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Homogenization of Attractors for Semilinear Parabolic Equations
on Manifolds with Complicated Microstructure (*).

L. Bouter DE MonNvEL (1) - I. D. CHUESHOV(?®)(3) - E. YA. KHRUSLOV (3) (9

Abstract. — An approach to a homogenized description of solutions of the Cauchy problem for
parabolic equations on Riemannian monifolds with complicated microstructure is present-
ed. This approach covers both linear and non-linear cases and makes it possible to establish
a connection between global attractors of the initial problem of the homogenized one.

1. - Introduction.

We consider on an n-dimensional (% = 2) Riemannian manifold M, of complicated
microstructure depending on ¢ > 0 the following initial-boundary problem

M S A+ fu) = @), weM,, t>0,
(2) aufi:O’ anMs’ t>0,

v,
(8) u®(x, 0) = u(f(x)

Here 4, is the Laplace operator on M,, 3/dv, is the outer normal derivative on the
boundary 8M, of M,, f(u) is a smooth real function on R* and h¢(x), ui: M, — R are
given functions. We suppose that the local structure of the manifold M, becomes more
and more complicated, when ¢ tends to zero.

This paper deal with the study of the asymptotic behaviour of the solution «°(x, t)
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and of the global attractor d, of problem (1)-(3) when & — 0. One of the main goals
here is to learn how the transition to homogenized (¢ — 0) description reflects on the
long-time (¢ — + «) dynamics.

Under certain conditions on the manifold M, and non-linear term f(u) we first
prove that for any finite time interval the limit behaviour of u*(x, t) is described by a
solution of the Cauchy problem for a system of two coupled equations. After that we
study the long-time dynamies of this homogenized system and show that it possesses
a finite-dimensional global attractor @ (for definitions and basic facts on attractors
see, e.g.[1, 4, 7, 17]). We investigate the structure of @ and prove that global attrac-
tors @, tend to A in a suitable sense.

In the linear case (f(#) = 0) a similar homogenization problem has been studied
in [2]. It has been proved that the asymptotic of % °(x, t) is described by a linear diffu-
sion equation with a term non-local in time. This term can be interpretated as memory
of the medium (on the memory phenomena for linear homogenized models see
also [11-14]). The method developed in{2] essentially relies on the linearity of the
problem. The main ingredients there are the Laplace transformation in time and the
study of the corresponding stationary problem by variational methods. Unlike [2] the
approach presented here can be applied both to linear and non-linear cases. For the
linear case the homogenized coupled system can be reduced to a single diffusion equa-
tion with memory term of the same form as in[2].

We also note that the dependence of attractors on parameters for various singu-
larly perturbated systems has been studied by many authors (see, e.g.[1, 3, 5, 7, 8, 10,
16] and the references therein). In this paper we rely on some ideas presented in [3, 5,
7, 8l.

The paper is organized as follows. In Section 2 we describe the structure of the
manifold M, introduce some notations and give preliminary results concerning the
properties of solutions of the problem (1)-(3), when & > 0 is fixed. In Section 3 we for-
mulate our main results. The rest of the paper is devoted to the proofs of the Theo-
rems of Section 3. Section 4 contains the proof of the estimates which guarantee the
compactness of the family {u,: ¢ —0}. In Section 5 we make the limit transition in
the weak form of problem (1)-(8). The main point here is to choose the testing func-
tion. In Section 6 we study properties of the homogenized and prove the upper semi-
continuity of global attractor @, of the problem (1)-(8), when &£ — 0.

2. — Preliminary consideration.

Now we describe the structure of the manifold M, . Let Q be a smooth bounded do-
main in R® (n = 2) and let

F.= U F', a,)

jeN,
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be a union of balls F(z?, a,) of radius a,<<e (Iin}) a.e "1 =0) with centers in %’ = je

(j € Z™) such that F(x?, a,) € 2. Here N, stands for the corresponding set of multiin-
dexes jeZ". In R™*! we consider the surfaces (below x = (%;, ..., #,) e R*, y € R,
(, y)eR"™1):

Q. ={(x;00eR"*: xe Q\F,}
and
=(je; 0)+B,, jeN,cZ",
where
B.={(m,y) eR"*: |x|2+ (y — Vb%e? — a2 = b%e?, y < 0}

Here b is a parameter such that a,e ' < b < 1. We assume that

M =2,U

U Bi),

JjeN:

ie. M, consists of a piece of flat submanifold in R”*! with bubbles B!. We define a
Riemannian structure on M, by a C® metric tensor

9@ ={gsp@) a, =1,2,...,m}, wxeM,,
and assume the following:

() the metric coincides with the euclidean metric of R"*! on R,;
(ii) the metric is the same for all bubbles B, je N,;

(iii) there exist positive constants C; and C, such that

@.1) Cle”|§|2szﬂgéﬂm)sa&ﬁscze”lsﬁ, e>0,

for all z e Bf, je N, andfor all £eR".

