On Smooth Subcanonical Varieties of Codimension 2 in $\boldsymbol{P}^{n}, n \geqslant 4\left(^{(*)}\left(^{* *}\right)\right.$.

Edoardo Ballico - Lưca Chiantini (Waltham, Mass., U.S.A.)

Abstract

Summary. - We study subcanonical codimension 2 subvarieties of $\boldsymbol{P}^{n}, n \geqslant 4$, using as our main tool the rank 2 vector bundle canonically associated to them. With this method we prove first that every smooth canonical surface in \boldsymbol{P}^{4} is a complete intersection. Next we study smooth varieties of codimension 2 in $\boldsymbol{P}^{n}, n \geqslant 6$; it is well known that all of them are subcanonical and R. Hartshorne conjectured that they are always complete intersections, if $n \geqslant 7$. We prove this conjecture in the particular case of a variety X for which the integer e such that $\omega_{X}=\theta_{X}(e)$ is 0 or negative. This result, togheter with a strong result by Z. Ran, provides a quadratic bound for the degree of a non-complete intersection variety of codimension 2 in \boldsymbol{P}^{n}, $n \geqslant 6$.

Introduction.

This paper is concerned about smooth subvarieties X of the complex projective space $\boldsymbol{P}^{n}, n \geqslant 4$, whose canonical divisor is a multiple of an hyperplane section: such subvarieties are called «subcanonical»; this class contains all smooth «canonical " varieties, i.e. varieties embedded in \boldsymbol{P}^{3} by a sublinear system of the canonical system.

The main examples of subcanonical varieties are the complete intersections; indeed if $X=H_{1} \cap H_{2} \cap \ldots \cap H_{n}, H_{i}$ bypersurface of degree d_{i} in P^{n}, then $\theta_{X}\left(\sum d_{i}-\right.$ $-n-1)=\omega_{x}$.

We only consider the case codim $\left(X, \boldsymbol{P}_{n}\right)=2$. In this situation, by a standard construction, the normal bundle of X can be lifted to a rank 2 vector bundle E on P^{n} and X can be viewed as the zero locus of a global section of E. Many properties of X are strictly connected with properties of $D: E$ has Chern classes $c_{2}(E)=\operatorname{deg} X$ and $c_{1}(E)=$ the integer such that $\omega_{X}=\theta_{X}\left(c_{1}(E)-n-1\right)$; moreover X is a complete intersection of hypersurfaces of degree a and b if and only if $E=\theta_{\mathbf{P}^{n}}(a) \oplus \theta_{\mathbf{P}^{\mathbf{n}}}(b)$, i.e. E splits into a sum of line bundles.

This correspondence between codimension 2 subcanonical varieties and rank 2 vector bundles is the main tool of our investigation.

In section 1 we look at the case $n=4$. In [C], it is raised the question of the existence of a smooth, non complete intersection, canonical surface S on \boldsymbol{P}^{4}; using
(*) Entrata in Redazione il 21 gennaio 1983; versione modificata ricevata il 7 aprile 1983.
$\left(^{* *}\right)$ This paper was written while both authors were granted by a C.N.R. fellowship.

Severi's formula for the number of nodal points, it is showed that S must have degree 12 and arithmetic genus 4 . We are able to prove that such surface cannot exist. Indeed the vector bundle associated to S, twisted by - 3 , would give a rank 2 bundle E on P^{4} with Chern classes $c_{1}(E)=0$ and $c_{2}(E)=3$. In [B-E], Barth and Elencwajg claimed the non-existence of such a bundle, but their proof only works in the case " E stable» while for the case " E non stable» they refer to a theorem of Grauert and Schneider ([G-S], 3.1) whose proof is incomplete ([Zentralblatt], 412-32014; [Math. Reviews], 58 n. 1279; [S], p. 92). For our problem the existence of the surface S would imply that the bundle E is semi-stable, so we limit our exmination to such bundles. We have two ways to get the result: in the first we use Barth-Elencwaja's construction, together with some supplementary information on the cohomology of E, obtained by the cohomology of S (which is partially known by Kodaira vanishing, Riemann-Roch theorem and the fact that S must be linearly normal ([Se] $])$ and we get a contradiction. In the second way we prove the nonexistence of a semi-stable but not stable rank 2 vector bundle E on \boldsymbol{P}^{4} with Chern classes $c_{1}(E)=0$ and $c_{2}(E)=3$: first we show that E would have a section whose zero locus X is a non-reduced, locally complete intersection, multiplicity 3 structure on a plane, then we prove that such an X must be degenerate, and this is unconsistent with $c_{1}(E)=0$; this, together with the correct part of Barth-Elencwajg's theorem, gives the non-existence of S.

While there are a lot of examples of smooth, non complete intersection, subcanonical curves in \boldsymbol{P}^{3}, when the dimension raises the situation seems to be much poorer; Horrocks and Mumford showed in [H-M] that there are abelian surfaces embedded in P^{4} and they are examples of non complete intersection, subcanonical varieties; all of them are related, up to projective transformations, to the same rank 2 vector bundle E, moreover, as far as we know, E is the unique known example of a vector bundle of rank 2 in \boldsymbol{P}^{4} which is not the sum of line bundles (up to twisting by $\left.\theta_{\boldsymbol{P}^{n}}(m)\right)$.

For $n>4$ we know no examples of smooth subcanonical varieties, of codimension 2 in \boldsymbol{P}^{β}, except complete intersections.

If $n \geqslant 6$, then every smooth codimension 2 subvariety X of \boldsymbol{P}^{n} is subcanonical, indeed BaRth and LaRsen showed that the Picard group of X is Z, generated by the class of an hyperplane section, hence in particular $\omega_{x}=\theta_{x}(e)$ for some integer e.

In 1974 Hartshorne conjectured that all smooth codimension 2 subvarieties of $\boldsymbol{P}^{n}, n \geqslant 7$, are complete intersections. In section 2 we give a short survey on the progresses made in this direction from 1974 till now; we point our attention on a recent preprint of Z. RaN, which seems to provide some useful tool for the study of codimension 2 subvarieties. Using Barth-Larsen's theorem, Ran's results and the Riemann-Rocl formula for a vector bundle, we are able to prove a very particular case of the conjecture: we prove that if X is smooth of codimension 2 in $\boldsymbol{P}^{n}, n \geqslant 6$ and $\omega_{X}=\theta_{X}(e), e \leqslant 0$, then X is complete intersection.

In the last section we briefly study smooth subcanonical threefolds X in P^{5}. By Riemann-Roch formula for threefolds, we see that fixed the integer e such that
$\omega_{X}=\theta_{X}(e)$, in general only finitely many values are allowed for $d=\operatorname{deg} X$; then reducing ourselves to a general hyperplane section of X and using some result of the theory of surfaces in \boldsymbol{P}^{4}, we prove that X is complete intersection if $e \leqslant 2$.

We end giving, as a corollary of Ran's theorems and of our theorem of section 2, the following lower bound for the degree of a non C.I. smooth codim 2 subvariety of $\boldsymbol{P}^{n}, n \geqslant 6$: if $d=\operatorname{deg} X$ and X is not C.I., then $d>(n+2)^{2} / 4$. This bound is much better than the linear one given in [B-V] and it is, as far as we know, the first quadratic bound on the degree of a non C.I. codimension 2 subvariety of \boldsymbol{P}^{n}.

We wish to thank Z. Ran for some useful conversations on this subject.

0. - Preliminaries.

Once forever, \boldsymbol{P}^{n} means the projective n-space over the complex field.
Sometimes we shall abbreviate in the text, "complete intersection» with《C.I.».
A subscheme $X \subseteq \boldsymbol{P}^{n}$ is said to be "degenerate» if it is contained in some hyperplane.
i) If X is a smooth subcanonical variety of codimension 2 in $\boldsymbol{P}_{n}^{n}, n \geqslant 3, I_{X}$ is its ideal sheaf, then there is a unique non-trivial extension of sheaves on \boldsymbol{P}^{n}, $0 \rightarrow \theta_{P^{n}} \rightarrow E \rightarrow I_{X}(a) \rightarrow 0$ such that E is a rank 2 vector bundle with Chern classes $c_{1}(E)=a$ and $c_{2}(E)=\operatorname{deg} X: E$ is the extension to \boldsymbol{P}^{n} of the normal bundle of X. Moreover $\omega_{X}=\theta_{X}(a-n-1)$ and X is the zero locus of a global section of E (see [H3], § 1). More generally this construction holds when X is any locally C.I. scheme of codimension 2 in \boldsymbol{P}^{n}, such that, for some integer $e, \theta_{X}(e)$ is a dualizing sheaf for X.
ii) We shall use the following definition of stability for rank 2 vector bundles on \boldsymbol{P}^{n}, which is equivalent to the one given in [H3] or in [M] (see [H3], Prop. 3.1). Let c_{1} be the first Chern class of E. Then:
a) E is "stable" if $H^{0}(E(a))=0, \forall a \leqslant c_{1} / 2$;
b) E is «semistable» if $H^{0}(E(a))=0, \forall a<c_{1} / 2$.
iii) Let X be a subcanonical, locally C.I., reduced codimension 2 subscheme of \boldsymbol{P}^{3}, zero locus of a section of the vector bundle E.

