach spaces and 
lattices, complex analysis, best approximation, game theory, mathematical economics. 
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In contrast to the weak form of the YH-decomposition, which is always true, prac- 
tically without additional assumptions, the strong form of the YH-decomposition 
needs some assumptions. They are essential from the formal point of view, but they 
are not restrictive in practice, since the theory works in any space of measurable 
functions. 

2.2. The Yosida-Hewitt theorem for functionals in vector lattices 

Since we need some basic facts on decompositions in vector lattices, we shall start 
with a presentation of several YH-type results from this field, giving, at the same 
time, a historical commentary. 

In the sequel the following abbreviations are in use: VL stands for ,vector lat- 
tice>>, VLs stands for ,vector lattices-. 

Let E be an arbitrary VL. Then the space E j  of order continuous functionals, as 
well as the space E ~  of a-order continuous functionals, forms a band in the order com- 
plete VL E - of all order bounded functionals [25]. Since there is a band projection on- 
to any band in an order complete VL, we derive immediately the following weak 
forms of the YH-decomposition: 

(2.1) E - = E j  �9 ( E j  )a, E - = E ~  | (E ~  )d . 

Here M d stands for the disjoint complement of a set M. We will get the case of mea- 
sures simply considering the VL of bounded measurable functions. 

To state the strong form of the YH-decomposition we recall that a functional 
cf e E - is said to be singular (resp. a-singular) if there exists an order dense (resp. a- 
order dense) ideal G in E such that c; vanishes on G. We shall use the notation E~- (re- 
sp. E~  ) for the set of singular (resp. a-singular) functionals. The ideal G plays the role 
of the ~,huge, set mentioned above. We also recall that an ideal G in a VL E is said to 
be an order dense ideal--o.d.i., for short--(resp, a-order dense ideal--a-o.d.i., for 
short) if for any e ~ E+ there is a net {g, } c G such that 0 ~< ga ~ e (resp. there is a se- 
quence {g,~ } c G such that 0 ~< gm ~ e). In the case of a VL E, which is an ideal in the 
order complete VL of measurable functions on a a-finite measure space (tg, ~,/~), an 
order bounded functional cf is singular (in this case it is the same as a-singular) 
iff 

(2.2) V e e E  VA~#." # ( A ) > 0  3 B ~ 5  ~ 

such that ~(B) > 0, B c_A and cp(exB) = 0. 

It is an old result by A. G. PINSKER [12,25] that in every order complete VL the set 
of singular (in the appropriate sense) functionals forms an o.d.i, in the corresponding 
set of antinormal functionals (this result is also true for operators; it was generalized 
to arbitrary VLs by A. I. VEKSLER). It was W. A. J. LUXEMBURG who proved in 1965 
that, under some mild conditions, any antinormal functional is singular and obtained 
in this way a powerful intrinsic description (see [29,6] for original references), i.e., un- 
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der some practically always fulfilled hypothesis the following is true: 

(2.3) E - = E~- �9 E~-, E - = E ~  �9 E~  . 

The proof was based on sophisticated techniques dealing with functionals on Banach 
lattices (cf. [29,11]). It could be hardly carried out to the case of operators in a more or 
less straightforward manner. Almost at the same time G. Ya. LOZANOVSKff found a 
much more elementary proof which basically depends only on the diagonal theorem 
for almost everywhere convergence. The result was presented in the seminar of Prof. 
B. Z. VULIKH at Leningrad State University, but G. Ya. LOZANOVSKff did not publish 
his proof because of appearance of the work by W. A. J. LUXEMBURG. Later A. C. ZAA- 
NEN has found the same proof independently and has included it as a hint to the sol- 
ution of Exercise 90.14 in [29]. This proof has been carried out to the case of operators 
acting in VL in the paper [2]. Exactly this kind of generalization is the starting point 
of this work. 

The strong form of the YH-decomposition for functionals on the spaces E(X) of 
measurable vector-functions has been derived by V. L. LEVIN[15] and A. V. 
BUKHVALOV[7]. Numerous applications are given in [7,16]. These were the very first 
results of this type in nomVL setting. 

Investigation of integral representability of subdifferentials (see [16]) needs a 
more strong property of singularity which was invented by G. Ya. LOZANOVSKII [17] 
who introduced localizable functionals (we prefer to call these functionals strictly sin- 
gular). The difference is easily seen comparing the formula (2.2) with the following 
definition of strict singularity of ~ ~ E -  for a VL E of measurable functions: 

(2.4) VA E 5~ #(A) > 0 3B e 5 ~ such that/~(B) > 0, B c_ A and ~o(exB) = 0 Ve ~ E .  

This difference consists of the possibility to find B which does not depend on the 
choice of e. It occurs, for example, that on 0rlicz spaces the classes of singular and 
strictly singular functionals coincide but there are some Marcinkiewich spaces for 
which this is not true [17,18]. Generalizations of results from [17] to the case of opera- 
tors are resumed from [2] in section 3. 

