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Summary. — We study subcanonical codimension 2 subvarieties of P", n >4, using as our main
tool the rank 2 vector bundle canonically associated to them. With this method we prove first
that every smooth camonical surface in Pt is a complete intersection. Newt we study smooth
varieties of codimension 2 in P, 1> 6; it is well known that all of them are subeanonical
and E. Hartshorne conjectured that they are always complete inlersections, if n>7. We
prove this conjecture in the particular case of a variety X for which the integer e such thai
oy = Ogle) is 0 or negative. This result, togheter with o strong result by Z. Ram, provides a
quadratic bownd for the degree of a non-complete intersection variely of codimension 2 in P,
n > 6.

Introduction.

This paper is concerned about smooth subvarieties X of the complex projective
space P», n>4, whose canonical divisor is a multiple of an hyperplane section:
such subvarieties are called « subcanonical »; this class contains all smooth «can-
onical » varieties, i.c. varieties embedded in P» by a sublinear system of the canonical
system.

The main examples of subcanonical varieties are the complete intersections;
indeed if X = H,N H,N...N H,, H, hypersurface of degree d, in P, then 0,(3 d,—
—n—1) = oy.

We only consider the case codim (X, P*) = 2. In this situation, by a standard
construction, the normal bundle of X can be lifted to a rank 2 vector bundle F on
P and X ean be viewed as the zero locus of a global section of E. Many properties
of X are strictly connected with properties of E: B has Chern classes (B} = deg X
and ¢,(¥) = the integer such that wy = fy(¢,(E) — n— 1); moreover X is a com-
plete intersection of hypersurfaces of degree a and b if and only if E = 0p.(a) ® Ops(b),
i.e. K splits into a sum of line bundles.

This correspondence between codimension 2 subeanonical varieties and rank 2
vector bundles is the main tool of our investigation.

In section 1 we look at the case n = 4. In [C], it is raised the question of the
existence of a smooth, non complete intersection, canonical surface § on P*; using

(*) Entrata in Redazione il 21 gennaio 1983; versione modificata ricevuta il 7 aprile 1983,
(**) This paper was written while both authors were granted by a C.N.R. fellowship.
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Severi’s formula for the number of nedal points, it is showed that § must have
degree 12 and arithmetic genus 4. We are able to prove that such surface eannot
exist. Indeed the vector bundle associated to 8, twisted by — 3, would give a rank 2
bundle I on P* with Chern classes ¢;(H) = 0 and ¢,(F) = 3. In [B-E], BARTH and
ELENCWAJG claimed the non-existence of such a bundle, but their proof only works
in the ease « E stable » while for the case « F non stable » they refer to a theorem
of GRAUERT and SCHNEIDER ([G-S], 3.1) whose proof is incomplete ([Zentralblatt],
412-32014; [Math. Reviews], 58 n. 1279; [S], p. 92). For our problem the existence
of the surface § would imply that the bundle F is semi-stable, so we limit our ex-
mination te such bundles. We have two ways to get the result: in the first we use
BARTH-ELENCWAJ®'s construction, together with some supplementary information
on the cohomology of E, obtained by the cohomology of § (Whieh is partially known
by Kodaira vanigshing, Riemann-Roch theorem and the fact that § must be linearly
normal ( [Se])) and we get a contradiction. In the second way we prove the non-
existence of a semi-stable but not stable rank 2 vector bundle ¥ on P* with Chern
clagses ¢ (H) = 0 and c,(H) = 3: first we show that Z would have a section whose
zero locus X is a non-reduced, locally complete intersection, multiplicity 3 structure
on a plane, then we prove that such an X must be degenerate, and this is uncon-
sistent with ¢,(F) = 0; this, together with the correct part of Barth-Elencwajg’s
theorem, gives the non-existence of §.

While there are a lot of examples of smooth, non complete intersection, sub-
canonieal curves in P3, when the dimension raises the situation seems to be much
poorer; Horrocks and MuMFORD showed in [H-M] that there are abelian surfaces
embedded in P* and they are examples of non complete intersection, subeanonical
varieties; all of them are related, up to projective transformations, to the same
rank 2 vector bundle E, moreover, as far as we know, I is the unique known ex-
ample of a vector bundle of rank 2 in P* which is not the sum of line bundles (up
to twisting by Opn{m)).

For n >4 we know no examples of smooth subcanonical varieties, of codimen-
sion 2 in P, except complete intersections.

If n>6, then every smooth codimension 2 subvariety X of P» is subcanonical,
indeed BArRTH and LArseN showed that the PICARD group of X is Z, generated by
the class of an hyperplane section, hence in particular wx == 0;(e) for some integer e.

In 1974 HARTSHORNE conjectured that all smooth codimension 2 subvarieties of
P», n>17, are complete intersections. In section 2 we give a short survey on the
progresses made in this direction from 1974 till now; we point our attention on a
recent preprint of Z. RAN, which seems to provide some useful tool for the study
of codimengion 2 subvarieties. Using Barth-Larsen’s theorem, Ran’s results and the
Riemann-Roch formula for a vector bundle, we are able to prove a very particular
case of the conjecture: we prove that if X is smooth of codimension 2 in P», n>6
and wy = 0x(¢), e<0, then X is complete intersection.

In the last section we briefly study smooth subcanonical threefolds X in P®.
By Riemann-Roch formula for threefolds, we see that fixed the integer ¢ such that
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wy = Oz(e), in general only finitely many values are allowed for d = deg X; then
redueing ourselves to a general hyperplane section of X and using some result of
the theory of surfaces in P4, we prove that X is complete intersection if e<?2.
We end giving, as a corollary of Ran’s theorems and of our theorem of section 2,
the following lower bound for the degree of a non C.I. smooth codim 2 subvariety
of Pr, n>6: if d = deg X and X is not C.I., then d > (n + 2)2/4. This bound is
much better than the linear one given in [B-V] and it is, as far as we know, the
first quadratic bound on the degree of a non C.1. codimension 2 subvariety of P».
We wish to thank Z. Rax for some useful conversations on this subject.

0. — Preliminaries.

Once forever, P» means the projective n-space over the complex field.

Sometimes we gshall abbreviate in the text, « complete intergection » with « C.1. ».