If X is contained in a smooth quadric surface, then X is C.I. or it is a disjoint union of lines ([H1], p. 231).

If X is contained in a quadric cone Q, then X is always C.I.: indeed if deg X is even, then X is a Cartier divisor of Q, but Pic $Q=Z$, generated by the class of an hyperplane section; if deg X is odd, then one can see that for a generic line $r \in Q$, $X \cup r$ is a Cartier divisor on Q, hence $X \cup r$ is C.I., i.e. X is linked to r; it follows that X is arithmetically Cohen-Macaulay ([Ra], 2.3) so that E is a sum of line bundles.
§ 1. - This section is mainly devoted to the proof of the following
Theorma 1. - Every smooth canonical surface S in \boldsymbol{P}^{4} is complete intersection.
Of course we may assume that \mathbb{S} is non-degenerate, otherwise the claim is obvious. In this case, using Riemann-Roch theorem as in [H1], App. A, p. 434, we get the formula:

$$
\begin{equation*}
d^{2}-10 d-\tilde{5}(H \cdot K)-2 K^{2}+12+12 p_{a}=0 \tag{1}
\end{equation*}
$$

($d=\operatorname{deg} S, p_{a}=$ arithmetic genus of $S, H=$ hyperplane section of $S, K=$ canonical divisor of S) which in our situation gives:

$$
0=d(d-17)+12 p_{0}+12 \quad \text { (see also [C], corol. 6.6) }
$$

As it is pointed out in [C], §6, this relation tells us that only the following cases may occur:
a) $d=8,9 ; p_{a}=5$.

In this case S must be C.I. (see [C]; § 6)
b) $a=12 ; p_{a}=4$.

In this case the irregularity $q(S)$ of S is 1 , hence S cannot be C.I.
From now on, let δ indicate a canonical surface of degree 12 and arithmetic genus 4 in P^{4}; let I_{S} be its ideal sheaf. All we need to show is that such S cannot exist.

The proof uses Barth-Elencwajg's theory of the spectrum of a rank 2 vector bundle (see [B-E]).

Let E_{0} be the vector bundle associated to $S(0 \cdot i)$, then E_{0} has Chern classes $c_{1}\left(E_{0}\right)=6$ and $c_{2}\left(E_{0}\right)=12$. Put $E=E_{0}(-3)$; it is easy to see that $c_{1}(E)=0$ and $c_{2}(E)=3$.

In [B-E], § 4, Barth and Elenowajg claim that there are no rank 2 vector bundles E on \boldsymbol{P}^{4} with $c_{1}(E)=0$ and $c_{2}(E)=3$; this would imply immediately the theorem. But indeed they only prove the case « E stable», while for the case " D non stable" they refer to a theorem of Graumert and Schneider ([G-S], 3.1) whose proof is unfortunately incomplete ([Zentralblatt] 412-32014, [Math.Reviews] 58, n. 1279 ; see also [S], p. 92).

In our case, however, we can get some more informations about the cohomology of E looking at the cohomology groups $H^{i}\left(I_{S}\right)$ and $H^{i}\left(\theta_{S}\right)$; this permits to handle the case in which E is not stable. In fact we have not to use Barth-Elencwajg's result, but rather to repeat their construction, making the computations in a different way, using the surface S.

Now we give a short account of Barth-Elencwajg's construction.

Let E be a rank 2 vector bundle on $\boldsymbol{P}^{n}, n \geqslant 3$; let $L \subseteq \boldsymbol{P}^{n}$ be a line such that $A_{L}=2 \theta_{L}$; such a line exists, for instance, if E is semistable. The idea is to study E looking at its restrictions to the planes passing through L.

Let $p: \tilde{P} \rightarrow \boldsymbol{P}^{n}$ be the blowing up of \boldsymbol{P}^{n} along L; if $\boldsymbol{P}_{L}=\boldsymbol{P}^{n-2}$ is the projective space which parametrizes the planes π of \boldsymbol{P}^{n} containing L, then \tilde{P} can be viewed as the subset of $\boldsymbol{P}^{n} \times P_{L}$ defined by $\tilde{P}=\{(x, \pi): x \in \pi\}$, so we have a canonic projection $q: \widetilde{P} \rightarrow P_{L}$. Geometrically this map can be constructed as follows : fix a $(n-2)$ linear subspace $P_{L} \subseteq \boldsymbol{P}^{n}$, disjoint from L, then send every point x of $\boldsymbol{P}^{n}-L$ to $\overline{(x, L)} \cap P_{L}$ and send every plane π of \boldsymbol{P}^{n} containing L (i.e. every point of the exceptional divisor of \tilde{P}) to $\pi \cap P_{L}$.

Define $\kappa_{1}=R^{1} q_{*} p^{*}(E(-1))$; by the theory of change of basis it follows that κ_{1} is a vector bundle on $\boldsymbol{P}^{n-2}=P_{L}$ of rank equal to $c_{2}(E)$.

We shall use only the following properties of \varkappa_{1}, which are proved in $[B-E]$, Prop. 2.2.1:

1) $x_{1}=x_{1}$;
2) $h^{0}\left(\varkappa_{1}\right)=h^{1}(E(-1))$;
3) $h^{0}\left(\varkappa_{1}(-1)\right)=h^{1}(E(-2))$;
4) $h^{1}\left(\varkappa_{1}(-1)\right)=h^{2}(E(-2))$.

Moreover we shall use the following crucial fact: if $n=3$, then \varkappa_{1} is a vector bundle on \boldsymbol{P}^{1}, so it splits into a direct sum of line bundles. Now let $n>3$; for a general linear 3 -space $H, L \subseteq H \subseteq P^{n}$, we may repeat the construction for $E_{1 E}$ so we get a vector bundle on \boldsymbol{P}^{1}; let we call it x_{1}^{H}. Let m be the line of P_{L} corresponding to H, then $x_{1 \mid m}$ also splits into a sum of line bundles. We have:
5) $x_{1}^{H} \simeq x_{1 \mid m}$ as bundles on $\boldsymbol{P}^{1}([\mathrm{~B}-\mathrm{E}], \S 2)$.

Proof of Th. 1. We shall use the existence of S to evaluate the dimension of some cohomology group of E and to get a contradiction.

By construction we have the following exact sequences:

$$
\begin{align*}
& 0 \rightarrow \theta_{\mathbf{P}^{4}} \rightarrow E(3) \rightarrow I_{S}(6) \rightarrow 0 \tag{2}\\
& 0 \rightarrow I_{S} \rightarrow \theta_{\mathbf{P}^{4}} \rightarrow \theta_{S} \rightarrow 0 \tag{3}
\end{align*}
$$

Since S is not a C.I., by [C], Prop. 5.9 it follows that S cannot be contained in any quadric hypersurface, i.e. $h^{0}\left(I_{S}(2)\right)=0$. By the cohomology sequence of (2), twisted by -4 , this implies $h^{0}(E(-1))=0$, which means, by definition, that E is semi-stable. It follows that for a generic line $L \subseteq \boldsymbol{P}^{4}, E_{\mid L}=20_{L}$, so we may apply Barth-Elencwajg's construction.

Fix such a line L; then we get a bundle \varkappa_{1} on a projective plane $P_{L}=\boldsymbol{P}^{2}$ which parametrizes all the planes of \boldsymbol{P}^{4} passing through L. We have rank $\left(\varkappa_{1}\right)=c_{2}(E)=3$;
then for every line $m \subseteq P_{L}, \varkappa_{1 \mid m}$ splits into a sum of 3 line bundles and since $x_{11 m} \simeq \mathscr{x}_{1 \mid m}^{\sim}$ by property 1) above, then we must have:

$$
\begin{equation*}
x_{1 \mid m} \simeq \theta_{m}(-k) \oplus \theta_{m} \oplus \theta_{m}(+k) \tag{4}
\end{equation*}
$$

\% a non-negative integer, eventually depending on m.
Take any 3 -dimensional linear subspace $H \supseteq L$ and put $F=E_{[H}$. F is still semistable, indeed $F_{I L}=2 \theta_{x}$ and $L \subseteq H$ so that, by semicontinuity, $F_{\mid m}=2 \theta_{m}$ for a generic line m in H, hence any section of $F(-1)$ must vanish identically on a generic line, hence it must vanish everywhere.

We have an exact sequence

$$
0 \rightarrow E(-3) \rightarrow E(-2) \rightarrow F(-2) \rightarrow 0
$$

from which we get

$$
H^{1}(E(-2)) \rightarrow H^{1}(F(-2)) \rightarrow H^{2}(E(-3))
$$

But, by (2), $h^{2}(E(-3))=h^{2}\left(I_{s}\right)$ and by (3) $h^{2}\left(I_{S}\right)=h^{1}\left(\theta_{S}\right)=q(S)=1$. On the other hand, by (2), $h^{1}(E(-2))=h^{1}\left(I_{S}(1)\right)$ which is 0 since, by a theorem of SEvERI (see [Se]), S must be linearly normal. It follows $h^{1}(F(-2)) \leqslant 1$.

