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Summary. — A local similarity manifold is defined as a locally affine manifold for which the
transition functions of an affine atlas are similarity transformations in R*. The main result
of this paper is that, for n = 3, the compact local similarity manifolds (which are not locally
Euclidean) are given by the formula M = (R"™\{0})/G, where G is a growp of covering trans-
formations such that

G = {(WiheH, keZ},

H being a finite orthogonal growp without fimed points in R™N\{0}, and i, being some con-
formal linear transformation of R* which commutes with H.,

1. — Introduction.

Locally affine and locally Eueclidean (i.e., flat Riemannian) manifolds have been
studied by many authors. (See, for instance, J. A. WoLF’s book [13]). Therefore,
it is sensible to discuss also manifolds which have an atlas with transition functions
in other affine subgroups. A natural such subgroup is that of the similarity transfor-
mations in R"

n
(1.1) F=p0 Y aia’ + b,
i=1
where (a}) is a real orthogonal matrix which yields the orthogonal part of (1.1), and

p >0 is called the module of (1.1).

For the sake of simplicity, we agree to consider C* connected manifolds only
in this paper. '

A differentiable manifold M* will be called a local similarity manifold, shortly
an l.s.m., if it is endowed with an Ls. structure i.e. an atlas {(U,, #')/a € 4, (i =1, ...,
..., 1)}, whose transition functions are locally of the form (1.1).

Obviously, an l.s. structure is locally affine, but it is not neecessarilly locally
Euclidean. Moreover, we shall agree to discuss only those l.s.m., which are not
locally Euclidean i.e., unless the contrary is explicitely stated, the maximal 1.5. atlas
of M cannot be reduced to one with transition functions (1.1) of module 1 only.

(*) Entrata in Redazione il 30 dicembre 1982.
(**) This work was supported by the N.S.E.R.C. Canada, grant A4063.



280 TIzU VAISMAN - CoRINA REISCHER: Local similarity mawnifolds

(But the same M may have, perhaps, some locally Euclidean structure non-related
to the given ls. structure). It is also clear that an ls.m. is a locally conformally
flat manifold, but the converse may not be true [8, 9].

In the.context of the complex manifolds, l.s.m. have been studied as locally
conformally Kiéhler-flat manifolds [11, 12], while an essential use of a procedure
of KopArraA [7] and KAT0 [6] has been made. In this paper, we shall transfer the
same method to real L.s.m., and our main result yields the universal covering of a
compact 1s.m. (it must be R™\{0}), and a description of the corresponding group
of covering transformations. Since we feel that the acces to the l.s.m. should be
direct, and not via complex manifolds, we have written this paper as self-contained
in spite of the fact that this made us repeat some of the proofs of [11, 12].

The basic example of a compact l.s.m. can be obtained as follows. Consider the
transformation ¢,: R\ {0} — R\ {0} defined by

(1.2) = Jlz', leR, 0<i<1,
and denote by @, the infinite cyclic group generated by ¢,. Then set
(1.3) RH" = (R™\{0})/®, .

This will be called the real Hopf manifold (see [6, 11] for the complex Hopf
manifolds). Using the diffeomorphism

(1.4) RN{0} ~ 81X R,

given by () > («’/|2], In |x|/In 1), we get RH"~ 8"~ 8 (8% denotes always the
h-dimensional unit sphere), which proves that RH" is a compact, connected for
n > 1, differentiable manifold, and (1.2) shows that RH" i3 an lLs.m,

2. — The ls.m. as Riemannian manifolds.

Let M be an Ls.m. with the maximal structural atlas {(U,, %)}, and let us define

over each U_ the local flat Riemannian metric g, given by
3 .

(2.1) ds? =3 (da’)?.
i=1

Over every intersection U, Uz we have then the transition relation

(2.2) 6= Capllo s
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where ¢,,= @§ﬂ>0, and ¢,, is the module of the corresponding transition (1.1),
and is loeally constant over UsN Ujs. Clearly, {¢ss} satisfies the cocycle condition

(2.3) a5 = Cay s

and we shall say that it defines a fwisted system of coefficients on M,

Generally, any maximal system of Iocal Riemannian metrics g. defined on a
differentiable manifold M, and satisfying (2.2), (2.3) will be called a twisted Rieman-
wian (t.R.) metric on M. Hence, an l.s.m. has a canonically associated t.R. metric
g9 = {gs}-

Furthermore, it is important that the Levi-Civita connections V. of g. satisfy
Vp=Vy over UsN Uy, because of the fact that cas are locally constant. Hence,
these connections can be glued up into a global connection V (= Vi on U,), which
will be called a t.E. connection. The geodesic lines of V are well defined, and will
be called twisted geodesics. Locally, they are the usual geodesics of g.. (We recall
that systems of local metrics with a global connection were studied in [10]).

