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A New Variational Characterization of Jacobi Fields
along Geodesics (*)

Biagio CASCIARO - MAURO FRANCAVIGLIA

Abstract. — A classical vesult of Riemannion geometry states that Jacobi fields along geodesics
of o Riemannian manifold (Q, g) can be obtained as geodesics of the so-called «complete lift»
of the metric g itself to the tangent bundle TQ. We show that this classical result is in fact a
very simple consequence of a completely general theorem of Calculus of Variations.

0. - Introduction.

It is well known that the second variation of any action functional @ = [ £ governs
the behaviour of the action itself in the neighborhood of critical sections and that the
Hessian of the Lagrangian £ defines a quadratic form which allows to distinguish be-
tween minima, maxima and degenerate critical sections [1]. In the case of geodesics of
a Riemannian manifold (@, ¢g), which are critical sections for the energy functional,
those fields which govern the transition from geodesics to geodesics, (i.e. those vec-
torfields which make the second variation to vanish identically module boundary
terms) are called Jacobi fields and they are solutions of a second-order differential
equation known as Jacobi equation of geodesics [2]. From the theory of «complete
lifts» to a tangent bundle 7@ [3], [4] it is also known that the geodesies of a «complete-
ly lifted connection» project over the geodesics defined by the given connection in the
base space @ and define Jacobi fields along them.

Suitably generalized Jacobi equations along critical sections are in fact an out-
come of the second variation of any action functional @ = [ £ and have been consid-
ered in the literature from a «structural viewpoint» (see, e.g., [5], [6], [7], [8]); in par-
ticular, it was shown in [9] that the second variation 6> and the ensuing generalised
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Jacobi equations define a suitable notion of «curvature» for any given (first-order)
variational principle, which takes a particularly significant form in the case of gener-
alised harmonic Lagrangians.

The Lagrangian characterisation of these equations (for first-order Lagrangians)
has been recently reconsidered in [10], where it was shown how to recast the system
formed by the original Euler-Lagrange equation together with its corresponding Ja-
cobi equation as a single variational equation generated by the first-order deformed
Lagrangian. In this paper we shall illustrate the power of this simple result by dis-
cussing a straightforward application to Riemannian Geometry: we shall in fact show
that the aforementioned characterisation of Jacobi fields as geodesics of a suitably
lifted metric is in fact a particular case of the theorem.

1. - Complete lifts and geodesics.

In this Section we shall recall some preliminaries and notation and shortly discuss
those parts of the theory of tangent bundle lifts which are relevant to our
purposes.

Let @ be a n-dimensional manifold and (TQ, @, 7¢) its tangent bundle. Let I" be a
linear symmetric (i.e., torsionless) connection in @, having local components I}, in any
local chart (U; ¢°) of Q; we denote by V- the covariant derivative operator associated
to I'. If g is a (pseudo)-Riemannian metric in @, having local components g;;, we denote
by I, its Levi-Civita connection, having local components I’}k( 9) =1/2g" (B4 Gjm +
+ 0;Gmk — OmGir); the Riemannian covariant derivative w.r. to I', will be simply denoted
by V,. The Levi-Civita connection is characterised as the only torsionless connection
such that g is parallel:

(1.1 V=0
i.e., locally:
1.2 39k = Gim Ll + Jim L -

The geodesics of a linear connection I are those curves y: R — @ whose tangent
vector p is parallel along y, ie., it satisfies V,¢ = 0; in local components:

(1.3) g+ g g =0.

The Jacobi fields of I are those vectorfields = #*9; defined along geodesics y by
the differential equation:

(1.4) Vin + Riem (7, 7, 7) =0,

where sz denotes the second-order covariant derivative along the curve y and Riem is
the tri-linear mapping defining the Riemannian curvature of I'. It is well known (see,
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e.g., [2] and [11]) that Jacobi fields generically define infinitesimal deformations of
geodesics into families of nearby geodesics.