Let m be the line of P_{L} corresponding to H, then by property 5) we know that $x_{1 \mid m} \simeq x_{1}^{H}$ and the bundle on the right hand side is obtained by Barth-Elencwajg's construction applied to F, hence by property 3), $h^{0}\left(\mathcal{x}_{1}^{H}(-1)\right)=h^{0}(F(-2)) \leqslant 1$.

It follows by (4) that we have only 2 possibilities for $\kappa_{1 \mid m}$, namely:
a) $\varkappa_{1 \mid m} \simeq 3 \theta_{m}$ if $h^{0}\left(\varkappa_{1 \mid m}(-1)\right)=0$;
b) $\psi_{1!m} \simeq \theta_{m}(-1) \oplus \theta_{m} \oplus \theta_{m}(1)$ if $h^{0}\left(\varkappa_{1 \mid m}(-1)\right)=1$.

Case a) can be excluded, as in [B-E], p. 18, looking at the Atiyah-Rees invariant of $F, \alpha(F)=h^{0}(F(-2))+h^{2}(F(-2))$. In this case $h^{0}(F(-2))=0$ since F is semistable and, by property 4), $h^{2}(F(-2))=h^{1}\left(\kappa_{1}^{I}(-1)\right)=h^{1}\left(\kappa_{1 \mid m}(-1)\right)=0$ so that $\alpha(F)=0$; on the other hand, since F is the restriction to \boldsymbol{P}^{a} of a vector bundle in \boldsymbol{P}^{4}, by $[A-\mathrm{R}]$, Prop. 7.2 we must have $\alpha(F)=\Delta(\Delta-1) / 12(\bmod 2)$, where $\Delta=$ $=\left(o_{1}^{2}-4 c_{2}\right) / 4$, that is $\alpha(F)=1$, absurd.

So, varying H among the hyperplanes of \boldsymbol{P}^{4} through L, we see that for every line m in $P_{L}, x_{1 \mid m} \simeq \theta_{m}(-1) \oplus \theta_{m} \oplus \theta_{m}(1)$ so that, by definition, x_{1} is uniform. Uniform rank 3 vector bundles on \boldsymbol{P}^{2} were classified by Elencwajg (see [E]). In our situation this classification implies that x_{1} is one of the following:
i) $\theta_{\boldsymbol{p}^{2}}(-1) \oplus \theta_{\boldsymbol{p}^{2}} \oplus \theta_{\boldsymbol{p}^{2}}(1)$;
ii) $T \boldsymbol{P}^{2}(-2) \oplus \theta_{\boldsymbol{P}^{2}}(1)\left(T \boldsymbol{P}^{2}=\right.$ tangent bundle $)$;
iii) $T P^{2}(-1) \oplus \theta_{P^{2}}(-1)$;
iv) $S^{2} T \boldsymbol{P}^{2} \otimes \theta_{P^{2}}(-3) ;\left(S^{2}=2^{n d}\right.$ symmetric power $)$.

By property 3), $h^{0}\left(\varkappa_{1}(-1)\right)=h^{1}(E(-2))$ and this is 0 , again by (2) and by the fact that S is linearly normal. This excludes case i) and case ii).

In case iii) we have $h^{1}\left(x_{1}(-1)\right)=h^{1}\left(\boldsymbol{P}^{2}(-2)\right)=0$, but, on the other hand, by property 4), $h^{1}\left(\varkappa_{1}(-1)\right)=h^{2}(E(-2))$ and by (2) $h^{2}(E(-2))=h^{2}\left(I_{s}(1)\right)$; by (3) $h^{2}\left(I_{s}(1)\right)=h^{2}\left(\theta_{s}(1)\right)$ and by duality $h^{2}\left(\theta_{s}(1)\right)=h^{0}\left(\theta_{s}\right)=q(S)$ which is 1 , a contradiction.

It remains case iv). By property 2), $h^{0}\left(\varkappa_{1}\right)=h^{1}(E(-1))$ which, by (2), is equal to $h^{1}\left(I_{s}(2)\right)$. By (3), since S is not contained in any quadric, we have $h^{1}\left(I_{s}(2)\right)=$ $=h^{0}\left(\theta_{s}(2)\right)-h^{0}\left(\theta_{p^{4}}(2)\right)$; we may use Riemann-Roch theorem on S to compute $h^{0}\left(\theta_{s}(2)\right)$, in fact by duality $h^{2}\left(\theta_{s}(2)\right)=h^{0}\left(\theta_{s}(-1)\right)=0$ and $h^{1}\left(\theta_{s}(2)\right)$ is 0 by Kodaira vanishing; it follows by Riemann-Roch $h^{0}\left(\theta_{s}(2)\right)=17$ hence $h^{0}\left(\varkappa_{1}\right)=h^{1}\left(I_{s}(2)\right)=2$. But the bundle $S^{2} T \boldsymbol{P}^{2} \otimes \theta_{\mathbf{P}^{2}}(-3)$ has no global sections, since $S^{2} T \boldsymbol{P}^{2} \otimes \theta_{P^{2}}(-3) \oplus \theta_{\boldsymbol{P}^{2}}$ is isomorphic to $\operatorname{End}\left(T \boldsymbol{P}^{2}\right)$ and $T \boldsymbol{P}^{2}$, being stable, has only constants as endomorphisms (for more details, see [B-E], p. 22).

This excludes case iv) and proves the theorem.

Remark 2. - As far as we know, the following can be said about the classification of smooth subcanonical surfaces in \boldsymbol{P}^{4}.

Put $\omega_{S}=\theta_{S}(e)$.
a) $e<0$. It is well known by the theory of surfaces that there are only complete intersections. They all are degenerate if $e<-1$, while for $e=-1$ there are the degenerate cubic surface and the Del Pezzo surface in \boldsymbol{P}^{4}, which is complete intersection of two quadrics.
b) $e=0$. This very interesting case was completely solved by Horrocks and Mumford. Indeed if $\omega_{s}=\theta_{S}$ and S is not C.I., then it follows from the classification of surfaces ([Be], Th. VIII.2) that S must be an abelian variety of degree 10, and $q(S)=2$. Horrocks and Mumford proved in [H-M] that there are abelian surfaces with an embedding in \boldsymbol{P}^{4} of degree 10; the corresponding vector bundle E is unique up to projective transformations. Up to shifting, E is the only known example of indecomposable rank 2 vector bundle on $\boldsymbol{P}^{n}, n>3$ (in characteristic 0).
c) $e=1$. By Th. 1, there are only complete intersections.
d) $e=2 k, k \geqslant 1$. If E is the Horrochs-Mumford's bundle, then by its cohomology (calculated in [H-M], p. 74) it follows that a general section of $E(k)$ has a codimension 2 zero locus which is a smooth surface S with $\omega_{S}=\theta_{S}(2 k)$ and $q(S)=0$.

We do not know in \boldsymbol{P}^{4} examples of smooth, non C.I., subcanonical surfaces with odd e, or examples of smooth subcanonical surfaces of general type with $q(S) \neq 0$.

We have an alternative way for proving Th. 1. In the previous argument we used the fact that the semistable bundle E was related to the surface S, in order to compute part of its cohomology and prove its non-existence. Using a different method, we are able to say something more about rank 2 vector bundles on \boldsymbol{P}^{4} with $c_{1}=0$ and $c_{2}=3$; namely we can state the following:

Proposition 3. - There are no semistable vector bundles on \boldsymbol{P}^{4} with Chern classes $c_{1}=0$ and $c_{2}=3$.

Proof. - Let E be such a bundle. By Barth-Elencwajg's theorem ([B-E], § 4) E cannot be stable, so $h^{0}(E) \neq 0$ and $h^{0}(E(-1))=0$. It follows that E has a global section whose zero locus X has codimension 2 or is empty.

If $X=\emptyset$, then E would split into a sum of line bundles ([H3], 1.0.1) $E=\theta_{\mathbf{P}^{\prime}}(a) \oplus$ $\oplus \theta_{p^{4}}(b)$, with $a b=3, a+b=0$, absurd.

It follows codim $\left(X, P^{t}\right)=2$ and $\theta_{X}(-5)$ is a dualizing sheaf for X, moreover X must be locally C.I. of degree 3 .

Let Y be a general hyperplane section of $X ; Y$ is subcanonical and $\theta_{Y}(-4)$ is a dualizing sheaf, indeed Y is the zero locus of a global section of the bundle $E_{\mid \mathbb{I}}$. We show that Y is a triple line examinating subcanonical subschemes of degree 3 in \boldsymbol{P}^{3}, locally C.I. (for a similar argument, see [H3], 9.1).

Since deg $Y=3$ and $\omega_{Y}=\theta_{Y}(-4)$, by reasons of genus Y cannot be reduced. Y must be connected, otherwise a connected component should be a line L, but $\omega_{L}=\theta_{L}(-2)$.