Now, let (M, g) be a t.R. manifold. Then (2.3) shows that {In cas} is a 1-cocycle
with values in the sheaf of germs of differentiable functions of M. Therefore,

(2.4) In esp= 00— 0p,

where ox: Uy — R are differentiable functions defined up to the addition of a term
of the form v, , v: M — R. Since by (2.4) we have dow= dos on U, Us, we
see that the local system {do,} defines a closed 1-form w on M (o = dox on Us). w is
determined up to cohomology, and we call it the characteristic 1-form of the twisted
metrie. (In [11, 12] this was the Lee form).

From (2.4) and (2.2) it follows that

(2.5) Vlg. = €4,

provides us with a global Riemannian metric on M which is defined up to a global
conformal change y - ¢*y. These metries y will be called untwisting metrics of g,
and they are locally conformal to the metries g». If we fix one such metric y, o,
and, hence, w is also fixed, and we shall refer to it as to the characteristic 1-form of y.

It is easy to understand that the system g contains one of its untwisting metrics y
iff w is an exact form. In this case, we just have to consider a Riemannian manifold
(M, y), which is nothing new. Accordingly, we shall assume hereafter that w is not
exact, unless the contrary is explicitely stated. In particular, the characteristic
1-form of an l.s.m. is non-exact (unless the contrary is specified) since, otherwise,
some untwisting metric y belongs to g, and since this y is flat, the structure of the
manifold is, in fact, locally Euclidean, which contradicts the convention of Section 1.

Conversely, if y is a Riemannian metric on a manifold M, a system g = {g.} of
local Riemannian metrics will be called conformally compatible with y if y|, = e™g, .
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Then a relation like (2.2) holds, but the ¢.s there may not be locally constant fune-
tions, and we may have do, dog on U, Uz. However, if it happens that de, =
= dog, one has ¢xs= const, and g is a t.R. metrie. Using classical formulas {e.g., [2]),
it is easy to see that this happens iff, for every «, 8, g« and g; have the same para-
metrized geodesics.

More simple, let us start with the metric y, and with an arbitrary closed but
not exact 1-form w on M. Then, we can take the local convex neighbourhoods Us,
and functions os: Us— R such that |y, = do,, and it is clear that g, = ¢~*y|,
will provide us with a t.R. metric ¢ on M, for which y is an untwisting metric. If
we replace y by eYy and, simultaneously, w by w -+ dy, we shall arrive at the
same t.K. metric g. Hence, there is a bijection between the set of the twisted
metries g and the set of equivalence classes [(v, w)], where (y;, w;) (i =1, 2) are
equivalent if y,= ¢y;, w,= w; + dy, y € C°(M). This means that, up to inessential
changes, a twisted metrie can be seen as a pair consisting of an usnal Riemannian
metric and a cloged (non-exact) 1-form.

In particular, this viewpoint can be used in the study of the lLs.m. by replacing
there the associated twisted metric ¢ with a corresponding pair (y, w). Indeed, if
we start with the pair (y, w), we can refind the metries g, and, if these are flat, they
can be put under the form (2.1). Then, (2.2) ensures the transition relations (1.1),
and we are done. The only remaining thing is to write down the fact that g, are
flat metrics. Since y = €°¢s, w = doy, there is a well known relation between the
curvature tensors R, and R, [2], and it follows from it that R, == 0 means

(2.6) R(X,Y, 2 W)= H{LZX, Z)y(Y, W) — L(Y, Z)y(X, W) + LY, W)y(X, Z) —
— L(X, W)p(Y, Z)} + (lo4){y(Y, Z)p(X, W) —p(X, Z)y(Y, W)},
where the sign of the curvature tensor is like in [2], and

(2.7) L(X, Y) = (Dyo)(Y) + to(X)o(Y),

D being the Levi-Civita connection of y. In componentwise form, these two for-
mulas are

(2.6') R(»/)nkz = WLyyn— Ly + Lyyin— Lyyut + (iw12/4)(7’ik%z_ VirVit) s

(2.7 L= Diw; 4 $0,0;.
We shall summarize this discussion in
PROPOSITION 2.1. — Up fo inessential changes, an lsm. M is a Riemannian

manifold (M,y), on which there is a closed and non-exact 1-form w such that the rela-
tion (2.8) holds good.
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REMARKS. — 1) For the dimension » = 1, (2.6) holds for every y and w, which
makes 1-dimensional Ls. structures uninteresting, Therefore, we shall assume here-
after » = 2.

