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Homogenization of Attractors for Semilinear Parabolic Equations 
on Manifolds with Complicated Microstructure (*). 

L. BOUTET DE MONVEL(1) - I. D. CHUESHOV (2) (3) - E. YA. KHRUSLOV(2) (4) 

A b s t r a c t .  - An approach to a homogenized description of solutions of the Cauchy problem for 
parabolic equations on Riemannian manifolds with complicated microstmtcture is present- 
ed. This approach covers both linear and non-linear cases and makes it possible to establish 
a connection between global attractors of the initial problem of the homogenized one. 

1. - I n t r o d u c t i o n .  

We consider on an n-dimensional (n i> 2) Riemannian manifold M~ of complicated 
microstructure depending on e > 0 the following initial-boundary problem 

8u--~ - z J ~ u ~ + f ( u ~ ) = h ~ ( x )  x e M ~  t > 0  (1) 8t ' ' ' 

(2) 8 u ~ - 0 ,  x e S M ~ ,  t > 0 ,  

(3) u~(x, O) = u~(x). 

Here LI~ is the Laplace operator on M~, 8/8v~ is the outer normal derivative on the 
boundary 8M~ of M~ , f (u )  is a smooth real function on R 1 and h ~ (x), u~: M~ ~ R 1 are 
given functions. We suppose that  the local s t ructure  of the manifold M~ becomes more 
and more complicated, when e tends to zero. 

This paper  deal with the s tudy of the asymptotic behaviour of the solution u ~ (x, t) 
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and of the global attractor ~ of problem (1)-(3) when e ~ 0. One of the main goals 
here is to learn how the transition to homogenized (e ~ 0) description reflects on the 
long-time (t --. + ~ ) dynamics. 

Under certain conditions on the manifold Mr and non-linear term f(u) we first 
prove that for any finite time interval the limit behaviour of u ~ (x, t) is described by a 
solution of the Cauchy problem for a system of two coupled equations. After that we 
study the long-time dynamics of this homogenized system and show that it possesses 
a finite-dimensional global attractor ~ (for definitions and basic facts on attractors 
see, e.g. [1, 4, 7, 17]). We investigate the structure of d and prove that global attrac- 
tors ~ tend to A in a suitable sense. 

In the linear case (f(u) = 0) a similar homogenization problem has been studied 
in [2]. It has been proved that the asymptotic of u~(x, t) is described by a linear diffu- 
sion equation with a term non-local in time. This term can be interpretated as memory 
of the medium (on the memory phenomena for linear homogenized models see 
also [11-14]). The method developed in [2] essentially relies on the linearity of the 
problem. The main ingredients there are the Laplace transformation in time and the 
study of the corresponding stationary problem by variational methods. Unlike [2] the 
approach presented here can be applied both to linear and non-linear cases. For the 
linear case the homogenized coupled system can be reduced to a single diffusion equa- 
tion with memory term of the same form as in [2]. 

We also note that the dependence of attractors on parameters for various singu- 
larly perturbated systems has been studied by many authors (see, e.g. [1, 3, 5, 7, 8, 10, 
16] and the references therein). In this paper we rely on some ideas presented in [3, 5, 
7, 8]. 

The paper is organized as follows. In Section 2 we describe the structure of the 
manifold M~ introduce some notations and give preliminary results concerning the 
properties of solutions of the problem (1)-(3), when ~ > 0 is f~xed. In Section 3 we for- 
mulate our main results. The rest of the paper is devoted to the proofs of the Theo- 
rems of Section 3. Section 4 contains the proof of the estimates which guarantee the 
compactness of the family {u~: s--~0}. In Section 5 we make the limit transition in 
the weak form of problem (1)-(3). The main point here is to choose the testing func- 
tion. In Section 6 we study properties of the homogenized and prove the upper semi- 
continuity of global attractor ~ of the problem (1)-(3), when e ~ 0. 

2. - P r e l i m i n a r y  c o n s i d e r a t i o n .  

Now we describe the structure of the manifold Mr. Let t~ be a smooth bounded do- 
main in R ~ (n/> 2) and let 

F~ = [J F(x ~, at) 
j~N~ 
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be a union of balls F(x  i, at) of radius ae<<~ ( l i o  a~s -1 = 0) with centers in x j = je  

( j  e Z ~) such that  F(x  i , ae) �9 t2. Here  Ne stands for the corresponding set of multiin- 
dexes j e Z  n. In R n+1 we consider the surfaces (below x = (Xl, ..., x~) e R  ~, y e R  ~ , 
(x, y) � 9  1): 

and 

BJ = (3"E; 0) + B~ , j e N i c Z  n , 

where 

Be = {(x, y) � 9  Ixl 2 + ( y -  ~/b2e 2 -  a~) 2 = b2s 2, y <<. 0}. 

Here  b is a parameter  such that  a~ t -~ < b < 1. We assume that  

i.e. M~ consists of a piece of flat submanifold in R ~ § ~ with bubbles BY. We define a 

x � 9  

Riemannian s t ructure  on M~ by a C | metric tensor  

8 g~(x) = {gaZ(x), a, fl = 1, 2, ..., n } ,  

and assume the following: 

(2.1) 

(i) the metric coincides with the euclidean metric of R n + 1 on tg~ ; 

(ii) the metric is the same for all bubbles B j ,  j �9 N~; 

(iii) there  exist positive constants C1 and C2 such that  

s X 2 < Ega ( < > 0 ,  
az 

for all x e B J ,  j e N e  andfor all ~ e R  ~. 

The main object of this paper  is the problem (1)-(3) on the Riemannian manifold 
(Me, ge), which can be t rea ted  as a model of diffusion in a medium with traps. The cor- 
responding Laplace operator  /1~ is of the form 

1 zJ~- -  a e 3 

where Ig~l = de tg  ~ and g~Z are the components of the inverse of the tensor  ge. We 
also assume that  the function f ( u )  ~ C2(R 1) possesses the property:  

(2.2) s u p { I f ' ( u ) l :  u e R  ~} < 
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and there exists a constant ~] > 0 such that 

(2.3) uf(u) ~ ~ U  2 - -  C 1 , 

(2.4) 

u 

~(u)  = f f ( ~ ) d ~  I> ~u 2 - C2. 
0 

Below dx represents the surface measure on Me. In local coordinates {xl, ..., x~} 

we have dx = ~r ~ I dxl.., dx~. We also denote H ~ (V~) the Sobolev space of order 1 on 
a submanifold V~ c_ M~ and Ho ~ (Ve) for closure of Co ~ (V~) in H t (Ve). We denote by ll" llt, e 
the norm Ht(M~) and by ll" II~ and (., �9 )~ the norm and inner product in L 2 (M~). In cer- 
tain obvious cases the index e in norms and inner products will be omitted. 

