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Summary. - We study subcanonical codimension 2 subvarieties o/P'~, n > 4, using as our main 
tool the rank 2 vector bundle canonically associated to them. With this method we prove ]irst 
that every smooth canonical sub'lace in P~ is a complete intersection. Next we study smooth 
varieties of eodime~sion 2 in P~, n ~ 6; it is well known that all o] them are subeanonical 
and t~. Hartshorne eon#ctured that they are always complete intersections, i /  n ~ 7. We 
prove this conjecture in the particular case o] a variety X ]or which the integer e such that 
~o x = Ox(e) is 0 or negative. This result, togheter with a strong result by Z. Iian, provides a 
quadratic bound ]or the degree o] a non-complete intersection variety o] codimension 2 in P", 
n ~ 6 .  

Introduction. 

This pape r  is concerned about  smooth  subvar ie t ies  X of the  complex project ive  
space P , ,  n > 4 ,  whose canonical  divisor is a mul t ip le  of an  hyperp lane  section: 
such subvar ie t ies  are called (~ snbeanonicM~); this  class contains all smooth  (~ can- 

onical }) v~rieties~ i.e. var ie t ies  embedded  in P"  b y  a subIinear sys tem of the  canonical  
sys tem.  

The ma in  examples  of subeanonical  var ie t ies  are the  comple te  intersect ions;  
indeed if X = H 1 n H~ (h ... n H~, H~ hypersur faee  of degree d~ in P",  then  0z (~  d , - -  
- -  ~ - -  1 )  --~-~ ~x. 

We only consider the  case eodim (X,  P-)  = 2. I n  this s i tuat ion,  b y  a s t anda rd  

construct ion,  the  no rma l  bundle  of X can be l i f ted to a r a n k  2 vector  bundle  J? on 
P "  and  X can be viewed as the  zero locus of a global section of ~ .  Many  proper t ies  

of X are s t r ic t ly  connected with proper t ies  of E :  E has  Chern classes e~(E) = deg X 

and  c~(E) ---- the  in teger  such t h a t  oJz = Ox(o~(E)-- n - -  1); moreover  X is a com- 
ple te  in tersect ion of hypersur faces  of degree a and  b if and  only if E -~ Op,(a) �9 0p~(b)~ 
i.e. E splits into a sum of line bundles.  

This correspondence be tween eodimension 2 snbcanonica]  var ie t ies  and  r a n k  2 
vec tor  bundles  is the  ma in  tool of our  inves t igat ion.  

I n  section I we look a t  the  case n = 4. I n  [C], i t  is ra ised the  quest ion of the  
existence of a smooth,  non complete  intersect ion,  canonical  Surface S on p4; using 

(*) Entrain in Redazione il 21 gennaio 1983; versione modificata ricevuta il 7 aprile 1983. 
(**) This paper was written while both authors were granted by a C.N.R. fellowship. 
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Sever i ' s  fo rmula  for the  n u m b e r  of nodal  points ,  i t  is showed t h a t  S m u s t  have  
degree 12 and  a r i t h m e t i c  genus 4. ~u are  able to p rove  t h a t  such surface eanno t  

exist .  I n d e e d  the  vec tor  bundle  associated to N, twis ted  b y  - -  3, would give a r a n k  2 
bundle  E on p4 wi th  Chern classes c1(/~) ---- 0 and  c2(E) = 3. I n  [B-E], B A ~  and  

ELE~GWAJG c la imed the  non-exis tence  of such a bundle ,  bu t  the i r  proof  only  works 

in the  ease (~ E s table  ~ while for the  case ~(E non s t a b l e ,  t h e y  refer  to a t h e o r e m  

of G~avgRT and  SCg~'EIDE~ ([G-S], 3.1) whose proof  is incomple te  ( [Zentra lbla t t ] ,  

412-32014; [Math. Reviews],  58 n. 1279; IS], p. 92). For  our p rob lem the exis tence 
of the  surface S would i m p l y  tha~ the  bundle  E is semi-stable, so we l imi t  our ex- 

ruinat ion to such bundles .  We  have  two ways  to get  the  resul t :  in the  first we use 
BAtlTH-]~LENGWAJG'S const ruct ion,  toge the r  wi th  some s u p p l e m e n t a r y  in fo rmat ion  
on the  cohomology of E,  ob ta ined  b y  the  cohomology of S (which is pa r t i a l l y  known 

b y  Koda i r a  vanishing,  I~iemann-l~och t heo rem and  the  fac t  t h a t  S mus t  be l inear ly  
no rm a l  ([Be])) and  we get  a contradic t ion.  I n  the  second way  we p rove  the  non- 

exis tence of a semi-s table  bu t  not  s table  r a n k  2 vec tor  bundle  E on p4 wi th  Chern 
classes q(E) = 0 and  c~(E) = 3: first  we show t h a t  /~ would have  a section whose 

zero locus X is a non-reduced,  locally complete  intersect ion,  mul t ip l ic i ty  3 s t ruc ture  

on a p lane ,  t h e n  we p rove  t h a t  such an  X m u s t  be  degenera te ,  and  this  is uncon-  

s is tent  wi th  c~(E)= 0; this,  toge the r  wi th  the  correct  p a r t  of Bar th -E lencwajg ' s  

theorem,  gives the  non-exis tence of S. 
While  the re  are a lot  of examples  of smooth,  non comple te  in tersect ion,  sub- 

canonical  curves in p a  when  the  d imension  raises the  s i tuat ion seems to be  much  

poorer ;  H o ~ o c K s  and 3{UlVfFOI~D showed in [H-M] t h a t  the re  are abel ;an  surfaces 
embedded  in P~ and  they  are examples  of non comple te  intersect ion,  subcanoniea!  

var ie t ies ;  all  of t h e m  are  re la ted ,  up to p ro jec t ive  t r ans fo rmat ions ,  to the  same 
r a n k  2 vec tor  bundle  E,  moreover ,  as far  as we know, E is the  un ique  known ex- 
ample  of a vec tor  bundle  of r a n k  2 in p4 which is not  the sum of line bundles  (up 

to twis t ing  b y  Op,(m)). 
For  n > 4 we know no examples  of smooth  subcanonical  var ie t ies ,  of codimen- 

sion 2 in P',  except  comple te  in tersec t ions .  
I f  n>~6, t h e n  e v e r y  smooth  codimension 2 s u b v a r i e t y  X of P"  is subeanonieal ,  

indeed BAnTI~ and  ~LARSEN showed t h a t  the  PIcA~D group of X is Z, genera ted  b y  
the  class of an  h~cperplane section, hence in pa r t i cu l a r  cox ~- Ox(e) for some in teger  e. 

I n  1974 tIARTSHORNE conjec tured  t h a t  all smooth  codimension 2 subvar ie t ies  of 

P ' ,  n > 7 ,  are  comple te  intersect ions.  I n  sect ion 2 we give a shor t  su rvey  on the  

progresses made  in this  direct ion f rom 1974 ti l l  now; we poin t  our a t t en t ion  on a 
recent  p r cp r i n t  of Z. RA~, which seems to prov ide  some useful  tool for the  s t udy  

of eodimension 2 subvarie t ies .  Using B a r t h - L a r s e n ' s  theorem,  Ran ' s  results  and  the  
P~iemann-R.oeh fo rmula  for a vec tor  bundle ,  we are able to p rove  a v e r y  par t i cu la r  

case of the  conjecture:  we p rove  t h a t  if X is smooth  of eodimension 2 in P", n > 6  

and cox= 0x(e), e~<0, t hen  X is comple te  in tersect ion.  
I n  the  las t  sect ion we br ief ly  s t udy  s m o o t h  subcanonieal  threefolds  X in P q  

B y  I~iema.nn-t~oeh fo rmula  for threefolds,  w e s e e  t h a t  fixed the  in teger  V such t h a t  
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cox= 0x(e), in general  only  f ini tely m a n y  values are allowed for d = deg X;  t hen  
reducing ourselves to a general  hyperp lane  section of X and using some resul t  of 
the  t heo ry  of surfaces in p4, we p rove  t h a t  X is complete  in tersect ion if e<2.  