The case Y formed by a double line Y^{\prime} and a line L intersecting in a point can be excluded; in fact the inclusion $f: L \hookrightarrow Y$ implies, by [H1], III, Ex. 7.2 and 6.10, the isomorphism $\omega_{L} \simeq f^{\prime} \omega_{r}$, which gives, by definition of f^{\prime}, a non zero map $f_{*} \theta_{L} \rightarrow \theta_{r}(-2)$. The image of the section 1_{t} of $f_{*} \theta_{L}$ must vanish on $L-\left(Y^{\prime} \cap L\right)$ since every section of $\theta_{r}(-2)$ has support on Y^{\prime}. But by [H4], Prop. III.6, the formation of f^{\prime} commutes with flat pullback and on the open set $U=L-\left(Y^{\prime} \cap L\right) f$ «is» the identity, so the image of 1_{L} cannot vanish on U, a contradiction.

It follows that Y must be a triple line; then every hyperplane section of X has support on a line, hence the support of X must be a plane π of \boldsymbol{P}^{4}, hence X is a nonreduced structure on a plane and X is locally C.I., so it has no embedded components moreover $\operatorname{deg} X=3$. We show that such an X must be degenerate.

Choose coordinates in P^{4}, x, y, z, w, t, such that π is defined by $x=y=0$; put $I=$ homogeneous ideal of $X=$ ideal spanned by the homogeneous polynomials which vanish on X.

Step 1. - If $H \in C[x, y, z, w, t]$ is a homogeneous polynomial which vanishes on X at a closed point $P \in \mathcal{\pi}$ (i.e. the image of F in $\theta_{p^{4}, p}$ belongs to the ideal of X in $\left.\theta_{P^{s}, P}\right)$ then F vanishes on X in an open subset $U \subseteq X$ and U is dense on X since X has support on π and no embedded components. Thus F vanishes on the whole X,
i.e. $F \in I$. A fortiori the same is true if F vanishes on X at a non closed point of π, i.e. at the generic point of a closed subscheme of π.

Ster 2. $-\operatorname{Put} \bar{x}=x / t$ and define similarly $\bar{y}, \bar{z}, \bar{w}$. The $\operatorname{ring} \boldsymbol{C}(\bar{z}, \bar{w})[\bar{x}, \bar{y}]_{(\bar{x}, \bar{y})}=A_{\xi}$ can be canonically identified with the local ring of the generic point of π in \boldsymbol{P}^{4}. Let us continue to indicate, by abuse, the images of $\bar{x}, \bar{y}, \bar{z}, \bar{w}$ in A by the same letters. Let $I_{\xi}=$ ideal of X in A. Since X has support on $\pi, A_{\xi} / I_{\xi}$ is artinian and since X has multiplicity 3 at all points of π, then length $A_{\xi} / I_{\xi}=3$. But this is possible only if $\bar{x}^{3}, \bar{x}^{2} \bar{y}, \bar{x} \bar{y}^{2}, \bar{y}^{3}$ all belong to I_{ξ}. By step 1 this imply $x^{3}, x^{2} y, x y^{2}, y^{3} \in I$.

Step 3. - For every closed point $P \in \pi, I$ must contain a homogeneous element of the form $\phi=\alpha(z, w, t) x+\beta(z, w, t) y+$ terms of higher degree in x, y, with $\alpha(P) \neq 0$ or $\beta(P) \neq 0$. Indeed X is locally C.I., so let $\varphi_{1}, \varphi_{2} \in C[x, y, z, w, t]$ be homogeneous elements which define hypersurfaces H_{1}, H_{2} whose intersection locally at P is X. Put, for $i=1,2, \phi_{i}=\alpha_{i}(z, w, t) x+\beta_{i}(z, w, t) y+$ terms of higher degree in $x, y ;$ if $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ all vanish at P then H_{1}, H_{2} both have multiplicity at least 2 at P, so X has multiplicity at least 4 at P, absurd. Then one of the ϕ_{i} 's is of the required form and it belongs to I by step 1 .

STEP 4. - It follows by step 2 and step 3 that I contains an element which can be written in the form $\phi=Q(A x+B y)+C x^{2}+D x y+E y^{2}$, with Q, A, B, C, D, $E \in C[z, w, t], A, B$ non both identically $0, Q \neq 0$ and A, B without common factors.

Let $\phi^{\prime}=A^{\prime} x+B^{\prime} y+$ terms of higher degree in x, y, be another element of I; then we claim that there exists $Q^{\prime} \in C[z, w, t]$ with $A^{\prime} x+B^{\prime} y=Q^{\prime}(A x+B y)$. This is obvious if $A^{\prime} x+B^{\prime} y \equiv 0$, so assume this is not the case.

Let $\varphi=q(a \bar{x}+b \bar{y})+c \bar{x}^{2}+d \bar{x} \bar{y}+e \bar{y}^{2} \in \boldsymbol{C}[\bar{x}, \bar{y}, \bar{z}, \bar{w}]$ be a dehomogeneization of ϕ, where $q=Q / t^{\operatorname{deg} Q}$ and a, b, c, d, e are defined in the same way. Similarly take $\varphi^{\prime}=a^{\prime} \bar{x}+b^{\prime} \bar{y}+$ terms of higher degree in \bar{x}, \bar{y}, as a dehomogeneization of ϕ^{\prime}. By abuse we shall also consider φ and φ^{\prime} as elements of $C(z, w)[x, y]$ or A_{ξ}.

Since $q a \neq 0$ or $q b \neq 0$, then in $A_{\xi} /(\varphi), \bar{x} \in(\bar{y})$ or $\bar{y} \in(\bar{x})$ so that length $A_{\xi} / I_{\xi}=$ $=$ length $A_{\xi} /\left(\varphi, \bar{x}^{3}, \bar{x}^{2} \bar{y}, \bar{x} \bar{y}^{2}, \bar{y}^{3}\right)=3$ hence $\left(\varphi, \bar{x}^{3}, \bar{x}^{2} \bar{y}, \bar{x} \bar{y}^{2}, \bar{y}^{3}\right)$, which is contained in I_{ξ}, must be equal to I_{s}.

Since $\varphi^{\prime} \in I_{\xi}$ then there exists $\sigma \in \boldsymbol{C}(\bar{z}, \bar{w})[\bar{x}, \bar{y}], \sigma \notin(\bar{x}, \bar{y})$ such that $\sigma \varphi^{\prime} \in\left(\varphi, \bar{x}^{3}\right.$, $\left.\bar{x}^{2} \bar{y}, \bar{x} \bar{y}^{2}, \bar{y}^{3}\right) \boldsymbol{C}(\bar{z}, \bar{w})[\bar{x}, \bar{y}]$ so that $\sigma \varphi^{\prime}=\varrho \varphi+$ terms of degree at least 3 in \bar{x}, \bar{y}; since σ must have non-vanishing constant term, then there are elements $\sigma_{0}, \varrho_{0} \in \boldsymbol{C}(z, w)$, $\sigma_{0}, \varrho_{0} \neq 0$ such that $\sigma_{0}\left(a^{\prime} \bar{x}+b^{\prime} \bar{y}\right)=\varrho_{0} q(a \bar{x}+b \bar{y})$. Taking away denomitators, we may assume $\sigma_{0}, \varrho_{0} \in \boldsymbol{C}[\bar{z}, \bar{w}]$ i.e. the previous relation holds in $\boldsymbol{C}[\bar{x}, \bar{y}, \vec{z}, \bar{w}]$. Dividing by the common factors of σ_{0} and $\varrho_{0} q$, we find relatively prime elements $\sigma_{1}, \varrho_{1} \in$ $\in \boldsymbol{C}[\vec{z}, \bar{w}]$ with $\sigma_{1}\left(a^{\prime} \bar{x}+b^{\prime} \bar{y}\right)=\varrho_{1}(a \bar{x}+b \bar{y})$, i.e. $\sigma_{1} a^{\prime}=\varrho_{1} a$ and $\sigma_{1} b^{\prime}=\varrho_{1} b$. Since σ_{1} does not divide ϱ_{1}, it must divide both a and b, but by assumption A and B are relatively prime in $\boldsymbol{C}[z, w, t]$, so their dehomogeneization are too.

This implies $\sigma_{1} \in \boldsymbol{C}$ so $a^{\prime}=a / \sigma_{1}$ and $b^{\prime}=b / \sigma_{1}$ and homogeneizing suitably, we find what we claimed.

STEP 5. - A and B are homogeneous of the same degree. If they are not constant there is a point $P \in \pi$ where they both vanish. By the previous step, this means that no element of I can be written as $\alpha(z, w, t) x+\beta(z, w, t)+$ terms of higher degree in x, y, with $\alpha(P) \neq 0$ or $\beta(P) \neq 0$; this contradicts step 3 .

Thus A and B are constant. After a suitable change of the coordinates x and y, assume $A=1, B=0$; so every element of I is of the form: $Q^{\prime} x+$ terms of higher degree in x, y.