By standard way (see, e.g. [9,15]) we can prove the following existence and 
uniqueness theorem. 

THEOREM 2.1. - Let u~ and h ~ belong to L 2 (Me). Then for any interval [0, T] prob- 
lem (1)-(3) has a unique solution u~(t)= u~(x, t) such that 

(2.5) 

(2.6) 

and 

(2.7) 

where C1 and 
properties: 

and 

then 

ue(t) �9 C(O. T; L2(Me)) N L2(O, T; Hi(Me)) 

t 

Hue(t)II~ i (lIV~ue li~ + ~llluell~)dv<~ Iiu~ll~ + cl(1 + llhe H~) 
0 

llue(t)[l~ ~< llu~ll~e -vt + C2(1 + llh~ ll~)(1 - e - ' t ) ,  

C2 are independent of e. The solution u~(t) has the following 

i) i f  u~ �9 H 1 (Me), then 

ue(t) �9 C(O, T; Hi(Me)) A L2(O, T; H2(Me)) 

ii) i f  

aue �9  T; L2(M~)); 
9t 

u~�9149 ~n =0 on aMe}-H~(M~) 

u~(t) �9 C(O, T; H~(M~)) 
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and 

9u~ e C(0, T; L2(/~))  ('152(0, T; H I ( / ~ ) ) .  
at 

To obtain additional estimates for the solutions u ~ (t) we introduce on H 1 (M~) the 

Lyapunov function 

v (u) = lllvo ll  + 5(u(x))dx- (h (2.8) 
Mr 

It  is clear that  V~ is continuous on H 1 (M~) and there exist positive constants aj and 

flj independent of s such that  

(2.9) a 1 H u l 1 2 1 ,  s - ~1 ~ V s ( U )  ~ ~ [lull2,s + ~2.  

Here we assume that  []h~ll~ ~< C for all 0 < s ~< So. 
One can easily prove (see, e.g. [1,7, 17]) that  the solution u~(t) of problem (1)-(3) 

with u~ e H 1 (M~) satisfies 

t 
(2.10) V~(u*(t)) + ~ I]gtu~(v)ll~dv = V~(u~). 

0 

LEMMA 2.1. - Let u~ e H~(M~). Then 

�9 t 

a U S : f  aU~2dv  (2.11) - - ~  + 2 V~ ~ ~ <~ C1 + C2V(u~) + Ilu~ H~, 
0 

where u~ = A~u~ - f(u~) + h ~ and C1,2 are independent of ~. 

PROOF. - Theorem 2.1 implies that  w~(t) = au~/at is a solution of the following 
problem: 

(2.12) aw---~-~at - ,t ~ w ~ + f '  (u ~ (t)) w ~ = 0, aW~an = 0 

Since If'(u) l <~ c it is clear that  

1 d IIw (t)ll~ + (2.13) 2 dt 

Therefore (2.11) follows from (2.10) and (2.13). 

REMARK 2.1. - From (2.10) and (2.13) it also follows that  

an e 2 
(2.14) t ~ <~ eC~t{V(u~) + C2}. 

on 3M~, w ~(x, 0) = uf  (x). 
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Therefore using (1), (2.7), (2.9), (2.10) we have 

(2.15) tllxl~u~(t)ll~ <~ C~ eCt(1 + IluE ll~,~), 

if we assume that IIhEll~ ~< C for all 0 < ~ ~< so. 

Theorem 2.1 makes it possible to define an evolution operator S[  on the space 
Hi(ME) by the formula S[u~ = u~(t), where u~(t) is the solution of the problem (1)- 
(3). I t  is not difficult to show that St ~ is a CLsmooth nonlinear semigroup in the space 
H 1 (ME) and to prove (see, e.g. [1, 17]) the following 

THEOREM 2.2. - The dynamical system (S[, H 1 (M~)) for every s > 0 has compact 
global attractor, i.e. there is a compact set c~ in H ~ (M~) such that S[ r = ~ f o r  t ~ 0 
and 

lira sup {distg~(M~)(S~v, 6L~): v e B} = 0 
t a+  

for any bounded set B in H 1 (ME). This attractor d~ has finite Hausdorff dimen- 
sion. 

REMARK 2.2. - Using (2.7), (2.11), (2.15) and the formula 

t 

u~(t) = e-L~'~tUo + I e-L~'~(t-~)($U~(V) --][U~(V)) + h~)dv, 
0 

where L~,~ = - A t  + ~ with the Neumann boundary condition on 9M~, Y > 0, it is 
easy to show that for any t rajectory uE(t) lying in the at tractor  dt~ we have the 
estimates: 

(2.16) 

and 

au. i --~-(t) § IlA~uE(t)ll~ § cllv~uE(t)tl~ § IluE(t)]l~ < 61 

(2.17) 3t "-" + V~ ~ ( t )  dt <<. C2, 
8 

- - a o  

where C1 and C2 are independent of e, 0 < s ~< So. 

3. - F o r m u l a t i o n  o f  m a i n  r e s u l t s .  

We introduce a parameter  to describe the asymptotic behaviour of manifolds. For  
simplicity we will suppose 0 e ~9, and denote 

G~= l(x; 0 ) E R a * l :  a ~  < !xl< D~= B~ UGE, 
t ~ J  
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We set 

(3.1) ) ~ = i n f  {{V{[~2(D~ ) : vEH~(D~) . 

~ is the first eigenvalue of the Dirichlet problem 

(3.2) A ~ + X ~ v = 0 ,  xeD~;  v = 0 ,  x ~ g D ~ .  