If I'=1T, is the Levi-Civita connection of a (pseudo)-Riemannian metric g in @Q,
then the geodesics y ean be characterised as those curves which make stationary the
energy functional of (Q, g), i.e., the integral along y of the norm g(y, 7) of the tangent
vector y. Therefore, the metric geodesic equation (1.2) with I' =T, is the Euler-La-
grange equation of the variational principle based on the energy functional; in this
case, the Jacobi equation (of geodesic deviation) is generated by a suitable manipula-
tion on the second functional derivative of the same energy functional (see [2] for
details).

Let us now recall that there exist several «lifts» of geometric objects from a mani-
fold @ to its tangent bundle 7@, as thoroughly discussed in [3]. Among them a particu-
larly important case is given by so-called «complete lifts», which shall be hereafter
described in local components in any natural chart (TU; ¢*, u®) of TQ associated to
any local chart (U; ¢°) of Q. Let us first suppose that g = g;; dq'dg’ is a (pseudo)-Rie-
mannian metric on Q; then its complete lift is the (pseudo)-Riemannian metric ¢¢ de-
fined in TQ by the local expression

(1.5) 9% =2g;0u'dy’,

where du’ denotes the following:

(1.6) oul=dut+ I'yu™dg®.

For any function f: @ — R we define a function Jf: TQ — R by setting local-
ly:
a.m (Bf)Ng', u') = (8;,/)w!

(in the jet-bundles terminology, of is the «formal derivative» of the given function f;
see, e.g., [12]). With this notation and using eqn. (1.2) it is easily seen that g€ can be lo-
cally expressed by:

(1.8) 9% = (8g;) du'du’ + 2g;du’dg’
i.e., the (2n X 2n) matrix of ¢° is

/
095 9y

(1.9) g¢= )
gz’j 0

Let now I be a linear connection on @, with local components I Z in any local chart
(U; ¢*). The complete lift of I (see [3], pp. 38-39) is the linear connection I'C defined in
TQ as follows. We first introduce a convenient notation: denote also by (TU; ¢*, ¢*)
the natural tangent chart (TU; g%, u*) (i.e., we use «barred indices» k,m =1,2, ..., n
in the fibres of TQ as corresponding to the «unbarred indices» k, m=1,2, ..., n in
the base @); we denote by IG5 the components of I'C in this tangent chart, with indices
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A, B, ... either «barred» or «unbarred». Then I'C has local components:

(1.10a) T =Ty

(1.10b) Ita=Tt,=0,
(1.10¢) Iz=0,

(1.10d) b= (3Tt
(1.10¢) Pom=Tt, =TIk,
(1.10f) FEo=0.

The following results are well known.

THEOREM 1 ([3], 6.6 page 45). — Let (Q, g) be a Riemannian manifold. The com-
plete lift (V, ) of the Levi-Civita connection V, of g is the Levi-Civita connection of the
complete lift g of the metric g; i.e.:

(111 (V)¢ = V.

THEOREM 2 ([3], Th. 9.1 page 58). — Let I' be any linear connection in Q. Whenever
7: R — TQ is a geodesic of the complete lift I'C then its projection y = 190V R—>Q is
a geodesic of I' and the vectorfield defined by y along y is a Jacobi field for I.

The classical proof of Thm. 1 above relies on the calculation of the Christoffel sym-
bols of (1.9). The classical proof of Thm. 2 relies instead on the explicit calculation of
the geodesic equation in TQ for the connection locally expressed by (1.10); one finds
that the 2% components of the geodesic equation in 7@ split into % equations in the
base @, corresponding to the «unbarred» indices, and n equations in the fibres, corre-
sponding to the «barred» indices; the first set coincides with the geodesic equation of
I'in Q; in virtue of (1.10d) the connection components of I'C involve first derivatives of
the connection components of I and, accordingly, the second set can be manipulated to
the form (1.4) which involves the Riemann curvature of I

An immediate consequence of Thm.s 1 and 2 above is the following:

THEOREM 3. - Let (Q, g) be a Riemannian manifold. Then the system formed by
the geodesic equation of g in @ and the Jacobi equation associated to g in TQ is the
geodesic equation in TQ of the complete lift metric g©. Therefore this system follows
from a variational principle on TQ based on the energy functional defined by the lift-
ed metric g°.



B. CasciarR0 - M. FRANCAVIGLIA: A new variational characterization, etc. 223

2. - The Lagrangian characterization of generalized Jacobi equations.