2.3. The Yosida-Hewitt theorem for vector measures. 

A rather general YH decomposition for measures, to be intended here as finitely ad- 
ditive functions defined on a field ~ o f  subsets of a set tg, is due to T. Traynor. He con- 
siders in [21,22] the case of group-valued measures giving, with our terminology, a de- 
composition of weak type since the antinormal part is described in terms of a certain 
disjointness. 

To be less vague, let us consider a vector measure m defined on ~and  with values 
in a Banach Space (BS, for short) Y. We remind that m is said to be s-bounded 
(= strongly additive in [9]) if m(A~) tends to zero whenever {As } is a disjoint se- 
quence from ~ Moreover, the concept of pure finite additivity is extended to vector 
measures by means of the following definition: m is said to be purely finitely additive 



112 A. BASILE - A. V. BUKHW~LOV: On a uni fy ing approach, etc. 

if for any countably additive vector measure u and for any positive e, there is a set 
A e 5 ~ such that tlm(B)lly <~ e whenever B cA and ]lv(C)lly ~< e whenever Cc_ ~9\A. 

Traynor's decomposition states that any s-bounded vector measure m can be 
uniquely decomposed as m = mi + me where mi and me are s-bounded vector mea- 
sures, m~ is countably additive and me is purely finitely additive. 

Since we have stated the above theorem only for vector space-valued (rather than 
group-valued) measures, we must note that in this form it coincides with [9], Theorem 
8, p. 30. A formal difference is in the description of pure finite additivity. The compo- 
nent me is chm-acterized in [9] by the fact that, for any y * � 9  Y*, the real measure 
y* ore2 is purely finitely additive. On the other hand, for s-bounded vector measures, 
the latter property is equivalent to the pure finite additivity. 

It follows a formula (see also [20], for the case of a VL Y) for the countably addi- 
tive component of an s-bounded m: 

(2.5) ml (A) = lira lim m(A~) ,  
{ A n } e ~ A  n 

where $~ denotes the set (directed by {A,, } >1 {B~ } iffA~ -C B. Vn �9 ND of all increas- 
ing sequences {A. } from 5 ~ such that A n ~ A.  

Decompositions for vector measures can be seen as consequences of decomposi- 
tions of operators defined on VLs. The idea of using some versions of the generalized 
YH theorem for operators to derive results for vector measures is not pretty new. It 
was applied in this way to the vector-lattice-valued measures in [20] and to the vector 
measures in [13]. But, surprisingly, only the weak form of the YH-decomposition was 
under consideration. 

To fix notation for the sequel, let us assume that m: 5--, Y is a vector measure and 
denote by T,~ the associated operator acting on the space 8(~) of ~-simple real func- 
tions in the usual way: 

Denote :~(rn): = ( A  e 5: B -CA, B �9 ~ re(B) = 0}. 
Let 2 ~ (5 ~) be the space of all real-valued functions on t2 that are uniform limits of 

5-simple functions (so for a a-field 5 w e  have precisely bounded ~-measurable func- 
tions). As it is well known, formula (2.6) is the germ for a one-to-one linear correspon- 
dence between B(~ ~ (~), Y), the space of all bounded operators from 2~ (~) to Y, and 
the space of all bounded vector measures from ~ to Y. Starting from a a-finite mea- 
sure space (~9, J, ~), one establishes, more particularly, a one-to-one correspondence 
between B ( L  ~ (2), Y) and the space of all bounded vector measures m: 5~---~ Y that 
vanish on ~-null sets. It  is easy to imagine that decompositions of Tm will correspond 
to decompositions of m. Naturally, one has to transfer hypothesis concerning m to cor- 
responding hypothesis relative to the operator Tm defined on the suitable VL of 
functions. 
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3. - The Yosida-Hewitt theorem for operators in vector lattices. 

Throughout this paper all VLs will be assumed Archimedean. If E and F are VLs 
and F is order complete (Dedekind complete), the symbols L - (E, F), L j  (E, F) and 
L ~  (E, F) denote the spaces of operators from E to F that are respectively regular, 
order continuous and a-order continuous. If there is no reason to emphasize the role 
played by E and F, we simply write L - ,  L j  and L ~  : The spaces L j  and L ~  are Sands 
in L - .  The null ideal of an operator T e L -  (E, F) is N(T): = {e e E: I TI ( lel)  = 0}. 
Throughout the paper E and F are VLs, the latter being order complete. 

DEFINITION 1. - An operator T e L - (E, F) is called singular if it vanishes on a 
suitable o.d.i. G c E. The set of singular operators is denoted by L~- = L~- (E, F). Anal- 
ogously if T vanishes on a a-order dense (= super order dense) ideal, then T is called 
a-singular and the set of such operators is denoted by L~ = L~ (E, F). 