Our main assumption concerning to behaviour of the bubbles B j (and manifold M~) 
is the existence of the limits 

(3.3) )~ = lim X~ and /, = lim s -~m~ > 0, 
e ---> 0 s---> 0 

where 

(3.3) Vol(  ) = f I dx . 
Be 

REMARK 3.1. - It is easy to see that 

{ a~n-2~ -n , n > 2, 

0 < ; t ~ < C  {Ina~{-l~ -2, n = 2 .  

Moreover, if the metric on M~ coincides with the metric induced from R n + 1 outside of 
small neighbourhoods of the boundaries 9B~, one can prove that the condition 

{ c~Fn/(n- 2)  ?'b > 2 

a t =  exp( -1 /E2) ,  n = 2 ,  

implies that limits (3.3) exist and ;t = (1 /2)a~-2b-n  and # = w~, where oJ~ is the vol- 
ume of the unit sphere in R ~ § 1 (see [2] for a closely related assertion). From this ob- 
servation and (2.1) it also follows that for existence of limits (3.3) it is necessary 
that 

C1F. n/(n- 2) ~ a~ <~ C2 ~n/(n- 2) for n~>3 

and 

Clexp(-1/e2)<~a~<~C2exp(-1/s  2) for n : 2 .  

Let P~ be a bounded operator from L2(M~) into L2(t)) defined by the formu- 
la 

u(x), xeY2~, 

(P~u)(x) = 0 x e ~\g2~ , 

and let Q~ be the operator which maps a function u E L 2 (M~) into poly-linear spline 
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Q~u associated with a net {x j =je,  j e N ~ }  such that  

1 f u ( x ) d x ,  j e N ~ .  (Q~u)(x i) = (Q~u)(xi) = 
BJ~ 

I t  is clear that  Q~ is a linear bounded operator from L 2 (M~) into H ~ (t~N,), where QN~ 
is the union of elementary cubes corresponding to the net {je: j e N~}. If  we set 
Q~ u(x) = 0 for x e tg \Q N~, we can also consider Q~ as a bounded operator from L 2 (M~) 
into L 2 (Q). 

The first main result of the paper is the following 

and 

THEOREM 3.1. - Let u~(t) be the solution of the problem (1)-(3). Assume that 

i) for any ~ ~ (0, ~o), we have 

ilh + llVQ u -< C, 

where the constant C is independent of ~; 

ii) there exist functions uo, Vo, hi, h2from L 2 (Q) such that P~u~ ---) Uo, Q~u~ ---> 
--)vo, P~h~-o hl, Q~h~--> h2 strongly in L2(~9); 

iii) there exist limits (3.3). 

Then for any interval [O, T] we have that 

(3.4) lim {maxliP~u~(t) - u(t)]i~2(~) + maxiIQ~u~(t) - v(t)ll~2(~) } = o,  
s---~0 [0, T] [0, T] 

where the pair of functions u( t )= u(x, t) and v(t)= v(x, t) is the solution of the 
problem: 

a__uu _ •u + ~tt(u - v) + f (u)  = h~ (x), x e ~ ,  t > O, (3.5) 9t 

a__% I =0, uit~o=Uo(X), (3.6) an  a~ 

a__u_u + ;~(v - u) + f(v) = h2(x), x e t~, t > O, (3.7) at 

(3.8) v l~ = 0 = v0 (x), 

The proof of this theorem consists of two parts. The main point of the first one is to 
obtain a uniform estimate 

T 

(3.9) I liVQ~u~(t)ll2L~('N~)dt < C. 
o 
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In the second part we make a limit transition in the equation (1) on testing functions 
of special structure. In order to prove the uniqueness of limits we also use the 
following 

THEOREM 3.2. - A s s u m e  that (2.2)-(2.4) are satisfied and Uo = (u0, Vo)e ~0 = 
= L 2 ( ~ )  • L2(Q).  Then the problem (3.5)-(3.8) has a unique generalized solution 
U(t) = (u(t), v(t)) belonging to the space C(R+, 4 ) .  Moreover, i f  Uo e 5:1 = H 1 ($2) • 
• L2( t ) )  then 

(3.10) U(t) �9 C(R+, ~ )  and d u(t)  e L 2 ( R + ,  4 )  

i f  Uo e ~ = H 1 (~)  • L 2 (Y2) and h2 e H 1 (t-2) then 

(3.11) U(t) e C(R+, ~ )  and d U(T) e L 2 (R+, L 2 (t2) • H 1 (t2)). 

The proof of this theorem is of standard character and relies on the methods pre- 
sented in [9]. 

Theorem 3.2 allows us to define the evolutionary semigroup St in each of the 
spaces ~ by the formula St Uo = U(t), where U(t) is the solution of the problem (3.5)- 
(3.8). If we consider this semigroup in ~ ,  then we can prove the following assertion 
on the existence of a global attractor. 

THEOREM 3.3. - A s s u m e  that (2.2)-(2.4) are satisfied and 

(3.12) ~ + inf{f ' (u) :  u ~ R  1 } > O, h 2 ( x ) e H l ( l ) ) .  

Then the dynamical system (St, ~ )  has a weak global attractor 5{. This attractor has 
finite Hausdorff  dimension as a compact set in 4 .  

In order to prove this theorem we rely on certain results from [6, 17]. Recall 
(see [1, 4,17]) that a weak global attractor Ct is a bounded weakly closed set in ~ such 
that (i) St d = ~t for any t > 0 and (ii) for any weak neighbourhood �9 of A and for any 
bounded set B r  we have S tBr  when t/> to(B, O). 

At last using Theorem 3.1 and estimates (2.16) and (2.17) we prove the second 
main result of the paper. 

THEOREM 3.4. -Assume that (2.2)-(2.4), (3.12) and the assumptions of Theorem 3.1 
are satisfied. Then we have 

lim sup { i n f a ] [ P ~ u ~  - ul]2L2(.o ) + []Q~u~ - vI[2L2(a))} = 0 .  
e --* 0 uE ~ a t  ( u ,  v) a 

This theorem means that the global attractor c1~ of problem (1)-(3) tends to a weak 
global attractor a of the homogenized system (3.5)-(3.8). 
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4. - U n i f o r m  e s t i m a t e s .  