The main object of this paper is the problem (1)-(3) on the Riemannian manifold
(M., 9°), which can be treated as a model of diffusion in a medium with traps. The cor-
responding Laplace operator 4, is of the form

Vi & 3 VT 35 )

where |g¢| = detg® and g are the components of the inverse of the tensor g°. We
also assume that the function f(u) e C2(R?) possesses the property:

4, =

2.2) sup{|f (w)|: ueR'} <



300 L. BouTET DE MONVEL - L. D. CHUESHOV - E. YA. KHRUSLOV: Homogenization, etc.

and there exists a constant # > 0 such that

2.3) uf(u) = qu® - Cy,
(24) Fw) = [f&)dE = mu* = C.
0
Below dx represents the surface measure on M, . In local coordinates {xy, ..., 2, }

we have dix = \/|g®|dux, ... dz,. We also denote H'(V,) the Sobolev space of order [ on
a submanifold V, ¢ M, and H}(V,) for closure of C5* (V) in H(V,). We denote by || - |, .
the norm H'(M,) and by | - ||, and (-, -), the norm and inner product in L2 (M,). In cer-
tain obvious cases the index & in norms and inner products will be omitted.

By standard way (see, e.g.[9,15]) we can prove the following existence and
uniqueness theorem.

THEOREM 2.1. — Let u and he belong to L2(M,). Then for any interval [0, T'] prob-
lem (1)-(3) has a unique solution u’(t) = u®(x, t) such that

(2.5) ut(t) e C0. T; L*(M,)) N L2(0, T; H*(M,))
t
(2.6) I!uﬁ(t)ll%j(llvgug 12 + nllwslB)dr < Jug |2+ C (1 + [|R*]2)
0
and
@0 lus @) < flug [2e ™™ + Co(1 + [|BE[2)(1 —e™™),

where C; and Cy; are independent of e The solution u®(t) has the following
properties:

) if u§ € H' (M,), then
w® () e CO, T; H' (M) N L*(0, T; H*(M,))

and
U 1200, T; LE(M,)):
ot
i) if
uﬁe{veHz(Ms): i;% =0 on GME} = HZ(M.)
then

ut(t) e C(0, T; HE(M,))
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and

ou’
ot

To obtain additional estimates for the solutions %°(t) we introduce on H*(M,) the
Lyapunov function

e C0, T; L3 (M) N L%(0, T; H'(M.)).

2.8) V.(u) = —;—lleuH? + j Fu)) da — (h°, w), .

M,

It is clear that V, is continuous on H?*(M,) and there exist positive constants o; and
B; independent of ¢ such that

2.9) aful? . —B1<V,(w) < asfuli.+B:.

Here we assume that [|h¢[, < C for all 0 < ¢ < ¢,.
One can easily prove (see, e.g.[1,7,17]) that the solution %°*(¢) of problem (1)-(3)
with uf € H'(M,) satisfies

t
(2.10) V. (e (t) + j 18,4 (D)) 2dr = V, (ug).

4

LEMMA 2.1. — Let ué € H3(M,). Then

¢

dT < Cp+ CoVug) + |us |2,

(2.11) l

where ui = A,us —~ flug) + h* and Ci 5 are independent of e.

ProOOF. — Theorem 2.1 implies that w*(f) = ou® /ot is a solution of the following
problem:

2.12) a;’t A+ f @ () w = %@i =0 on AM,, w(w, 0) = ui(x).
Since |f'(u)| < C it is clear that

1 we
2.13) Zdﬂ O + | Vows @2 < Cllw* (B2

Therefore (2.11) follows from (2.10) and (2.13).

REMARK 2.1. — From (2.10) and (2.18) it also follows that

ous |

= <O {V(ug) + Cy }.

(2.14) t '

&
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Therefore using (1), (2.7), (2.9), (2.10) we have
(2.15) tld.ut@|E< Cre®1 +uff ),
if we assume that ||A,|, < C for all 0 <e < g.
Theorem 2.1 makes it possible to define an evolution operator Sf on the space
H'(M,) by the formula Sfu¢ = u°(t), where %*(t) is the solution of the problem (1)-

(3). It is not difficult to show that Sf is a C'-smooth nonlinear semigroup in the space
H'(M,) and to prove (see, e.g.[1,17]) the following

THEOREM 2.2. — The dynamical system (SF, H'(M,)) for every e > 0 has compact
global attractor, i.e. there is a compact set @, in H* (M,) such that Sf A, = @, for t = 0
and

t;i}rn sup {distg(y,) (Sf v, A.): veB} =0

for any bounded set B in H(M,). This attractor A, has finite Hausdorff dimen-
ston.

REMARK 2.2. — Using (2.7), (2.11), (2.15) and the formula
i

w(t) = e Lertug + Je “Eer =D (put (7) - flut (v) + B dr,
0

where L, , = — A4, + y with the Neumann boundary condition on oM., v > 0, it is
easy to show that for any trajectory w°(f) lying in the attractor @, we have the
estimates:

2
+dcws O+ CIVur @ + lus @ < €,

2
+1V@— )dtsCZ,

where C; and C, are independent of ¢, 0 < ¢ < g.

(2.16) ) ou

and

©

(2.17) J (

3. - Formulation of main results.

We introduce a parameter to describe the asymptotic behaviour of manifolds. For
simplicity we will suppose 0 € 2, and denote

G€=[(x;0)<—:R"“: aES§x|<%}, D.=B,UG,,
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We set

V. v2e
3.1 A, = inf Vel ve Hi(D,)}.

1v[Ze,
A, is the first eigenvalue of the Dirichlet problem
3.2) A, +A.v=0, xeD,; v=0, 2x2edD,.

