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A New Variational Characterization of Jacobi Fields 
along Geodesics (*) 

BIAGIO CASCIAR0 - MAURO FRANCAVIGLIA 

Abstrac t .  - A  classical result of Riemannian geometry states that Jacobi fields along geodesics 
of a Riemannian manifold ( Q, g) can be obtained as geodesics of the so-called ,,complete lift, 
of the metric g itself to the tangent bundle TQ. We show that this classical result is in fact a 
very simple consequence of a completely general theorem of Calculus of Variations. 

O. - I n t r o d u c t i o n .  

It is well known that the second variation of any action functional ~ = f 2 governs 
the behaviour of the action itself in the neighborhood of critical sections and that the 
Hessian of the Lagrangian 2 defines a quadratic form which allows to distinguish be- 
tween minima, maxima and degenerate critical sections [1]. In the case of geodesics of 
a Riemannian manifold (Q, g), which are critical sections for the energy functional, 
those fields which govern the transition from geodesics to geodesics, (i.e. those vec- 
torfields which make the second variation to vanish identically modulo boundary 
terms) are called Jacobi fields and they are solutions of a second-order differential 
equation known as Jacobi equation of geodesics [2]. From the theory of ,,complete 
lifts, to a tangent bundle TQ [3], [4] it is also known that the geodesics of a ,,complete- 
ly lifted connection, project over the geodesics defined by the given connection in the 
base space Q and define Jacobi fields along them. 

Suitably generalized Jacobi equations along critical sections are in fact an out- 
come of the second variation of any action functional ~ = f 2 and have been consid- 
ered in the literature from a ,,structural viewpoint- (see, e.g., [5], [6], [7], [8]); in par- 
ticular, it was shown in [9] that the second variation 5 2(~ and the ensuing generalised 
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Jacobi equations define a suitable notion of ~,curvature, for any given (first-order) 
variational principle, which takes a particularly significant form in the case of gener- 
alised harmonic Lagrangians. 

The Lagrangian characterisation of these equations (for first-order Lagrangians) 
has been recently reconsidered in [10], where it was shown how to recast the system 
formed by the original Euler-Lagrange equation together with its corresponding Ja- 
cobi equation as a single variational equation generated by the first-order deformed 
Lagrangian. In this paper we shall illustrate the power of this simple result by dis- 
cussing a straightforward application to Riemannian Geometry: we shall in fact show 
that the aforementioned characterisation of Jacobi fields as geodesics of a suitably 
lifted metric is in fact a particular case of the theorem. 

1. - C o m p l e t e  l i fts  and  geodes ics .  

In this Section we shall recall some preliminaries and notation and shortly discuss 
those parts of the theory of tangent bundle lifts which are relevant to our 
purposes. 

Let Q be a n-dimensional manifold and (TQ, Q, VQ) its tangent bundle. Let F be a 
linear symmetric (i.e., torsionless) connection in Q, having local components Fjk in any 
local chart (U; qi) of Q; we denote by Vr the covariant derivative operator associated 
to F. If g is a (pseudo)-Riemannian metric in Q, having local components g~j, we denote 
by F~ its Levi-Civita connection, having local components Fik(g)= 1/2gi'~(akgj,~ + 
+ 9jgmk - 3,~gjk); the Riemannian covariant derivative w.r. to Fg will be simply denoted 
by V~. The Levi-Civita connection is characterised as the only torsionless connection 
such that g is parallel: 

(1.1) Vg(g )=0  

i.e., locally: 

(1.2) 3igjk = gjm Fk~ + g~,~ F~'~. 

The geodesics of a linear connection F are those curVes y: R --~ Q whose tangent 
vector ~ is parallel along },, i.e., it satisfies V ~  = 0; in local components: 

(1.8) + = o .  

The Jacobifields of F are those vectorfields ~/= ~ia~ defined along geodesics 7 by 
the differential equation: 

(1.4) V ~ / +  Riem (~, ~>, ~) = 0, 

2 where V~ denotes the second-order covariant derivative along the curve ~, and Riem is 
the tri-linear mapping defining the Riemannian curvature of F. It  is well known (see, 
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e.g., [2] and [11]) that Jacobi fields generically define infinitesimal deformations of 
geodesics into families of nearby geodesics. 