Step 6. - Now $\phi \in \mathbb{C}[x, y, z, w]$ is $q x+c x^{2}+d x y+e y^{2}$. It is clear that in A_{ξ}, $\varphi_{0}=q x+e y^{2}$ also belong to $I_{\xi}=\left(\varphi, \bar{x}^{3}, \bar{x}^{2} \bar{y}, \bar{x} \bar{y}^{2}, \bar{y}^{3}\right)$, so that the element $\varphi_{0}=q x+$ $+e y^{2}$ also belong to $I_{\xi}=\left(\varphi, \bar{x}^{3}, \bar{x}^{2} \bar{y}, \bar{x} \bar{y}^{2}, \bar{y}^{3}\right)$, so that the element $\phi_{0}=Q x+E y^{2}$, which is a homogeneization of φ_{0}, also belong to I by step 1 ; again if Q, E have a common factor $F \in C[z, w, t]$ and $Q=Q_{0} F, E=E_{0} F$, then $Q_{0} x+E_{0} y^{2}$ also vanishes on X at the generic point ξ so by step $1 Q_{0} x+E_{0} y^{2} \in I$; it follows that we may assume Q and E relatively prime in $C[z, w, t]$.

Step 7. - If $Q \in C$, by reason of degree $E=0$ and X is degenerate. So it remains to show that if Q is not a costant we get a contradiction.

In fact in this case there exists a point $P \in \pi$ such that $Q(P)=0, E(P) \neq 0$ since Q, E have no common factor. Moreover by step 5 and step 3 there is an element $\phi^{\prime}=A^{\prime} x+$ terms of higher degree in $x, y I$ such that $A^{\prime}(P) \neq 0$. By changing the coordinates z, w, t, we may assume $P=(0,0,0,0,1)$; let I_{P} be the ideal of X in $\theta_{\boldsymbol{P}^{4}, P}=\boldsymbol{C}[\bar{x}, \bar{y}, \vec{z}, \bar{w}]_{(\bar{x}, \bar{y}, \bar{z}, \bar{w})}$. Let π^{\prime} be the plane defined by $z=w=0$; then $\pi^{\prime} \cap \bar{X}$ has support in P and degree 3 , so we must have length $\theta_{\boldsymbol{P}^{c}, P} I I_{P}+(\vec{z}, \bar{w})=3$; but I_{P} contains elements $\varphi=q(\vec{z}, \bar{w}) \bar{x}+e(\bar{z}, \bar{w}) \bar{y}^{2}$ with $q(0,0)=0, e(0,0) \neq 0$ and $\varphi^{\prime}=a^{\prime}(\bar{z}, \bar{w}) \bar{x}+$ terms of higher degree in x, y, where $a^{\prime}(0,0) \neq 0$. It follows that $\theta_{P^{4}, P} / I_{P}+(\bar{z}, \bar{w})=\boldsymbol{C}[\bar{x}, \bar{y}] /\left(\bar{x}, \bar{y}^{2}\right)$ so it has length 2 , absurd.

To finish the proof of the proposition we only need to note that X would be the C.I. of a hyperplane and a cubic hypersurface; hence $E=\theta_{P^{4}}(3) \oplus \theta_{P^{4}}(1)$, absurd since $\varepsilon_{1}(E)=0$.

Corollary 4. - In \boldsymbol{P}^{4} there are no irreducible, reduced canonical surfaces \mathcal{S} of degree 12 with locally complete intersection singularities.

Proof. - S would be the zero locus of a section of a rank 2 vector bundle E^{\prime} with Chern classes $c_{1}\left(E^{\prime}\right)=6$ and $c_{2}\left(E^{\prime}\right)=12$. If S is not contained in any quadric hypersurface, then by $0 \rightarrow \theta_{P^{4}} \rightarrow E^{\prime} \rightarrow I_{S}(6) \rightarrow 0$ ($I_{S}=$ ideal sheaf of S) it follows that E^{\prime} would be semistable, hence $E=E^{\prime}(-3)$ would be a semistable rank 2 vector bundle on P^{4} with Chern classes $c_{1}(E)=0$ and $c_{2}(E)=3$, absurd by the previous Proposition.

Suppose S is contained in a quadric: then for a general hyperplane $H, C=S \cap H$ is a reduced irreducible curve in \boldsymbol{P}^{3} which is subcanonical, since it is the zero locus of a section of $\left.E^{\prime}\right|_{H}$; since O is contained in a quadric surface, it must be C.I. by $0 . i i i$,
hence $\left.E^{\prime}\right|_{H} \simeq \theta_{H}(2) \oplus \theta_{H}(q)$ and q is a positive integer such that $q+2=c_{1}\left(\left.E^{\prime}\right|_{H}\right)=6$ and $2 q=c_{2}\left(\left.E^{\prime}\right|_{H}\right)=12$, absurd.

Remark 5. - By the discussion at the beginning of this section, it follows that the previous Corollary implies Th. 1.

The multiple points allowed for S in Corol. 4 are different from the ones allowed in [C]. Indeed in [C] general isolated singularities were allowed, hence S might be not locally C.I.

We shall use Prop. 3 also in section 3.

> § 2. - In this section we are going to study subvarieties of codimension 2 in $\boldsymbol{P}_{n}, n \geqslant 6$.
> Our interest moves from the following conjecture, stated by R. HARTSHORNE in 1974 (see [H2])
> ConJECTURE. - Let X be a smooth subvariety of dimension r in \boldsymbol{P}^{n}. If $r>(2 / 3) n$, then X is a complete intersection.

In particular, if codim $X=2$, then the conjecture implies that X is C.I. if $n \geqslant 7$; in the same paper Hartshorne also posed the question about the existence of a non C.I., smooth subvariety of codimension 2 in \boldsymbol{P}^{6}.

The conjecture arose from a theorem of Barth and Larsen, which we shall use in the following form:

Theorem (Barth-Larsen) (see [H2], th. 2.2). - Let X be a nonsingular variety of dimension r in \boldsymbol{P}^{n}, then:
a) the restriction map $H^{i}\left(\boldsymbol{P}_{n}, \boldsymbol{C}\right) \rightarrow H^{i}(X, \boldsymbol{C})$ is an isomorphism for $i \leqslant 2 r-n$;
b) if $r \geqslant(n+2) / 2$, then $\operatorname{Pic}(X)=Z$, generateed by the class of an hyperplane section.

Note that for complete intersections, a) and b) above are consequences of Lefschetz's theorem.

Part b) implies that if X has «small» codimension in \boldsymbol{P}^{n}, then it is subcanonical, since we must have $\omega_{X}=\theta_{X}(e)$ for some integer e; in particular this holds for every codimension 2 smooth subvariety of $\boldsymbol{P}^{n}, n \geqslant 6$.

Another consequence of Barth-Larsen's theorem that we need to point out is the following: if codim $X=2$ we have $h^{i}\left(\theta_{X}\right)=0$ for $0<i \leqslant r-2$. Indeed in this case, by a), $h^{i}(X, C)=\left(\begin{array}{lll}1 & i & \text { odd } \\ 0 & i & \text { even }\end{array}\right)$; on the other hand, since $i>0$, by Hodge decomposition we have $h^{i}(X, \boldsymbol{C})=\sum_{p+\alpha-i} h^{p, q}(X, \boldsymbol{C}) \geqslant h^{0, i}(X, \boldsymbol{C})+h^{i, 0}(X, \boldsymbol{C})=2 h^{i}\left(\theta_{\Sigma}\right)$.

Hartshorne's paper also contains a wide survey on this subject up to 1974. After 1974 few progresses seems to be made in proving or confuting the conjecture; there is the following Zak's extension of a Severi's theorem:

Theorem (Zak) (see [F-L]). - If $r \geqslant(2 / 3) n$, then any smooth subvariety of \boldsymbol{P}^{n} of dimension r is linearly normal.

Further progresses were made by Z. Ran in a recent preprint (see [R]). We give an account of the results of Ran that we are going to use.

Let X be a smooth, non-degenerate codimension 2 subvariety of \boldsymbol{P}^{n}, which is subcanonical (this last condition holds automatically, by Barth-Larsen's theorem, if $n \geqslant 6)$. Let E be the rank 2 vector bundle associated to X; put $c_{1}=c_{1}(E), c_{2}=$ $=c_{2}(E)=\operatorname{deg} X$ and for every t define $f(t)=c_{2}\left(E\left(t-c_{1}\right)\right)=c_{2}-t c_{1}+t^{2}$.

Ran proves that for every $k \leqslant n-2$ and for a generic point $P \in \boldsymbol{P}^{n}-X$ the cone of $(k+1)$-secants to X passing through P has degree $f(0) \ldots f(k) / k!([\mathrm{R}], \mathrm{p} .3)$. It follows that if $f(0) \ldots f(k) \neq 0$ then X cannot be contained in any surface W of degree k, since any $(k+1)$-secant to W must be contained in $W([\mathrm{R}], \mathrm{Th} .2)$.

Using this result, Ran proves that X is C.I. if either:
a) $c_{1} \geqslant\left(c_{2} / m\right)+m$ for some $m \in(0, n-2]$;
b) $2 \sqrt{c_{2}} \leqslant c_{1} \leqslant 2 n-4$.