A subscheme X C Pr is said to be «degenerate» if it is contained in some
hyperplane.

i) If X is a smooth subeanonical variety of codimension 2 in P, n>3, Iy is
its ideal sheaf, then there is a unique non-trivial extension of sheaves on P»,
0 = 0pn— B — Ix(a) — 0 such that F is a rank 2 vector bundle with Chern classes
e{(ll) = a and ¢y(F) = deg X: ¥ is the extension to P" of the normal bundle of X.
Moreover wy==0x(a— n—1) and X is the zero locus of a global section of ¥
(see [H3], § 1). More generally this construction holds when X is any locally C.I.
scheme of codimension 2 in P=», such that, for some integer e, Ax(¢) is a dualizing
sheaf for X. '

ii) We shall use the following definition of stability for rank 2 vector bundles
on Pr, which is equivalent to the one given in [H3] or in [M] (see [H3], Prop. 3.1).
Let ¢, be the first Chern class of H. Then:

a) E is ¢stable» if HY(H(a)) = 0, Ya<e,/2;
b) E is «semistable» if HY(E(a)) = 0, Ya < ¢,/2.

iii) Let X be a subeanonical, locally C.I., reduced codimension 2 subscheme
of P?, zero locus of a section of the vector bundle F.

If X is contained in a smooth quadric surface, then X is C.I. or it is a disjoint
union of lines ([H1]J, p. 231).

If X is contained in a quadric cone @, then X is always C.I.: indeed if deg X is
even, then X is a Cartier divisor of @, but Pic @ = Z, generated by the class of an
hyperplane section; if deg X is odd, then one can see that for a generie line r €@,
X U ris a Cartier divisor on @, hence X U r is C.I., i.e. X is linked to r; it follows
that X is arithmetically CoHEN-MAcAULAY ([Ra], 2.3) so that F is a sum of line
bundles.
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§ 1. — This section is mainly devoted to the proof of the following

THEOREM 1. — Bvery smooth canonical surface S in Pt is complele intersection.

Of course we may assume that § is non-degenerate, otherwise the claim is ob-
vious. In this case, using Riemann-Roch theorem as in [H1], App. A, p. 434, we
get the formula:

(1) d*—10d — B(H-K) — 2K* - 12 4 12p, = 0

{d = deg 8, p, = arithmetic genus of 8, H = hyperplane section of 8, K = canonical
divisor of §) which in our situation gives:

0 =d(d—17) 4 12p, -+ 12 (see also [C], corol. 6.6) .

Ag it is pointed out in {C], § 6, this relation tells us that only the following cases
may occur:

a) 4 =28,9; p,==13.

In this case § must be O.I. (see [C], § 6)
by d=12; p,= 4.

In this case the irregularity ¢(S) of § is 1, hence § cannot be C.I.

From now on, let 8 indicate a canonical surface of degree 12 and arithmetie
genus 4 in P*; let I¢ be its ideal sheaf. All we need to show is that such 8 cannot
exist.

The proof uses Barth-Elencwajg’s theory of the spectrum of a rank 2 vector
bundle (see [B-E]).

Let E, be the vector bundle associated to 8 (0-i), then E; has Chern classes
6{lly) = 6 and e,(F,) = 12. Put F = Ey(— 3); it is easy to see that ¢ (F) = 0 and
co(F) = 3.

In [B-E], § 4, BArTH and EreNcwAJG claim that there are no rank 2 vector
bundles £ on P* with ¢ (E) = 0 and ¢,(¥) = 3; this would imply immediately the
theorem. But indeed they only prove the case « E stable», while for the case « &
non stable » they refer to a theorem of GRAUERT and SCHNEIDER ([G-S], 3.1) whose
proof is unfortunately incomplete ([Zentralblatt] 412-32014, [Math.Reviews] 58,
n. 1279; see also [S], p. 92).

In our case, however, we can get some more informations about the cohomology
of ¥ looking at the cohomology groups Hi(Is) and Hi(fs); this permits to handle
the case in which F is not stable. In fact we have not to use Barth-Elencwajg’s
result, but rather to repeat their construction, making the computations in a dif-
ferent way, using the surface S.

Now we give a short account of Barth-Elencewajg’s construction.
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Let E be a rank 2 vector bundle on P», n>3; let L C P” be a line such that
I, = 20,; such a line exists, for instance, if F is semistable. The idea is to study E
looking at its restrictions to the planes passing through L.

Let p: P — P» be the blowing up of P» along L; if P,= P» is the projective
space which parametrizes the planes z of P* containing L, then P can be viewed
as the subset of P»x P, defined by P —= {(#, ): @ € w}, S0 we have a canonic projee-
tion ¢: PP, Geometrica,lly this map can be constructed as follows: fix a (n — 2)-
linear subspace P,C P, disjoint from L, then send every point x of P»— L to
(#,L) N P, and gend every plane zz of P» containing L (i.e. every point of the ex-
ceptional divisor of P) to # N P;.

Define », = qu*p*(E(— 1)); by the theory of change of basis it follows that
#, 18 a vector bundle on P»?= P, of rank equal to ¢,(E).

We shall use only the following properties of w#;, which are proved in [B-E],
Prop. 2.2.1:

1) wy=2,;

Moreover we shall use the following crucial fact: if » = 3, then »x; is a vector
bundle on P!, so it splits into a direct sum of line bundles. Now let n > 3; for a
general linear 3-space H, LCH C P, we may repeat the construction for E,, so
we get a vector bundle on P*; let we call it 7. Let m be the line of P, corresponding
to H, then x,, also splits into a sum of line bundles. We have:

5) »7~ %, as bundles on P! ([B-E], § 2).

Proor or TH. 1. We shall use the exigtence of § to evaluate the dimension of
some cohomology group of F and to get a contradiction.
By construction we have the following exact sequences:

(2) 0 - Ope— B(3) — I4(6) -0

(3) 0 —>Tg-—>0p—>0,—0.

Since 8 is not a C.I., by [C], Prop. 5.9 it follows that § cannot be contained in
any quadric hypersurface, i.e. h°(I4(2)) = 0. By the cohomology sequence of (2),
twisted by — 4, this implies h°(E(— 1)) = 0, which means, by definition, that E
is semi-stable. It follows that for a generic line L C P*, B, = 20,, so we may apply
Barth-HElencwajg’s construction.

Fix such a line L; then we get a bundle x», on a projective plane P, == P? which
parametrizes all the planes of P* passing through L. We have rank (»,) = ¢,(E) = 3;
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then for every line m C.P,, »,, splits into a sum of 3 line bundles and since
%y %l\lfm by property 1) above, then we must have:

(4) =0, (— k) D6, DO, (+ k)

k a non-negative integer, eventually depending on m.

Take any 3-dimensional linear subspace H 2 L and put F' = F,. F is still semi-
stable, indeed F, =20, and LCH so that, by semicontinuity, F =26, for a
generie line m in H, hence any section of F(— 1) must vanish identically on a
generic line, henee it must vanish everywhere.

We have an exact sequence

0 —> B(— 3) > H(— 2) - F(— 2) -0

from which we get
H\E(~ 2)) - H{(F(— 2)) — H}(H(— 3)) .