It is obvious that L~- and L~ are ideals in L - .  Our goal is to learn when they are 

bands. 
The weak form of the YH-decomposition for operators is proved without any addi- 

tional assumptions in the same trivial way as (2.1). As an immediate corollary the YH 
theorem for VL-vahed measures [20] can be derived. 

To formulate our result for the strong form of the YH-decomposition we need sev- 
eral definitions more. It is well known that this form is not valid, even in the case of 
functionals, without certain additional assumptions. For example, in the VL E = 
= C[0, 1] there are no non-trivial order continuous functionals (cf. [25]) but the Rieman 
integral gives an example of a non singular functional. 

We recall that a VL E has the Egorov property [19] if for every 0 ~<fe E and for 
every double sequence f~, ~ e E, we have that 0 ~< fn, k ~ k f (for all n e N) implies the 
existence of a sequence 0 ~< gm ~ f for which the relation 

gm <~ fn, j(m, n) 

holds (where m, n are arbitrary and j (m, n) is suitable). 
We also recall that a VL is said to have the countable sup property, if whenever an 

arbitrary subset D has a supremum, then there exists an at most countable subset C 
of D with the same supremum. 

Both, the Egorov property and the countable sup property are true for the spaces 
of measurable functions on a a-finite measure spaces. 

To cover also the more general case of semi-finite measure spaces we recall the fol- 
lowing definition. A VL E is said to be weakly a-distributive if for every 0 < f e  E and 
for every double sequence fn, k e E, we have that 0 ~< f~, k 1' k f (for all n e N) implies 
the existence of a sequence j(n) such that there is an element g > 0 with g <f~,j(~) for 
every n. 
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THEOREM l. - Let E be a VL with the Egorov property and F an order complete VL 
with the countable sup property. Then 

(1) L - (E, F) = Ln~ (E, F) (D L~ (E, F) .  

THEOREM 2. - Let E be a weakly a-distributive VL and F an order complete VL 
with the countable sup property. Then 

(2) L - (E, F) = L~- (E, F) + L~- (E, F) .  

PROOF. - See [2]. [] 

REMARK 1. - Let us consider the band projection PI: L -  -+Ljo  and, by [1], Theo- 
rem 4.6, we have for T e L j and e e E+,  

(3) Tl(e):= P1T(e) = inf{sup T(ek): 0 ~< ek i' e}. 
k 

The proof of theorems 1 and 2 mainly consist in improving formula (3) showing that in 
our case the infimum is really attained. Formula (3) needs to be refined to be appli- 
cable to derive formulas like (2.5) for the countably additive part of a vector measure. 
The refinement we are speaking about is well known and consists of taking into ac- 
count only components of e: 

(3)' T1 (e) = inf {sup T(ek): 0 ~< ek 1' e, (e - ek) A ek = 0 Vk ~ N}.  
k 

This formula (as well as its uncountable analogue for the order continuous case) is 
valid under assumption that E has the principal projection property. 

REMARK 2. - If  E is an order complete VL with the Egorov property and the con- 
tinuum hypothesis (CH) is true, then E has the countable sup property [12]. This 
means that there is no difference between formulas (1) and (2) since L j  = L ~  and 
L7  = L ~ .  It is interesting to mention that without the order completeness assump- 
tion this is not the case. Let us consider the space E = C(fiN\N) of continuous func- 
tions on the Stone-Cech remainder of the set of natural numbers. It is proved in [23] 
that this space has the Egorov property, hence both formulas (1) and (2) are true. But 
they look in quite an opposite manner. Indeed, this Banach lattice has a-order contin- 
uous norm which implies that L -  (E, F) = L ~  (E, F) for any VL F, i.e. (1) is read 
a s  

L -  = L ~  �9 {0}. 

On the other hand, there are no non-trivial ideals with order continuous norm in E 
[23]. This (in combination with a-order continuity) implies that L j  (E, F) = {0} at 
least in the case when F has a total set of order continuous functionals. Hence, (2) is 
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read as 

that is Ln~ = L~- in this case. 

L - = { O } O L : ,  

REMARK 3. - The countable sup property of F is essential for the validity of Theo- 
rem 1. This is illustrated by the following example. Take E = L ~ (0, 1) and, by the 
Kreins-Kakutani representation theorem, realize it as a space C(Q) for an extremally 
disconnected compact Hausdorff space Q. Let T be the identical embedding of E: = 
= C(Q) into F:= l ~ (Q). We claim that T �9 (L~-)d\L~-. 