2) Of course, the conformal curvature tensor of a t.R. metric is well defined,
and it vanighes in the case of an Ls.m. (Hence, the Pontrjagin classes of an l.s.m,
are zero). But we saw no way of using this property such as to obtain a charac-
terization of the Ls.m. which would not contain w explicitely.

3. — The co-closedness lemma.

In some problems, a more precise determination of the untwisting metric y 18
necessary. In the compact orientable ease, this can be done by using the following

LevMma 3.1. (The Co-closedness Lemma). — Let (M=, y) (n=2) be a compact
orientable Riemannian manifold, and w an arbitrary 1-form on M. Then, there is a
function w: M —> R such that o - dy is co-closed with respect to the metric ¥y, and y
is defined up to the addition of a constant term.

This is a generalization of Gauduchon’s vanishing eccentricity theorem [1], and
Gauduchon’s proof can be applied to it in a form, which is independent of his Her-
mitian framework. For the reader’s convenience, we shall repeat the basic details.

A simple computation shows that the co-closedness condition asked by the
Lemma means

—2
(3.1) Ay — %—g—y(dw, o+ dp) + 6o =0.

For m = 2, this equation reduces to Ay = — dw, and y exists since, by the
Hodge decomposition theorem, one must have — dw = & =+ Ay, k = const, and, by
integrating this over M, we get k = 0.

For n 2, the equation (3.1) can be linearized by means of the substitution
p=[2/(n—2)]1lng, ¢ > 0, which replaces (3.1) by

e w— 2 —_2
(3.2) Ly ¥ dp— =5=y(dp, o) + "= gow = 0.

Here, of course, the difficulty lies in the condition @ >0,
Let us note that, if y itself satisfies the condition of the Lemma ie., dw = 0,
the equation (3.2) defines all the other solutions, and since it is then an elliptic

equation of the IoPF type [4], these solutions are @ = const. This proves the last
assertion of Lemma 3.1,

19 - Annali di Matematica
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The adjoint of the operator L is

n— 2
2

(3.3) It = A + Ho)d,

where i(w) denotes the interior produet by w, and L* is an elliptic operator of the
HopF type [4], whence ker L¥ = R.
Furthermore, we have index L = index L* = index 4 = 0, and, therefore

dim ker L =1,

Hence (3.2) has a solution ¢, = 0, such that all its solutions are given by ke,
L e R. Moreover,

(3.4) fzpo dv = 1,00 #0,

M

(dv is the volume element and <, ) is the global scalar product), since, otherwise,
11 ker L, hence 1 €im L*, which is impossible by Hopf’s theorem of [4]. There-
fore, we can assume without loss of generality that

(3.5) f¢0dv=volM>o.
M

Furthermore, let us assume that @i(p) < 0 at some p € M, and let us chose open
neighbourhoods U, V, W, such that pe Vc Ve Wc U, and ¢,y is <0. Then,
let ¥ be a differentiable function on M with values in [0, 1], and such that y equals 1
on V and 0 outside W. This yields

(3.6) fxqvo dv=—a* (acR),

M

whence (3.5) becomes
[rwoiv +[(1 = pypudv = vor 2,
s u

and we get

(3.7) J((l——x)%dv:volM—}—azzzb? (beR).

M
Finally, let us consider

(3.8) 0= yla*+ (1 —x)[6*=0.
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Then, (3.6) and (3.7) give

[0g0 a0 =<0, @> = 0.
M -

Therefore, 0 1 ker L, hence 6 € im L*, and, since § = 0, this is impossible by Hopi’s
theorem [4].

The conclusion is that we must have g,= 0 everywhere on M, and finally, Lemma 2
of GavpucHON [1] (which is outside the Hermitian framework) provides us with
the further conclusion ¢ > 0. Q.e.d.

From Lemma 3.1 and Section 2 it follows

PROPOSITION 3.2. — Let M be a compact orientable manifold, and let g = {ga} be a
twisted metric on M. Then, it is always possible to chose an untwisting metric y such
that its characteristic 1-form w is y-harmonic. This metric y is defined up to a global
homaothety.