But, by (2), B¥(B(— 3)) = h¥(Is) and by (3) hx(Is) = h'(fs) = ¢(8) = 1. On the
other hand, by (2), B*(E(— 2)) = h*(Is(1)) which is 0 since, by a theorem of SEVERT
(see [Se]), S must be linearly normal. It follows h'(F(— 2))<1.

Let m be the line of P, corresponding to H, then by property 5) we know that
%, = %+ and the bundle on the right hand side is obtained by Barth-Elencwajg’s
construction applied to F, hence by property 3), h%(x%(— 1)) = B(F(— 2))<1.

It follows by (4) that we have only 2 possibilities for zx,,,, namely:

0) #5530, 1 Wy (= 1)) = 0;
b) %y, =0, (—1)®0, ®0,(1) if A%, (— 1)) = 1.

Case @) can be excluded, as in [B-E], p. 18, looking at the Atiyah-Rees invariant
of B, a(F) = W(F(— 2)) + h2(F(— 2)). In this case h(F(— 2)) = 0 since F iy semi-
stable and, by property 4), h(F(— 2)) = B (x(— 1)) = b*(s,,,(— 1)) = 0 so that
o(F) = 0; on the other hand, since F is the restriction to P? of a vector bundle in
P by [A-R], Prop. 7.2 we must bave o(F) = A(4 — 1}/12 (mod 2), where 4 =
= (6} — 4¢,)/4, that is «(F) = 1, absurd.

So, varying H among the hyperplanes of P* through L, we see that for every
line m in Py, »,,~0 (—1)@06, @06, (1) so that, by definition, s, is uniform. Uni-
form rank 3 vector bundles on P2 were classified by ELENcWAJG (see [E]). In our
situation this classification implies that x, is one of the following:

1) 01)2("_ 1) (‘B 61)2 (’B sz(l);
il) TP~ 2)@ 0p:(1) (TP?= tangent bundle);
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iii) TPA— 1)@ Ops(— 1);
iv) S2TP*®0p.(—~ 3); (82== 2" gymmetric power).

By property 3), ho(x,(— 1)) = hY(B(— 2)) and this is 0, again by (2) and by the
fact that S is linearly normal. This excludes case i) and case ii).

In case iii) we have h'(x(— 1)) = h*(TP2(— 2)) = 0, but, on the other hand,
by property 4); h'(x(— 1)) = h*(E(— 2)) and by (2) h*(E(— 2)) = h*(I4(1)); by (3)
h3(1s(1)) = h*(65(1)) and by duality h*(65(1)) = h°(05) = ¢(S) which is 1, a con-
tradietion.

It remains case iv). By property 2), h(x,) == h'(E(— 1)) which, by (2), is equal

to h(Is(2)). By (3), since § is not contained in any quadric, we have h(Is(2)) =
- = h(0s(2)) — 1°(6pu(2)); We may use Riemann-Roch theorem on § to compute
R(05(2)), in fact by duality h*(0s(2)) = h*(f5(— 1)) = 0 and 2'(65(2)) is 0 by Kodaira
vanishing; it follows by Riemann-Roch h°(65(2)) == 17 hence h%(;) = h'(I15(2)) = 2.
But the bundle §2TP2® 0p.(— 3) has no global sections, since S27TP2R) fp.(— 3) @ Op-
is isomorphic to End (TP?) and TP? being stable, has only constants as endomor-
phisms (for more details, see [B-E], p. 22).

Thig excludes case iv) and proves the theorem.

REMARK 2. — As far as we know, the following can be said about the classifica-
tion of smooth subcanonical surfaces in P4,
Put g = 05(6).

a) ¢ << 0. It is well known by the theory of surfaces that there are only com-
plete intersections. They all are degenerate if ¢ << — 1, while for ¢ = — 1 there are
the degenerate cubic surface and the Del Pezzo surface in P%, which is complete
intersection of two quadrics.

b) ¢ = 0. This very interesting case was completely solved by HORROCKS
and MuMrorRD. Indeed if wy= 0y and S is not C.I., then it follows from the clas-
sification of surfaces ([Be], Th. VIIL.2) that 8 must be an abelian variety of
degree 10, and ¢(8) = 2. HORRoCKs and MUMFORD proved in [H-M] that there
are abelian surfaces with an embedding in P* of degree 10; the corresponding vector
bundle ¥ is unique up to projective transformations. Up to shifting, F is the only
known example of indecomposable rank 2 vector bundle on P*, n> 3 (in charac-
teristic 0). '

¢) ¢=1. By Th. 1, there are only complete intersections.

d) ¢ =2k, k>1. If E is the HORROCKS-MUMFORD’S bundle, then by its co-
homology (calculated in [H-M], p. 74) it follows that a general section of E(k) has a
codimension 2 zero locus which is a smooth surface 8 with ws= 05(2k) and ¢(8) = 0.

We do not know in P* examples of smooth, non C.I., subcanonical surfaces with
odd e, or examples of smooth subcanonical surfaces of general type with ¢(8) s~ 0.
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We have an alternative way for proving Th. 1. In the previous argument we
used the fact that the semistable bundle E was related to the surface S, in order
to compute part of its cohomology and prove its non-existence. Using a different
method, we are able to say something more about rank 2 vector bundles on P* with
¢, =0 and ¢,= 3; namely we can state the following:

PRroPOSITION 3. — There are no semistable vector bundles on P* with Chern classes
;=0 and c,== 3.

PROOF. ~ Let H be such a bundle. By BARTH-ELENCWAJG'S theorem ([B-E], § 4)
B cannot be stable, so 1°(E) % 0 and k(E(— 1)) = 0. It follows that E has a global
section whose zero locus X has codimension 2 or is empty.

If X = 0, then E would split into a sum of line bundles ([H3],1.0.1) B = Op(a) @
® Ops(b), with ab = 3, a 4 b = 0, absurd.

It follows codim (X, P*) = 2 and 0;(— 5) is a dualizing sheaf for X, moreover X
must be locally C.I. of degree 3.

Let Y be a general hyperplane section of X; Y is subeanonical and 0,(— 4) is a
dualizing sheaf, indeed Y is the zero locus of a global section of the bundle % ,. We
show that Y is a triple line examinating subeanonical subschemes of degree 3 in
Ps, locally C.I. (for a similar argument, see [H3], 9.1).

Since deg ¥ = 3 and w, == §,(— 4), by reasons of genus Y cannot be reduced.
Y must be connected, otherwise a connected component should be a line L, but
w, == 0,(— 2).