It is clear that T does not belong to L~-. To show that T e (Ln)d,  let Tn be the or- 
der continuous component of T and f0 the constant function 1 on Q. Proving T~ (f0) = 0 
we get that Tn = 0. Let { Ua } be a base of neighbourhoods of an arbitrary point q e Q. 
Set Fa = Q\U~ and al  t> a2 if U~I c U~2. By complete regularity, for any a we get 
fa �9 C(Q) with fa (q) = 0 and fa = 1 over F~. As a consequence, we can affirm that 
fa ~ f0 in C(Q) (Q has no isolated points since C(Q) is order isomorphic to L ~ (0, 1)) 
and by [1], Theorem 4.6 Tn (fi)  <~ sup T(f~ ) (in l ~ (Q)), hence Tn (fo)(q) = O. Since q is 
arbitrary we have finished, a 

DEFINITION 2. - An operator T e L - (E, F) is called strictly singular if for any 
non-trivial band B in E, there exists a non-trivial band K _c B such that TIK = 0. The 
set of all strictly singular operators is denoted by Ls~ = Ls~ (E, F). 

Obviously L~  c L~-. In [17,18] examples of singular but non strictly singular func- 
tionals are given (the case of Marcinkiewicz spaces is considered in detail). It  is easy 
to see that L~  (L ~, F) = L [  (L ~, F). 

PROPOSITION 1 [2]. - The ideal L~ is order dense in Li- .  

PROPOSITION 2 [2]. - For a VL E which is decomposable into the direct sum of the 
bands with both the countable sup and the Egorov property, L~ (E, F) is a-order 
closed, namely 

T k e L ~  ( k e N ) ;  0 <<. Tk ~ T e L - ~  T e L ~  . 

We recall that an element e of a VL is said to be of countable type if the principal 
ideal generated by e has tlhe countable sup property. Now Propositions 1 and 2 give 

THEOREM 3. - Let E be a VL satisfying the conditions of Proposition 2 and F an or- 
der complete VL. Then, i f  T ~ L Z  (E, F) is of countable type, it follows that 
T ~ L~  (E, F). 

It is shown in [17] that in the space L ~ [L 1 ] every singular functional is strictly 
singular despite of the fact that its dual does not possess the countable sup 
property. 
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4.  - V e c t o r - l a t t i c e - n o r m e d  s p a c e s .  

We would like to t'~'n the attention of the reader to the concept of vector-lattice- 
normed space (VLNS, for short) which was introduced by L.V. Kantorovich in 1930s 
but has been overlooked by many mathematicians. This concept is fruitful when it is 
necessary to develop some general approach to similar notions in Banach spaces and 
in VLs. 

DEFINITION 3. - A triple (X, p, E) is called a VLNS i fXis  a vector space, E is a VL 
(the norming lattice) and p is an abstract (lattice-valued) norm on X, i.e. a mapping 
p: X - > E +  such that the following natural conditions are satisfied: 

(a) p(x) = 0 if and only if x = 0; 

(b) p(xt + x2) -<- p(xl ) + p(x2); xl, x2 E X; 

(c) p().x) = I)~]p(x); 2 e R ,  x e X .  

Any VL E may be considered as a VLNS with the norming VL equal to E itself 
and p(.) = !. I. Any normed space may be considered as a VLNS with the real line as 
a norming lattice and p(.) = II" I]. 

Typical examples of VLNS are given by spaces of measurable vector-valued func- 
tions and by spaces with mixed norm. We recall that the space of measurable vector- 
valued functions E(X), constructed from a Banach function space E on a measure 
space (T, 2:, #) and a Banach space X, is defined as the space of all (strongly) measur- 
able functions f: T--->X such that I f I := ilf(')ll e E. It is provided with the norm 
II fli = II] f Ill of mixed type. Clearly, E(X) is a VLNS with the norming space E and 
with the abstract norm ]- ]. Some other examples are certain spaces of scalarly mea- 
surable functions [4] and the spaces of operators with abstract norm [12]. 

Let (X, p, E) and (Y, q, F) be two VLNS. An operator T: X---) Y is called a ma- 
jorized operator ff a positive operator (a majorant) U: E--> F exists such that 

q(Tx) <~ U(p(x)) Vx e X .  

In the case of an order complete F we can consider the infimum (in the space 
L - (E, F)) of all majorants for T; it is denoted by ] T ] and still majorizes T, namely 
q(Tx) <~ ] T] (p(x)). In this case the space M(X, Y) of all majorized operators is a 
VLNS with the abstract norm ]. ] (taking values in L- ) .  From now on the norming 
space F is assumed to be order complete. 

DEFINITION 4. - An operator T ~ M(X, Y) is called bo-continuous (we write 

T ~ Mn(X, Y)) ff p(xa )(~ 0 implies q(Txa ) ~  0 (here the usual order convergence of 
nets in the corresponding VLs is assumed). 

An operator T ~ M(X, I7) is called singular ((we write T e Ms (X, Y)) if an o.d.i. 
G c_ E exists such that p(x)E G implies T(x)= O. 
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PROPOSITION 3. - Let T e M(X, Y). Then T is singular i f  and only i f  ] T I is 
singular. 