Now we begin the proof of Theorem 3.1. In this section we establish our main 
Lemma 4.1 on uniform boundness of the norms IIQeuelBH~(QN~• (0, T)). This lemma and 
estimates for Peu e which directly follow from (2.6) and (2.10) make it possible to ex- 
tract  from {P~u ~} and {Qeu e} subsequences strongly convergent in L2(t9 • (0, T)). 
Below we consider the case n i> 3 only. For  the case n = 2 the consideration should be 
repeated word by word with slight modifications in the estimates. We assume that  
the conditions (i)-(iii) of Theorem 3.1 are satisfied. 

At f~rst we note that  (2.7) and (2.10) imply that  the solution u~(x, t) satisfies the 
estimate 

(4.0) 

t 

liue(t)i]  + 1]Veu (t)ll  + - K  
o 

for any t e [0, T]. Since the metric g~ coincides with the euclidean one on ~ge, we 
have 

(4.1) 

t 

o 

The remaining part  of this section is devoted to the proof of a similar estimate for 
Qeu~(t). 

Let  us introduce the following notation: 

u~(x,t)=u~(xk +x,t) ,  xk=l~, keNe, xeDe; 

1 fu~(x, t)dx; U k i n ( t )  = 

Be 

1 Iu~(x, t)dx; 
= m--/  

G~ 

where ue(x, t) is the solution of problem (1)-(3), the sets Be, G~ and De are defined in 
Sections 2 and 3, me = Vol(Be) and m~' = Vol(G~). We also use the notation 

we-w~t(x , t )=u~(x , t ) -u{(x , t ) ,  xeDe, k, leN~ 

and 

w # = wE (t) = u~' ~ (t) - u{' ~ (t), k, 1 e Ne 

where # is either <~in, or ~<ex,. 
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It  is clear from (2.7) and (2.10) that  for any t I> 0 

t 

(4.2) IIQ~u'(t)ll~(~) + Qe - ~ -  dv <<. CT. 
0 

The main result of this section is 

LEMMA 4.1. - For any T > 0 we have 

2 2 IIVQ~u~(t)llL ( ~ }  ~ c~ ,  t ~ [0, T], 

where C~ is a constant independent of e. 

In order to prove this Lemma it is sufficient to obtain appropriate estimates for 
w~  (t). We will use the following preliminary assertions. 

LEMMA 4.2. - Let ae <~ ae ~/(~ - 2) (n > 2) and let v ~ (x) �9 H~ (D~) be the solution of the 
problem (3.2) such that 

r 

(4.3) ~ v ~ (x) dx = me o 

B~ 

Then we have the following estimates: 

(i) IDav~(x)l <. Cs~ 
Ixln-2+ lal 

for x ~ G~ and I xl ~ ~/4; 

(~) f Iv~(x)l 2dx <~ cp+2; 
G~ 

(iii) f Ive(~)l~d~ = f I v ~ ( x ) l ~ d x  § O ( P  + ~) = mE + O(t~ n+ 2); 
De B~ 

(iv) ~ IV~v~(x)12dx = ~m~ + O(P*2); 
D~ 

(v) ] 9v~da=)'em~an and f aV~d(~=2~m~+O(e~+l);an 
r(a~) F(e/2) 

where F(a~) and F(e/2) are the inner and outer boundaries of the ring G~, and the nor- 
mal vector n is directed towards the center of the ring G~. 

PROOF. - It  is easy to see that  for v~(x) we have the following inequalities of 
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Poincar6 and Friedrichs type: 

(4.4) 

(4.5) 

I (v ~ - i)2dx <~ CeZ I ]V~v ~ [Zdx; 
B~ B~ 

I Iv~ Izgx < C~21 IVvS 12ax. 
G~ G~ 

Since 

D~ 

from (3.3), (4.4) and (4.5) we have 

I tV~v~ 12dx <<" Ce~ (4.6) 
D~ 

and the property (iv) follows. Now (ii) and (iii) follow from (4.5) and (4.6). Using. 
Green's formula we get 

f Ov~-~nda r~ -I .dv~ -v~ = f IV~v ~ ]2dx (1 )dx. 
F(e/2) D~ De 

Therefore using (3.2)and (4.3) we obtain 

I I -~n da= ).~m~ + ;~ v~dx. 

Hence (v) follows from (iii) and from the obvious formula: 

I 9v ~ , -~n a~= I av~ -~n do - ~ I v~dx" 

We now prove (i). Let F(x, y) be the generalized solution of the problem: 

AF(x ,y )+2~F(x ,y )=-5(x -y )  for x, yeK~, F~(x,y)]~K =O, 

where K~= {xeR~: [x] < ~/2}. It is well known that 

(4.7) ] ~ ~ -n D~DyF(x,y)] <~C[x-yl +2-[~l-I~f 

For yeG~, lY] >~ 2a~, and xeD~ we define the function 

R~(x,y)= r(x,y)+(F(O,y)-F(x,y))c;  x xeG~ 
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where ~(x) �9 Co ~ (R ~) satisfies: 

~ ( x ) = l  for Ix[ ~<1 ~ ( x ) = 0  

It is clear that Re (x, y) = 0, when x e aDe and 

{ )t~/'(O, y),  
(A~ ' x+~ 'e )Re (x 'Y )=  - 5 ( x - y ) + O ~ ( x , y ) ,  

where 

a~ 9 o~ (x, y) = a72Acp(F(0, y) - F(x, y)) - 2a[ ~ ~_~ 
i = 1 ~X i SX i 

Using the Green formula we have 

f v~(x)(zJ ~,~ + ~ ) R ~ ( x ,  y )dx  = O. 
Ds 

Consequently, 

(4.8) ve(y) = ~ .em~F(O,  y) + ~ O~(x, y )v~(x )dx  
G+~ 

for Ixl ~ 3_ 2" 

x e B e ,  

xeG~ , 

- -  - - F ( x ,  y) + ;L~F(O, y)cf . 

LEMMA 4.3. - Let v~(x) be as in Lemma 4.2. Then we have 

R•(t) 
dt ) J 

De DE 

1 

I ~ l ( t )  = 1me ~ dv f f ' (u f~( t )  + v ( u [ ( t ) - u ~ ( t ) ) ) v e d x  
0 B~ 

and the quantity R~t(t) admits the estimate 

IR~(t)i <. Clm~(iw~X(t)[ + Ih in I) + 

+C2s~l~+l{llwe(t)llL~(6:) + !lV, w~(t)ll~.(~:)+ IIh~ I1~(~)+ IIV~h~ t1~(~)}. 