We shall now briefly recall some fundamental notion from the Caleulus of Varia-
tions on fibered manifolds (see [12] for notation). Let (B, M, x) be a fibered manifold
and £: J'x— A"(T*M) be a first-order Lagrangian (density) on B. Here J'x de-
notes the first-jet prolongation of 7 and A™ (T * M) is the bundle of n-forms of M, n be-
ing the dimension of the base manifold M. Locally:

@.1) £=L*, gy, yi)ds,

where (J1U; #*, %%, i) is any natural chart in J'z and ds is the local volume of
(U; 2*). '
The action of £ is defined by

©2.2) a= j(jlo)*.ﬁ,

2

where Q is any compact domain in M with regular boundary 682 and o e I'(xr) is any lo-
cal section (defined in an open subset containing £).

One defines then the «first variation» 6@ of @ by considering homotopic variations
n = do € ¥y () with fixed values at the boundary 62 (see, e.g., [12]), xv () being the
space of vertical vectorfields of . The result is given by the well known (local)
expression: :

2.3) 6a=f6£5f é’%n“r a"ein:} ds,
oy ay#

2
which integrates by parts to give:
@.4) 8a = j e:(£)yids + j pH(©)n'ds,,

where ds, is the surface elemgnt.of 3, deﬁ%%d so that ds, /\ dax* = (—1)'ds, p{(£)
are the canonical momenta defined by

25) fo= 2%
Yy

and ¢;(£) is defined by:

@6) (8 = 88 - =L (pr(e)).
49

Defining thence critical sections as those sections along which 6@ vanishes for any #
with fixed values at the boundary, from (2.4) we see that they are characterised by
the equation:

2.7 (j2o)*[e()] =0,

which is called the Euler-Lagrange equation. Here [e(£)] is a global bundle morphism
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e(L): J2m—> A™(T* M) ® V* 7, where V* i is the dual bundle of the vertical vector
bundle Vi, called the Euler-Lagrange morphism and locally defined by:

2.8) e(L) =e,(L)ds @ dy*.

The local expressions (2.4) have a global meaning; the first variation of £ is in fact
globally defined through a further global bundle morphism f(£):J'w—
—A™ Y (T*M)® V*ax, locally expressed by:

2.9) (jro)* L) = (p!'(L)oj'o)ds, ® dy’
and the following holds for T.€:
(2.10) (Fro* [TLOn] = (2 0)*(e(L)|n) + (51 0)* d( (L) |n)

for any local section ¢ and any vertical vectorfield » which projects onto ¢. Here and
in the sequel (|) denotes standard duality between forms and vectorfields. Equa-
tion (2.10) is called the global first variation formule of £. The global counterpart of
eqn. (2.4) is thence the following:

@.11) éa = j (e(L)|n) + J(f(oe)ln)-

Q 3R

In order to study the stability properties of critical sections, i.e. of the solutions of
the Euler-Lagrange equation (2.3), one considers next the variation of the action un-
der second-order deformations of ¢. The local expression for the second variation of @
is then given by (see, e.g., [T]):

J'[—aif—gi-k —(-a:ggz]ds +

1
212) od%2a= = . -
2 L A" 3,

2 R LTI 2p
+J 2L i 22y ks |,
41 oy oy 3"y Yty

where ¢ = 620 denotes the second variation of ¢. Equation (2.12) is the local counter-
part of the global expression

(2.13) 6ta = %[J(e(£)|0)+ JHess,e(jln)-!- J(f(ﬁ)lg)],
Q 2 30

where the n-form Hessg(j'7), called the Hessian of £, is locally given by the quadrat-
ic expression corresponding to the second term of (2.12).
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A second order equation for » along critical sections, called the (generalized) Jaco-
bt equation, can be obtained from (2.13) by suitable integrations by parts on Hess. In
fact, as discussed e.g. in [7], eq. (2.13) can be conveniently rewritten as follows

2

(2.14) 6% =% f(e(ﬁ)l@%r j(Jacg(jzn)lnH ff(ﬁ)(n, 0)
2 [} a2

where f (£)(n, o) is a new boundary term depending both on # and ¢ and Jac.(j%7) is
locally given by

Jace(5%n) = J;(52n)dy’
with

2 . 2 . 2 . 2 .
A J—~d—( 2L e 2 77’)-

oy Syoyl "t A"\ Gyioy oyiow
Equating J;(j%n) to zero, ie. setting
(2.16) Jacy(j%n) =0

gives rise to the standard form of the (generalized) Jacobi equation.