PROOF. - (of the ,,only if,) part). Assume G is an o.d.i, in E with 
p(x) e G ~ T(x) = 0. Let 0 <~fE G. By [14] we have 

{ ~tq(Txi ): ~ f} ] T l ( f )  = sup E P(Xi) <<- �9 
i=  i = 1  

Evidently, from ~,p(x~)~<fwe have p(xi)e  G and, therefore, q(Txi) = O. This gives 
i 

| T | ( f )  = 0. �9 

Two other properties play an important role in the context of VLNS: the decom- 
posability (or Kantorovich's) condition and the bo-completeness. 

DEFINITION 5. - The lattice norm p of a VLNS (X, p, E) is called decomposable if 
p(x) <<. el + e2 (x ~ X, ei e E+ ) implies the existence of x~ ~ X with x = xl + x2 and 
P(Xi) <~ el. A VLNS (X, p, E) is called bo-complete if for any net {Xa} in X we have 

that p(xa - xz) ~ 0 implies the existence of x ~ X such that p(xa - x) ~ O. 

It is clear that the decomposability is inspired to the so called Riesz decomposition 
property to which is equivalent for VLs. All other examples of VLNS that have been 
presented fulfil both conditions of Definition 5. 

From [14] we report the following 

THEOREM A. - Let (X, p:, E) be a VLNS with decomposable norm and (Y, q, F) a 
bo-complete VLNS. Then: 

(1) the norm ]. ] of the VLNS M(X, Y) is decomposable; 

(2) for an operator T e M ( X ,  Y) the equivalence T e M ~ ( X ,  Y) c~ I T I ~ L j  
holds. 

REMARK 4. - WEAK YH DECOMPOSITIONS. From part (1) of the previous Theorem A 
it is evident that for any given band B of L -, we have the possibility of representing 
(in a unique way) a majorized operator T E M(X, Y) as a sum T = T1 + T2 of majorized 
operators such that I T |  = I T l l  + ]T2I, I T I I ~ B  and IT2] e B  d. 

Weak YH decompositions then correspond to the choices B = L j ,  B = L ~ ,  while 
taking into account also part (2) of theorem A, and by means of Theorem 1 and Propo- 
sit|on 3, we get, for example, the following strong YH-decomposition. 

THEOREM 4. - Let (X, p, E) be a VLNS with decomposable norm and E is weakly 
a-distributive. Assume further that (Y, q, F) is bo-complete and F is order complete 
and with the countable sup property. Then, any T ~ M(X, Y) can be uniquely decom- 
posed as T = T1 § T2 where: T 1 E Mn (X, Y), T2 E M8 (X, Y) and ] T ] = ] T1 ] + ] T2 I. 
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This result generalizes the YH theorem for the functionals on the space E(X) of vec- 
tor-valued functions [7, 5, 15]. 

In a similar way one could introduce spaces Mno and Mso, the sequential analogs of 
spaces Ms and M~, and prove the following strong YH-decomposition formula: 

5. - o-weakly compact operators. 

In this section we shall give decompositions of operators acting from VLs to BSs 
both for their intrinsic interest and because of our wish of dealing with vector mea- 
sures. The aim is to derive, in certain cases, new information about the purely finitely 
additive part as we did in the previous sections for the ,,antinormal,, part of an 

operator. 
Let us assume that m: ~---)Y is a vector measure. First, one should note that 

Tme M(8(~), Y) if and only if m is of bounded variation (in which case the formula 
|Tm | ( f )  = f f d ! m l  holds for f e  8(5~)). This tells us, evidently, that in the setting of 
majorized operators we can only obtain decompositions for measures of bounded vari- 
ation. For example, applying to T~ the decomposition contained in Remark 4 for the 
case B = L ~  we obtain the Yosida-Hewitt decomposition for vector measures of 
bounded variation as it is stated, say, in the book [9], Theorem 8, p. 30. Of course, this 
is the usual version of the Yosida-Hewitt theorem where the purely finitely additive 
component is described in terms of its ,disjointness,, with respect to any countably 
additive measure. As we have already remarked, we are interested to go further such 
a kind of characterization of pure finite additivity. 

To derive decompositions for s-bounded vector measures (both weak, like in sec- 
tion 2.3, and strong, like in our final Corollary 3), we must abandon majorized opera- 
tors to deal with a wider class of operators that corresponds to the class of s-bounded 
vector measures. The operators we are speaking about are the, so called, o-weakly 
compact operators. 