Here hkt(x) = h(xk + x) - h(xl + x) for x ~ D~, k, 1 e N~ and h in is defined in the same 
manner as u ~' in 

where 

(4.9) 

for y e G~ and ]Yl I> 2a~, where G* = {x e G~; Ixl ~< (3/2)a~}. The property (i) then 
follows from (ii), (4.7) and (4.8). 
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PROOF. - We use the equation 

(4.10) y f f -~ w~v~dx - dw~v~dx+ ( f (u~ ) - f (u [ ) ) v~dx  = hk~v~dx, 
D~ D E Dz D e 

which follows from (1) and we use the following Lemmas. 

LEMMA 4.4 

(4.11) ~! ~v~dx + ~ i ~"v~ d~ I <~ c (~  I~"x I + ~l~+'llVw~(t)ll~:(~'~)" 
D~ 

PROOF. - Using Green formula we get 

fdw~v~dx+~.fw,v.dx=-w~X I 3V"da + f 9n 9n " 
D~ Dc F(e/2) r(~/2) 

Lemma 4.2 (i) implies that 

ave"  I 
(w ~ - w~l-~naa <~ Cs I w~x - w ~ Ida. 

F(e ) F(e/2) 

Therefore, using the trace theorem and the Poincar6 inequality in G, we obtain 
(4.11). 

LEMMA 4.5. 

(4.12) I f (f(u~)-f(u{))v~dx-I~t(t)Iw~v~dx ] <~ 
D~ Dr 

PROOF. - It is clear from (2.2) and Lemma 4.2 (ii) that 

Is i (f(uf:) - f (up) )v~dx  <<- cIl~ll~,(~)ll~ll~,(~o)~ c~/~+~ll~l l~(~o). 
Ds 

Using Lemma 4.2 and the HSlder and Poincar6 inequalities we also get 

(4.13) ]D!W~v~dx-wi~m~] <~ ]D!W~v~dxl + IB!(w~-wi~)v~dxl  <~ 

<- c~i~+~(llV~w~ I1~<~o)+ I1~" I1~(~.)) �9 
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Obviously 

I I (f(u~) -f(u2))v~dx - wi~m~I~t(t) ] 
B~ 

<~ c f I ~  ~ - ~ 1 1 ~  ~ Idx < 
B~ 

<~ c~ "/~ + ' l lv f I 1 ~ ( ~ , )  �9 

Now in order to obtain (4.12) it is sufficient to note that 

(4.14) inf f '  (u) ~< I~l(t) ~< sup f '  (u). 
"aeR ueR 

This follows from the fact that v ~, first eigenfunction of the Dirichlet problem is posi- 
tive in D~. 

As in (4.13) we have 

I 

D~ I 

Therefore Lemma 4.4 and 4.5 give equality (4.9), and this proves Lemma 4.3. 
Using (4.9) and (4.14) we get 

21 d(fdt )2 ( I  )2 (4.15) w~v~dx +(~+L-5) w%~dx ~< 1 ~  [R~z]2 

for any positive 5, where L = inff'(u). Then it follows from Gronwall's lemma that 
we have 

(4.16) w~(t)v~dx <~ e w~(O)v~dx + ~ e 
\D~ 0 

for any 5 > 0, with as = 2()~ + L - 5 ). 
It is clear that 

L ~ k l  

where 

e 2 [Rkt(t)] ~< C l m ~ ( I  wex i 2 + ]h ~ 12) + c2en+2(y~(t) + Y[( t ) )  , 

Y~(t)  = I lu~(t) l l~(D~) 4- Ilhll~(D~) �9 

Here D j = (je; 0) + D~ for j e N~. Therefore 

1 ~ ~--~[Rkl(t)] e ~< c,~(ltu~(t)ll~(~)+ tlh[l~(M~,) + 
keNe[eo(k,) 

+C2 Z Z ~n(lu~x-%~x]2 + ]h~n- ]~[n12) , 
keNElea(k) 
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where a(k) = 5(k) A N~ and 5(k) is the set of the nearest neighbours of k in Z ~. Since 
any function ~ e H 1 (~9~) can be extended to ~ e H1(~9) such that 

with constant C independent of e, one can easily vetqfy that 

2 2 e~lu~-u2~]2<<-Cs2 I ]Vu(t)l 2dx. 
kEN~lea(k)  ... D~ 

Therefore using inequality 

2 I - <- cee2llVQ hll  (.N ), (4.17) CleellVQ~hllL~(~) <~ E E e ~ h~ ~ h[~] 2 
k e N e l e o ( k )  

we obtain 

1 s 2 

k e N e l e a ( k )  

Now using (4.13), (4.16) and (4:17) with u~(t) instead of h we conclude 

2 2 (4.19) I]VQ~u(t)[]2L~(,N~) ~ ClllUe(t)H2, e + C2(llVQ~uo IIL'(,N~) + [lUo I]~,~)e -~t + 

t 

I h 2 h 22 }dr. 
0 

assertion of Lemma 4.1 follows f rom (4.0) and condition (i) of Therefore the 
Theorem 3.1. 

REMARK 4.1. - Assume that 

s inf f ' ( u )>O.  
u e R  

Then we have a~ > 0 for e and 5 small enough. Therefore for any trajectory u~(t) 
lying in the attractor gt~ from (4.19) and Remark 2.2 it is easy to see that 

2 2 (4 .20)  []VQsue(t)I[L (~N~) <<" C1 + C2(1 + []Vqsue(s)l]2L2(~N~))e-aAt-s) 

for all t I> s. Since 

then letting s--> - ~  in (4.20) we conclude that 

t 22 (4.21) ]lVQ~u~( )IlL ('NE) ~ C1 

for any u~(t) e r where e is small enough. 
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5. - L i m i t  t r a n s i t i o n .  

Let R~ be a linear continuation operator from t-2~ to t9 possesses the proper- 
ties: 

i) R~: HI(~E)--->Ht(~2) for l =  0, 1 such that 

where C is a constant, independent of e; 

ii) R~q~ =q~ on t ~  for all ~ e L 2 ( D s ) .  