~Ve end giving, as a corol lary of Ran ' s  theorems  and  of our theorem of section 2, 
the  following lower bound  for the  degree of a non C.I. smooth  codim 2 subva r i e ty  

of P",  n > 6 :  if d = d e g X  and  X is not  C.I., t h e n  d >  (n d-2)2/4. This bound  is 

much  b e t t e r  t h a n  the  l inear  one given in [B-V] and  it  is, as fa r  as we know, the  
first  quadra t ic  bound on the  degree of a non C.I. eodimension 2 subva r i e ty  of P ' .  

We wish to t h a n k  Z. RAx for some useful  conversat ions  on this subject.  

O. - P r e l i m i n a r i e s .  

Once forever ,  P"  means  the project ive  n-space over  the  complex field. 
Somet imes  we shall  abbrev ia te  in the  tex t ,  (( complete  in tersect ion ~> with  (< C.1. )>. 

A subscheme X_C P -  is said t o  be (( degenerate  )) if i t  is conta ined  in some 
hyperp lane .  

i) I f  X is a smooth  subcanonicM v a r i e t y  of codimension 2 in P ' ,  n > 3 ,  I x  is 
its ideal sheaf, t h e n  the re  is a unique non-t r iv ia l  extension of sheaves on P ' ,  

0 ---> Oe.--> E --> lx(a)  --> 0 such t h a t  E is a r a n k  2 vector  bundle  wi th  Chern classes 
c~(E) = a and c2(E) = deg X:  /!; is the  extension to P"  of the  no rma l  bundle  of X. 

3Ioreover  cox= O x ( a - - n - - 1 )  and  X is the  zero locus of a global  section of /~ 

(see [H3], w 1). More genera l ly  this construct ion holds when X is a n y  locally C.I. 
scheme of codimension 2 in P~, such tha t ,  for some integer  e, Ox(e) is a dualizing 
sheaf for X. 

if) We shall use the  following definition of s tab i l i ty  for r a n k  2 vector  bundles  
on P ' ,  which is equiva len t  to the  one given in [H3] or in [M] (see [1{3], Prop.  3.1). 
Le t  cl be the  first  Chern class of •. Then:  

a) ]~ is <~stable ~> if H~ = 0, Va<cl /2;  

b) E is <~ semis table  ~> if t to(E(a))  = 0, Va < c~/2. 

i i i )  Le t  X be a subeanonical ,  locally C.I., reduced eodimension 2 subscheme 

of p3, zero locus of a section of the  vec tor  bundle  E.  

I f  X is conta ined  in a smooth  quadric  surface, t hen  X is C.I. or i t  is a disjoint 
union of lines ([H1], p. 231). 

I f  X is conta ined in a quadrie cone (2, then  X is a lways C.I. : indeed if (leg X is 
even, t hen  X is a Cart ier  divisor of Q, bu t  Pie Q = Z, genera ted  b y  the  class of an 
hype rp lane  section; if deg X is odd, then  one can see t h a t  for a generic line r ~ Q, 
X ~3 r is a Car t i e r  divisor on Q, hence X u r is C.I., i.e. X is l inked to r;  i t  follows 
t h a t  X is a r i thmet ica l ly  COH~-MAcA~'LAY ([Ra], 2.3) so t h a t  /~ is a s u m  of line 
bundles.  �9 : :: . . . . . . . .  
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w l .  - This section is ma in ly  devo ted  to the  proof  of the  following 

Tm~o~n~  J. - Eve~'y smooth ca~wnical s~er/ace S in p4 is complete intersections,. 

Of course we m a y  assume t h a t  S is non-degenerate ,  otherwise the  claim is ob- 

vious. I n  this case, using R i e m a n n - R o c h  t heo rem as in [H1], App. A, p. 434, we 
get  the  fo rmula :  

(1) d 2 - -  l O d  - -  5 ( H . K )  - -  2 K ~  + 12 + : t2po = o 

(d = deg S, p~ ~- a r i thmet i c  genus of S, H = hyperp lane  section of S, K = canonical  
divisor of S) which in our s i tua t ion  gives:  

0 -= d(d--  17) @ 12p0. @ 12 (see also [C], corol. 6.6) . 

As it  is po in ted  out  in [C], w 6, this re la t ion  tells us t h a t  only the  following cases 
m a y  occur:  

a) d = 8 , 9 ;  p ~ = 5 .  

I n  this case S must~ be C.I. (see [C], w 6) 

b) d = 1 2 ;  p ~ = 4 .  

I n  this  ease the  i r regula r i ty  q(S) of S is 1, hence S cannot  be C.I. 

F r o m  now on, let  g indicate  a canonical  surface of degree 12 and  a r i thmet ic  

genus I in P ~  let  Is be i ts  ideal  sheaf. All we need to show is t h a t  such S cannot  
exist .  

The proof  uses Ba r th -E lenewa jg ' s  t heo ry  of the  spec t rum of a r a n k  2 vector  
bund le  (see [B-El) .  

Le t  Eo be the  vec tor  bundle  associated to S (O.i), t hen  E ,  has Chern classes 
e~(E0) -~ 6 and  c~(Eo) = 12. P u t  E = Eo(-- 3); i t  is easy  to see t h a t  cl(E) = 0 and  

c~ (~ )  = 3 .  

I n  [B-El, w 4, B.,~TH and  ELENCWAJa c la im t h a t  there  are no r a n k  2 vec tor  

bundles  E on p4 wi th  c~(E) = 0 and  c2(E) = 3; this would imp ly  i m m e d i a t e l y  the  

theorem.  Bu t  indeed  t h e y  on ly  p rove  the  ease <( E s table  ~, while for the  ease <( E 

non s table  ~ t h e y  refer  to a t h e o r e m  of G~AVg~T and  SC3~EZDE~ ([G-S], 3. t)  whose 
proof  is u n f o r t u n a t e l y  incomple te  ( [Zent ra lb la t t ]  412-32014, [Math.l~eviewsj 58, 
n. 1279; see also [S], p. 92). 

I n  our ease, however ,  we can get  some more  in format ions  abou t  the  cohomology 
of E looking a t  the  cohomology groups H~(Is) and  H~(Os); this  pe rmi t s  go handle  
the  ease in which E is not  stable,  I n  fac t  we have  not  to use Ba r th -E lenewa jg ' s  

resul t ,  bu t  r a t h e r  to r epea t  the i r  construct ion,  m a k i n g  the  computa t ions  in a dif- 

fe ren t  way,  us ing  the  surface S. 
Now we give a shor t  account  of Ba r th -E lenewa jg ' s  construct ion.  
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Le t  /~ be a r a n k  2 vec tor  bundle  on P ' ,  n~>3; le t  Z_c p ,  be a line such t h a t  

E~L = 20~; such a line exists,  for ins tance,  if E is semis table .  The idea is to s t udy  E 
looking a t  i ts  res t r ic t ions  to the  p lanes  pass ing th rough  Z. 