Let E be a VL and Y a BS. We assume that E admits separating order dual E - .  
This will not cause any restrictions for our application to vector measures. With this 
assumption we can identify E with a subset in the second order dual E - -  in the 
canonical way, and make use of duality theory. We recall from [10] that a linear opera- 
tor T: E -~ Y is o-weakly compact if, for any e e E+,  the set {Tf: [ f l  ~< e} is relative- 
ly weakly compact, o-Weakly compact operators are precisely those that in [3] were 
called monotonely Cauchy. It is relevant for our purposes that 

PROPOSITION A [10, Proposition 4.3]. - A vector measure m is s-bounded i f  and 
only i f  the associated operator T,~ is o-weakly compact. 

PROPOSITION 4. - Any  majorized operator T: E --* Y from a VL E to a BS Y is o- 
weakly compact. 
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PROOF. - In fact, T can be factorized through L1 and, therefore, can be written as 
T = T'  oj where j :  E ~ L1 is positive and T'  : L1 ~ Y. Hence, T maps order intervals 
in E into relatively compact subsets of Y. �9 

For an o-bounded operator T: E --* Y (i.e. such that  T[0, e] is norm bounded in Y 
for every e E E+ ) we can have the adjoint operator T* at our disposal. I t  is defined as 
usual: 

T*: Y * - - ) E - ,  ( T * y * , f ) : = ( y * , T f }  ( y * � 9  

Moreover, a , ,natural,  monotone (Riesz) seminorm r on E can be associated to T, i.e. 
ff YI* denotes the unit ball of Y*, then 

0 r ( f ) :  = sup ( I T * y * l ,  I f l)=sup{llTellY: lel <<- I f l } .  
y* eY~ 

Denote by IE the ideal generated by E in E - - .  
We can also define the operator 

T**: IE--->Y**, (T**q~,y*):=(cf ,  T * y * )  ( y * � 9 1 4 9  

PROPOSITION 5. - Let T: E ---) Y be an o-bounded operator. Assume further that B is 
a band in E -. Then T can be uniquely decomposed as a sum of two o-bounded opera- 
tors Ti: -~ Y** (i = 1, 2) such that y* o T1 e B and y* o T2 �9 B d for all y* �9 Y*. 

PROOF. - We consider the two projections P1 : E - --> B and P2 : E - --~ B d , and set 
Vi := Pi ~ T*.  Evidently 

T** = V~* + V2*. 

According to the fact that  T** coincides with T on E, we define 

TI : = V~ IE and T2 : = V~ IE . 

Since, evidently, y*o  Ti = Pi T ' y *  the assertion is proved. �9 

To give readers a quick reference, we shall report from [10] the next Theorem B 
that  will be useful in the sequel. 

THEOREM B [10, Theorem 4.2]. - For an o-bounded operator T: E --) Y the follow- 
ing statements are equivalent: 

(1) T is o-weakly compact; 

(2) T**( IE)gY;  

(3) each monotone order bounded sequence in E is Q T-Cauchy. 
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GOROLLARY 1. - Let T: E --~ Y be an o-weakly compact operator. Then the follow- 
ing are equivalent: 

(1) y* o T ~ E ~  (resp. E j  ) for all y* E Y*; 

(2) tlTf~l]y-->O (resp. tlTf~IIy-->O) whenever in E we have f~$ O (resp. 
farO) .  

PROOF. - To prove that (1) implies (2), assume ek $ 0 in E. Certainly (by Theorem 
B), Tek is norm converging to some y ~ Y. On the other hand, (Tek, y*} tends to zero, 
for k - .  :r since y* o T belongs to En~. It follows that y = 0. Considering that in the 
assertion (3) of Theorem B one can replace sequences by nets, the above argument 
works also for nets. [] 

In the present context we need to define the concepts corresponding, for example, 
to those of a-order continuous operator, singular operator and a concept that corre- 
sponds to the disjointness from any o-order continuous operator. 

DEFINITION 6. - ~vl operator T: E --~ Y is called a-smooth (resp. smooth) iff~ $ 0 
(resp. fa $ 0) in E implies IITf~ IIY ---) 0 (resp. IITfa NY -~ 0). An operator T is called a-sin- 
gular (resp. singular) if the ideal N(T): = { e e E :  0 <<.f<<. lel ~ Tf= 0} is a-order 
dense (resp. order dense) in E. Finally, T is called purely non-a-smooth (resp. purely 
non-smooth) if, for every y * e  Y*, we have that y*o  T ~ (E~)d (resp. e (Ej )d) .  

The following (weak) decomposition corresponds to the weak form of the Yosida- 
Hewitt theorem for s-bounded measures. 

T H E O R E M  5 .  - Any o-weakly compact operator T: E --> Y can be uniquely decom- 
posed as a sum of two o-weakly compact operators T1, T2 from E to Y such that T1 is 
a-smooth and T2 is purely non-o-smooth. 