We also denote by R~ a continuation operator from ~ye to ~? with similar proper- 
ties. The existence of such operators is easily proved, in view of the structure of the 
domains t ~  and ~gN. 

Let ~ ( t )  = R~P~u~(t) and ~ ( t )  = R ~ u ~ 2 w~ (t), where u~ (t) is the solution of prob- 
lem (1)-(3). Then it follows from (4.1)-(4.3) that the family { (~( t ) ;  ~ ( t ) )}  is a precom- 
pact set in the space C(0, T; L2(t~) • L2(~9)), when e goes to zero. 

In this section we prove that any limiting point (u(t); v(t)eC(O, T; L 2 ( 9 ) •  
• L 2 (t~)) of the family { (~  (t); 6~ (t)): e -~  0} is a weak solution of problem (3.5)-(3.8). 
Below we assume that the conditions (i)-(iii) of Theorem 3.1 are satisfied. 

We first rewrite problem (1)-(3) in a weak form. Let u ~ (t) be the solution of (1)-(3). 
We denote 

T 

(5.1) J~(u~; 9; V~) = - ( u 6 ,  ~f(O))L2(V~)- f (u~(t), 9tF(t))L~(vE)dt- 
o 

T T T 

- f(u~(t),A~p(t))L~(v~)dt + f ( f (u~ ( t ) ) ,  ~P(t))L,(v~)dt- I (h ,  ~P(t))L2(v~)dt, 
o o o 

where ~f(x, t) belongs to the class 

2T = {F(X, t) e L2(0, T; H2(M~)): 8t~P(x, t) eL2(O, T; L2(M~)), F(T) = 0} 

and V~ is a submanifold of M~. It is clear that 

(5.2) J~(u~; 9; M~) = 0 for all yJ e •T. 

Now we suppose F(t ,  x) = f i ( t )~ (x ) ,  where fl(t) e C1(0, T), f i(T) ~- O, and the 
function ~ ( x )  is constructed as follows. If  x e Q~, we set 

ieN~ \ 4a~ ] + i ~N~(y(ie) - ~(ie))v~(x - ie)qJ 

and for x ~ B / we suppose 

~ ( x )  = ~7(ie) + (~(ie) - rl(ie))(1 - v~(x - is)) ,  
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where ~(x) and q(x) are smooth functions on ~9 and c;(x) = ~( Ix] ) e Co ~ (R n) possesses 
the properties 0 ~< ~ ~< 1; ~(r)  = 1 for r ~< 1/4; ~(r)  = 0, if r I> 1/3. It  is clear that 
~ (x) is a smooth function on M~. 

LEMMA 5.1. - The function ~ (x) has the following properties: 

(5.3) P~ ~ --) ~(x) strongly in L 2 ( ~ ) ,  

(5.4) P ~ A ~  --* A~ + 2tt(~?(x) - ~(x)) weakly in L 2 (~2), 

when ~ -~ O. 

PROOF. - Using Lemma 4.2 (ii) we have 

I I P ~  - ~llL2(f2~)~ C(a• +1 + en+~)tN~ I -->0 

when e -~ 0. Here  IN~ I is a number of elements of N~. Since Vol(~2\Q~) ---) O, we ob- 
tain (5.3). 

In order to prove (5.4) we first note that Remark 3.1 implies that  

( 5 . 5 )  - --, 0 ,  0 
i e N~ 

strongly in L2(t) ) .  Therefore it is sufficient to consider the term 

X~(x)= ~] (~7(ie)-~(i~))v~(x-ie)q3(x~i----~e). 
i ~ N~ 

It  follows from Lemma 4.2 (i), (il) that 

14 dx Cs ~ , 

F~ 

SO the family {P~ (A:g~)} is bounded in L2(Q).  Consequently on this family, weak con- 
vergence is the same as weak convergence on smooth functions O(x)�9 C~ (D). 

I t  is clear from Lemma 4.2 (i), (ii) that we have 

G~ G~ 

Using Green's formula and Lemma 4.2 (v) we get 

f an 
G~ F(a~) 
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Therefore (5.6) gives 

f P~x~O(x)dx = ~ 2~m~OT(ie) - ~(ie))O(ie) + O(e). 
ieN~ 

Q~ 

From this and (5.5) follows (5.4). This proves Lemma 5.1. 
If (u; v) is a limit point in C(0, T; L2(tg) • L2(~9)) of the family {(~(t) ;  ~( t ) ) :  

e - ,  0}, there exists a sequence {ek}, ek --~0, such that 

(5.7) maxHu(t) -- Uek( t )HL2(~)+  max liv(t) - Vsk( t ) i lL2(~) -~  0 
[0, T] [0, T] 

when k---> ~ .  Therefore Lemma 5.1 implies that 

lira J~k(U~k; fl~k, ~9~k) -- J1 (u ;  ~], ~), 
k---~ m 

(5.8) 

where 

(5.9) 
T 

J l ( U ;  77, ~ ) =  - ( w 0 ,  ~)L2(~)f l (0)  -- f (u(t), c ) . ( j ,  ( t )dt-  
o 

T T 

- f (u(t), A~ + ;~#(~ - ~))L~(~)fi(t)dt + f (f(u(t)) - h~ 
o o 

We now study the asymptotic behaviour of J~k(u~; f i ~ ,  M~k\ t~)"  

, ~)L2(~)fidt. 

LEMMA 5.2. - Let 

=- E [f(u ~(x, t)) ~ (x) dx 
j~N~ .j J 

B~ 

Then for any interval [0, T] we have 

(5.10) I ~ -  ~ f(uf'~n(t))~(je)m~ I <<-CTe, t ~ [ 0 ,  T]. 
jENE 

P R O O F .  - The Poincar~ inequality and the structure of ~ o n  B j give 

ff(u ~) r - u;,in(t) f r ! ~ ~llv~(t)tlL~.~)(llv ~ I I~z) + e l lV~v ~ I1~(~)). 
n7 B7 I 

Therefore it follows from Lemma 4.24(iii), (iv) and (4.10) that we have 

(5.11) l y e -  ~ f(uf ' in(t)) fr  <<-CTe, t e [ 0 ,  T]. 
j~N~ B~ 
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It is also clear from (2.2), the Poincar6 inequality and Lemma 4.2 (iv) that 

! f (uf ' in)(~(je)  - -  ~](je))(1 - vS(x - j e ) ) d x  <~ 

~< Ce'~+ ~(1 + luf,~'(t)]) ~< cs,/2+~(c./2 + I]u~(t)]]L~<B~)). 