Our main assumption concerning to behaviour of the bubbles B! (and manifold M,)
is the existence of the limits

3.3) A=lmA, and u=lime"m, >0,

where

33) m. = Vol(B,) = f\/|gf [da, ... dx, .
B,

REMARK 3.1. — It is easy to see that

-2,-n
al " “e n>2
0<i,<C{ ° _ ’
|[Ina,|'e™®, n=2.

Moreover, if the metric on M, coincides with fche metric induced from R”*! outside of
small neighbourhoods of the boundaries B!, one can prove that the condition

ae™® -2 n>2,
- { exp(—1/e%), n=2,

implies that limits (3.3) exist and 4 = (1/2)a™ 26" and 4 = w,,, Where w,, is the vol-
ume of the unit sphere in-R"** (see [2] for a closely related assertion). From this ob-
servation and (2.1) it also follows that for existence of limits (3.3) it is necessary
that

CieM "D <q, <Coe™” P for n=38
and
Clexp<—1/82)Sa6SCgexp(—l/ez) for n=2.

Let P, be a bounded operator from L2?(M,) into L2(2) defined by the formu-
la

ref,,

(Pow)(a) = u(®),
@) =1, veQ\Q,,

and let Q, be the operator which maps a function » e L#(M,) into poly-linear spline
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Q. % associated with a net {@’ =je, je N,} such that

QW) = o ju(x)dm, jeN, .

Bl
It is clear that Q, is a linear bounded operator from L2(M,) into H*(Q v,), where Q.
is the union of elementary cubes corresponding to the net {je: je N,.}. If we set
Q. u(x) = 0 for x € 2\Q2y , we can also consider Q, as a bounded operator from L%(M,)
into L2(R).
The first main result of the paper is the following
THEOREM 3.1. — Let u®(t) be the solution of the problem (1)-(3). Assume that
D) for any e e (0, &y), we have
6 5, + IVQ.u6 220, < C
and
1By, e + 1VQew? |20y < €,
where the constant C is independent of ¢;

ii) there exist functions ug, vy, by, he from L%(Q) such that P,uf — g, Q. uf —
>y, P.h*—>hy, Q.ht~> hy strongly in L%(Q);

iii) there exist limits (3.3).

Then for any interval [0, T] we hove that
: F _ 22 £ _ 22 — 0’
G4 lim {max||Pout(t) — u®lize) + maxQeu®) ~ v®)lfxo }

where the pair of functions u(t) = w(x, t) and v(t) = v(x, t) is the solution of the
problem:

Ju

3.5) o —Au + Aulu —v) + flu) = hy (&), 2ef, t>0,
(3.6) %ﬁ =0,  U|li-0=u(®),

M |aq
3.7 %+/1(v—u)+f(v)=h2(x), zeQ, t>0,
3.8) V-0 = v (),

The proof of this theorem consists of two parts. The main point of the first one is to
obtain a uniform estimate

T

(3.9) JHVQEW(UH%?(QNE)dt <C.

0
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In the second part we make a limit transition in the equation (1) on testing functions
of special structure. In order to prove the uniqueness of limits we also use the
following

THEOREM 3.2. - Assume that (2.2)-(24) are satisfied and U, = (uy, vp) € Fy =
=L2%(Q) X L%(Q). Then the problem (3.5)-(3.8) has a unique generalized solution
U(t) = (u(t), v(t)) belonging to the space C(R, , F). Moreover, if Uye F = H () X
X L2(R) then

(3.10) Ut) e CR., %) and —0% Ut) e LAR, , F)
if Uye & = H'(Q) X L2(2) and hy e H'(Q) then
@311  U®)eCR.,%) and %U(T) e L2(R, , L2(Q) x H' ().

The proof of this theorem is of standard character and relies on the methods pre-
sented in [9].

Theorem 3.2 allows us to define the evolutionary semigroup S; in each of the
spaces F; by the formula S; U, = U(t), where U(f) is the solution of the problem (3.5)-
(3.8). If we consider this semigroup in %, then we can prove the following assertion
on the existence of a global attractor.

THEOREM 3.3. — Assume that (2.2)-(2.4) are satisfied and
(8.12) A+inf{f' (u): ueR'}>0, Ihy(x)e H'(Q).

Then the dynamical system (S;, F) has a weak global attractor F This attractor has
finite Housdorff dimension as a compact set in F.

In order to prove this theorem we rely on certain results from [6,17]. Recall
{see[1,4,17]) that a weak global attractor @ is a bounded weakly closed set in & such
that (i) S;@ = @ for any ¢ > 0 and (i) for any weak neighbourhood © of A and for any
bounded set B c & we have S;B c©, when t = t,(B, O).

At last using Theorem 3.1 and estimates (2.16) and (2.17) we prove the second
main result of the paper.

THEOREM 3.4. — Assume that (2.2)~(2.4), (3.12) and the assumptions of Theorem 3.1
are sotisfied. Then we have

lim sup {(uigf;allPsug —uldzg) + 1Qeu’ — v]|220)} = 0.

8—’071,55@.8

This theorem means that the global attractor @, of problem (1)-(3) tends to a weak
global attractor & of the homogenized system (3.5)-(3.8).
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4. - Uniform estimates.

Now we begin the proof of Theorem 3.1. In this section we establish our main
Lemma 4.1 on uniform boundness of the norms |Q,%¢| oy, x (o, - This lemma and
estimates for P,u° which directly follow from (2.6) and (2.10) make it possible to ex-
tract from {P,u*} and {Q,u°} subsequences strongly convergent in LZ(Q x (0, T)).
Below we consider the case n = 3 only. For the case n = 2 the consideration should be
repeated word by word with slight modifications in the estimates. We assume that
the conditions (i)-(iii) of Theorem 3.1 are satisfied.