Le t  p :  ]5 _> p~ be the  blowing up of P"  a long Z;  if PL = P~-~ is the  pro jec t ive  

space which pa ramet r i zes  the  planes s of P"  conta in ing Z, t hen  /5 can be viewed 

as the  subset  of P~' •  defined b y / 5  ~ {(x, s ) :  x ~ s}, so we have  a canonic projec- 
t ion q : / 5  _+ PL. Geomet r ica l ly  this  m a p  can be cons t ruc ted  as follows: fix a (n - -  2)- 

l inear  subspace p~_cp~, disjoint  f rom L, t hen  send eve ry  point  x of P ' - - L  to 
(x, L) (h PL and  send eve ry  p lane  ~ of P"  conta in ing  Z (i.e. eve ry  po in t  of the  ex- 
cept iona l  divisor  of P)  to s (3 PL. 

Define ~ 1 =  R~q .p* (E(  - 1)); b y  the  theo ry  of change of basis  i t  follows t h a t  
~ is a vec to r  bundle  on P~-~--~ PL of r a n k  equa l  to c2(E). 

We shall  use only the  following proper t i es  of ~ ,  which are p roved  in [B-El, 
Prop.  2.2.1 : 

2) = 1)) ;  

3) Z)) = 2 ) ) ;  

= 2)) .  

Moreover  we shall  use the  following crucial  fac t :  if n = 3, t hen  ~ is a vec tor  

bundle  on p1, so i t  splits in to  a direct  sum of line bundles.  Now let  n ~ 3; for a 
genera l  l inear  3-space H, Z c H c_ p,,, we m a y  repea t  the  cons t ruc t ion  for Eja so 

R L e t  m be the  line of PL corresponding we get  a vec tor  bundle  on P~; let  we call  i t  ~ .  

to H, t h e n  ~r also splits into a sum of line bundles.  We have :  

5) ~ _ ~  ~ ,~  as bundles  on P~ ([B-El, w 2). 

PgooF  oF T•. 1. We shall  use the  existence of S to eva lua te  the  dimension of 
some cohomology group of E and  to get  a contradic t ion.  

B y  cons t ruc t ion  we have  the  following exac t  sequences:  

(2) 

(3) 

0 -->Oe,-->E(3) -+ Is(6) - + 0  

0 - - ->Iz - ->Oe,~Os->O.  

Since S is not  a C.I., b y  [C], Prop.  5.9 it  follows t h a t  S cannot  be conta ined  in 
a n y  quadr ie  hypersur face ,  i.e. ho(Is(2)) = 0. B y  the  cohomology sequence of (2), 

twis ted  b y  - - 4 ,  this  implies h~ - 1)) -= O, which means,  b y  definition, t h a t  E 

is semi-stable.  I t  follows t h a t  for g generic line I _c 104, E1L__ 20L, so we m a y  apply  
Bar th -E lencwa jg ' s  construct ion.  

F ix  such a line Z;  t h e n  we get  a bundle  ~1 on a project ive  p l a n e / ) L  ~ P~ which 
pa rame t r i ze s  all  the  planes  of p4 pass ing th rough  Z. We have  r a n k  (~1) ---- c~(E) -~ 3 ; 
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then  for every line mC_Pz,  ~ ,~  splits into a sum of 3 line bundles and since 
v 

~11~ ~ s~l~ by proper ty  1) above, then  we mus t  have: 

(~) 

~ non-negative integer, eventual ly  depending on m. 
Take any  3-dimensional l inear subspace H ~_ L and put  F_ = EIH. F is still semi- 

stable, indeed /~IL= 20~ and L_c H so tha t ,  by  semieontinuity,  FI, ~-= 20~ for a 
generic line m in H, hence any  section of F ( - - 1 )  must  vanish identically on a 
generic line, hence i t  must  vanish everywhere.  

We have an exact  sequence 

o -> E ( -  3) -+ E ( -  2) -~ F ( -  2) -~ o 

from which we get 

H t ( E (  - 2)) --> H~(F( - 2)) -~ Ha(E( - 3)) . 

But ,  by  (2), h2(E( - 3 ) ) =  h'~(Is) and by (3) h 2 ( I s ) =  h~(Oz)= q ( S ) =  1. On the 
other hand,  by  (2), h~(E( - 2)) = h~(/s(1)) which is 0 since, by  a theorem of SEVE~I 
(see [Se]), S must  be l inearly normal.  I t  follows h~(F( - 2)) <1.  

Le t  m be the line of P~ corresponding to H, then  by  proper ty  5) we know tha t  
~,~ ~_ nf  and the bundle on the r ight  hand  side is obtained by  Barth-Elencwajg 's  
construction applied to F ,  hence by  proper ty  3), h~ - 1)) = h~ - 2) )<1.  

I t  follows by (4) t ha t  we have only 2 possibilities for ntlm, namely:  

a) ~ _ ~  30~ if hO(x~(-- 1)) = 0; 

b) ~ . ~ _  0 ( -  1) | 0~ | 0~(1) if ho(~l~,.(-- 1)) = 1. 

Case a) can be excluded, as in [B-El, p. 18, looking at the Atiyah-Rees invar iant  
of F ,  e(F) ----- ho(F( - 2)) + ha(E( - 2)). In  this ease h~ - 2)) = 0 since iV is semi- 
stable and, by  proper ty  4), h2(F( - 2)) = h'(nf(-- 1)) = h1(~1.~( - 1)) = 0 so t ha t  
e(F) = 0; on the other hand,  since zv is the restrict ion to p3 of a vector bundle in 
P~, by  [A-R], Prop. 7.2 we mus t  have e ( F ) - - - - A ( A -  1)/12 (rood 2), where A = 
= (e~-- 4e2)/4, t ha t  is e(F) = 1, absurd. 

So, vary ing  H among the hyperplanes of p4 through Z, we see t ha t  for every 
line m in PL, ~11,~ ~ 0~(-- 1) |  0~|  0,,(1) so tha t ,  by  definition, ~i is uniform. Uni- 
form rank 3 vector bundles on pa were classified by ELE~CWAJa (see [El). In  our 
s i tuat ion this classification implies t ha t  z~ is one of the following: 

i) 0p, ( -  1) | 0~ | 0p~(1); 

ii) TPa( - 2) | 0p~(1) (TP 2 = t angen t  bundle);  
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iii) TP2( - 1) @ Op,(-- 1); 

iv) S~TP~(~Op~(--  3); (S ~ = 2 "~ symmetr ic  power). 

B y  p rope r ty  3), h0(~( - 1)) = h ~ ( E ( "  2)) and  this is 0, again by  (2) and b y  the 
fact  t ha t  S is l inear ly  normal.  This excludes case i) and case ii). 

In  case iii) we have h*(~(--1))----h*(TP~( - 2))----0, but ,  on the  other  hand,  
by  p rope r ty  4), h~(n~(-- ~)) = h2(.E( - 2)) and b y  (2) h~(E(-- 2)) -~ h:(L~(1)); b y  (3) 
h~(Is(1)) = h2(0z(1)) and by  dual i ty  h~(0s(1))= h~ q(S) which is 1, a con- 
t radic t ion.  

I t  remains  case iv). By  p ro p e r ty  2), h~ ~ h l ( E ( ~  1)) which, b y  (2), is equal  
to h~(Is(2)). B y  (3), since S is not  contained in any  quadric,  we have h~(Iz(2)) ---- 
= h~176 we m a y  use Riemann-Roch  theorem on S to compute  
h~ in fact  by  dual i ty  h~(0s(2)) = h~ - 1)) ---- 0 and h~(Oz(2)) is 0 b y  Kodai ra  
vanishing;  i t  follows by  Riemann-Roch  h~ : 17 hence h~ = h~(Iz(2)) : 2. 
Bu t  the  bundle  S ") T P ~ Q  Oe~(-- 3) has no global sections, since S 2 T P ~ Q  01,..(-- 3 ) � 9  0p.. 
is isomorphic to End  ( T P  2) and T P  ~, being stable, has only  constants  as endomor- 
phisms (for more details~ see [B-El, p. 22). 