PROOF. - A p p l y  Proposition 5 for B = E ~ .  We must prove that the operators Ti are 
Y-valued. With the notation of the proof of Proposition 5, we claim: Vi* ( f )  ~ Y when- 
ever f e  E and i = 1, 2. To prove this claim we must show, g ivenfe  E, the existence of 
yf e Y such that 

(Vi* ( f ) ,  y* ) = (yf, y* } Vy* ~ Y* . 

From the relation IP*f i  <~ I f l  follows that P ' f  belongs to the ideal IE and therefore 
from Theorem B we derive yf:= T**P;'~fe Y. Now the computation follows: 

(yf, y*} = ( P ' f ,  T ' y * }  = (f, Viy*) = (V ' f ,  y*) .  

So our claim has been proved. 
For 0 <ofe E note that 

(f ,  ] T ' y *  I) >I ( P ' f ,  IT*y* l} >>" ( P ' f ,  T ' y * )  = (Tiff y*>. 
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It follows that 

e r ( f )  = sup <f, IT*y* I} >~ sup 
y* ~ Y~ y* e Y~ 

and 

I<T~f, Y*}l = IIT~flly 

QT ~ QTi �9 

By means of Theorem B, this inequality tells us that T~ is o-weakly compact. Corollary 
1 gives that T 1  is a-smooth. �9 

REMARK 5. - Evidently, by starting with B = E j ,  a decomposition into a smooth 
part and a purely non-smooth part also follows. 

In Definition 6 pure non-a-smoothness has been defined according to the defini- 
tion of pure finite additivity given in [9]. As for measures, many other definitions can 
be found in the literature, so it is of some interest to note that for o-weakly compact 
operators two other alternative descriptions of pure non-a-smoothness are possible. 

PROPOSITION 6. - For an o-weakly compact operator T: E ---> Y the following state- 
ments are equivalent: 

(1) T is purely non-a-smooth; 

(2) for any a-smooth operator U: E - ~  Y, any E > 0 and any f e E+ we can find 
f l ,  f l e e +  such that f = f l  + f2, ~r ( f l )  <<- e and ~v(f2) < E; 

(3) there is no non-trivial a-order continuous monotone semino~n smaller 
than ~ T . 

REMARK 6. - In [3], being inspired to the literature concerning the so-called 
Frechet-Nikodym topologies (see [22] and [26]), pure non-a-smoothness was defined 
in terms of singularity in the lattice of locally solid topologies on E. Condition (2) in 
the above proposition is ]precisely a translation of that definition. With this in mind, 
two things become clear: first in Proposition 6 we have that (2) implies (3), second a 
reformulation of (2) is possible by replacing U: E -~ Y with U: E --, Z where Z is any 
BS. On the other hand, when Y is the real line, evidently (1) and (2) coincide. 

PROOF OF PROPOSITION 6. - (1) ~ (2) can be deduced from the results of [3] (see 
also [27] for the case of measures). Let us fLX U, E, andf.  The fact that T is o-weakly 
compact permits us to find a finite set of functionals Yl*, ..., Y* �9 Y* such that 

[ O , f ] A  A ~ { x e E :  Qy~.oT(x)<~s}c[O, f ]N{xeE:  ~T(X)<~E} 
i = 1  

(for example, apply [3], Theorem 3.2). 
Since y~ o T e  ( E ~ )  d and U is a-smooth, it is possible to find al,  bl e [ 0 , f ]  such 

that f =  al + bl, Q u(al ) -'~ E/n and Qy,. o T(bl) ~< E. Similarly we decompose bl as bl = 
= a2 + b2 where a2, b2 e [ 0, bl ] and ~ v (a2) <<- e/n, ~ y; c)T (52) ~ ~. Proceeding in this way, 
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we will finally get 

f = a l + . . ~  where O~u(ai)<~ ~n and ey~o~(b~)~<s Y i = l , . . . n .  

So fl = b~ and f2 = a l . . .  + an. 

(2) ~ (3): See Remark 6. 

(3) ~ (1): Decomposing T according to Theorem 5, we have T = T1 + T2. As we 
proved, ~o T~ ~< e T. Therefore, since T 1  is a-smooth iff e T~ is a-order continuous, we 
have e T~ = 0 and T 1 = 0. Hence T = T2 is purely non-a-smooth. �9 

Of course, now we recognize Theorem 5 and [3], Theorem 3.4 as the same. In the 
spirit of the previous sections we shall now furnish a strengthened decomposition 
theorem for o-weakly compact operators. Namely, we offer, under suitable assump- 
tions, new information on the purely non-a-smooth part. This decomposition (in its 
full generality it is stated in Theorems 7 and 8) will be applied to vector measures. 
First we need the following lemma. 

LEMMA 1. - A countable intersection of a-order dense ideals in a VL with the 
Egorov property is also a a-order dense ideal. 