If F = F~ is the Levi-Civita connection of a (pseudo)-Riemannian metric g in Q, 
then the geodesics y can be characterised as those curves which make stationary the 
energy functional of (Q, g), i.e., the integral along ~ of the norm g@, ~) of the tangent 
vector ~. Therefore, the metric geodesic equation (1.2) with F =Fg  is the Euler-La- 
grange equation of the variational principle based on the energy functional; in this 
case, the Jacobi equation (of geodesic deviation) is generated by a suitable manipula- 
tion on the second functional derivative of the same energy functional (see [2] for 
details). 

Let us now recall that there exist several ~difts, of geometric objects from a mani- 
fold Q to its tangent bundle TQ, as thoroughly discussed in [3]. Among them a particu- 
larly important case is given by so-called (,complete lifts-, which shall be hereafter 
described in local components in any natural chart (TU; qi, u i) of TQ associated to 
any local chart (U; qi) of Q. Let us first suppose that g = gijdq~dq ~ is a (pseudo)-Rie- 
mannian metric on Q; then its complete lift is the (pseudo)-Riemannian metric gC de- 
fined in TQ by the local expression 

(1.5) g c = 2g~j 5u ~ dq j , 

where 5u i denotes the following: 

(1.6) 5u i du i+ i ~ k = F,~ku d q .  

For any function f :  Q - o R  we define a function 3f: TQ - o R  by setting local- 
ly: 

(1.7) (af)(q ~ , u i ) - (aj f )u j 

(in the jet-bundles terminology, ~f is the ,,formal derivative, of the given function fi 
see, e.g., [12]). With this notation and using eqn. (1.2) it is easily seen that gC can be lo- 
cally expressed by: 

(1.8) gC = (agij)dui du j + 2gijdui dqJ 

i.e., the (2n • 2n) matrix of gC is 

(1.9) gC = i agiJ ~J) . 
\ g~J 

Let now F be a linear connection on Q, with local components F~ in any local chart 
(U; qi ). The complete lift of F (see [3], pp. 38-39) is the linear connection F C defined in 
TQ as follows. We first introduce a convenient notation: denote also by (TU; qk, q~) 
the natural tangent chart (TU; qk, u k) (i.e., we use ,(barred indices, k , ~  = 1, 2 . . . . .  n 
in the fibres of TQ as corresponding to the (,unbarred indices, k, m = 1, 2, ..., n in 
the base Q); we denote by ~ the components of F C in this tangent chart, with indices 
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A, B, ... either ,,barred,, or ,,unbarred,. Then F c has local components: 

(1.10a) F ~  = Fm~k 

(1.10b) Fkm~ = ~ m  = 0, 

(1.10C) F ~  = 0, 

(1.10d) Fkmn k i = (aiFm~)u , 

(1.10e) F ~  ~ m  k 

(1.10f) / ~  = 0. 

The following results are well known. 

THEOREM 1 ([3], 6.6 page 45). - Let (Q, g) be a Riemannian manifold. The com- 
plete lift (Vg)c of the Levi-Civita connection Vg of g is the Levi-Civita connection of the 
complete lift gC of the mete@ g; i.e.: 

(1.11) (vg)c = Vgc. 

THEOREM 2 ([3], Th. 9.1 page 58). - Let F be any linear connection in Q. Whenever 
~: R ---) TQ is a geodesic of the complete lift F C then its projection ~ - T Q 0 ~: R ~ Q is 
a geodesic of F and the vectorfield defined by ~ along y is a Jacobi field for F. 

The classical proof of Thm. 1 above relies on the calculation of the Christoffel sym- 
bols of (1.9). The classical proof of Thin. 2 relies instead on the explicit calculation of 
the geodesic equation in TQ for the connection locally expressed by (1.10); one finds 
that the 2n components of the geodesic equation in TQ split into n equations in the 
base Q, corresponding to the ,,unbarred, indices, and n equations in the fibres, corre- 
sponding to the ,(barred, indices; the first set coincides with the geodesic equation of 
F in Q; in virtue of (1.10d) the connection components of F c involve first derivatives of 
the connection components of F and, accordingly, the second set can be manipulated to 
the form (1.4) which involves the Riemann curvature of F. 

An immediate consequence of Thm.s 1 and 2 above is the following: 

THEOREM 3. - Let (Q, g) be a Riemannian manifold. Then the system formed by 
the geodesic equation of g in Q and the Jacobi equation associated to g in TQ is the 
geodesic equation in TQ of the complete lift metric gC. Therefore this system follows 
from a variational principle on TQ based on the energy functional defined by the lift- 
ed metric g C. 
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2. - The Lagrangian characterization of generalized Jacobi equations. 