This excludes ease iv) and proves the  theorem.  

I ~ E ~ K  2. - As far  as we know, the  following can be s~id about  the  classifica- 
t ion of smooth subcanonic~l surfaces in P~. 

P u t  (o~ = 0~(e). 

a) e < 0. I t  is well known b y  the t heo ry  of surfaces t h a t  there  are only  com- 
plete  intersections.  They  all are degenerate  if e < -- 1, while for e ~ --  1 t:here are 
the  degenerate  cubic surface and the Del Pezzo surface in p4, which is complete 
in tersect ion of two quadrics. 

b) e ~ 0. This ve ry  in teres t ing  case was completely solved by  HORROCKS 
~nd MUmfORD. Indeed  if wz---- 0z and S is not  C.I., t hen  i t  follows f rom the clas- 
sification of surfaces ([Be], Th. VIII .2)  t ha t  S must  be an abelian v~r ie ty  of 
degree 10, and q(S)--~ 2. H o n n o c ~ s  and Mv~Fo~]) proved in [H-M] t h a t  there  
are abelian surfaces with an embedding in P~ of degree 10 ; the corresponding vector  
bundle  E is unique up to project ive t ransformat ions .  Up to shifting, E is the o n l y  
known example  of indecomposable rank  2 vector  bundle  on P~, n > 3 (in charac- 
ter is t ic  0). 

c) e ~ i .  By  Th. 1, there  are only  complete intersect ions.  

d) e ~- 2k, k > l .  I f  E is the  HO]~I~0CKS-)/[UY~OI~D'S bundle ,  t h en  b y  its co- 
homology (calculated in [H-M], p. 74) it  follows t h a t  a general  section of E(k) has a 
codimension 2 zero locus which is a smooth surface N with ms = Os(2k) and q(S) -~ O. 

We do not  know in P~ examples of smooth,  non C.I., subcanonieal  surfaces wi th  
odd e, or examples of smooth subcanonical  surfaces of general  type  wi th  q ( S ) ~  O. 
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We have  an  a l t e rna t ive  way  for p rov ing  Th. 1. I n  the  previous  a r g u m e n t  we 

used the  fac t  t h a t  the  semis table  bundle  E was re la ted  to the  surface S, in order  
to compute  p a r t  of i ts  cohomology and  p rove  i ts  non-existence.  Using a different  
method ,  we are  able to say  someth ing  more  abou t  r a n k  2 vec tor  bundles  on p4 with  
e~ = 0 and  c~ = 3; n a m e l y  we can s ta te  the  following: 

PROP0SI~ION 3. - There are ~o semistable vector b,endles on P* with Chern classes 
c~-= O and e~.~ 3. 

PROOF. - :Let E be such a bundle .  B y  B~tRTH-ELENeWAJa'S t heo rem ([B-El,  w 4) 
E cannot  be stable,  so h~ V= 0 and  h~ - 1)) = 0. I t  follows t h a t  E has a global  

section whose zero locus X has  eodimension 2 or is emp ty .  

I f  X = 0, t hen  E would spl i t  in to  a sum of line bundles  ([H3], 1.0.1) E = Ot,,(a ) | 
Q Oe,(b), with  ab = 3, a -{- b = 0, absurd .  

I t  follows codlin (X, P*) = 2 and  Ox(-- 5) is a dualizing sheaf for X~ moreover  X 
m u s t  be local ly C.I. of degree 3. 

Le t  Y be a general  hype rp l ane  sect ion of X ;  Y is subcanonical  and  Or(-- 4) is a 

dualizing sheaf, indeed Y is the  zero locus of a global  sect ion of the  bundle/~1~" We 
show t h a t  Y is a t r ip le  l ine examina t i ng  subcanonica l  snbschemes of degree 3 in 

pa, local ly C.I. (for a s imilar  a r g u m e n t ,  see [tt3], 9.1). 
Since deg Y = 3 and  c % =  Or(-- r b y  reasons of genus 17 canno t  be reduced.  

Y m u s t  be connected,  otherwise a connected  componen t  should be a l ine L, but  

o~ = 0 , ( -  2). 
The ease ]( fo rmed  b y  a double line ]('  and  a l i ne /5  in te rsec t ing  in a po in t  can 

be excluded;  in fac t  the  i n c l u s i o n / : / ~  ~+ Y implies,  b y  [H1], I I I ,  Ex.  7.2 and  6.10, 

the  i somorph i sm m~--] 'wr,  which gives, b y  definit ion of ]', a non zero m a p  

f.O~-->Or(--2). The image  of the  sect ion 1 L of ].0~ m u s t  van i sh  on /5 - -  ( Y ' n  L) 
since eve ry  sect ion of 0~r( - 2) has  suppor t  on Y'. Bu t  b y  [Hd], Prop.  I I I . 6 ,  the  

fo rma t ion  of ]~ commutes  wi th  flat pu l lback  and  on the  open set  U = / ~ - -  ( Y ' ~  L) ] 
(( is ~ the  iden t i ty ,  so the  image  of 1 L canno t  van i sh  on U, a contradic t ion.  

I t  follows t h a t  Y m u s t  be  a t r ip le  l ine; t hen  eve ry  hype rp l ane  section of X has 

suppor t  on a line, hence the  suppor t  of X m u s t  be a p lane  z of P~, hence X is a non- 
reduced s t ruc tu re  on a p lane  and  X is local ly C.I.,  so i t  has  no embedded  componen t s  

moreove r  deg X : 3. We show t h a t  such an X m u s t  be  degenerate .  

Choose coordinates  in P~, x, y, z, w, t, such t h a t  7~ is defined b y  x = y - =  0; 
pu t  [ = homogeneous  ideal  of X = ideal  spanned  b y  the  homogeneous  polynomials  

which van ish  on X.  

S~EP ! .  - I f  F e C[x~ y, z, w, t] is a homogeneous  po lynomia l  which vanishes  

on X a t  a closed poin t  P e z (i.e. the  image  of F in Op,,~. belongs to the  ideal  of X 

in Op,,e) t h e n  _F vanishes  on X in an  open subset  U _c X and  U is dense on X since X 
has suppor t  on 7~ and  no embedded  components .  Thus • vanishes  on the  whole X,  
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i.e. F e I .  A f o r t i o r i  the same is t rue  if F vanishes on X at  a non closed point  of ~, 

i.e. a t  the  generic point  of a closed subscheme of ~. 

Sa:El, 2. - P u t  ~ = x/t and define similarly y, z, w. The ring C(5, ~)[~, ~7](~.~)= A s 
c~n be canonically identified with the  local r ing of the generic point  of ~ in / )4 .  Le t  
us continue to indicate,  by  abuse, the images of ~, ~, 5, ~ in A by  the  same let ters .  
Le t  I~ = ideal of X in A. Since X has suppor t  on ~, AJI~ is a r t in ian  and since X 
has mult ipl ic i ty  3 at ~ll points of z, then  length  AJI~ = 3. But  this is possible 
only  if ~ a ~ ? ) ,  ~?)", ?)3 all belong to I~. By  step 1 this  imply  x ~, x~y, xy ~, y~eI .  