In particular, if there are integers a and b such that $c_{1}=a+b$ and $c_{2}=a b$ (i.e. E has the same Chern classes of $\left.\theta_{p^{n}}(a) \oplus \theta_{P^{n}}(b)\right)$ and one of them lies in $(0, n-2]$ (this holds automatically if $c_{1} \leqslant 2 n-4, a, b>0$) then by a), X is C.I.

Note that if X is contained in a surface of degree $k \leqslant n-2$, then we must have $f(0) \ldots f(k)=0$, hence $0=f(i)=c_{2}-i c_{1}+i^{2}$ for some $i \leqslant n-2$, hence $c_{2}=i\left(c_{1}-i\right)$, $c_{1}=i+\left(c_{1}-i\right)$ and $i \in(0, n-2]$ since $c_{2}=\operatorname{deg} X>0$; it follows that X is C.I.

Using the previous discussion and Riemann-Roch formula for vector bundles we are able to prove the following particular case of the conjecture:

Theorem 6. - Let $X \subseteq \boldsymbol{P}^{n}, n \geqslant 6$ be a smooth subvariety of codimension 2 ; then by Barth-Larsen's theorem $\omega_{X}=\theta_{x}(e)$ for some integer e. If $e \leqslant 0$ then X is complete intersection.

Proof. - The isomorphism $\omega_{x} \simeq \theta_{x}(e)$ induces on \boldsymbol{P}^{n} an extension

$$
\begin{equation*}
0 \rightarrow \theta_{\boldsymbol{P}^{n}} \rightarrow E \rightarrow I_{x}(e+n+1) \rightarrow 0 \tag{1}
\end{equation*}
$$

where I_{X} is the ideal sheaf of X and E is the rank 2 vector bundle associated to X, with Chern classes $c_{1}(E)=e+n+1$ and $c_{2}(E)=\operatorname{deg} X . \quad X$ is C.I. if and only if E splits into a sum of line bundles.

By [E-F], Corol. 1.7, E splits if and only if its restriction $E_{1 H}$ to a general hyperplane H does. $E_{[H}$ is the vector bundle associated to the subscheme $X \cap H$ of \boldsymbol{P}^{n-1}; for H general, $X \cap H$ is still nonsingular and $\omega_{X \cap H}=\theta_{x \cap B}(e+1)$ by adjonction formula; hence cutting with hyperplanes and making induction, we may reduce ourselves to prove the statement only for $e \leqslant 0, n=6$ and $e=0$, all $n \geqslant 6$.

Suppose $n=6, e \leqslant-1$. Choose hyperplanes H_{1} and H_{2} such that $V=X \cap H_{1}$ and $S=V \cap H_{2}$ are smooth of dimension 3 and 2 respectively. Hence $\omega_{V}=\theta_{V}(e+1)$ and $\omega_{S}=\theta_{S}(e+2)$. We claim that S is C.I. This follows from Remark $2 a$) for $e \leqslant-3$ and from theorem 1 if $e=-1$; if $e=-2$ the claim follows from Remark 2b) since the irregularity $h^{1}\left(\theta_{S}\right)$ of S is 0 ; indeed by the exact sequence

$$
0 \rightarrow \theta_{V}(-1) \rightarrow \theta_{V} \rightarrow \theta_{S} \rightarrow 0
$$

we get

$$
H^{1}\left(\theta_{V}\right) \rightarrow H^{1}\left(\theta_{S}\right) \rightarrow H^{2}\left(\theta_{V}(-1)\right)
$$

and by duality $h^{1}\left(\theta_{V}\right)=h^{2}\left(\theta_{V}(-1)\right)$ which is 0 by Kodaira vanishing.
Thus we may assume $e=0, n \geqslant 6$. We distinguish two cases.

CaSE 1. - n odd, $n=2 k+1$.
Since $\operatorname{dim} X=n-2$ and, by Kodaira vanishing, $h^{i}\left(\theta_{X}(1)\right)=0$ for $0<i \leqslant n-2$, then $\chi\left(\theta_{x}(1)\right)=h^{0}\left(\theta_{x}(1)\right)$. By Zak's theorem X is linearly normal hence, if it is non-degenerate, $h^{0}\left(\theta_{x}(1)\right)=n+1$. It follows from (1) twisted by $-n$ that

$$
\begin{equation*}
\chi(E(-n))=\chi\left(\theta_{P^{n}}(-n)\right) \tag{2}
\end{equation*}
$$

for every vector bundle E on \boldsymbol{P}^{n} with $c_{1}(E)=n+1$, which has a section whose zero locus is a smooth non-degenerate variety of codimension 2 .

Riemann-Roch theorem assures us that $\chi(E(-n))$ can be expressed as a polynomial, with total degree $\leqslant n$, in the Chern classes $c_{1}=c_{1}(E(-n))=-n+1=$ $=-2 k$ and $c_{2}=c_{2}(E(-n))=d-n^{2}$ where $d=\operatorname{deg} X$.

Now fix $n ; \chi(E(-n))$ becomes a polynomial T in c_{2}, which must satisfy (2), hence we see that only a finite number of values are allowed for $d=\operatorname{deg} X$, if X is non-degenerate, provided that T is non constant. We prove that T is not constant by computing its leading term.

A quick way to do it, following [H1], App. A, § 3, is to carry the computation on a sum of line bundles: put $F=\theta_{P^{n}}(a) \oplus \theta_{P^{n}}(b)$, then $c_{1}(F)=a+b, c_{2}(F)=a b$ and

$$
\chi(F)=\binom{a+n}{n}+\binom{b+n}{n}
$$

the left hand side can be uniquely expressed as a polynomial in $c_{1}(F)$ and $c_{2}(F)$; this polynomial gives the Riemann-Roch formula for a generic rank 2 vector bundle.

We need a technical

Lmmma. - Let a, b, k be integers, $k \geqslant 0$ and put $a+b=c_{1}, a b=c_{2}$. Then
i) $a^{2 k}+b^{2 k}=(-1)^{k} 2 c_{a}^{k}+$ terms of lower degree in c_{2};
ii) $a^{2 k+1}+b^{2 k+1}=(-1)^{k}(2 k+1) c_{1} c_{2}^{l}+$ terms of lower degree in c_{2}.

Proof. - The proof is done by induction on k. Let us write $« \equiv »$ to mean "equal up to terms of lower degree in c_{2} ". Both formulas are obvious for $k=0$, so let us suppose $k>0$.
i) $a^{2 k}+b^{2 k}=\left(a^{k}+b^{k}\right)^{2}-2 c_{2}^{k}$; if k is even, by induction $a^{k}+b^{k} \equiv(-1)^{k / 2} 2 c_{2}^{k / 2}$ so that $a^{2 k}+b^{2 k} \equiv 2 e_{2}^{k}$; if k is odd, by induction again, ($a^{k}+b^{k}$) cannot contain terms of degree k in c_{2}, so i) is proved.
ii) $a^{2 k+1}+b^{2 k+1}=\left(a^{2 k}+b^{2 k}\right)(a+b)-a b\left(a^{2 k-1}+b^{2 k-1}\right)$; by i) we have ($a^{2 k}+$ $\left.+b^{2 k}\right)(a+b) \equiv 2 c_{1} c_{2}^{k}(-1)^{k}$ and by induction $a b\left(a^{2 k-1}+b^{2 k-1}\right) \equiv c_{2}^{k}(-1)^{k-1}(2 k-1) c_{1} ;$ adding we find ii).

Now we return to the proof of the theorem.
We have:

$$
\begin{align*}
& \quad \chi(H)=\binom{a+n}{n}+\binom{b+n}{n}= \tag{3}\\
& =((a+n)(a+n-1) \ldots(a+1)+(b+n)(b+n-1) \ldots(b+1)) / n!= \\
& =\left(\left(a^{n}+b^{n}\right)+n(n+1)\left(a^{n-1}+b^{n-1}\right) / 2+(\text { some coefficient })\left(a^{n-2}+b^{n-2}\right)+\ldots\right) / n!
\end{align*}
$$

hence, by the Lemma, replacing $n=2 k+1, a b=c_{2}, a+b=c_{1}=-2 k$, we have:

$$
\chi(E(-n))=\frac{1}{(2 k+1)!}\left((-1)^{k}(2 k+1)(-2 k) c_{2}^{k}+(-1)^{k} 2 c_{2}^{k}(2 k+1)(2 k+2) / 2+\right.
$$

$$
+ \text { terms of lower degree in } c_{2} \text {). }
$$

Thus the leading coefficient of T is $\left(2(-1)^{k}(2 k+1)\right) /(2 k+1)$! and T has degree k in c_{2}.

It follows that, for fixed n, equation (2) has at most k roots in c_{2}. We know yet some of these roots: they are the numbers $d-n^{2}$ where d is the degree of a nondegenerate C.I. of two hypersurfaces whose degrees have sum $n+1=2 k+2$. This gives exactly k distinct values for d, namely $d_{1}=2(2 k), d_{2}=3(2 k-1), \ldots, d_{k}=$ $=(k+1)^{2}$, hence the corresponding values for $d-n^{2}$ exaust all the roots of (2).