Furthermore, under particular circumstances o satisfies an even stronger restric-
tion. Namely, we have

PRroOPOSITION 3.3. — Let (M», g) be a compact orientable t.R. manifold, as defined
in Section 2. If all the local metrics g, have a non-negative Ricei curvature, and if (y, o)
are as in Proposition 3.2, then the 1-form w is parallel with respect to .

Indeed, from y = ¢* g4, dox = w, dw = 0 (see Section 2 for notation) the fol-
lowing relation between the corresponding Ricei tensors holds good [2, 12]

n— 2 n— 2
(8.9) Bigyin= Eiyn—— (lo2yin— w;ep) + —5— Dion

where D denotes the Levi-Civita connection of y.
Now, let us remark that

C!)ijO)k == %‘D,(I(X)Jz) y

whence

f(wak)ijk v = {<{w, d(f‘”fg» =
M

= § {00, [ =
=0,
Consequently, (3.9) yields
(3.10) [Rome o @0 =[Ryppoiat v =0,
M M .

and a well known result of BocHNER [2] tells us that D,w,=0. Q.e.d.
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COROLLARY 3.4. — A compact orientable L.s.m. M has an untwisting metric y whose
characteristic 1-form w s y-parallel. More precisely, an l.s. structure of a compact
orientable manifold can be defined as a pair (y, ) consisting of o Riemannian metric v
and a nongero parallel 1-form « such that

(B.11) By = H{yuw; 0= V50,05 + Yip0; 00— yip; 0+ |0 * Vi via— Vi Vi) } -
Moreover, a normation condition |w|?= a e R can be also assumed,

REMARK, — If dim M = n = 2, (3.11) yields R, =0, i.e., y is a flat metric
on M, but (if w = 0) & does not belong to the system {g.}. Anyway, we see that M
ig either a torus or a Klein bottle, with an l.s, structure.

In view of this Remark, we shall always assume hereafter that dim M = »n = 3,

Furthermore, (3.11) can be used for the defermination of the Betti numbers,
and one gets

PROPOSITION 3.5. — Let M~ (n = 3) be a compact L.s.m. Then, the Beiti numbers
of M" are:
1) bo=b=b,y=b,=1,b,=0 for 2=i=n—2, if M is orientable;

2) by=b,=1, b,= 0 for the other dimensions i, if M is nonorientable.

For an orientable M the results follow from (3.11) by the so-called Bochner
technique. The concrete computations needed are those contained in the proof of
Theorem 3.9 of [11], and we do not repeat them here again. Of course, the vanishing
of the Euler-Poincaré characteristic y(M) (which follows from |w| = const = 0) will
also be used where needed.

In the nonorientable case, there is a connected oriented double covering M'n,
and it has the Betti numbers given above: b,=1b, =b, _,=b =1,b=0 (2
<i<n—2). By well-known properties of finite coverings of a compact manifold
(e.g., [3]), one has:

1< by=1, hence b, = 1. Then, b, = 0 since M is nonorientable, and,
0 since y(M)=0. Q.e.d.

4, — The quotient structure of compact Ls.m.

Let M be an lLs.m. which has an untwisting metric y with a parallel charac-
terigtic form . Then, (3.11) with D,w;= 0 holds.

The contravariant vector field B of local components o’ is also parallel; we call
it the characteristic vector field. Furthermore, the planes orthogonal to B define a
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foliation § given by w = ¢, and the leaves L of F are totally geodesic submanifolds
of (M, ). Hence, the curvature tensor of L is given by

(4.1) RL(Xa Y, Z? W) = R(;’,)(Xy Y’ Za W) ’

for every vector fields which satisfy o(X) = o(Y) = w(Z) = (W) = 0. Now, (4.1)
and (3.11) show that every such leaf L has the constant positive sectional curvature
|w|2/4, or, by asking that [w|= 2 (i.e., replacing y with |w|*y/4), L has sectional
curvature 1. From these remarks, and using Proposition 3.3, and the classical de
Rham decomposition theorem [6], we get

PRrOPOSITION 4.1. — Let M» (n = 3) be a compact orientable l.s.m. Then, M" has
such an untwisting metric y that S*~1X R is the Riemannian universal covering of M».