The case Y formed by a double line Y’ and a line I interseeting in a point can
be excluded; in fact the inclusion f: L <> Y implies, by [H1], ITI, Ex. 7.2 and 6.10,
the isomorphism w,~ f'w,, which gives, by definition of f, a non zero map
f+8, —0,(— 2). The image of the section 1, of f.0, must vanish on L— (¥Y'N L)
since every section of ,(— 2) has support on Y'. But by [H4], Prop. IIL.6, the
formation of f' commutes with flat pullback and on the open set U=L— (¥Y'NL)f
«1is » the identity, so the image of 1, cannot vanish on U, a contradiction.

It follows that ¥ must be a triple line; then every hyperplane section of X has
support on a line, hence the support of X must be a plane 7 of P* hence X is a non-
reduced structure on a plane and X is locally C.1., so it has no embedded components
moreover deg X = 3. We show that such an X must be degenerate.

Choose coordinates in P x, ¥, 2, w, !, such that & is defined by » =y = 0;
put I = homogeneous ideal of X = ideal spanned by the homogeneous polynomials
which vanish on X.

Step 1. - If FeClw,y, 2 w,1] is a homogeneous polynomial which vanishes
on X at a closed point P e (i.e. the image of F in fp:, belongs to the ideal of X
in Op: ,) then F vanishes on X in an open subset U € X and U is dense on X gince X
has support on  and no embedded components. Thus F vanishes on the whole X,
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i.e. FeI. A fortiori the same is true if ¥ vanishes on X at a non closed point of z,
i.e. at the generic point of a closed subscheme of z.

STEP 2. — Put 7 = x/t and define similarly 7, Z, w. The ring C(, W)[Z, ¥];; = 4.
can be canonically identified with the local ring of the generic point of o« in P*. Let
us continue to indicate, by abuse, the images of %, %, Z, @ in 4 by the same letters.
Let I, == ideal of X in 4. Since X has support on 7, 4./, is artinian and since X
has multiplicity 3 at all points of z, then length A,/I,= 3. But this is possible
only if 7, %%y, T§?, §* all belong to I.. By step 1 this imply 2% x*y, xy* y*cl.

StEP 3. — For every closed point P €, I must contain a homogeneous element
of the form ¢ == a(2, w, t)o -+ f(z, w, t)y + terms of higher degree in =z,y, with
a(P) 7 0 or B(P) = 0. Indeed X is locally C.I., s0 let ¢,, g, € Cla, y, 2, w, t] be homo-
géneous elements which define hypersurfaces H,, H, whose intersection locally at P
is X. Put, for ¢ =1, 2, ¢, = a2, w, t)x + fi(z, w, )y + terms of higher degree in
@, y; if oy, o0, P1, P2 all vanish at P then H,, H, both have multiplicity at least 2
at P, so X has multiplicity at least 4 at P, absurd. Then one of the ¢,s is of the
required form and it belongs to I by step 1.

StEP 4. — It follows by step 2 and step 3 that I contains an element which can
be written in the form ¢ = Q(Adx + By) + Ca* -+ Day - By?, with @, A, B, C, D,
E € Clz, w,t], A, B non both identically 0, @ = 0 and 4, B without common factors.

Let ¢'= A’x + B’y + terms of higher degree in #, y, be another element of I;
then we claim that there exists '€ Clz, w, t] with A’z + B'y = Q'(4x 4+ By). This
is obvious if A’'x + B’y =0, so assume this is not the case.

Let ¢ = g(aZ 4 by) + &+ dxy + ej*e C[%, 7, %, W] be a dehomogeneization of
¢, where ¢ = Q[t**? and a, b, ¢,d, ¢ are defined in the same way. Similarly take
@' = &'F + b’y + terms of higher degree in %, 7, as a dehomogeneization of ¢'. By
abuse we shall also consider ¢ and ¢’ as elements of C(z, w)[z, y] or A4,.

Since ga# 0 or ¢b 0, then in A4,/(p), T € (§) or §€ (%) so that length 4,/I,=
= length 4./(p, 7% Z*¥, Z?, §°*) = 3 hence (¢, Z% Z*¥, Zif* i*), which is contained in
I, must be equal to I,.

Since ¢'e I, then there exists o e C(Z, W)[%, §], ¢ ¢ (%, ) such that o¢'e (g, 73,
72y, Zy?, 7°) CE, w)[Z, if] so that op' = pp - terms of degree at least 3 in Z, 7; since ¢
must have non-vanishing constant term, then there are elements a, go& C(z, w),
Gy, 0o5= 0 such that oy(@'% + b'J) = goq(aZ 4 b7). Taking away denomitators, we
may assume oy, g€ C[Z, W] i.e. the previous relation holds in C[Z, 7, Z, w]. Dividing
by the common factors of ¢, and p,¢, we find relatively prime elements o, g,€
e C[Z, w] with oy(@'Z + b'y) = o,(aZ -} by), i.e. 0,06’ = g0 and o, = p,b. Since ¢,
does not divide g,, it must divide both & and b, but by assumption 4 and B are
relatively prime in Cfz, w, f], so their dehomogeneization are too.

This implies o,€ C 50 a'= ajs, and b'= bjo; and homogeneizing suitably, we
find what we claimed.

8 ~ dnnali di Maiemalica
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StEP 5. — 4 and B are homogeneous of the same degree. If they are not constant
there iz a point P €z where they both vanish. By the previous step, this means
that no element of I can be written as a(z, w, t)o 4 B(2, w, 1) -~ terms of higher
degree in 2, y, with a(P) £ 0 or S(P)= 0; this contradicts step 3.

Thus 4 and B are constant. After a suitable change of the coordinates x and y,
agsume 4 = 1, B = 0; so every element of 7 is of the form: @'z -} terms of ihigher
degree in , y.

StEP 6. — Now ¢ € Clz, v, 2, w] is qu + cw? -+ dwy -+ ey®. It is clear that in A4,,
@o= qu -+ ey* also belong to I, = (¢, % Z°F, ZY*, §*), so that the element ¢, = ¢z --
+ ey? also belong to I.= (¢, @3, B°Y, T*, §°), so that the element ¢, = Qz + Ey*,
which is a homogeneization of ¢,, also belong to I by step 1; again if ¢, £ have a
common factor F e Cle, w, t] and Q = @, F, B = E,F, then @, - E,y* also vanishes
on X at the generic point & so by step 1 Qoz + Eoy*c I; it follows that we may
assume @ and F relatively prime in Cfz, w, t].