We shall now briefly recall some fundamental notion from the Calculus of Varia- 
tions on fibered manifolds (see [12] for notation). Let (B, M, z) be a fibered manifold 
and 2: J l z - - > A ~ ( T * M )  be a first-order Lagrangian (density) on B. Here j l z  de- 
notes the first-jet prolongation of z and A ~ (T* M) is the bundle of n-forms of M, n be- 
ing the dimension of the base manifold M. Locally: 

(2.1) 2 = L(x~, yi ,  y i )ds  ' 

where (J1U; x ~, yi, y~) is any natural chart in j l z  and ds is the local volume of 
(U; x~). 

The action of 2 is defined by 

(2.2) ~ = I ( j l a ) * 2 ,  

where/2 is any compact domain in M with regular boundary 9t9 and a �9 F(zc) is any lo- 
cal section (defined in an open subset containing /2). 

One defines then the <~first variation- 50: of ~ by considering homotopic variations 
~] --- 5a �9 Zy(Z) with fixed values at the boundary a~9 (see, e.g., [12]), Xy(Z) being the 
space of vertical vectorfields of z. The result is given by the well known (local) 
expression: 

which integrates by parts to give: 

where dsz is the surface element of 2t9, defm~d so that ds~ A dx ~ = ( -  1}"ds, p~(2) 
are the canonical momenta defined by 

(2.5) p~ (2) - 

and e~(2) is defined by: 

8~ 

, 4  

(2.6) ei (2) = as 2 - ~ (p~ (~)). 

Defining thence critical sections as those sections along which 5ct vanishes for any ~] 
with fixed values at the boundary, from (2.4) we see that they are characterised by 
the equation: 

(2.7) ( j2(7)*  [e(~)] = 0, 

which is called the Euler-Lagrange equation. Here [e(2)] is a global bundle morphism 
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e ( s  | V ' z ,  where V * z  is the dual bundle of the vertical vector 
bundle Vz, called the Euler-Lagrange morphism and locally defined by: 

(2.8) e(s = ei(s | dy ~. 

The local expressions (2.4) have a global meaning; the first variation of ~ is in fact 
globally defined through a further global bundle morphism f(s  
---)A'~-I(T*M) | V ' z ,  locally expressed by: 

(2.9) ( j  1 a)* f (s  = (p~ (~) oj 1 or) ds~ | dy i 

and the following holds for Ts 

(2.10) ( j l  (~), [T~(~])] = (j2 a)* {e(2) I~} + ( j l  o)* d(f(2) I ~} 

for any local section a and any vertical vectorfield ~/which projects onto ~. Here and 
in the sequel (l> denotes standard duality between forms and vectorfields. Equa- 
tion (2.10) is called the global first variation formula of 2. The global counterpart of 
eqn. (2.4) is thence the following: 

(2.11) 5d= I(e(s I (f(s 

In order to study the stability properties of critical sections, i.e. of the solutions of 
the Euler-Lagrange equation (2.3), one considers next the variation of the action un- 
der second-order deformations of ~. The local expression for the second variation of 
is then given by (see, e.g., [7]): 

(2.12) 52~ : ~-[j[--~y~O + ~yi@nJd s + 

3yi ayj i j ' 3y;~yv 

where 0 = 52a denotes the second variation of ~. Equation (2.12) is the local counter- 
part  of the global expression 

(2.13) 1[; s r ] 520: = -~ (e(s + Hessz(jlr]) + {f(2~)lO> , 
a[2 

where the n-form Hess~ (jl~]), called the Hessian of s is locally given by the quadrat- 
ic expression corresponding to the second term of (2.12). 
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A second order equation for ~] along critical sections, called the (generalized) Jaco- 
bi equation, can be obtained from (2.13) by suitable integrations by parts on Hess. In 
fact, as discussed e.g. in [7], eq. (2.13) can be conveniently rewritten as follows 

'[j s s ] (2.14) a2Ct= 7 (e(2)le) + (Jacr(j2~?)l~7>+ Z(2)OT, Q) , 
t~ z~t9 

where f(2)(~], Q) is a new boundary term depending both on ~7 and r and Jac~(j2~7) is 
locally given by 

with 

Jacr (j2 ~]) = Ji (j2 ~7)dyi 

�9 d 82s 7]jT (2.15) Ji(3 ~/) = 8.2s J + 822 ~/~ - ~ ~ */~ 
ayiay; ay 3yJ 

Equating Ji(j2,?) to zero, i.e. setting 

(2.16) Jac~ (j27) = 0 

gives rise to the standard form of the (generalized) Jacobi equation. 
Let us now remark that eqn. (2.3) defines in fact a new Lagrangian density in the 

bundle Vz as follows. Equation (2.3) contains the first variation 5s V(Jlz)--+ 
-+A~(T*M), locally defined by: 