S T E P  3 .  - For  every  closed point  ~ e z, I mus t  contain a homogeneous e lement  
of the  form r = a(z, w, t)x ~- fl(z, w, t)y ~- t e rms  of higher  degree in x,y ,  with 
a(_P) =/= 0 or fl(P) =/= O. Indeed  X is locally C.I., so let  9~, 9~ e C[x, y, z, w, t] be homo- 
geneous elements  which define hypersurfaces  H~, H~ whose intersect ion locally at  P 
is X. Put ,  for i = 1, 2, r = ~(z, w, t)x ~- fl~(z, w, t)y ~ te rms of higher  degree in 
x, y; if al, a~, fi~, f12 ~11 vanish at  _P then  H~, H~ both  have mult ipl ic i ty  at  least 2 
a t  /~, so X has mult ipl ic i ty  at  least 4 at  P,  absurd. Then one of the r is of the 
required form and i t  belongs to I by  step :i. 

STEr 4. - I t  follows by  step 2 and step 3 tha t  I contains an e lement  which can 
be wr i t t en  in the form r = Q(Ax ~- By) 4- Cx~" Jr Dxy -~ Ey 2, with  Q, A, B, C, D, 
E ~ C[z, w, t], A, B non bo th  ident ical ly 0, Q ~ 0 and A, B without  common factors. 

Le t  r  A'x  -~ B'y -~ t e rms  of higher  degree in x, y, be another  e lement  of I ;  
t hen  we claim tha t  there  exists Q' e C[z, w, t] with A'x  ~- B'y = Q'(Ax ~ By). This 
is obvious if A ' x - ~  B'y =--O, so assume this is not  the  case. 

Le t  9 = q(a~ ~ b?)) -~ c~ 2 -~ d~?) ~- e?) 2 e C[~, 74, 5, ~] be a dehomogeneizat ion of 
r where q ~-Q/t d~ and a, b, c, d, e are defined in the same way. Similar ly take  
9 ' =  a'~ -~ b'?) -~ te rms of higher  degree in x, y, as a dehomogeneizat ion of r By  
abuse we shall also consider 9 and 9'  as e lements  of C(z, w)[x, y] or A~. 

Since qa V= 0 or qb =/= O, t h en  in AJ(9) , ~ e (?)) or ~ e (5) so t h a t  length  AJI~ = 
= length AJ(% ~ ,  ~?), ~?)~, ?)3) = 3 hence (9, ~3, ~27), ~ o ,  ~ ) ,  which is conta ined in 

Is,  must  be  equal  to I~. 
Since 9 ' e  I t t hen  there  exists a e C(5, ~)[~, ~], a ~ (~, ?)) such tha t  a g ' e  (9, ~3, 

~2~, ~?)~., ?)3)C(5 ' ~)[~, !7] so t ha t  a g ' =  ~9 -~ te rms  of degree at least  3 in ~, ~; since a 
mus t  have non-vanishing constant  term,  then  there  are elements no, ~oeC(z, w), 
~o, ~o=# 0 such t h a t  ao(a'~ -~ b'?)) = ~oq(a~ 4- b~). Taking away denomitators ,  we 
m a y  assume no, ~o~ C[5, ~] i.e. the  previous relat ion holds in C[~, y, z, ~]. Dividing 
by  the common factors of ~o and ~oq, we find re la t ively  pr ime elements  a~, ~ 

C[5, ~] wi th  a~(a'~ ~ b'?)) = o~(a~ ~ b?)), i.e. a~a'= ~ a  and ~ l b ' =  ~b,  Since a~ 
does not  divide ~ ,  i t  mus t  divide both  a and b, but  by  assumption A and B are 
re la t ively  pr ime in C[z, w, t], so the i r  dehomogeneizat ion are too. 

This implies a~e C so a ' =  a/a~ and b ' =  b/a~ and homogeneizing suitably,  we 
find what  we claimed. 

8 - A n n a l i  d l  M a t e m a t i c a  
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S~E~ 5. - A and  B are homogeneous  of the  same degree. I f  t h e y  are not  cons tan t  

~here is a po in t  / ) e  z where  t h e y  bo th  vanish.  B y  the  previous step,  this means  

t h a t  no e l emen t  of I can be wr i t t en  as c~(z, w, t )x  4- fl(z, w, t) 4- t e r m s  of higher  
degree in x, y, with  e (P)v~ 0 or fl(P)~= 0; th is  cont radic ts  s tep 3. 

Thus A and  B are cons tan t .  Af te r  a sui table  change of the  coordinates  x and  y, 
assume A -= 1, B = 0; so e~ery  e lement  of i is of the  fo rm:  Q'x 4- t e rms  of ihigher 

degree in x, y. 

S~EP 6. - Now r e C[x, y, z, wJ is qx 4- cx "2 4:- dxy @ ey ~. I t  is clear t h a t  in A~, 

9)0 = qx 4- ey 2 also belong to  I~ = (% ~3, 22?~, ~ ,  ~a), so t h a t  the  e lement  % = qx 4- 
ey"- also belong to Ie  = (~0, 23, ~ ,  2 ~ ,  y~), so t h a t  the  e l emen t  r = Qx ~ Ey ~, 

which is a homogeneiza t ion  of ~o, also belong to I by  s tep 1; again  if Q, E have  a 
common  fac tor  F ~ C[z, w, t] and  Q = QoF, E = EoF, t h e n  Qox @ Eoy ~ also vanishes  

on X at  the  generic po in t  ~ so b y  step 1 Qox 4-Eoy2e  I;  i t  follows t h a t  we m a y  

assume Q and  E re la t ive ly  p r ime  in C[z, w, t]. 

STEP 7 .  - I f  Q ~ C, by  reason of degree E = 0 and  X is degenerate .  So i t  r emains  

to show t h a t  if Q is not  a cos tan t  we get  a contradic t ion .  
I n  fac t  in this  case the re  exists  a po in t  P e ~  such t h a t  Q ( P ) =  o, E(P)--/= 0 

since Q, E have  no c o m m o n  factor .  Moreover  b y  step 5 and  s tep 3 the re  is an ele- 
m e n t  r  A ' x  4- t e r m s  of higher  degree in x, y I such t h a t  A'(P)  =/= O. B y  changing 

the  coordinates  z, w, t, we m a y  assume P = (0, 0, 0, 0, 1); le t  I e be the  ideal  of X 
in 0p, e =  C[V~,~, g, @](;.?.;.;). Le t  ~1 be the  p lane  defined b y  z = w = 0; t hen  

7~'c3 X has  suppor t  in P and  degree 3, so we m u s t  have  leng th  Oe,,~/Ie@ (g, @) = 3; 
but Ie  contains  e lements  ~ = q(g, ~ ) 2  @ c(5, @)~-~ wi th  q(O, 0) = 0, e(0, 0) =/= 0 and  
~ 1 =  a,(5, @)2 4- t e r m s  of higher  degree in x, y, where  a1(0, 0) :/= 0. I t  follows t h a t  

Oe~e/I e 4- (~, ~)  = C[~, ~]/(~, ~ )  so it  has  l eng th  2, absurd.  
To finish the  proof  of the proposi t ion  we only need to note  t h a t  X would be the  

C .L of a hyperp lane  and  a cubic hypersur faee ;  hence E - =  0p.(3)O 0e.(1), a b s u r d  

s ince cz(E) -= O. 

COROLLAI~Y 4. -- I n  P~ there are no irreducible, reduced canonical sur]aces S o] 
degree 12 with locally complete intersection singularities. 