So (5.10) follows from (5.11). 
As above we can conclude that 

for all t e [0, T] and 

uf i~ (t) ~](je) m~ t I 

i i 
i 

Using the equality 

~4~ ~ (x) = ~ (~(je) - ~(je)) v ~ (x - je) ,  

and Lemma 4.2 it is easy to see that 

(5.14) F~ [ u~(t, x)zJ~(x)dx 

C1~ 

x � 9  , 

where 

(5.16) 

T 

J2(v; r], ~) = -(vo,  ri)L2(~)fl(O) -- I (v(t), y)L~(~)fl ' (t)dt - 
o 

T T 

- 2  1 (v(t), ~ - 77)L~(Q)fl' (t)dt + I (f(v(t)) - h2, ~])L2(~)fl(t)dt. 
o o 

Equations (5.2), (5.8) and (5.15) imply that 

(5.17) J l ( / e ;  r], ~) + f l J2(v ;  ~], ~) = 0 

for any limiting point (u(t); v(t)) �9 C(O, T; L2(t~) • L2(Q))  of the family 
{ (~7~ (t); v~ (t)): e --> 0 }. Here J1 (u; ~], ~) and J2 (v; ~], ~) are defined by (5.9) and (5.16), 
where fl(t) �9 C1(0, T), fl(T) = 0 and ~7(x), ~(x) are any smooth functions on t~. There- 

Thus, it follows from (5.7), (5.10), (5.12)-(5.14) that 

(5.15) l i m  J~k(U~k; fi~,kM~:\Q,k) = #J2(v; ~], ~), 

= ~ m ~  • uf'in(t)(~(je) - ~?(je)) + O(e). 
j ~ Ns 
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fore it follows easily from (5.17) that (u(t); v(t)) is a weak solution of problem 
(3.5)-(3.8). 

REMARK 5.1. - Existence theorem for solutions from C(0, T; L2(~9)x L2(•)) 
of the problem (3.5)-(3.8) also follow from the considerations above, under certain 
conditions concerning the functions u0, v0, hi and h2 (see the assumption (ii) of 
Theorem 3.1). 

In order to complete the proof of Theorem 3.1 we only need to prove the unique- 
ness theorem for the system (3.5)-(3.8). We will do this in the following section. 

6. - Properties of the homogenized system. 

In this section we prove Theorems 2.2-2.4. We rewrite equations (3.5)-(3.8) as the 
following system of first order evolution equations in the space ~ o = L 2 ( Q ) •  
• L2(Q): 

(6.1) 

where 

d - ~ U  + A U =  B(U), UIt=o = Go, 

(u) ( U= A =  - A  + 2tt B(U) = [ 2u _ f(v) + h2 ] 
' 0 ' 

It is easy to see that A is a positive self-adjoint operator in ~o such that 

(6.2) (AU, U)~ >t ][VUlIL2(~) + y211ull~, u e  (D(A1/2), 

where y = rain(l,  #), and 

(6.3) I[B(U)II~O ~<MI(1 + IIUII)~, lIB(U1)- B(U2)N <~ M2]IU1- U211~o. 

If we consider de equation (6.1) in the integral form 

t 

(6.4) U(t) = e -At Uo + ~ e -A(t - ~)B(U(v)) dv, 
o 

then using the fixed point method in the space C(0, T; #o) we can easily prove the ex- 
istence and uniqueness of solutions for T < To, when To is small enough. It is clear 
that the function U(t) gives a generalized solution of the system (3.5)-(3.8) on the in- 
terval [0, T], T < To. Using standard methods (see, e.g. [9,15]) and the properties 
(2.2)-(2.4) of the function f (u)  we see that 

(6.5) IIU(t)ll~ <<- C1]lUo N~e-~t+ C2(1 - e-~t) ,  

where o), C1 and Ce are positive constants. This estimate allows us to extend the sol- 
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ution U(t) on the whole of R+.  The proofs of the properties (3.10) and (3.11) are also of 
standard character (for similar consideration see, e.g. [9, 15]). This proves Theorem 
3.2. 

Let St be the evolutionary semigroup defined by the formula St U0 = U(t), where 
U(t) is the solution of problem (6.1). Since 

[[AZe-tAH<.Ct-Ze-X' t ,  t>O, 0<~<1 ,  

and O(A 1/2) = ~ = H 1 (E2) • L 2 (~2), (6.4) and (6.5) imply that St has the following the 
following dissipativity property: there exists a constant R > 0 such that for any 
bounded set B in ~o we have 

(6.6) IIZtUoll~<~R for all U o e B  and t ~ t o ( B ) .  

LEMMA 6.1. - Assume that (3.12) is satisfied. Then St is a dissipative semigroup in 
the space ~ = H~(tg) • Hi (Q) ,  i.e. there exists a constant R* > 0 such that for any 
bounded set B in ~ we have 

(6.7) IlStUoU~ <~R * for all U o e B  and t ~ t o ( B ) .  

PROOF.  - Using (3.7) and (3.8) we see that the function wk(x, t) = 9~kv(x, t) satis- 
fies the equation 

d w k ( t )  + (;~ + f '  (v(t)))wk = + 9~kh2 2a~k u 

Therefore from (3.12) we get 

1 d [iwk(t)ll2L2(e) + ~llwk(t)ll2L2(;) <<. C(Ilull2HI(~) + Ilh2 I]2H2(Q)), 
2 dt 

where d > 0. Using (6.6) we obtain 

Ila kv(t)llb(,)-< IIv(s)ll~,(~)e-2~(t-~) + CR , t >I s >t to(B). 

This estimate and (6.6) imply (6.7). 

LEMMA 6.2. - The semigroup St is weakly closed in ~ ,  i.e. for any t > O, the condi- 
tions: Us --> U and St Us --> V weakly in ~ for n --> ~ impliy V = St U. 