It follows that if X is non-degenerate, its degree must be one of the d_{i} 's, hence its associated vector bundle has the same Chern classes of a sum of line bundles of positive degree. Since by assumptions $c_{1}(A)=n+1 \leqslant 2 n-4$, it follows by Ran's theorems that X is C.I.

If X is degenerate, then it is obviously C.I., so the case " n odd» is proved.

Case 2. - n even, $n=2 k$.
In this case we construct a formula similar to (2) which is valid also for degenerate X. We look at $\chi\left(\theta_{X}\right)$; by Barth-Larsen's theorem if $\operatorname{dim} X=r$ then $h^{i}\left(\theta_{X}\right)=0$, $0<i \leqslant r-2$, moreover since $r>3$, this implies also $h^{r-1}\left(\theta_{x}\right)=0$ by duality; finally $h^{r}\left(\theta_{x}\right)=h^{0}\left(\theta_{x}\right)=1$ hence we have $\chi\left(\theta_{x}\right)=2$.

From (1) twisted by $-n-1$, it follows:

$$
\begin{equation*}
\chi(E(-n-1))=1+\chi\left(\theta_{P^{n}}(-n-1)\right) \tag{4}
\end{equation*}
$$

and this holds for every rank 2 vector bundle E with $c_{1}(E)=n+1$, which has a section whose zero locus is a smooth subvariety of codimension 2.

But again $\chi(E(-1-n))$ can be expressed as a polynomial in $c_{1}=c_{1}(E(-1-$ $-n))=-n-1=-2 k-1$ and $c_{2}=c_{2}(E(-n-1))=\operatorname{deg} X=d$, hence fixing n, $\chi(E(-n-1))$ becomes a polynomial T^{\prime} in c_{2} which must satisfy (4).

For the same computations as before, replacing in (3) $n=2 k, a b=c_{2}, a+b=$ $=c_{1}=-2 k-1$, by the Lemma

$$
\chi(E(-n-1))=\frac{1}{(2 k)!}\left((-1)^{k} 2 c_{2}^{k}\right)+\text { terms of lower degree in } c_{2}
$$

hence T^{\prime} has leading term (-1$)^{k} 2 /(2 k)$) and degree k. It follows that for fixed n, equation (4) has k roots in $c_{2}=d$. But we know yet these roots: they are the degrees of complete intersections of two hypersurfaces whose degrees have sum $n+1$, namely they are the (distinct) numbers $\delta_{1}=1(2 k), \delta_{2}=2(2 k-1), \ldots, \delta_{k}=$ $=k(k+1)$. Once again it follows that the degree of X must be one of the δ_{i} 's, hence E has the same Chern classes of a sum of line bundles of positive degree. Since $c_{1}(E) \leqslant 2 n-4$, by Ran's theorems this implies that X is C.I.

This completes the proof of the theorem.
REMARK 7. - We cannot use equation (4) to prove the case "n odd $»$ because it becomes an identity: indeed it has degree $\leqslant k$ in $e_{2}=d$ while complete intersections give $k+1$ distinct values for d, namely $1(2 k+2), \ldots,(k+1)(k+1)$.

We cannot use equation (2) to prove the case « n even» because it has degree k in $c_{2}=d-n^{2}$ and non degenerate complete intersections give only $7-1$ values for $d-n^{2}$, so they do not exaust all the roots of (2) but possibly there is a missing value.
§3. - Let us examinate more closely the case of smooth subcanonical threefolds X in \boldsymbol{P}^{5}.

Remark 8. - Put $\omega_{x}=\theta_{X}(e)$ and let S be a general smooth hyperplane section of X; then $\omega_{S}=\theta_{S}(e+1)$, moreover the irregularity of S is 0 , indeed $h^{1}\left(\theta_{X}\right)=0$
by Barth-Larsen's theorem and we have the exact sequence $H^{1}\left(\theta_{x}\right) \rightarrow H^{1}\left(\theta_{S}\right) \rightarrow$ $\rightarrow H^{2}\left(\theta_{X}(-1)\right)$ and, by Kodaira vanishing, $h^{2}\left(\theta_{X}(-1)\right)=0$.

If $e \leqslant 0$ it follows from Th. 1 and Remark 2 that \mathbb{S} is C.I., hence also X is C.I.
Proposition 9. - If $e=1$, then X is a complete intersection in \boldsymbol{P}^{5}.

Proof. - With the previous terminology, put $d=\operatorname{deg} X=\operatorname{deg} S ; S$ is a smooth surface in \boldsymbol{P}_{4} and $\omega_{s}=\theta_{S}(2)$ hence the formula (1) of $\S 1([H 1]$, p. 434) gives strong restrictions on the possible values for d : indeed S is a surface of general type hence we must have $\chi\left(\theta_{S}\right)>0$ ([Be], Th. $X .4$) hence the only possible values for d are $4,6,10,12,16,18,22,24$.

There are no smooth surfaces in \boldsymbol{P}^{4} with $\omega_{S}=\theta_{S}(2)$ and $d=4$, while every such surface of degree $6,10,12$ is C.I. In fact a general hyperplane section C of S is a smooth, connected subcanonical curve with $\omega_{c}=\theta_{\sigma}(3)$, hence with genus $g=$ $=(3 / 2) d+1$; for $d=4$ no such curve exists ; for $d=6 C$ is a plane curve and for $d=10 C$ is contained in a quadric, by Castelnuovo's bound; in both cases C must be C.I. (0.iii); for $d=12$, by Riemann-Roch, C is contained in a cubic and, if it does not lie on a quadric, it must lie on a irreducible quartic, thus O and S are C.I.
$\$$ cannot have degree 18 or 22 , indeed by formula (1) of $\S 1$, we obtain respectively $\chi\left(\theta_{s}\right)=15$ and $\chi\left(\theta_{s}\right)=18$; in both cases, since $q(S)=0$, the geometric genus $p_{g}(S)$ is less than $15=h^{0}\left(\theta_{\mathbf{p}^{4}}(2)\right)$, thus S is contained in a quadric, hence C must be the complete intersection in \boldsymbol{P}^{3} of a quadric and another surface; this is impossible for reasons of degree, since $\omega_{c}=\theta_{c}(3)$.
S cannot have degree 24 since we should have, by $\S 1,(1), \chi\left(\theta_{s}\right)=8$ and this contradicts the celebrated Yau's inequality $K_{s} \cdot K_{s} \leqslant 9 \chi\left(\theta_{s}\right)$ for a surface of general type ($K_{s}=$ canonical divisor of S).

In the case $d=16$, we have $\chi\left(\theta_{s}\right)=16$ and, by Ritmann-Roch, $\chi\left(\theta_{s}(1)\right)=8$ and $p_{g}(S)=h^{0}\left(\theta_{S}(2)\right)=15$ since $q(S)=0$. From the exact sequence $0 \rightarrow \theta_{x} \rightarrow$ $\rightarrow \theta_{X}(1) \rightarrow \theta_{S}(1) \rightarrow 0$ we obtain: $\chi\left(\theta_{S}(1)\right)=\chi\left(\theta_{X}(1)\right)-\chi\left(\theta_{x}\right)$ which is $2 \cdot \chi\left(\theta_{x}(1)\right)$ by duality, i.e. $\chi\left(\theta_{x}(1)\right)=4$; by Zak's theorem $h^{0}\left(\theta_{x}(1)\right)=6$; by duality $h^{3}\left(\theta_{x}(1)\right)=1$ and $h^{2}\left(\theta_{X}(1)\right)=h^{1}\left(\theta_{x}\right)$ which is 0 by Barth-Larsen's theorem; furthemore $\hbar^{1}\left(\theta_{X}(2)\right)=0$ by Kodaira vanishing; for reasons of degree, X cannot be C.I., hence it cannot lie on a quadric, thus $h^{0}\left(\theta_{x}(2)\right) \geqslant 21$. Putting all these numbers together, the exact sequence:

$$
0 \rightarrow H^{0}\left(\theta_{X}(1)\right) \rightarrow H^{0}\left(\theta_{X}(2)\right) \rightarrow H^{0}\left(\theta_{S}(2)\right) \rightarrow H^{1}\left(\theta_{X}(1)\right) \rightarrow H^{1}\left(\theta_{X}(2)\right) \rightarrow 0
$$

gives the contradiction.
Proposition 10. - If $\omega_{X}=\theta_{X}(2)$ then X is a complete intersection in \boldsymbol{P}^{5}.
Proof. - Put $d=$ deg X. By Ran's theorems ($\S 2$) if X is contained in any cubic hypersurface, it is C.I. Thus assume X not contained in any cubic. The vector bundle E associated to X has Chern classes $c_{1}(E)=8$ and $c_{2}(E)=d$; by the
sequence $0 \rightarrow \theta_{\mathbf{P}^{5}} \rightarrow E \rightarrow I_{X}(8) \rightarrow 0\left(I_{X}=\right.$ ideal sheaf of $\left.X\right)$, since X is not contained in a cubic, it follows that $h^{0}(E(-5))=0$, i.e. E is semistable.