PROOF. -- S would be the  zero locus of a section of a r a n k  2 vec tor  bundle  E f wi th  

Chern classes cl(E I) = 6 and  c~(E')=-12. I f  S is not  con ta ined  in any  quadr ic  
hypersur face ,  t hen  b y  0 -+ 0~4--7 E ' - +  Iz(6) -+ 0 ( I  s - -  ideal sheaf  of S) it  follows 

t h a t  E / would be semis table ,  hence E ---- E ' (  - 3) would be a semistab]e  r a n k  2 vec- 
tor  bundle  on p4 with  Chern classes cl(E) == 0 and  e2(E) = 3, absurd  b y  the  previous 

Proposi t ion .  
Suppose S is con ta ined  in a quadr ie :  t hen  for a genera l  hype rp lane  H, C = S (~ H 

is a reduced  i r reducible  curve in p3 which is subcanonical ,  since it  is the  zero locus 

of a section of E ' t~;  since C is cml ta ined  in a qnadr ie  surface,  i t  m u s t  be C.I. b y  0.iii), 
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hence E']~___ 0~(2)Q On(q) and  q is a posi t ive  in teger  such t h a t  q -~ 2 -~ c~(E'I~ ) = 6 
and 2q = c~(E'I.) = 12, absurd.  

R E ~ A ~  5. - B y  the  discussion at  the beginning of this section, i t  follows t h a t  

the  previous  Corol lary implies  Th. 1. 
The mul t ip le  points  allowed for S in Corol. 4 are different f rom the ones allowed 

in [C]. I ndeed  in [C] general  isolated s ingular i t ies  were allowed, hence S might  
be not  locally C.I. 

~Ve shall  use Prop.  3 also in section 3. 

w 2. - I n  this section we are going to s t udy  subvar ie t ies  of eodimension 2 in 
P",  n > 6 .  

Our in te res t  moves  f rom the following conjecture,  s t a ted  b y  R. HARTSHORNE 

in 1971 (see [H2]) 

COnJeCTUrE. - s X be a smooth s~bvariety of dimension r in P'*. I] r > (2/3)n, 
then X is a complete intersection. 

In  par t icu la r ,  if eodim X = 2, t hen  the  conjecture  implies t h a t  X is C.I. if n >  7; 

in the  same pape r  H a r t s h o r n e  also posed the  question about  the  existence of a non 
C.I., smooth  s u b v a r i e t y  of codimension 2 in ps.  

The conjecture arose f rom a t heo rem of B a r t h  and  Larsen,  which we shall use 
in the  following fo rm:  

TEEOgE~ (BA~TE-LAnsEN) (see [H2], th. 2.2). - Let X be a nonsingq~lar variety 
o] dimension r in P", then: 

a) the restriction map H~(P '~, C ) - * H ~ ( X ,  C) is an isomorphism ]or i < 2 r - - n ;  

b) i] r > ( n  ~ 2)/2, then Pic ( X ) =  Z, generateed by the class o] an hyperplane 
section. 

:Note t h a t  for comple te  intersect ions,  a) and  b) above are consequences of Lef- 
schetz ' s  t heo rem.  

P a r t  b) implies t h a t  if X has << small  )) codimension in P,,  t hen  it  is subeanonical ,  
since we m u s t  have  ~ox = 0z(e) for some in teger  e; in pa r t i cu la r  this holds for every  
eodimension 2 smooth  s u b v a r i e t y  o5 P% n>~6. 

Another  consequence of Ba r th -La r sen ' s  t heo rem t h a t  we need to poin t  out is 

the  following: if codim X = 2 we have  h~(0z) = 0 for 0 < i < r - -  2. Indeed  in this 

ease, b y  a), h~(X, C ) =  i e v e n ] '  on the  o ther  hand ,  since i >  O, b y  Hodge  

decomposi t ion  we have  h~(X, C) = ~ h~'~(X, C)>1 h~ C) + h~'~ C) = 2h~(Ox). 
~+q=i 

t t a r t s h o r n e ' s  pape r  also contains a wide su rvey  on this subject  up to 1974. Af ter  
1974 few progresses seems to be made  in prov ing  or confut ing the  conjecture;  there  
is the  following Zak ' s  extension of a Severi ' s  t heo rem:  
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T~EORE~ (Zak) (see [F-L]). - I /  r>~(2/3)n, then any smooth subvariety o] P" o] 
dimension r is linearly normal. 

F u r t h e r  progresses were made  by  Z. I~A~ in a recent  p repr in t  (see [R]). We 
give an account  of the  results  of Ran  t h a t  we are going to rise. 

Le t  X be a smooth,  non-degenerate  eodimension 2 subvar ie ty  of P ' ,  which is 
subeanonical  (this last  condit ion holds automatical ly ,  by  Bar th-Larsen ' s  theorem,  
if n>~6). Le t  E be the  r ank  2 vector  bundle  associated to X;  put  e , =  c~(E), e2-~ 
: c~(E) : deg X and for eve ry  t define f(t) : e2(E(t-- c~)) = e~-- tc~ 4- t ~'. 

t~an proves tha t  for eve ry  k < n - -  2 and for a generic point  P ~ P - - -  X the 
cone of (k 4- 1)-secants to X passing th rough  P has degree ](0) ... ](k)/k! ([It], p. 3). 
I t  follows t h a t  if f(0) ... ](k) 4 :0  then  X cannot  be contained in any  surface W of 
degree k, since any  (k 4- 1)-secant to W must  be conta ined in W ([I~], Th. 2). 

Using this result ,  Ran  proves t h a t  X is C.I. if e i ther :  

a) e~>~(c~/m) ~- m for some m e ( 0 ,  n - -  2]; 

b) ~9 V ~ < c l < 2 n -  4. 

In  par t icular ,  if there  are integers  a and b such t h a t  c1= a - [ - b  and c~= ab 
(i.e. E has the same Chern classes of Op(a) | Opt(b)) and one of t h e m  lies in (0, n -- 2] 
(this holds au tomat ica l ly  if e~<~2n-- 4, a, b > 0) t h en  by  a), X is C.I. 

Note  t ha t  if X is conta ined in a surface of degree k<~n-- 2, t hen  we must  have 
](0) ... ](k) = 0, hence 0 = ](i) = c~-- icl-4- i ~ for some i < n -  2, hence c~= i(e~-- i), 
e~= i 4- (e~-- i) and i ~  (0, n - -  2] since c~= deg X > 0; it  follows t h a t  X is C.I. 

Using the previous discussion and Riemann-Roch  formula  for vec tor  bundles 
we are able to prove  the  following par t icu la r  ease of the conjecture:  

TEEORE~i 6. -- Le t  X_c p , ,  n~> 6 be a smooth subvar ie ty  of codimension 2; then  
by  Bar th -Larsen ' s  t heorem cox= Ox(e) for some integer  e. I f  e~<0 then  X is com- 
plete  intersect ion.  

PnooF.  - The isomorphism COx----Ox(e) induces on P'~ an extension 

(1) 0 -+Op,-->E -->Ix(e 4- n 4- 1) -+0  

where Ix  is the  ideal sheaf of X and E is the r ank  2 vector  bundle  associated to X, 
wi th  Chern classes c l ( E ) = e 4 - n d - 1  and c~(E)= d e g X .  X is C.I. if and only  
if E splits into a sum of l ine bundles.  

By  [E-F], Corol. 1.7, E splits if and  only  if its res t r ic t ion E~H to a general  hyper-  
plane H does. EI~ is the  vector  bundle  associated to the  subscheme X r3 H of p~-l ;  
for H general,  X( ' ,  H is still nonsingular  and OOx~,----OxoB(e 4- 1) by  adjonct ion 
formula;  hence cu t t ing  with hyperplanes  and making induct ion,  we m a y  reduce 
ourselves to prove  the  s t a t emen t  only for e~<0, n = 6 and  e ---- 0, all n~>6. 
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Suppose n ~ 6, e < - -  1. Choose hyperplanes  H,  and  Ha such t h a t  V ---- X f h  H,  

and S ~ V n Ha are smooth of dimension 3 and 2 respectively. Hence o~ V-- 0v(e ~ 1) 

and eos~ Os(e-~ 2). We claim t h a t  S is C.I. This follows f rom Remark  2a) for 

e < - -  3 and  f rom theorem 1 if e ~ -- 1; if e ~- -- 2 the claim follows from Remark  2b) 

since the i r regular i ty  h~(Os) of S is 0; indeed by the exact  sequence 

0 -~Ov(-- 1) -,-Ov-->Oz-->O 

we get 

J~I(0v) ---)~H1(08) .---~H2(Ov( - 1 ) )  

and by  dual i ty  h ~ ( O v ) ~  ha(Or( - 1)) which is 0 by Kodaira  vanishing. 