At first we note that (2.7) and (2.10) imply that the solution %°(x, t) satisfies the
estimate

2

uc

—a? d'L’$CT

£

3
@0 ol + ¥l + ||
0

for any te[0, T]. Since the metric g° coincides with the euclidean one on ., we
have

t

ue |

p 4%
¢ ot

4D Pt + V. Pow e + j
. L2(@)

The remaining part of this section is devoted to the proof of a similar estimate for

Q. u’(1).

Let us introduce the following notation:

wi(x, t) =u@*+x,t), xF=1le, keN,, xeD,;

w4 = 5 [uiGe, )ds

€

ug e (t) = Wlb Jui(ﬂc, t) du;

where % ° (2, t) is the solution of problem (1)-(3), the sets B,, G, and D, are defined in
Sections 2 and 3, m, = Vol(B,) and m; = Vol(G,). We also use the notation

w = wh(x, t) = ui(x, t) — uf(x, t), xeD,, k,leN,
and
w*=wit)=up*@t)~up*@®), k,leN,

where # is either «in» or «ex».
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It is clear from (2.7) and (2.10) that for any £ =0

t

ue |
Qs ot dr&CT.

L2(Q)

4.2) 1Q:uf ()32 + f
0

The main result of this section is

LEMMA 4.1. — For any T > 0 we have
“VQE%S(t)“%Z(QNE) < CT , te [0, T],
where Cp is a constant independent of e.

In order to prove this Lemma it is sufficient to obtain appropriate estimates for
wi (t). We will use the following preliminary assertions.

LEMMA 4.2. - Let a, < ae™® = (n > 2) and let v¢(x) € H} (D,) be the solution of the
problem (3.2) such that

4.3) va(x)dx =m, .
B,
Then we have the following estimates:

Ce™

W for xe G, and |z| = e/4;

(i) |D*ve(x)| <
(i) flve(x)lzdxscg“Z;
GE
(111) J‘ l?)s(x)lzdx= J’ |pe(x)|2dx+0(£n+2) = m, + O(8n+2);
D, 5,
(iv) J]sts(x)lzdx=lsme+O(£"+2);
D,

) f N 45 =A,m, and J O G = dm, + O™ +1);
on on
Ia,) I(e/2)

where I'(a,) and I(e/2) are the inner and outer boundaries of the ring G, , and the nor-
mal vector n is directed towards the center of the ring G,.

Proor. - It is easy to see that for v°(x) we have the following inequalities of
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Poincaré and Friedrichs type:

4.4) J.(v‘g ~1)%de < Cezj |V, v° |2 da;
B, B,

4.5) j |v¢ |2de < CEZJ |Vo,0° |2da .
G, G,

Since

J |V£v5,|2dx=/1£[m8+;J(v£— 1?de + J |v® |2da |,
D, E, G,

from (38.3), (4.4) and (4.5) we have
4.6) j |V, [2da < Ce™
D,

and the property (iv) follows. Now (ii) and (iii) follow from (4.5) and (4.6). Using .
Green’s formula we get

J N 4o = j IV, 0" |2ds — Jmf(l—w)dx.
on
Ief2) D, D,

Therefore using (3.2)and (4.3) we obtain

J @ido=igm£ -i-/lsj’vadw.
an

Ief2) G,

Hence (v) follows from (iii) and from the obvious formula:

Jv* — Q/I_}i - £
J 8nda— I anda iEJv dx .
e, Ief2) . G,

We now prove (i). Let I(x, ) be the generalized solution of the problem:
ALz, y) + A T, y) = =@ ~y) for z,yeK,, T, (@ Y|scox =0,
where K, = {x e R": |x| < ¢/2}. It is well known that
%)) |DEDE (2, y)| < Cla —y| " F2lal 181,
For y € G,, |y] = 2a,, and x € D, we define the function

o, y), zeB.,
B.(@, 9= { I, y) + 0, )~ @ e( ), @<Ge,
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where @(x) e Cy° (R™) satisfies:
plx)y=1 for |z| <1 px)=0 for |z| = %

It is clear that B,(x, ) =0, when e 3D, and

1,100, y), xeB,,

(As,w+l£)R8(x, y)z{ "6(%—y)+0€(x7 ?/), LI/'EGS,

where

o 0
0. (@, y) = a 2 Ap(T0, y) - T(w, ) ~ 201 5 32 2N, 1) + 4,100, 1) .

)

Using the Green formula we have

jvf(x)(ae,x +2,)R.(x, y)dzx=0.

D,

Consequently,

(48) V() =m0, ) + [ 0., 9)0" (@)da

G+,
for y e G, and |y| = 2a,, where GF = {x € G,; |x| <(8/2)a,}. The property (i) then
follows from (ii), (4.7) and (4.8).