STEP 7. ~ If Q € C, by reason of degree B = 0 and X is degenerate. So it remains
to show that if @ is not a costant we get a contradiction,

In faet in this cagse there exists a point P ez such that @(P) =0, E(P)# 0
since @, # have no common factor. Moreover by step 5 and step 3 there is an ele-
ment ¢’ = A’z + terms of higher degree in x, y I such that 4'(P)+~ 0. By changing
the coordinates z, w, t, we may assume P = (0,0, 0,0,1); let I, be the ideal of X
in Op: = C[Z, §, %, WlG575 JLet 2 be the plane defined by z=w = 0; then
7'M X has support in P and degree 3, so we must have length 0p. /1, + (Z, w) = 3;
but I, contains elements ¢ = ¢(Z, W)Z + ¢(Z, w)y* with ¢(0, 0) = 0, ¢(0, 0) 7= 0 and
@' = a/(Z,W)% J terms of higher degree in x,y, where a'(0,0)5 0. It follows that
Ops plL, 4 (2 w) = C[Z, §)/(Z, §*) so it has length 2, absurd.

To finish the proof of the proposition we only need to note that X would be the
C.I. of a hyperplane and a cubic hypersurface; hence E = 0p(3)® 0pi(1), absurd
since ¢ {H) = 0.

COROLLARY 4. — In P* there are wmo irreducible, reduced canonical surfaces 8 of
degree 12 with locally complete intersection singularities.

Proor. — § would be the zero locus of a section of a rank 2 vector bundle E’ with
Chern classes ¢,(E') = 6 and cy(B') = 12. If § is not contained in any quadric
hypersurface, then by 0 —0pc— B’ — I(6) —> 0 (I = ideal sheaf of 8) it follows
that B’ would be semistable, hence E = E'(— 3) would be a semistable rank 2 vec-
tor bundle on P* with Chern classes ¢,(E) = 0 and ¢,(E) = 3, absurd by the previous
Proposition.

Suppose § is contained in a quadric: then for a general hyperplane H, ¢ = 8N H
is a reduced irreducible curve in P* which is subcanonical, since it is the zero locus
of a section of E'|y; since C is contained in a quadric surface, it must be C.I. by 0.iii),
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hence E'|z~ 0x(2)® 0x(g) and ¢ is a positive integer such that ¢ - 2 = ¢,(F'|y) = 6
and 2q == ¢,(F'|s) = 12, absurd.

REMARK b. ~ By the discussion at the beginning of this section, it follows that
the previous Corollary implies Th. 1.

The multiple points allowed for S in Corol. 4 are different from the ones allowed
in [C]. Indeed in [C] general isolated singularities were allowed, hence S might
be not locally C.I.

We shall use Prop. 3 also in section 3.

§ 2. — In this section we are going to study subvarieties of codimension 2 in
P, n>6.

Our interest moves from the following conjecture, stated by R. HARTSHORNE
in 1974 (see [H2])

CONJECTURE. — Let X be a smooth subvariety of dimension v in Pr. If r > (2/3)n,
then X is a complete intersection.

In particular, if codim X = 2, then the conjecture implies that X is C.1I. if n>7;
in the same paper Hartshorne also posed the question about the existence of a non
C.I., smooth subvariety of codimengion 2 in Ps.

The conjecture arose from a theorem of Barth and Larsen, which we shall use
in the following form:

THEOREM (BARTH-LARSEN) (see [H2], th. 2.2). — Let X be a nonsingular variety
of dimension r in P, then:

a) the restriction map H'(Pr, C) — H{(X, C) is an isomorphism for i<2r — n;

b) if r=(n + 2)/2, then Pic (X) = Z, generateed by the class of an hyperplane
section.

Note that for complete intersections, @) and b) above are consequences of Lef-
schetz’s theorem.

Part b) implies that if X has «small » codimension in Pr, then it is subcanonical,
since we must have wy= 0;(¢) for some integer ¢; in particular this holds for every
codimension 2 smooth subvariety of P», %>6.

Another consequence of Barth-Larsen’s theorem that we need to point out is
the following: if codim X = 2 we have hi(fy) = 0 for 0 < i<r— 2. Indeed in this

A 1+ odd . .
case, by a), (X, C) = (0 ; even>; on the other hand, since ¢> 0, by Hodge
decomposition we have h'(X, C)= 2 (X, C)>hr"(X, C) + (X, C) = 2h(05).
pta=i

Hartshorne’s paper also containg a wide survey on this subject up to 1974. After
1974 few progresses seems to be made in proving or confuting the conjecture; there
is the following Zak’s extension of a Severi’s theorem:
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THEOREM (Zak) (see [F-L]). ~ If r>(2/3)n, then any smooth subvariety of P» of
dimension r is linearly normal.

Further progresses were made by Z. RAN in a recent preprint (see [R]). We
give an account of the results of Ran that we are going to use.

Let X be a smooth, non-degenerate codimension 2 subvariety of Pr, which is
subcanonical (this last condition holds automatically, by Barth-Larsen’s theorem,
if n>6). Let ¥ be the rank 2 vector bundle associated to X; put ¢; = ¢,(B), ¢, =
= ¢,(H) = deg X and for every t define f(t) = ¢;(B(t — ¢;)) = ¢y~ to, - 12

Ran proves that for every k<n— 2 and for a generic point Pe Pr— X the
cone of (k +- 1)-secants to X passing through P has degree f(0) ... f(k)/k! ([R], p. 3).
It follows that if f(0) ... f(k) = 0 then X cannot be contained in any surface W of
degree k, since any (k - 1)-secant to W must be contained in W ([R], Th. 2).

Using this result, Ran proves that X is C.I. if either:

a) ¢;>{cjm) -+ m for some m e (0, n — 27;

b) 2Ve, <o <2n— 4.

In particular, if there are integers ¢ and b such that ¢,=a -4 b and ¢, = ab
(i.e. B has the same Chern classes of Opu(a) ® 0p.(b)) and one of them lies in (0,7 — 2]
(this holds automatieally if ¢;<2n — 4, a, b > 0) then by a), X is C.I.

Note that if X is contained in a surface of degree k<n — 2, then we must have
f(0) ... f(k) = 0, hence 0 = f(i) = ¢,— i¢; | ¢* for some i<n — 2, hence ¢, = i(¢,— 19),
6, =1+ (¢,— ¢) and ie (0, n — 2] sinee ¢, = deg X > 0; it follows that X is C.I.

Using the previous discussion and Riemann-Roch formula for vector bundles
we are able to prove the following particular case of the conjecture:

THEOREM 6. — Let X C P, n>6 be a smooth subvariety of codimension 2; then
by Barth-Largen’s theorem wy=— 04(¢) for some integer ¢. If ¢<0 then X is com-
plete intersection.

ProoF. ~ The isomorphism wy ™ 0(¢) induces on P an extension
(1) 0—>0pn—E—>I(e+n+1)—0

where I, is the ideal sheaf of X and ¥ is the rank 2 vector bundle associated to X,
with Chern classes ¢ (E)=¢ -+ n -+ 1 and c¢(F) =deg X. X is C.IL if and only
if F splits into a sum of line bundles.