(2.17) 52 _= 8Y ~8~ ~7 i + ~ ~]~" 

Recall that there is a natural bundle isomorphism ~: V(J ~ z) -+ j1 (Vz), locally defined 
by: 

(2.18) (x ~, yi, y~; ~]i, ~7~)~(x ~, yi, ~]i; y~, y i ) .  

Then a new Lagrangian density s Jl(Vz)--->A~(T*M) is defined by: 

(2.19) s = 5L o (~)-~ 

and it is called the first-order deformed Lagrangian. 
The following has been proved in [10]. 

THEOREM 4. - Let (B, M, z) be any fibered manifold and s be any first order La- 
grangian density on z. Then the system formed by the Euler-Lagrange equation (2.3) 
and the Jacobi equation (2.16) of s is equivalent to the Euler-Lagrange equations 
of 

The above results hold in particular for Lagrangians over curves, i.e., for varia- 
tional principles based on the tangent bundle. Since this case will be the relevant one 
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for our purposes, we shall shortly report here how the results above specialise to 
Classical Mechanics. Le t  then Q be a smooth manifold and B = R x Q; then J ~  = 
=R • TQ and a Lagrangian density is a mapping s R z TQ--~A~(T*R); locally: 

(2.20) 2 = L(t, q~, u~)dt, 

where (R x TU; t, qi, u ~) is any natural chart in R • TQ. The canonical momenta 
are defined by 

(2.21) p~ (2) - 

and ei(2) is defined by: 

8~ 
8u i 

, 4  

(2.22) e~ (2) = 8~ ~ - ~tt (p~ (2))" 

A local section of B is naturally identified with a curve ~ : R -o Q and Euler-La- 
grange equations are second order equations specifying ~(critical curves, in Q. The 
vertical bundle Vz identifies with R • TQ and a vertical vectorfield ~] = y~8~ is noth- 
ing but a vectorfield ~] ~ x(Q). The second variation of ~ is then given by: 

(2.23) 52 d = 8__~ Q i + ~) / a~ + 
8q ~ 

8q~Sq '~'~3 + 2 ~? + 8uiu jiT~i7 j dt . 

The Jacobi equation Jac~(j2~]) is then locally given by 

(2.24) Ji(j2~l)- 92"~ rlJ + 32"~ iiJ- d ( 32"e ~]J + $2~ ) 
8q i 8q j 8q i 8u ~ -~ $u ~ 8q j $u i 8u------- ]ilY . 

The first variation 5~ is locally defined by: 

8~ i 8s  . i (2.25) = 7 q  + 

and the natural bundle isomorphism ~ : R  • TTQ-->R • TTQ is locally defined 
by: 

(2.26) (t, qi, ui; ~ ,  i7i)~(t, qi, ~?~; u ~, /;i); 

then the new Lagrangian density ~ is a mapping s R • TTQ---~A~(T*R). 
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3. - T h e  m a i n  r e s u l t  r e v i s i t e d .  

We are now ready to show that Theorem 3 is a simple consequence of the Theorem 
4 recalled in the previous Section, thus completing our claim. 

Let us then consider a Riemannian metric g = gij dqidq j in Q. The energy function- 
al of g is based on the Lagrangian: 

1 i j 
(3.1) 2 = -~giju u . 

According to eqn. (2.24) and using the symmetry of g the associated first-order defor- 
mation Lagrangian is thence given by: 

1~.~ , i j k " " 
(3.2) ~1---- -~(~kgij)  u U ~7 § gij~tJO ~, 

which, using eqn. (1.2), becomes immediately: 

(3.3) ~1 giyEi?i + i r~ = F~ku  ~?k]uJ. 

Then, from eqn. (1.6) we see that "~1 is in fact the energy Lagrangian of the lifted met- 
ric gC= 2gi jSuidqJ Accordingly, Theorem 4 applied to s entails that the geodesic 
equation of gC in TQ is equivalent to the system formed by the geodesic equation of g 
in Q together with the Jacobi equation of g, which is nothing but Theorem 3. 
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