LEMMA 4.3. - Let vé(x) be as tn Lemma 4.2. Then we have

(4.9) dit st(t)vgdx + A, + I5®) fws(t)vadx = R5(t),
D,

D,

where
1
I = - j dr j F ) + 1 (&) — ut (1)) v de
0 B

and the quantity Rig(t) admits the estimate
[RG®)] < Cym, (Jw=@®)] + |A™|) +
+Coe™** Hlw® D2 + IVew Ol 2oy + Vo 26, + Ve ka2, } -

Here hy () = h(ock +a) = hx; + z) forxe D, , k,le N, and h™ is defined in the same
manner as uo .
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Proor. — We use the equation

(4.10) % ’[w‘gvedac - wasvedx + f(f(u,ﬁ) — fluf))vide = jhklvedx,
D

£ 3 £ DE

which follows from (1) and we use the following Lemmas.

LEMMA 4.4

4.11) jdwsvsdx + lejw‘?vg dx

DE D€

< C(e l’wex l + Sn/2+1“V’w£(t)“L2(GE)) .

Proor. - Using Green formula we get

fAWEWde + /lgjwfvsdgc = —w* J % 4o + J w* - ) % do .
on on
D, D, I(e/2) I(e/2)
Lemma 4.2 (i) implies that
(we’”—ws)%@ido < Ce lw* — w* |do.
Msj2) Ief2)

Therefore, using the trace theorem and the Poincaré inequality in G, we obtain
(4.11). -

LEMMA 4.5.

<

(4.12) j (Flug) ~ foud)) vide — I5(5) j wevids | <

D, D,

< Ce™2 ||V, 0 || 2y + lwe [ 12, } -

ProoF. — It is clear from (2.2) and Lemma 4.2 (ii) that

|
j (Flug) — flug)) veda l < w12,

D,

vl 226, < Ce™® w2, -

Using Lemma 4.2 and the Holder and Poincaré inequalities we also get

<

=

<

=~

+

(4.13) Jwevsdac J(wf —w™)vide

3 3 £

< Ce™2 (| V,we || Lo, + |0 ll2,)) -

[wsvadx - wmm,
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Obviously

j (Fug) — flud ) veda — wm, I ()

B,

< CJ |w® — w||lve |de <
B,

< Ce"? |V, w* || 2, -
Now in order to obtain (4.12) it is sufficient to note that

4.14) infz [y I <sup f/(u).
U e ueR

This follows from the fact that v*, first eigenfunction of the Dirichlet problem is posi-
tive in D,.
As in (4.13) we have

j Fv° dac

D,

< |B™ [m + Ce™? IV, g | 2o,y + g 226 -

Therefore Lemma 4.4 and 4.5 give equality (4.9), and this proves Lemma 4.3.
Using (4.9) and (4.14) we get

(4.15) 1d fwfvfdx Gt L-0) Jwavfdx "< Lipgp
2 dt ¢ 49

D, D,

for any positive d, where L = ing f'(u). Then it follows from Gronwall’s lemma that
we have. “e

14

{4.16) ( fwf(t)vsdx)z S e"“‘t( juﬁ(O)v%lac)2 + % [e_a‘(t_r)[Rﬁl(‘L')]sz
D

4

€ &

for any 6 > 0, with a, =2, + L — d).
It is clear that

[Rg(DF < CymE(Jw™ |2+ |A™|?) + Coe™ *2(YE () + YD),
where
YE@®) = lu Oz on + 1o -

Here D! = (je; 0) + D, for j e N,. Therefore

Py ;;zk) m%[ze,:lm]z < G2 (e Oy + 10 2nn) +

+0 2 3 e (u a4 (B = b,

keN.lecolk)
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where o(k) = o(k) N N, and o(k) is the set of the nearest neighbours of k in Z™. Since
any function ¢ € H'(R,) can be extended to § ¢ H!(R) such that

1@l < Clolm e,

with constant C independent of ¢, one can easily verify that

> et |ut —uf | < c&f | V()| 2 dec .
kKeN,leolk) K

Therefore using inequality

@17 Ce?|VQuhl3ray) < 2 2 €A — ki 2 < Coe?|VQ A3y, »

ke N,lecalk)

we obtain

18 X Y -L[REMF < CeA([VQABay, + lut®F .+ IAlE.).
keNgleo(k) "% .

Now using (4.13), (4.16) and (4.17) with »*(¢) instead of & we conclude
@19 [VQu® o) < Cullw @2 + CollVQuuo 230y, + o I3 e =2t +

i
+C307 e {us @ + IRl + 1V kllEecoy, Y

9

Therefore the assertion of Lemma 4.1 follows from (4.0) and condition (i) of
Theorem 3.1. :

REMARK 4.1. — Assume that
A+ in%f’(u) > 0.

Then we have a, > 0 for £ and 6 small enough. Therefore for any trajectory °(t)
lying in the attractor @, from (4.19) and Remark 2.2 it is easy to see that

4200 |VQ.ut ey < Cr + Col + [VQuf (8)[32(ay,) € 7
for all ¢t = s. Since
HVQe“s(S)”%z(QNE) <C,, —o <§g< 0,
then letting s — —  in (4.20) we conclude that
(4.21) IVQ.u* ®)IZ2cay, < Cr

for any u®(t) e d,, where ¢ is small enough.
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5. — Limit transition.

Let Rf{ be a linear continuation operator from Q, to 2 possesses the proper-
ties:

i) Rf: H(R,)— HY(RQ) for | =0, 1 such that
IRf pllone) < Cllolmice,»  1=0,1,
where C is a constant, independent of ¢;
i) Rfp =¢ on Q, for all ¢ € LE(R2,).

We also denote by R a continuation operator from Qy, to © with similar proper-
ties. The existence of such operators is easily proved, in view of the structure of the
domains 2, and Q. .