Suppose $a \leqslant 16$; then by [B], $\S 3, E$ is not stable; it follows that $E(-4)$ has a global section whose zero locus Y, by the semistability of E, is empty or has codimension 2. Since $\operatorname{deg} Y=c_{2}(E(-4))=d-16$, this implies that $d=16$ and $Y=\emptyset$, so that, by [H3], Th. 1.0.1, E is a sum of line bundles, i.e. X is C.I.

By Riemann-Roch formula on X (see $[\mathrm{Mu}]$, p. 40), if $D \subseteq X$ is a divisor $\chi\left(\theta_{x}(D)\right)=$ $=D^{3} / 6-\left(K_{X} D^{2}\right) / 4+\left(K_{X}^{2}+c_{2}(T X)\right) / 12-K_{X}\left(c_{2}(T X)\right) / 24 \quad(T X=$ tangent bundle, $K_{x}=$ canonical divisor). By a straightforward computation, if $\omega_{x}=\theta_{X}(e)$ then $c_{2}(T X)=h^{2}(15+e(6+e)-d)$ where h is the class of an hyperplane section in the Chow ring of X; thus in our case $\chi\left(\theta_{X}(3)\right)=d(37-d) / 6$. By Kodaira vanishing, $\chi\left(\theta_{X}(3)\right)=h^{0}\left(\theta_{x}(3)\right)$; if $d \geqslant 24$ this is less than $56=h^{0}\left(\theta_{P^{5}}(3)\right)$, hence X belongs to a cubic, absurd for reasons of degree.

It remains to examinate what happens if the degree varies in the range $16<$ $<d<24$. Reducing ourselves to a general hyperplane section and using formula (1) of $\S 1$ as before, we see that the only possible value for d is 19 . In this case, for a general hyperplane $\left.H_{1} E(-4)\right|_{H}$ would be semistable by [M], Th. 3.1 and would have Chern classes $c_{1}=0$ and $c_{2}=3$; this is impossible for a rank 2 vector bundle on \boldsymbol{P}^{4}, by Prop. 3.

Remark 11. - Let X be a smooth codimension 2 subvariety of \boldsymbol{P}^{6}, with $\omega_{X}=$ $=\theta_{X}(e)$. The previous discussion shows that X is C.I. if $e \leqslant 1$. The same technique allows us to state the same result for $e=2$.

Namely, formula (1) of $\S 1$ for a generic intersection of X with a linear 4 -space, implies that a priori $d=\operatorname{deg} X$ can only have the values $d \leqslant 20$ or $d \geqslant 24$. In the first case X is contained in a quartic hypersurface, hence, by Ran's theorems, it is C.I. In the second case, if V is a general smooth hyperplane section of X, by Riemann-Roch, $\chi\left(\theta_{\bar{V}}\right)=1+d(42-d) / 8$ so that, since by Kodaira vanishing and by Barth-Larsen's theorem $\chi\left(\theta_{V}\right)=h^{0}\left(\theta_{V}\right)-h^{3}\left(\theta_{V}\right)=1-h^{0}\left(\theta_{V}(3)\right)$, so we have $h^{0}\left(\theta_{V}(3)\right) \leqslant 56=h^{0}\left(\theta_{P^{5}}(3)\right)$; it follows that V is contained in a cubic hypersurface of \boldsymbol{P}^{5}, hence by Ran's theorems V and X are C.I.

Other cases can be handled in this way, but they seem to be too particular to be interesting.

We note that Ran's results a), b) and our theorem 6 give at once the following interesting result.

Theorem 12. - Let X be a non-singular codimension 2 subvariety of $\boldsymbol{P}^{n}, n \geqslant 6$; put $c_{2}:=d:=\operatorname{deg} X$. If $d \leqslant(n+2)^{2} / 4$, then X is a complete intersection.

Indeed look at Ran's inequalities a), b). Put $\omega_{x}=\theta_{x}(e)$. If $c_{1} \leqslant n+1$, then X is a complete intersection by theorem 6. If $n+2 \leqslant e_{1} \leqslant 2 n-4$, by Ran's inequality b), we have $c_{2} \geqslant c_{1}^{2} / 4 \geqslant(n+2)^{2} / 4$. If $c_{1} \geqslant 2 n-3$, by Ran's inequality b), we have $c_{2}>(n-2)\left(c_{1}-n+2\right) \geqslant(n-2)(n-1)$.

Note that theorem 12 gives the first known quadratic bound for this problem. Barth and Van de Ven proved the existence of a bound and then in [B-V] gave a linear bound.

Remark 13. - We wish to point out the following extension, due to Griffith and Evans, of a classical theorem of Gherardelli for subcanonical curves (see [G]):
if X is a smooth subcanonical variety of codimension 2 in $\boldsymbol{P}_{n}, n \geqslant 3$, then X is C.I. if and only if $\forall m$ the map

$$
H^{0}\left(\theta_{\mathbf{p}^{n}}(m)\right) \rightarrow H^{0}\left(\theta_{X}(m)\right)
$$

is surjective (see [E-G], Th. 2.4).

REFERENCES

[A-R] M. F. Atiyah - E. Rees, Vector Bundles on Projective 3-space, Inv. Math., 35 (1976), pp. 131-153.
[B] W. Barth, Some properties of stable rank 2 vector bundles on P_{n}, Math. Ann., 226 (1977). pp. 125-150.
[B-E] W. Barth - G. Elencwajg, Concernant la cohomologie des fibres algebriques stable sur $P_{n}(C)$, P. 1-24 on: Varietes Analitiques Compactes - Colloque Nice 197\%, Springer Lecture Notes n. 683 (1978).
[B-V] W. Barth - A. Van De Ven, On the geometry in codimension 2 of Grassmann manifolds, P. 1-35 on: Olassification of Algebraic Varieties and Comipact Complex Manifolds, Springer Lecture Notes, n. 412 (1974).
[Be] A. Beauville, Surfaces Algebriques Complexes, Asterisque, n. 54 (1978).
[C] C. Culberto, Canonical surfaces with $p_{g}=p_{a}=5$ and $K^{2}=10$, Annali Scuola Norm. Sup. Pisa, serie IV, vol. 9 (1982), pp. 287-336.
[E] G, Elencwajg, Les Fibres Uniformes de rang 3 sur $P_{2}(O)$ sont Homogenes, Math. Ann., 231 (1978), pp. 217-227.
[E-F] G. Elencwajg - D. Foster, Bounding cohomology groups of vector bundles on P_{n}, Math. Ann., 246 (1980), pp. 251-270.
[E-G] E. G. Evans - P. Griffith, The syaygy problem, Ann. of Math., 214, n. 2 (1981), pp. 323-333.
[F-L] W. Fulton - R. Lazarsfeld, Connectivity and its applications in Algebraic Geometry, on: Algebraic Geometry, Proceedings, University of Illinois at Chicago Cirole, Springer Lecture Notes, n. 862 (1980).
[G] G. Gherardelli, Sulle curve sghembe algebriche intersezioni complete di due superficie, Atti dell'Accademia Reale d'Italia, XXI (1942), pp. 128-132.
[G-S] H. Grauert - M. Schneider, Komplexe Unterräume und holomorphe Vectorraumbundel vom Rang zwei, Math. Ann., 230 (1977), pp. 75-90.
[G-P] L. Gruson - C. Peskine, Genre des courbes dans l'espace projectif, P. 31-59, on: Algebraic Geometry Proceedings Tromso 1977, Springer Lecture Notes, n. 687 (1978).
[H1] R. Hartshorne, Algebraic Geometry, Springer, Berlin Heidelberg, New York, 1977.
[H2] R. Hartshorne, Varieties of small codimension in projective space, Bull. A.M.S., 80 (1974), pp. 1017-1032.
[H3] R. Hartshorne, Stable vector bundles on P3, Math. Ann., 238 (1978), pp. 229-280.
[H4] R. Hartshorne, Residues and Duality, Springer Lecture Notes, n. 20 (1971).
[H-M] G. Horrocks - D. Mumford, A rank 2 vector bundle on P^{4} with 15,000 symmetries, Topology, 12 (1973), pp. 63-81.
[M] M. Maruyama, Boundedness of semi-stable sheaves of small ranks, Nagoya Math. J., 78 (1980), pp. 65-94.
[Mu] J. P. Murre, Classification of Fano threefolds according to Fano and Iskovski, on: Algebraic Threefolds, Springer Lecture Notes, n. 947 (1982).
[R] Z. Ran, The class of an Hilbert scheme inside another, with applications to Projective Geometry and special divisors, (preprint).
[Ra] P. Rao, Liaison among curves in P3, Inv. Math., 50 (1979), pp. 205-217.
[S] M. Schneider, Holomorphic vector bundles on \boldsymbol{P}^{n}, P. 80-102, on: Seminaire Bourbaki 1978, Springer Lecture Notes, n. 770 (1978).
[Se] F. Severi, Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni e ai suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, 15 (1901), pp. 33-51.