(The condition # = 3, ensures that S*~'X R is simply connected).
In fact, we have to be more precise about the metric of S*~*XR. This will be
the product metrie

(4.2) dst = do® + 4 dt?,

because of the normation condition |w|= 2. Here, ¢ is the coordinate on R, and
B = ¢fct, o = 4 dt.

Furthermore, let us consider the diffeomorphism of 87~1x R onto R™\ {0}, given
by

(4.3) zt=e2y’ (1=1,...,1n),

where #¢ are cartesian coordinates in the copy of R” which contains 8*~1, ¢ is an
abscissa on R, and «¢ are cartesian coordinates in R™\{0}. Then, an easy computa-
tion shows that the metric (4.2) is transformed into

n

(4.4) ds® — [1/é1 (xi)ﬂ] S (da)e .

i=1
Accordingly, Proposition 4.1, can be reformulated as

PROPOSITION 4.2, — If M» (n=3) is a compact orientable ls.m., then M=
== (R\{0})/6, where G is a group of covering transformations, consisting of isometries
of the metric (4.4).

Moreover, from (4.3), and o = 4 df, we get

(£.3) |  e=—dl[3 @],
i=1
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and by the relation between ga, v, w as described in Section 2, we see that, if the
coordinates z' of (4.4) are used as local coordinates about ze M, the metric g¢»
about x is

ki

(4.6) o= 2 (da))*.

i=1

Hence, by (2.1) the present coordinates 27 are related by an affine transforma-
tion with linear part in O(n) (n-dimensional orthogonal group) to the coordinates x’
of (2.1) about 2. Next, because of (1.1), the transformations of G must be them-
selves of the form (1.1). But, since these transformations fix the origin of R*, &
must consist of transformations of the form

w
(4.7) F=0p Y ad,
i=1

where ¢ >0 is the module and (aj.) € O(n) is the orthogonal component.

Furthermore, if M is a non-orientable compact 1.s.m., then let M’ be its double
oriented covering, and let ¢*y (A: M’ — R) be a metric with a parallel characteristic
form, conformal to the lift of the untwisting metric y of M to M'. Then, ey is
given by (4.2), (4.4), and it has the characteristic form (4.5). Hence

n n

y= [ 3 @] 3 @

=1 =1
has the characteristic form -—d In ( > (mi)ﬁ) —dA, and we find again the expression
i=1

{(4.6) for the local metries g, associated to ». Since the universal covering of M
and M’ is obviously the same, we obtain now the same result (4.7) for the covering
group G of M. Sinee such a group & preserves (4.4), it follows that even in the
nonorientable case M has the metric induced by (4.4) which has a parallel charac-
teristic form.

The converse, i.e., every quotient (R"™\{0})/@, where G is a group of covering
transformations of the form (4.7), and not all modules o are 1, is & compact Ls.m.,
is also obvious. Hence, we have proven

THEOREM 4.3. — The class of compact l.s.m. M= (n = 3) is defined by the formula
(4.8) M= (RN\[0})/6,

where G is a group of covering transformations of the form (4.7) having not all modu-
les 1. The associated global metric y of such a manifold is then defined by (4.4), where
the »? are given by cortesian coordinates in R».

In the sequel, we shall proceed like in [5, 7, 12], and get a more precise descrip-
tion of the group G.



Tz0 VarsMAN - CoRINA REISCHER: Local similarity manifolds 289

A transformation (4.7) is called a contraction if 0 << p << 1. If ¢ is a contraction,
it generates an infinite cyeclic group {¢} since the different powers #* have different
modules ¢* Then, (R™\{0})/{{} is a compact manifold M’ covered by R™\{0}; in
order to see this, it suffices to look at the diffeomorphism (1.4) with A replaced by .

LEMMA 4.4 [B, 7, 12]. — For every group G of (4.8), G contains at least one contrac-
tion. Every contraction t € G generates an infinite cyclic group {t} which is a subgroup
of finite index in G. There is a coniraction to€ G such that o(t,) is maximal < 1.

The first assertion is true since otherwise M* of (4.8) would not be compact.
Then M’'= (R™\{0})/{t} is a compact covering of M* whose fibers have G/{t} points;
therefore, G/{i} is a finite set. Furthermore, let us fix such a contraction ¢. The
modules of the elements of a class [7], (v € G) are o(t)p™(?), and we can find in
this class a contraction whose module is the closest possible to 1. Then, since we
have only a finite number of classes, a comparison will provide us with the ¢, desired.
. Q.e.d.
Now, let us denote

(4.9) H = {reGp(r) =1},
which is obviously an orthogonal normal subgroup of G.