Let us now remark that eqn. (2.3) defines in fact a new Lagrangian density in the
bundle Vr as follows. Equation (2.3) contains the first variation 6.2 V(Jix) —
— A" (T* M), locally defined by:

= 9L i oL
Ayt Ay,

i

2.17 oL Ure

Recall that there is a natural bundle isomorphism 3: V(J!x) — J1(Vir), locally defined
by: )

2.18) @yt i nt ) =@yt nt g ).
Then a new Lagrangian density £;:J'(Va) - A™(T*M) is defined by:
(2.19) £ =0Lo(N™!

and it is called the first-order deformed Lagrangion.
The following has been proved in [10].

THEOREM 4. - Let (B, M, 7) be any fibered manifold and £ be any first order La-
grangion density on m. Then the system formed by the Euler-Lagrange equation (2.3)
and the Jacobi equation (2.16) of £ is equivalent to the Euler-Lagrange equations
Of £

The above results hold in particular for Lagrangians over curves, i.e., for varia-
tional principles based on the tangent bundle. Since this case will be the relevant one
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for our purposes, we shall shortly report here how the results above specialise to
Classical Mechanics. Let then @ be a smooth manifold and B=R X @; then J'n =
=R X TQ and a Lagrangian density is a mapping £: R X TQ — A (T*R); locally:

(2.20) =1L, q", u')dt,

where (R x TU; t, ¢, u*) is any natural chart in R X TQ. The canonical momenta
are defined by

£
2.21) p;(£) = §'7
ou
and e;(£) is defined by:
2.22) 60 =52~ L(p(2).

A local section of B is naturally identified with a curve y : R — @ and Euler-La-
grange equations are second order equations specifying «critical curves» in . The
vertical bundle V identifies with B X TQ and a vertical vectorfield = 5?3; is noth-
ing but a vectorfield 5 € ¥(Q). The second variation of @ is then given by:

J

Q2

293) o%a= l[

e, oe.
2

ot 4+ —o|dt +
g% 8@#9}

2 . . 2 . . 2 . .
+[ a.£.n’17’+2 a."e.nzﬁf—i- a_‘g.ﬁliy] dti.
g dq" og’ oq" ou? ou'w’
The Jacobi equation Jace(j2%) is then locally given by

@24  Ji(§%p) =

2 2 2 2
a_‘,e_n]er a..,e.ﬁj_i a."e,nf+ 8.08'7,7]. .
dq*og’ dq" ou’ dt\ Juidg’ ou'" ou’

The first variation 6. is locally defined by:

5 .
(2.25) sp= 0L iy 9L i
oq o

and the natural bundle isomorphism J:R X TTQ — R X I'TQ is locally defined
by:

(2.26) t, ', u'snt, 7y~ qf nhut 7t

then the new Lagrangian density £, is a mapping £ : R X TTQ —» AY(T*R).
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3. — The main result revisited.

We are now ready to show that Theorem 3 is a simple consequence of the Theorem
4 recalled in the previous Section, thus completing our claim.

Let us then consider a Riemannian metrie g = g;;dq*dg’ in Q. The energy function-
al of g is based on the Lagrangian:

According to eqn. (2.24) and using the symmetry of g the associated first-order defor-
mation Lagrangian is thence given by:

3.2) L= %(akgij)uiujﬂk +giu' i,
which, using eqn. (1.2), becomes immediately:
(3.3) £y =gylh’ + Dgu™n*1ul.

Then, from eqn. (1.6) we see that £, is in fact the energy Lagrangian of the lifted met-
ric ¢ = 205 du'tdg’. Accordingly, Theorem 4 applied to .2 entails that the geodesic
equation of g¢ in TQ is equivalent to the system formed by the geodesic equation of g
in @ together with the Jacobi equation of g, which is nothing but Theorem 3.
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