Thus we m a y  assume e ---- 0, n > 6 .  We distinguish two cases. 

CASE I. - n odd, n - - 2 k - [ - i .  

Since dim X z n -  2 and, by  Kodaira  vanishing,  h~(0z(1)) = 0 for 0 < i < n - -  2, 
then Z(0z(1)) ---- h~ B y  Zak's  theorem X is l inearly normal  hence, if it is 

non-degenerate, ho(Ox(1)) = n + 1. I t  follows f rom (1) twis ted by  -- n t h a t  

(2) 

for every  vector bundle E oll P~ with c,(E)----n ~-1,  which has a section whose 

zero locus is a smooth non-degenerate va r ie ty  of codimension 2. 

Riemann-1%och theorem assures us tha t  x(E(--  n)) can be expressed as a poly- 
nomial,  with to ta l  degree < n ,  in the Churn classes c , ~  c , (E( - -n ) )  ~ -  n - ~  1--- 
---- - -  2k and c~-~ c2(E(-- n)) ~- d -  n a where d ---- deg X. 

[Now fix n;  z ( E ( - - n ) )  becomes a polynomial  T in ca, which must  satisfy {2), 

hence we see tha t  only a finite number  of values are allowed for d ~- dug X, if X 

is non-degenerate,  provided tha t  T is non constant .  We prove tha t  T is not constant  
by  comput ing  its leading term.  

A quick way  to do it, following [I t l ] ,  App. A, w 3, is to ca r ry  the computa t ion 

on a sum of line bundles:  put  ~----Ov.(a) Q Oe~(b), then c , ( F ) :  a ~-b,  c2(F)-~ ab 
and 

the left hand  side can be uniquely expressed as a polynomial  in c,(F) and c~(/v) ; this 

polynomial  gives the Riemann-Roch formula for a generic rank 2 vector bundle. 
We need a technical  
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~E~f3IA. --  Let a, b, k be integers, /c>0 and put  a 47 b = e~, ab = c=: 

i) a'~k 47 b ~ =  (- -  1)~2c~ @ terms o/ lower degree in e:; 

if) a'-'~+* @ b~+~=  ( -  1)~(2k 47 1)qc~ 47 terms o/ lower degree in c~. 

Then 

PImOF. - The prooi  is done by  induct ion  on k. Le t  us wri te  (~ ~- )> to mean  
~( equal  up to t e rms  of lower degree in c2 ,>. Bo th  formulas  are obvious for k = 0, 

so let  ns suppose k > O. 

i) a ~ @ b ~: (a �9 @ bk) 2 9, - -  1 )  2c 2 = -.e2; if k is even,  by  induct ion a ~ - / b  k=- (--  k/~ k/2 

so t h a t  a2"~@ b~"=~ 2c 7~" if !c is odd, b y  induct ion  again,  (ak@ b ~) canno t  conta in  

t e r m s  of degree /c in c2, so i) is proved.  

if) a~+~-[ - b~+~=  ( a ~ @  b~)(a 47 b ) -  ab(a~-~@ b"~-*); b y  i) we have  (a'~ + 

47 b~)(a @ b) ~ 2c~c~(-- 1) ~ and  b y  induct ion  ab(a ~-1 @ b ~-~-~) -- e~(-- 1)k-~(2k --  1)e~; 

add ing  we find if). 
Now we r e tu rn  to the  proof  of the  theorem.  

We have :  

n @ n 

= ((a -,- ~)(a + n - - ~ ) . . .  (a + :t) + (b + n)(b + n - - l ) . . .  (b + ] ) ) /n  ! = 

= ((a" + b'O @ n(n + 1)(a '~-z + b~-*)/2 + (some coefficient) (a "-a ~- b "-=) q- . , .)/n ! 

hence,  b y  the L e m m a ,  replacing n = 2k @ 1, ab = c:, a @ b : c~ : --  2k, we have:  

L 
z ( E ( - - n ) ) - - ( 2 k  + 1)! ((--1)~(2~: § J ) ( - -2k)c~47 (--1)~2c~(2k + 1)(2k + 2)/2 + 

@ te rms  of lower degree in c~). 

Thus the  leading coefficient of T is (2(--1)~(2k @ 1))/(2k -~- 1)! and  T has degree k 

in c~. 
I t  follows that., for fixed n, equa t ion  (2) has at  mos t  k roots in c~. We know ye t  

some of these  roots :  t hey  are the  number s  d - -  n ~ where  d is the  degree of a non- 
degenera te  C.I. of two hypersur faccs  whose degrees have  sum n q- 1 : 2k @ 2. This 

gives exac t ly  k dis t inct  v~lues for d, name]y  d ~ :  2(2k), d ~ =  3 ( 9 k - - 1 ) ,  ..., d,~= 
: (k -[- 1) ~, hence the  corresponding values for d - -  n 2 ex~ust  all  the  roots of (2). 

I t  follows t h a t  if X is non-degenera te ,  i ts  degree mus t  be one of the  d i s ,  hence 

its associated vec tor  bundle  has the  same Chern classes of a sum of l ine bundles  of 

posi t ive  degree.  Since b y  assumpt ions  c~(E) : n @ l < 2 n - - 4 ,  i t  follows b y  Ran ' s  

t heo rems  t h a t  X is C.I. 
I f  X is degenerate~ then  it  is obviously  C . I ,  so the  case <~ n odd >> is proved.  
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CASE 2. -- 9Z even~ n = 2k. 

I n  this ease we const ruct  a formula  similar  to (2) which is val id also for degen- 
e ra te  X. We look at  z(Ox); b y  B a r t h - L a r s e n ' s  t heo rem if d im X = r t hen  h~(Ox) = O, 
0 < i<~r - -  2, moreover  since r > 3, this implies  also h'-~(Ox) = 0 b y  dua l i ty ;  finally 
h~(Ox) -~ h~ = 1 hence we have  x(Ox) = 2. 

F r o m  (1) twis ted  b y  - - n - - 1 ,  i t  follows: 

(4) z (E ( - -  n - -  1)) = 1 @ z(Oe,(-- n - -  1)) 

and  this holds for every  r a n k  2 vector  bundle  E with  c~(E) = n @ 1, which has a 
section whose zero locus is a smooth  subvar i e ty  of codimension 2. 

B u t  again  z (E ( - -  1 -  n)) can be expressed as a po lynomia l  in c~ = c~(E(-- 1 -  
- - n ) ) ~ - - n - - l = - - 2 k - - 1  and  c ~ = - c ~ ( E ( - - n - - 1 ) ) = d e g X = d ,  hence fixing n, 
z ( E ( - - n - - 1 ) )  becomes a po lynomia l  2" in c~ which mus t  sat isfy (4). 