By [E-F], Corol. 1.7, F splits if and only if its restriction ¥, to a general hyper-
plane H does. E, is the vector bundle associated to the subscheme X N H of P*;
for H general, X N H is still nonsingular and w,,, = 0;.z(¢ -+ 1) by adjonction
formula; henece cutting with hyperplanes and making induction, we may reduce
ourselves to prove the statement only for e<0,n =6 and ¢ =20, all n>6.
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Suppose »n = 6, e<<— 1. Choose hyperplanes H, and H, such that V = X N H,
and § = V N H, are smooth of dimension 3 and 2 respectively. Hence w,=6§,(¢ - 1)
and wg= 04(e +2). We claim that § is C.I. This follows from Remark 24) for
¢<— 3 and from theorem 1 if ¢ = — 1; if ¢ = — 2 the claim follows from Remark 25)
since the irregularity h'(fs) of 8 is 0; indeed by the exact sequence

0 —>0,(—1) >0, >0s—0

we get

H(6y) ~ HY(05) — H(fy(— 1))

and by duality 2}(6y) = h?(6,(— 1)) which is 0 by Kodaira vanishing.
Thus we may assume ¢ = 0, n>6. We distinguish two cases.

Case 1. — n odd, n =2k 1+ 1.

Since dim X = » — 2 and, by Kodaira vanishing, hé(0,(1)) = 0 for 0 <i<n— 2,
then yx(0x(1)) = h(6x(1)). By Zak’s theorem X is linearly normal hence, if it is
non-degenerate, hO(GX(l)) =n -+ 1. It follows from (1) twisted by — n that

(2) x(E(— n)) = 1(Opa(— n))

for every vector bundle F on P* with ¢(F) = n -+ 1, which has a section whose
zero locus is a smooth non-degenerate variety of codimension 2.

Riemann-Roch theorem assures us that y(E(— n)) can be expressed as a poly-
nomial, with total degree <=, in the Chern classes ¢;= ¢,(E(— n)=—n-+1=
= — 2k and ¢;= ¢;(B(— n)) = d — n® where d = deg X.

Now fix n; y(E(— n)) becomes a polynomial T in ¢,, which must satisfy (2),
hence we see that only a finite number of values are allowed for d = deg X, if X
is non-degenerate, provided that 7 is non constant. We prove that 7 is not constant
by computing its leading term.

A quick way to do it, following [H1], App. A, § 3, is to carry the computation
on a sum of line bundles: put F = 0p.(@) @ Opn(b), then ¢,(F) = a1 b, c,(F)=ad
and

mm=@+ﬁ+€+ﬂ;

n Y

the left hand side can be uniquely expressed as a polynomial in ¢,(F) and ¢,(F); this
polynomial gives the Riemann-Roch formula for a generic rank 2 vector bundle.
We need a technical
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Lrmma. — Let a, b, k be iniegers, k>0 and put a + b = ¢, ab = ¢,. Then
1) a® + b = (— 1)*2¢k -} terms of lower degree in c,;

i) @+t -f p2Rtl = (— 1)¥(2k + 1)e6, 6 | terms of lower degree in o,.

ProOF. — The proof is done by induction on %. Let us write « = » to mean
«equal up to terms of lower degree in ¢,». Both formulas are obvious for & = 0,
so let us suppose k> 0.

i) a® 4 b* = (a* I b*)?— 2¢; if k is even, by induction a* 4 bt = (—1)¥/22¢:"*

50 that o* - ™ = 2¢F; if % is odd, by induction again, (a* - b*) cannot contain
terms of degree %k in ¢,, so i) is proved.

ii) @bl - poerl — (@2% L p2*)(g - b) — ab(a2~14 b*-1}; by i) we have (a**
4 ) (@ 4~ b) = 2¢,c¢5(— 1)* and by induction ab(a?-! -+ b*1) = f(— 1)*1(2k — 1)ey;
adding we find ii).
Now we refurn to the proof of the theorem.
We have:

(3) X(I{,):(a;i;7z)+(bj;11):
={(a+n){a+n—1)..(a+1)4+ G +n)b+n—1)..(b+ 1))n! =
= ((a" + b") = n(n - 1)@=+ b*1)/2 + (some coefficient) (a"~2 -+ b"=2) + ...)/n!

hence, by the Lemma, replacing » = 2k + 1, ab = ¢,, « + b = ¢, = — 2k, we have:
‘L kioatl. Y APR ko pkiol, A ¢
(B(—mn)) = Ty (— D*2k + 1)(— 2k) e5 -+ (— 1)*2e5(2k + 1)(2k + 2)/2 +

-+ terms of lower degree in ¢,).

Thus the leading coefficient of 7' is (2(— 1)*( 2k 1))/(2k 4+ 1)! and 7 has degree %
in ¢.

It follows that, for fixed n, equation (2) has at most k roots in ¢,. We know yet
some of these roots: they are the numbers d — »n® where d is the degree of a non-
degenerate C.1. of two hypersurfaces whose degrees have sum # + 1 = 2k 4 2. This
gives exactly %k distinet values for d, namely d,= 2(2k), dy= 3(2k— 1), ..., dp=
= (k - 1)?, hence the corresponding values for d — n?® exaust all the roots of (2).

It follows that if X is non-degenerate, its degree must be one of the d;’s, hence
its associated vector bundle has the same Chern classes of a sum of line bundles of
positive degree. Since by assumptions ¢,(#) = n -+ 1<2n — 4, it follows by Ran’s
theorems that X is C.1.

If X is degenerate, then it is obviously C.I., so the case «n odd» is proved.
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CARE 2. — n even, »n = 2k.

In this case we construct a formula similar to (2) which is valid also for degen-
erate X. We look at y(0z); by Barth-Larsen’s theorem if dim X = ¢ then hi(6;) = 0,
0 < i<#— 2, moreover since 7 > 3, this implies also A~'(f;) = 0 by duality; finally
hr(Bx) = h0(0y) = 1 hence we have y(0y) = 2.

From (1) twisted by — n— 1, it follows:

(4) A B(—n—1)) =1+ y(0ps(— n— 1))

and this holds for every rank 2 vector bundle H with ¢ (B) = = -+ 1, which has a
section whose zero locus is a smooth subvariety of codimension 2.

But again y(E(— 1 — n)) can be expressed as a polynomial in e, = e (B(— 1 —
—n) =—n—1=—2k—1and ¢,= cs(B(— n— 1)) = deg X = d, hence fixing =,
%(B(— n— 1)) becomes a polynomial 7' in ¢, which must satisfy (4).