ProrosiTioN 4.5 [5, 12]. — H 48 a finite subgroup of G, which commutes with ty,
and

(4.10) G={hiheH, kelZ}.

Indeed, consider & class [7]y, (v € G). Its elements are of the form (ke Z),
and let 2 be the element of maximal module << 1. Then, since p(Af;?) >o(4), we
must have p(if;') =1, whence o(1) = o(f)). By the definition of %, and A, this is
impossible unless p(A) = o(%). Therefore, i, 'c H, and we proved that every class
[7]y, has an element h € H. The latter must be unique since all the other elements
of the same class are of the form At} (k= 0), and they have a module 5= 1. Hence H
is finite, (4.10) is justified, and H commutes with ¢, since H is a normal subgroup
of @. Q.e.d. ‘

Conversely, for any finite subgroup H c O(n), and any contraction %, of R” which
satisfies

(4.11) t,H = Hi,,

formula (4.10) is a meaningful definition of a group G, and, if & is a covering trans-
formation group, (4.8) yields a corresponding compact l.s.m. M~
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Let us also note that ?, itself has some module g, (0 << go<< 1), and some ortho-
gonal component ke O(n), and (4.11) is equivalent to

(4.12) he H = Hh, .

The other condition which we had namely, that & is a covering transformation
group, is equivalent to the fact that H acts on R™\ {0} without fixed points. Indeed,
if this happens, & given by (4.10) is discrete and without fixed points in R"\{0},
whence it follows that @ is a covering transformation group (see, for instance, [13,

p. 98]).
Thereby, we have proven

THEOREM 4.6. — In order to obtain all the compact L.s.m. M" (n = 3) we have to take:
) all the finite subgroups H c O(n), which have no fized points in R™\{0};

b) for every such H, all the elements hye O(n) which commute with H (i.e. Iy, is
in the normalizer of H in O(n));

¢) all the numbers 0 < go<< 1.
Then, M= will be defined by the formulas (4.8) and (4.10), All these manifolds are
locally isometric with respect to the metrics defined by (4.4).
Like in the complex case, we also have some more information about the

topology of the manifolds above.

THEOREM 4.7 [3, 12]. — Hvery compact Ls.m. M~ (n=3) is a locally trivial dif-
ferentiable fibre bundle with base space S*, fiber S"1[H, and structure group {ho}, where
the notation is like in Theorem 4.6.

Indeed, putting again RN\J{0} ~ 81X R by (¢%) > [2i/|z], (In |z|)/In o(f)], We
see that a tramsformation At* acts by kA on §*7%, and by # =r + k on R. Now,
we see that

(4.13)  Mr= (RN{0})/@ = [(R™\{0})/H1/(¢/H) ~ [(8"[H)x R]/{t} ,
and these relations yield the following commutative diagram

(8~ H) xR -2 R

(4.14) HJ« lﬂ’
M S'= R/Z

whose arrows have an obvious significance. Since I7 and I’ are covering mappings,
it follows that ¢ is the fibration stated by Theorem 4.7. Q.e.d.
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We shall end this paper by a few simple remarks about the groups of Theorem 4.6.

a) If n» = 2h + 1 (h=1), a proper rotation has an axis, therefore, H has no
proper rotation except the identity. For the same reason H cannot have two dif-
ferent improper rotations. Therefore, there are only two groups: H, which is trivial,
and H, which consists of the identity and the symmetry with respect to the origin.
In both cases, {, can be chosen arbitrarily. The corresponding manifolds M are
fiber bundles over 8! whose fiber is either §2* or RP?* (the real projective space).

b) If n = 2k (k= 2) then, since H has no fixed points in R"\{0}, H is a sub-
group of U(k) with the corresponding real action on R*. The determination of the
groups H and @ in this case is a difficult problem. (See [5] for the case & = 2).

Note that we refind in this scheme the real Hopf manifolds S#—1x §* {(Section 1),
as well as the manifolds RP»1x 8! (which are non-orientable if # is odd).

Added in Proofs. — Recently, we became aware of the following papers: N. Kuiper, Com-
pact spaces with a local structure determined by the group of similarity transformations in E",
Indagationes Math., 42 (1950), pp. 411-418, and D. FrieD, Closed similarity manifolds, Com-
ment. Math. Helvetici, 55 (1980), pp. 576-582, where the l.s.m. are studied by a straight-
forward geometric method.
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