Let u*(t) = Rf P, u*(t) and v* () = R§ Q. u* (t), where u*(¢) is the solution of prob-
lem (1)-(3). Then it follows from (4.1)-(4.3) that the family {(%®(t); v*(¢))} is a precom-
pact set in the space C(0, T; L2(Q) X L2(Q)), when ¢ goes to zero.

In this section we prove that any limiting point (u(t); v(t) e C(0, T; L2(R) X
x L2(8)) of the family {(z, (t); 7,(£)): € — 0} is a weak solution of problem (3.5)-(3.8).
Below we assume that the conditions (i)-(iii) of Theorem 3.1 are satisfied.

We first rewrite problem (1)-(3) in a weak form. Let % *(¢) be the solution of (1)-(3).
We denote

T

61 J w5y V)= =g, w0y, — J(ue(t), ()2, dt —
0

T

T T
- [ @), gy, dt + [ PO, pO)yeqrpdt — [ o pO)rg e,
0 0

0
where y(x, t) belongs to the class
£r = {y(x, t) e L*(0, T; H*(M.)): 3,9(x, t) e L2(0, T; L*(M.,)), w(T) = 0}
and V, is a submanifold of M,. It is clear that
(6.2) J(utsp; M,)=0 for all e £y.
Now we suppose y(t, x) = B(t) &, (), where B(t) e C1(0, T), B(T)=0, and the

function &,(x) is constructed as follows. If z e 2,, we set

s =)+ 3 e - ta)g| T )+ 3 (ot - e vee - o) of £ )

’LENE 40’6‘ ’LENE

and for z € B} we suppose

. () = n(ie) + (&(ie) — n(ie))A — v¥(x — i),
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where §(x) and n(x) are smooth functions on 2 and ¢(x) = @(|xz|) e Cy° (R™) possesses
the properties 0 S g <1; @(r) =1 for r < 1/4; @(r) =0, if r = 1/3. It is clear that
£.(x) is a smooth function on M,.

LemMmaA 5.1. — The function &,(x) has the following properties:

(5.3) P.E,— (%) strongly in L2(Q),
(5.4) P, AE, — AL + u(n(x) — &(x)) weakly in L2(Q),
when & — 0.

Proor. - Using Lemma 4.2 (ii) we have
|P.E, — CHLZ(QS) sCar*' + e )IN, | -0

when ¢ — 0. Here |N,| is a number of elements of N,. Since Vol(2\2,) — 0, we ob-
tain (5.3). ‘
In order to prove (5.4) we first note that Remark 3.1 implies that

ie N,

(5.5) PSA( N(g(i£>—§(m))¢(u))—>o, £—0

4qa,

strongly in L*(Q). Therefore it is sufficient to consider the term

ie N,

L@ = 3, (ie) ~ o) (@~ ie)g (L
N,

It follows from Lemma 4.2 (i), (i) that

[lalros(z)]

FE

so the family {P,(dy,)} is bounded in L?(£). Consequently on this family, weak con-
vergence is the same as weak convergence on smooth functions 6(2) € Cy (£2).
It is clear from Lemma 4.2 (i), (i) that we have

.6) J’A [vf(xyp(?g)]e(x)dx = G(O)JA [vf(x)cp(fg—)]dx + 0@ ).
G G

3 &

Using Green’s formula and Lemma 4.2 (v) we get

JA(vs(w)(p(%))dx = j %d(;*:/lgms.

£ (o
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Therefore (5.6) gives

J Py 0@)de = 3 A,m,(pie) - L(ie)) B(ie) + O(e).

ie N,
2, ¢

From this and (5.5) follows (5.4). This proves Lemma 5.1.
If (u; v) is a limit point in C(0, T; L%(R) x L2(R)) of the family {(x,(t); v,(t)):
¢ — 0}, there exists a sequence {¢,}, ¢, — 0, such that

(6.7 &{aT)](Hu(t) — e, (D120 + {gagllv(t) =0, (| 129y >0,

when k — . Therefore Lemma 5.1 implies that

6.8) Jm T (5 pee,, 20,0 = J1(u; 7, 0),

where

T

69 Jiwin, 0=~ (o, DuzaBO) = [ @), Dyro)f (1) dt -

0

T T
~ [ utt), AL+ 24 ~ D)z, Bt + [ (F@UD) = ha, D2y Blt
0 0

We now study the asymptotic behaviour of J,, (u*; B&,, , M, \Q,,).

LEMMA 5.2. — Let

ve= 3 [ S, 0)§ @) do
]ENEB],

Then for any interval [0, T] we have

6.10) <€ Cre, tel0,T].

ve= 2 fl " @) n(je)m,
JeN,
Proor. — The Poincaré inequality and the structure of &,0n B! give

[fu e @ do —up ™) [&@dn

B} B}

< | Vour Ol 2y (10 |2y + €] Vev®

L8l)) -

Therefore it follows from Lemma 4.24(ii), (iv) and (4.10) that we have

(5.11) lyg—jZN flug @) [E.(@)de | <Cre,  telo, T1.

Bl
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It is also clear from (2.2), the Poincaré inequality and Lemma 4.2 (iv) that

<

~

[ feu m)eCGe) = n(GeN( = v (@ = o) d

B

< Csn+1(1 + |u]£’1n(t)l) < Cs"/2+1(8n/2 + ||u£(t)HLZ(B£)) .