For the same computations as before, replacing in (3) n = 2k, ab = ¢,, ¢ -+ b =
= ¢ = — 2k — 1, by the Lemms

1
(2k) 1

1 B(—n—1)) = ((—1)*2¢f) + terms of lower degree in ¢,

hence 1" has leading term (— 1)¥2/(2k)! and degree k. It follows that for fixed n,
equation (4) has % roots in ¢,==d. But we know yet these roots: they are the
degrees of complete intersections of two hypersurfaces whose degrees have sum
n -+ 1, namely they are the (distinct) numbers 6,= 1(2k), 0, = 2(2k— 1), ..., 6, =
= k(k 4 1). Once again it follows that the degree of X must be one of Ithe d's,
hence E has the same Chern classes of a sum of line bundles of positive degree.
Since ¢;(H)<2n— 4, by Ran’s theorems this implies that X is C.I.
This completes the proof. of the theorem.

ReMARK 7. - We cannot use equation (4) to prove the case «n odd » because
it becomes an identity: indeed it has degree <% in ¢,= d while complete intersec-
tions give k£ + 1 distinet values for ¢, namely 1(2k + 2), ..., (k + 1)(& - 1).

We cannot use equation (2) to prove the case «n even » because it has degree k
in ;= d— n* and non degenerate complete intersections give only k— 1 values
for d — n? so they do not exaust all the roots of (2) but possibly there is a missing
value.

§ 3. - Let us examinate more closely the case of smooth subcanonical threefolds
X in Ps,

REMARK 8. — Put wy=0{(¢) and let § be a general smooth hyperplane section
of X; then ws= Os(¢ -+ 1), moreover the irregularity of § is 0, indeed W(fz) =0
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by Barth-Larsen’s theorem and we have the exact sequence HY0;) — HY0s) —
— H*(0x(— 1)) and, by Kodaira vanishing, a2(0,(— 1)) = 0.
If ¢<0 it follows from Th. 1 and Remark 2 that § is C.I., hence also X is C.I.

PROPOSITION 9. — If e =1, then X s a complete intersection in PS.

ProoF. ~ With the previous terminology, put d = deg X = deg 8; § is a smooth
surface in P* and ws= 04(2) hence the formula (1) of § 1 ([H1], p. 434) gives
strong restrictions on the possible values for d: indeed § is a surface of general type
hence we must have y(6s) > 0 ([Be], Th. X.4) hence the only possible values for d
are 4, 6, 10, 12, 16, 18, 22, 24.

There are no smooth surfaces in P* with wg= 64(2) and d = 4, while every
such surface of degree 6, 10, 12 is C.I. In fact a general hyperplane section € of §
is a smooth, connected subcanonical curve with w,= 0,(3), hence with genus g =
= (3/2)d + 1; for d = 4 no such curve exists; for d = 6 C is a plane curve and for
d = 10 C is contained in a quadrie, by CASTELNUOVO’s bound; in both cases € must
be C.I. (0.iii); for d = 12, by RiEMANN-RocH, ( is contained in a cubic and, if it
does not lie on a quadrie, it must lie on a irreducible quartie, thus ¢ and § are C.I.

8 cannot have degree 18 or 22, indeed by formula (1) of § 1, we obtain respee-
tively x(0s) == 15 and y(0s) = 18; in both cases, since ¢(S) = 0, the geometric genus
p,(8) is less than 15 = h(6ps(2)), thus § is contained in a quadric, hence ¢ must
be the complete intersection in P?® of a quadric and another surface; this is impos-
sible for reasons of degree, since w,== 0,(3). ,

8 cannot have degree 24 since we should have, by § 1, (1), x(0s) = 8 and this
contradicts the celebrated Yau’s inequality K- Ky<9x(6s) for a surface of general
type (Hg= canonical divisor of §).

In the case d = 16, we have x(0s) = 16 and, by RiEMANN-RocH, x(fs(1)) =8
and p,(8) = h°(65(2)) = 15 sinee ¢(8)==0. From the exact sequence 0 —fy->
—0x(1) = 85(1) =0 we obtain: y(6s(1)) = x(0x(1)) — x(0x) Which is 2-x(0x(1)) by
duality, i.e. (0x(1)) = 4; by Zak’s theorem ho(04(1)) = 6; by duality h*(x(1)) = 1
and h2(0,(1)) = k() which is 0 by Barth-Larsen’s theorem; furthemore R (0£(2)) = 0
by Kodaira vanishing; for reasons of degree, X cannot be C.I., hence it cannot lie
on a quadrie, thus h°(6,(2))>21. Putting all these numbers together, the exact
sequence:

0 — Ho(6x(1)) — H*(6x(2)) — H*(05(2)) — HY(0x(1)) — H1(04(2)) —~ 0
gives the contradiction.
PROPOSITION 10, — If wy = 04(2) then X is a complete intersection in P°.

ProOF. — Put d = deg X. By Ran’s theorems (§ 2) if X is contained in any
cubic hypersurface, it is C.I. Thus assume X not contained in any cubic. The vec-
tor bundle E associated to X has Chern classes ¢;(¥) = 8 and ¢(E) = d; by the
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sequence 0 —>0p;— E — I4(8) — 0 (I = ideal sheaf of X), since X is not contained
in a cubic, it follows that A%(E(— b)) = 0, i.e. F is semistable.

Suppose d<16; then by [B], § 3, F is not stable; it follows that #(— 4) has
a global section whose zero locus Y, by the semistability of E, is empty or has
codimension 2. Since deg ¥ = OZ(E(——— 4)) = d — 16, this implies that d = 16 and
Y = 6, so that, by [H3], Th. 1.0.1, F is a sum of line bundles, i.e. X is C.I.

By Riemann-Roch formula on X (see [Mu], p. 40), if D C X is a divisor y(6x(D)) =
= D36 — (KyD?)/4 + (K% + ¢o(TX))/12 — K,(0(TX))/24 (TX = tangent bundle,
Ky = canonical divisor). By a straightforward computation, if wy= O4(¢) then
0o(TX) = h*(15 + e(6 + ¢) — d) where h is the class of an hyperplane section in the
Chow ring of X; thus in our case y(0x(3)) = d(37 — d)/6. By Kodaira vanishing,
7(6x(3)) = h(6x(3)); if d>>24 this is less than 56 = h°(0p:(3)), hence X belongs to a
cubic, absurd for reasons of degree.

It remains to examinate what happens if the degree varies in the range 16 <
<< d << 24. Reducing ourselves to a general hyperplane section and using formula
(1) of § 1 as before, we see that the only possible value for d is 19. In this case, for a
general hyperplane H, E(— 4)|; would be semistable by [M], Th. 3.1 and would
have Chern classes ¢,= 0 and ¢,== 3; this is impossible for a rank 2 vector bundle
on P4 by Prop. 3.