PROOF.  - The 1emma follows from equation (6.4) and from the compactness of the 

imbedding ~ -~ ~0. 
Lemma 6.1 and 6.2 make it possible to use the results from [1] and to guarantee 

the existence of weak global attractor ~t for the dynamical system (St, ~) .  This at- 
tractor is a bounded weakly closed set in ~ = H 1 (t-2) • H 1 ( t ) ) .  It is also easy to see 
that the initial data from ~ is C 1 with respect to the semigroup St. Therefore in order 
to prove the finiteness of the Hausdorff dimension of ~ we can use the approach pre- 
sented in [17]. 
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Let  us consider the first variation equation corresponding to (6.1): 

d - ~ W  + A W =  B'  (U(t)) W 

for a t ra jectory U(t) lying on the at t ractor  ~. As in [17] (see also [4]) it is necessary to 
estimate the quantity 

o ~ ( t )  = t~ {(A - B(U(t))) Q~ } 
for any N dimensional orthoprojector QN in the space ~0 such that  QN ~o r 5:1 .It is clear 
that  for W = (Wl ; w2) e ~1 we have 

([A - B'  (U(t))]W, W)~ o >! ]lVwl II e + a~llw~ 112 + ~]lVw~ II ~ , 

where 

)[2(1 +/~e) 
a~ = it~ 46 + i ~ f '  (u) 

and 

fi~ = it + i n f f '  (u) - 5 

for any 6 > 0 such that fi~ > 0. Let  {W k = (w~; W2k)}kN= 1 be an orthonormal basis of 
QN~0. Using the equality 

N N 

X rJ~ II ~ = N - X [Iwi ~ II e 
k = l  k = l  

we get 

N N 

k = l  k = l  

Now we use the following version of the Sobolev-Lieb-Thirring inequality 

kl ~ I]w~]l 2 + e(x)dx >t O(x)l+2/~dx 
k = 1 Id(t2)l e 

t~ 

N 

which follows from [6, Theorem 2.1]. Here  ~o(x) = ~ [w~] e, kl and k2 are constants de- 
k = l  

pending on n and on the shape of D, d(D) is the diameter of D. We obtain 

Q 

where 

it2( 1 + t~ 2) 
= [d(t2)]-z + it + 46 



320 L. BOUTET DE MONVEL - I. D. CHUESHOV - E. YA. KI-IRUSLOV: Homogenizatio~ etc. 

Since 

2 (xk~n 11+~/2 
z ~ §  - y k~z  >I - - ~ - ~ - 2 1  

for any z > 0, we have 

aN(t) >I fl6N ]QI 2 (  y k l n  )l+n/2 
kl  n Z--4-~ 

Therefore (see, e.g. [17]) an estimate for the Hausdorff dimension of r as a compact 
set in do can be found from the condition 

N> n kl~ i-n--+-2 

This proves Theorem 3.3. 

REMARK 6.1. - It  is easy to see that the function 

1 2 
y ( u ,  v)  = ~(ILVuLIL~(~) + ~Au - vllb(~)) + 

+ f (F(u) + #F(v)) dx - (hi, U)2L2(~) -- It(h2, V)2L2(~) 
t~ 

is continuous on ~ and has the following properties 

t 

+ y (~) dt = V(Uo, Vo), 
8 t  HL 2 (~) L 2 (~) 

0 

where (u(t), v(t)) is the solution of problem (3.5)-(3.8). This property implies (see, 
e.g. [1,4,7,17]) d = ~ +  (~'), where 3~ is the set of stationary solutions of the system 
(3.5)-(3.8) and g~+ (A c) is the unstable manifold of 3r In particular this means that any 
trajectory of St Uo goes to A r, when t--> + ~ .  

REMARK 6.2. - The assumption (3.12) is of prime importance in the proof of Theo- 
rem 3.3. Indeed, for any 6 > 0 it is easy to fred a function f (u)  satisfying (2.2)-(2.4) 
such that 

f(vo) = O, ~ +f ' (vo)  = - 6  

for some v 0 e R. In this case the pair (Vo; Vo) gives a stationary solution of (3.5)-(3.8). 
The linearization of (3.5) and (3.7) near (v0; v0) has the form 

d U]+Avo ( I = 0 ,  whereA~o= �9 
-~  v -)~ ~t + f '  (vo) 
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Simple considerations show that for # = 1 the operator A~o has an infinite dimen- 
sional spectral subspace corresponding to eigenvalues belonging to { 2 : R e 2  < 0}. 
Therefore the instable manifold ~ +  (v0; v0) has infinite dimension. Thus the asymp- 
totic behaviour of the system (3.5)-(3.8) without assumption (3.12) cannot be described 
by a finite-dimensional global attractor. 

Now we prove Theorem 3.4 on the upper semicontinuity of the family {a~: ~ > 0} 
of attractors for the problem (1)-(3), when e---) O. 

It follows from Remarks 2.2 and'4.1 that for any trajectory {u~(t) - ~ < t < ~ }, 
belonging to the attractor a~ we have the uniform estimates: 

(6.S) 
p~ au~ ZL2(~) 

and 

I 2 2 (6.9) Q~ - ~  L~(~N~ ) + IIVQ~u~(t)I[2L2(gN,) + I[Q~u~(t)llL (~N~) <" C2, 

for all t e ( -  ~ ,  ~ ) and s small enough. 
Let u6 e ~ .  Then there exist a trajectory {u~(t): - ~ < t < ~ } r ~ such that 

u~(0) = u~ and (6.8) and (6.9) are satisfied. Therefore, as in Section 5 we can find 
a solution (u(t); v(t)) of (3.5)-(3.8) helonging to C(a, b; 5:o) for any a, b such that 
- ~  < a < a <  + ~ ,  

(6.10) maxlIP~k u~k(t) - u(t)HL2(~) + maxllQ~k u~( t )  - v(t)llL~(~ ) ---) 0 
[a, b] [a, b] 

for some subsequence {ek}, ek--* 0. From (6.8) and (6.9) we also get 

+ ]lVujlb(    + IluPlb(    -< 
L 2 ( ~ )  

and 

§ tlvvll  (.) + Ilvllb(.) -< 

for all t. Consequently U(t) -- (u(t); v(t)) belongs to a weak global attractor r There- 
fore from (6.10) it is easy to extract the assertion of Theorem 3.4. 
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