So (5.10) follows from (5.11).
As above we can conclude that

(6.12) 3| [ur g dw— up * @ n(Germ} | < Cre
JjeN; B{
for all te[0, T'] and
(5.13) P j hE dx — h(je) n(je)m\ | < Coe.
jeN,| 4
B]

Using the equality
AsEe(x) =/15(§(j8)—77(7'8))v£(w_j£)7 {L’EBg,

and Lemma 4.2 it is easy to see that

Gl 3 j w(t, @) A, &, (@) dx = AamsjEN ut m(BE(je) — n(je)) + 0Ce).
Jje e eVg

B

Thus, it follows from (5.7), (5.10), (5.12)-(5.14) that
(5.15) Jim T, (e BE. M N\2,,) =ty (v; n, ),

where

T
(5.16)  Jy(w; 1, &) = — (g, M2 B(0) — J(W(t), M2 B’ () dE —

0

T T

-2 J (W(t), & — Mrref’ (D) dt + J.(f(’U(t)) — by, M2 B(E) dt .
0 0
Equations (5.2), (5.8) and (5.15) imply that
(6.17) Ji(u; m, §) + uda(v; 4, 8) =0

for any limiting point (u(t); v(¢)) € C0, T; L*(L) X L2(Q)) of the family
{(#, (t); ,(t)): € >0}. Here J1(u; 1, §) and J(v; 7, §) are defined by (5.9) and (5.16),
where B(t) e C*(0, T), B(T) = 0 and n(x), {(x) are any smooth functions on Q. There-
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fore it follows easily from (5.17) that (w(t); ©(t)) is a weak solution of problem
(3.5)-(3.8).

REMARK 5.1. — Existence theorem for solutions from C(0, T; L2(Q) x L2())
of the problem (3.5)-(3.8) also follow from the considerations above, under certain
conditions concerning the functions w,, v,, %, and h, (see the assumption (ii) of
Theorem 3.1).

In order to complete the proof of Theorem 3.1 we only need to prove the unique-
ness theorem for the system (3.5)-(3.8). We will do this in the following section.

6. — Properties of the homogenized system.

In this section we prove Theorems 2.2-2.4. We rewrite equations (3.5)-(3.8) as the
following system of first order evolution equations in the space & = L2?(Q) X
X L2(Q): :

©.1) gZU+AU=B(U), Ulieo=Us,

where

U=(u), A=(_A + Au O), B(U)z(iﬂ?)_f(u)+hl),

v 0 A A = f(v) + by
It is easy to see that A is a positive self-adjoint operator in & such that
(6.2) (AU, Uz, = |[Vul e + vAIULS . UemAa'?),

where y = min(1, u), and
®3)  [BDls<M 1+ [UDg, [BW) =B < Mp||U, - U, |5 .

If we consider de equation (6.1) in the integral form
12
(6.4) U) = ¢ Uy + [ 642 BUD) dr,
0

then using the fixed point method in the space C(0, T; &) we can easily prove the ex-
istence and uniqueness of solutions for T < Ty, when T, is small enough. It is clear
that the function U(f) gives a generalized solution of the system (3.5)-(3.8) on the in-
terval [0, T], T < T,. Using standard methods (see, e.g.[9,15]) and the properties
(2.2)-(2.4) of the function f(u) we see that

(6.5) ”U(t)”d(‘ogclllUO ”%e_wt‘i‘(]z(l_e—-wt),

where w, C; and C, are positive constants. This estimate allows us to extend the sol-
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ution U(t) on the whole of B, . The proofs of the properties (8.10) and (3.11) are also of
standard character (for similar consideration see, e.g.[9,15]). This proves Theorem
3.2.
Let S; be the evolutionary semigroup defined by the formula S; U, = U(t), where
U(t) is the solution of problem (6.1). Since
|Afe || <CtPe ™, >0, 0<B<1,

and MA?) = 7 = HY(Q) x L*(), (6.4) and (6.5) imply that S, has the following the
following dissipativity property: there exists a constant 2 > 0 such that for any
bounded set B in J we have -

(6.6) [S:Upllzs <R for all Uye B and t = t,(B).
LEMMA 6.1. — Assume that (3.12) is satisfied. Then S, is o dissipative semigroup in

the space F = H'(Q) X H (L), i.e. there exists a constant R* > 0 such that for any
bounded set B in F we hove

6.7) IS;Us | < R*  for all Uye B and t = t,(B).

PRroOF. - Using (3.7) and (8.8) we see that the function wy (, ) = 9, v(x, {) satis-
fies the equation

%wk(t) T+ (+ f ) wy = A0, 0 + Oy, hy

Therefore from (3.12) we get

14d
2 di

where 6 > 0. Using (6.6) we obtain

o0 (8 220y + Ol D[220y < CllullE oy + Il 32 () »

185, v)|32ee < [0(S)|Fr e ¢+ Cr, tZs21,(B).
This estimate and (6.6) imply (6.7).

LEMMA 6.2. — The semigroup S, is weakly closed in F, i.e. for any t > 0, the condi-
tions: U,— U and S;U, —V weakly in F for n— o impliy V=_S5,U.