REMARK 11. — Let X be a smooth codimension 2 subvariety of P¢, with wy=
= fz(¢). The previous discussion shows that X is C.I. if e<1. The same technique
allows us to state the same result for ¢ = 2.

Namely, formula (1) of § 1 for a generic intersection of X with a linear 4-space,
implies that a priori d = deg X ean only have the values d<20 or d>24. In the
first case X is contained in a quartic hypersurface, hence, by Ran’s theorems, it
is C.I. In the second case, if V is a general smooth hyperplane section of X, by
RizMANN-RocH, x(6,) = 1 -+ d(42 — d)/8 so that, since by Kodaira vanishing and
by Barth-Larsen’s theorem yx(0,) = h%0,)— h3(0,) =1 — h°(0y(3)), 80 we have
10(6,(3)) <56 = h(0p:(3)); it follows that V is contained in a cubic hypersurface
of P?% hence by Ran’s theorems V and X are C.I.

Other cases can be handled in this way, but they seem to be too particular to
be interesting.

We note that Ran’s results a), b) and our theorem 6 give at once the following
interesting result.

THEOREM 12. — Let X be a non-singular codimension 2 subvariety of P*, n>6;
pub cy:=d:= deg X. If d<(n 1 2)%/4, then X is a complete iniersection.

Indeed look at Ran’s inequalities a), b). Put wy=O4(¢). If ¢, <n - 1, then X
is a complete intersection by theorem 6. If n -} 2<e, <2n— 4, by Ran’s inequality
b), we have ¢,>e6;/4>(n + 2)¥/4. If ¢,>2n— 3, by Ran’s inequality b), we have
> (n—2)(e;— n + 2)>(n— 2)(n—1).
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Note that theorem 12 gives the first known quadratic bound for this problem.
BarTH and VAN DE VEN proved the existence of a bound and then in [B-V] gave a
linear bound.

ReMARK 13. — We wish to point out the following extension, due to GRIFFITH
and BVANS, of a classical theorem of GHERARDELLI for subcanonical curves (see [G]):

if X is a smooth subcanonical variety of codimension 2 in P, n>3, then X is
O.L. if and only if Ym the map

Ho(Opn(m)) — H(Ox(m))

is surjective (see [B-G], Th. 2.4).

REFERENCES

TA-R] M. ¥. Amivan - E. Regs, Vector Bundles on Projective 3-space, Inv. Math., 35 (1976),
pp. 131-153.

[B] W.Bagru, Some properties of stable rank 2 vector bundles on P,, Math, Ann,, 226 (1977),
pp. 125-150.

[B-E] W. Barta - G, Exexcwasa, Concernant la cohomologie des fibres algebriques stable sur
P,(0), P. 1-24 on: Varietes Analitiques Compactes - Colloque Nice 1977, Springer Lec-
ture Notes n. 683 (1978).

[B-V] W.BARIE - A, VAN DE VEN, On the geometry in codimension 2 of Grassmann manifolds,
P. 1-35 on: Classification of Algebraic Varieties and Compact Comples Manifolds,
Springer Lecture Notes, n. 412 (1974).

[Be] A. Brauvinie, Surfaces Algebriques Complewes, Asterisque, n. 54 (1978).

[C1 C. CiLiBERTO, Canonical surfaces with p, = p,= 5 and K2 = 10, Annali Scuola Norm.
Sup. Pisa, serie IV, vol. 9 (1982), pp. 287-336.

[F] G. Brexcwase, Les Fibres Uniformes de rang 3 sur Py(C) sont Homogenes, Math. Ann.,
231 (1978), pp. 217-227.

[E-F] G. EieNcwaje - D. Foster, Bounding cohomology groups of wvector bundles on P,
Math. Ann., 246 (1980), pp. 251-270.

[E-G] E. G. Evans - P. Grirriret, The syzygy problem, Ann, of Math,, 214, n. 2 (1981),
pp. 323-333.

[F-L] W. Furrox - R. LAzarsFELD, Connectivily and iis applications in Algebraic Geomelry,
on: Algebraic Geometry, Proceedings, University of Illinois at Chicago Circle, Springer
Lecture Notes, n. 862 (1980).

[G]  G. GuERARDELLI, Sulle curve sghembe algebriche intersezioni complete di due superficie,
Atti dell’Accademia Reale d’Italia, XXT (1942), pp. 128-132.

[G-8] H. GRAUERT - M. SCENEIDER, Komplexe Unterrdwme und holomorphe V. ectorrawmbundel
vom Rang zwei, Math. Ann., 230 (1977), pp. 75-90.

[G-P] L. Grusox - C. PESKINE, Genre des courbes dans Uespace projectif, P. 31-59, on: Algebraic
Geometry Proceedings Tromso 1977, Springer Lecture Notes, n. 687 (1878).

[H1] R. HarTSHORNE, Algebraic Geometry, Springer, Berlin Heidelherg, New York, 1977.



Epoarpo BALLICO - LucA CHIANTINI: On smooth subcanonical, etc. 117

[H2]
[H3]
[H4]
[H-M]
[M]
[Mu]
[R]

[Ra]
[8]

[Se]

R. HARTSHORNE, Varieties of small codimension in projective space, Bull. A.M.S., 80
(1974), pp. 1017-1032.

R. HARTSHORNE, Stable vector bundles on P3, Math. Ann., 238 (1978), pp. 229-280.
R. HaARTSHORNE, Residues and Duality, Springer Lecture Notes, n. 20 (1971).

G. Horrocks - D. MuMFORD, A rank 2 vector bundle on P* with 15,000 symmetries,
Topology, 12 (1973), pp. 63-81.

M. MaruvaMA, Boundedness of semi-stable sheaves of small ranks, Nagoya Math. J.,
78 (1980), pp. 65-94.

J. P. MurrE, Classification of Fano threefolds according to Fano and Iskovsk:i, on:
Algebraic Threefolds, Springer Lecture Notes, n. 947 (1982).

Z. Rax, The class of an Hilbert scheme inside another, with applications to Projective
Geometry and special divisors, (preprint).

P. Rao, Liaison among curves in P3, Inv. Math., 50 (1979), pp. 205-217.

M. ScuNEIDER, Holomorphic vector bundles on P», P. 80-102, on: Seminaire Bourbaki
1978, Springer Lecture Notes, n. 770 (1978).

F. SEVERL, Inlorno ai punii doppi impropri di una superficie generale dello spazio a
quatiro dimensioni e ai suoi punts ripli apparenti, Rend. Cire. Mat. Palermo, 15 (1901),
pp. 33-51.