PROOF. - Let E be our VL and {Gk} a countable family of a-o.d.i, in E. Set G = 
= • Gk. Take an arbitrary f e  E, f > 0. We will construct a sequence fm 1' f such that 

k 
fme G. Since it is evident that any finite intersection of Gk is a a-o.d.i., for any n e N 
we can choose a sequence gn, k ~ kfsuch  that g~, k E I1 ~Gi. Using the Egorov proper- 

i = 1  

ty we can find a sequence 0 <~f,~ ~ f such  that for all m and n a suitable indexj(m, n) 
exists with the property f~ ~< g~, j(m, ~). So any f~ e G. �9 

COROLLARY 2. - A countable intersection of order dense ideals in a a-weakly dis- 
tributive VL is also an order dense ideal. 

PROOF. - One needs to repeat the proof of Lemma 1 with minor modifica- 
tions, m 

THEOREM 6. - Let T: E --) Y be o-weakly compact. Assume further that E has the 
Egorov property and Y is separable. Then: 

(1) The operator T is purely non-a-smooth if f  it is a-singular. 

(2) I f  the domain o fT  has also the countable sup property, the operator is pure- 
ly non-smooth if f  it is singular: 

PROOF. - Let T be purely non-a-smooth. By Theorem 5, T coincides with T2, i.e. 
with the restriction to E of (P2 ~ T* )*. Here/)2 is the projection of E -  onto (E~)d 
which is the same as E~  because of the Egorov property. Now we prove that Te is null 
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on a a-o.d.i, in E. For any y * e  YI* consider the null-ideal Ny. : = N ( P 2 T * y * ) =  
= { e �9 E: I P2 T* y * I ( I e I ) = 0 }. Since P2 T* y * e E ~ ,  the ideal Ny. is a-order dense. 
Once we have proved that G:= n ivy. is a a-o.d.i., then an obvious calculation gives 

y* ~ Y~ 

that T2 is null on G. Because of separability of Y, the ball YI* endowed with the weak*- 
topology is metrizable and admits a countable (weak*-)dense subset D. 

Claim: G = I1 ivy.. To prove this claim let g be an element of n Ny.. So we have 
y* ~D y* eD 

(4) IP2 T* y* 'l( Igl ) = 0 

for all y * �9 D. To get g �9 G, the equation (4) must be proved for all y* �9 I71". Therefore 
let us take an arbitrary y * and choose a sequence (Yk*) in D weak*-converging to y*. 
Of course, by the definition of modulus, (4) is proved if we show that 

P 2 T * y * ( e ) = O  V e e E  such that lel <~ Igl .  

We have: 

0 = (e, P 2 T * y ~ )  = (P~e, T * y ~ )  = (T**P~e, y~) .  

Since P2 e ~ IE, we already observed that T**P~ e is really in Y. Because Yk* weak*- 
converges to y*, we get 0 = (T** P2* e, y* )  = P2 T*y  * (e). Now an appeal to L emma 1 
will let us to conclude that G is a a-o.d.i. The proof for the non-trivial implication of 
the assertion (2) is the same; finally one will invoke Corollary 2. �9 

Corollary 2 gives an analogue of Theorem 6 for the order continuous case. 

REMARK 7 .  - In Theorem 6 the hypothesis of separability of the range space of the 
operator can be removed. In fact, we have proved Theorem 6 in [2] omitting separabil- 
ity. From this point of view it is clear that formally the proof given here is less power- 
ful. However, we have preferred to present a different approach with respect to [2], 
because here only handy duality arguments has been used while the proof exposed in 
[2] is more in the direction of linking known facts. 

THEOREM 7 [2]. - Let E be a VL with the Egorov property, Y a BS and T: E --> Y an 
o-weakly compact operator. Then T can be uniquely decomposed as T = T1 + T2 
where T1 is a-smooth and T2 is a-singular. 

THEOREM 8 [2]. - Let E be a weakly a-distributive VL, Y a BS and T: E --) Y an o- 
weakly compact operator. Then T can be uniquely decomposed as T = T1 + T2 where 
T1 is smooth and Te is singular. 

To finish let us consider a a-finite measure space (t~, ~, )~). If m is an s-bounded 
vector measure vanishing on g~(;t), by means of Proposition 4, the operator 
Tm: L ~ (;t) --, Y is not only continuous but also o-weakly compact. Therefore we have 
the following 
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COROLLARY 3 [2]. - Let  (tg, ~, 4) be a a-finite measure space, Y a B S  and m: 5=--~ Y 
an s-bounded vector measure with m [~(~) = O. Then m can be uniquely  decomposed as 

m = m1 + m2, where ml  and m2 are s-bounded and nul l  on ~(~), ml  is countably ad- 
ditive and g~(m2) is an o.d.i, in #, i.e. 

V A E ~ : ~ ( A ) > 0  3 B e ~  such that ~ ( B ) > 0 ,  B o A  and m ( B ' ) = 0  VB ' :  B'c_B. 
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