PROOF. — The lemma follows from equation (6.4) and from the compactness of the
imbedding & — F. ‘

Lemma 6.1 and 6.2 make it possible to use the results from [1] and to guarantee
the existence of weak global attractor @ for the dynamical system (S;, &). This at-
tractor is a bounded weakly closed set in & = H1(Q) x H'(£2). It is also easy to see
that the initial data from & is C* with respect to the semigroup S;. Therefore in order
to prove the finiteness of the Hausdorff dimension of @ we can use the approach pre-
sented in{17].
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Let us consider the first variation equation corresponding to (6.1):

%W+AW=B’(U(t))W

for a trajectory U(t) lying on the attractor . As in [17] (see also [4]) it is necessary to
estimate the quantity

ox () =tr{(A -~ BU®))Qy }

for any N dimensional orthoprojector Qy in the space % such that @y F ¢ & .1t is clear
that for W = (w;; wo) € H; we have

(LA = B" (U)W, W)z = [V, [P + agllw |* + B5] Voo ||,
where

A%(1 +/12)
U= hu= g5

+inf f* (u)
and
ﬂ5=l+ig}ff'(u)—(5
for any 6 > 0 such that 85> 0. Let {W* = (wf; w¥)}¥_, be an orthonormal basis of
Qn F. Using the equality

N N
2wkl =N~ X llwk|?
E=1 k=1

we get

N N
on(®)=FsN + 2w I* + (a5~ ) 2 [k |-
Now we use the following version of the Sobolev-Lieb-Thirring inequality

ke

N
||
klkzlllm I* + T

J olx)dx = J o(x)* + 2/ dg
g

Q

N

which follows from [6, Theorem 2.1]. Here o(x) = >, [wFT?, k, and %, are constants de-
k=1

pending on » and on the shape of @, d(Q) is the diameter of Q2. We obtain

on(t) = BsN + ”EIIQ(W tEm y@(w)} dx
Q ’ .

where

A%(1 + u®)

) -2
y= @I i+ —p
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Since

k 1+n/2
2”2/”—)/}0122 __%( Yy )

n+2
for any z > 0, we have

£
aNu>>5aN-—L—Lg«

ykln 1+ n/2
1 ™ ) '

n+ 2

Therefore (see, e.g. [17]) an estimate for the Hausdorff dimension of d as a compact
set in & ecan be found from the condition

2 19l sy

N> kB \mt2

This proves Theorem 3.3.
REMARK 6.1. - It is easy to see that the function

Vi, 0) = 2(1Vulfeo + Aulu ~ vllfra) +

+ j (F(u) + uF)) da ~ (hy, w)eg) — ulhs, V2o

2

is continuous on & and has the following properties

i

Viu(t), o(t)) + j(

0

2 2

\‘%@f(r) )dt=V<uo,vo>,

u
= (0 +
A P L*(@)
where (u(t), v(t)) is the solution of problem (3.5)-(3.8). This property implies (see,
e.g.[1,4,7,17]) @ = I, (N), where N is the set of stationary solutions of the system
(8.5)-(3.8) and I, (N) is the unstable manifold of N. In particular this means that any

trajectory of S;U, goes to N, when {— + .

REMARK 6.2. — The assumption (3.12) is of prime importance in the proof of Theo-
rem 3.3. Indeed, for any 6 > 0 it is easy to find a function f(u) satisfying (2.2)-(2.4)
such that

flug)=0, A+f(y)=-0

for some v, e R. In this case the pair (v,; v,) gives a stationary solution of (3.5)-(3.8).
The linearization of (3.5) and (3.7) near (v;; v) has the form

—A+u+f (v) —Au

g (u (“): h =
()+A”0v 0, where A, 1 l+f’(vo)'

dt \v
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Simple considerations show that for u = 1 the operator A, has an infinite dimen-
sional spectral subspace corresponding to eigenvalues belonging to {A: Rei < 0}.
Therefore the instable manifold 31, (vy; vy) has infinite dimension. Thus the asymp-
totic behaviour of the system (3.5)-(3.8) without assumption (3.12) cannot be described
by a finite-dimensional global attractor.

Now we prove Theorem 3.4 on the upper semicontinuity of the family {c,: ¢ > 0}
of attractors for the problem (1)-(3), when ¢ — 0.

It follows from Remarks 2.2 and'4.1 that for any trajectory {u°(t) — © <t < w},
belonging to the attractor @, we have the uniform estimates:

68 PN VPOl + PO, < G,
LE(Q:)
and
s ll2
(6.9) Q. ou’ +HVQeu D320y + 1Qut W32 0y, < Cs
at Lz('QNe) £

for all e (~ o, ©) and ¢ small enough.

Let u§ € d,. Then there exist a trajectory {u®(f): —® <t < ®»}cd, such that
#*(0) = u§ and (6.8) and (6.9) are satisfied. Therefore, as in Section 5 we can find
a solution (u(t); v(t)) of (3.5)-(3.8) belonging to C(a, b; %) for any a, b such that
—o<g<ag< +o,

610)  max|[Pp,u(®) ~ w®)z0) + max|Q,u(6) — o) p200) 0
for some subsequence {&;}, ¢, — 0. From (6.8) and (6.9) we also get

ot

L@,

) +|Vulliz,) + llu)}eq, < Cy,

and

“ ou®

ot
for all . Consequently U(t) = (u(t); v(¢)) belongs to a weak global attractor d. There-
fore from (6.10) it is easy to extract the assertion of Theorem 3.4.

2
, ot 1VollZ2c0) + v))320) < Cs s
L=(2)
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