For  the  same computa t ions  as before,  replacing in (3) n = 2k, ab ~- c2, a @ b 
= c~= --  2 k - -  1, b y  the  L e m m a  

1 
z ( E ( - -  n - -  1)) = ~ ((--  1)~2c~) + te rms  of lower degree in c~ 

hence T '  has leading t e r m  (-- 1)k2/(2k)! and degree k. I t  follows tha t  for fixed n, 

equat ion (4) has lc roots in c~----d. Bu t  we know ye t  these roots :  t hey  are the  

degrees of complete  intersect ions of two hypersnrfaces  whose degrees have  sum 
n-}- 1, n a m e l y  t hey  are the  (dist inct)  numbers  d~= l(2k),  ~ =  2 (2k - -  1), ..., dk---- 

= k(k @ 1). Once again  it  follows t h a t  the  degree of X mus t  be one of ]the d~'s, 
hence E has the  same Chern classes of a sum of line bundles  of posi t ive  degree. 
Since c~(E)~<2n--4,  b y  t~an's theorems this implies t h a t  X is C.I. 

This completes  the  p r o o f  of the  theorem.  

I:~.E~ARI[ 7. - We cannot  use equat ion  (4) to p rove  the  case (~ n odd ~) because 

it  becomes an iden t i ty :  indeed it  has degree ~< k in c~ = d while complete  intersec- 
t ions give k @ 1 dis t inct  values  for d, n a m e l y  1(2k @ 2), ..., (k @ 1)(k @ 1). 

We cannot  use equat ion  (2) to p rove  the  case ~ n even ~) because i t  has degree k 
in c~ = d -  n 2 and  non degenerate  complete  intersect ions give only k -  1 values  

for d - -  n ~, so t h e y  do not  exaust  all the  roots of (2) but  possibly there  is a missing 
value.  

w 3. - Le t  us examina te  more closely the  case of smooth  subeanonieal  threefolds 
X in ph. 

RmIA~K 8. - P u t  cox---- 0x(e) and  let  S be a general  smooth  hype rp lane  section 
of X ;  t hen  COs----0s(e + 1), moreover  the  i r regula r i ty  of 3 is 0, indeed hl(Ox) 0 
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b y  B a r t h - L a r s e n ' s  t heo rem and we have  the  exact  sequence H~(Ox)--->H~(Os)---> 
H~(Ox( - 1)) and,  b y  KodMra  vanishing,  hZ(Ox( - 1)) = 0. 
I f  c < 0  i t  follows f rom Tb. 1 and  R e m a r k  2 t h a t  S is C.I.,  hence also X is C.I. 

PROPOSITION 9. - I] e = I, then X is a complete intersection in P< 

PRooF. - Wi th  the  previous  te rminology,  pu t  d = deg X = deg S; S is a smooth  

surface in P* and  ( o s =  02(2) hence the  fo rmula  (1) of w 1 ([H1], p. 434) gives 
s t rong  res t r ic t ions  on the  possible values  for d: indeed S is a surface of general  t ype  
hence we m u s t  have  Z(0~) > 0 ([Be], Th. X.4) hence the  only possible values  for d 

are 4, 6, 10, 12, 16, 18, 22, 24. 
There  are no smooth  surfaces in P~ wi th  w s =  02(2) and  d = 4, while eve ry  

such surface of degree 6, 10, 12 is C.I. I n  fact  a genera l  hype rp lane  section C of S 

is a smooth,  connected  subcanoniea]  curve wi th  ~o C -  0~(3), hence wi th  genus g = 
= (3/2)d ~ 1; for d = 4 no such curve  exis ts ;  for d = 6 C is a p lane  curve  and  for 

d = 10 C is con ta ined  in a quadric ,  b y  CASTELNUOVO~S bound ;  in bo th  cases C m u s t  
be C.I. (0.iii); for d - -  12, b y  I~E~rANN-I~ooH, C is conta ined  in a cubic and,  if i t  

does not  lie on a quadric,  i t  m u s t  lie on a i r reducible  quart ic ,  thus  C and 8 are C.I. 

S cannot  have  degree 18 or 22, indeed b y  formula. (1) of w ] ,  we obta in  respec- 

t i ve ly  Z(Os) = 15 and  Z(Os) = 18; in bo th  cases, since q(8) = O, the  geomet r ic  genus 
p~(8) is less t h a n  15 = h~ thus  S is conta ined  in a quadric~ hence C mus t  
be the  complete  in tersect ion in P~ of a quadric  and  ano the r  surface;  this  is impos-  

sible for reasons of degree,  since 09~= 0e(3). 
S canno t  have  degree 24 since we should have,  b y  w 1, (1), z(O~,) = 8 and  this  

cont radic ts  the  celebrated Yau ' s  inequa l i ty  K s . K s < 9 z ( O s  ) for a surface of general  

t ype  (Kz---- canonical  divisor of S). 
I n  the  case d : 16, we have  Z(0s) = 16 and,  b y  I~IE~A~'N-RocH, Z(0s(1)) = 8 

and  p ~ ( S ) =  h~ 15 since q ( S ) =  O. F r o m  the exac t  sequence 0 - - ~ 0 ~ - ~  

-> 0x(1) -+  0~.(1) --> 0 we obtMn:  %(0~,(1)) = Z ( 0 x ( 1 ) ) -  g(Ox) which is 2.%(0x(1) ) b y  
dual i ty ,  i.e. %(0x(])) = 4; b y  Zak ' s  t h e o r e m  h~ : 6; b y  dua l i ty  hS(Ox(1)) = 1 
aud  h~(Ox(1)) = hl(0x) which is 0 b y  B a r t h - L a r s e n ' s  t heo rem;  fu r themore  h~(Ox(2)) = 0 
b y  KodMra  vanish ing;  for reasons of degree, X cannot  be  C.I., hence it cannot  lie 
on a quadric,  thus  h~ P u t t i n g  all these numbers  together ,  the  exact  

sequence:  

0 - +  Ho(O (2)) 0 

gives the  contradic t ion.  

P~0POSITION 10. - I] ~Ox = 0x(2) then X is a complete intersection in P< 

P g o o F .  - P u t  d = d e g X .  B y  R a n ' s  theorems  (w 2) if X is conta ined  in any  

cubic hypersur face ,  i t  is C.I. Thus assume X not  con ta ined  in any  cubic. The vec- 

to r  bundle  E associated to X has Chern classes c~(E) = 8 and  c~(E) = d; b y  the  
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sequence 0 -~ 0p~ -~ E -> Ix(8) -+ 0 (Ix ----- ideal sheaf of X),  since X is not  contained 
in a cubic, i t  follows t h a t  h~ - 5)) ----- 0, i.e. E is semistable.  

Suppose d < 1 6 ;  then  by  [B], w 3, E is not  stable;  it  follows t ha t  E( - -  4) has 
a global section whose zero locus Y, by  the  semistabil i ty of E,  is e m p t y  or has 

eodimension 2. Since deg Y = c~(E(-- 4)) = d - -  16, this implies t ha t  d ---- 16 and 
I5 _~ 0, so tha t ,  by  [H3], Th. 1.0.1, E is ~ sum of line bundles,  i.e. X is C.I. 

By  Riemann-Roeh  formula  on X (see [Mu], p. 40), if D _c X is a divisor ~(Oz(D)) = 
---- D~/6-- (gzD2)/4 + (g~ + c2(TX))/12-- Kz(c~(TX))/24 ( T X  z t a n g e n t  bundle ,  
K x ~ - c a n o n i c a l  divisor). By  ~ s t ra ightforward computat ion,  if o~z-~ Ox(e)then 
c~(TX) = h~(15 ~ e(6 -[- e ) -  d) where h is the  class of an hyperp lane  section in the 
Chow ring of X;  thus  in our case Z(0z(3)) z d (37- -d ) /6 .  By  Kodai ra  vanishing, 
Z(0z(3)) ---- ho(0x(3)); if d>~24 this is less t han  56 ---- h0(0p~(3)), hence X belongs to a 
cubic, absurd for reasons of degree. 

I t  remains to examinate  what  happens if the degree varies in the range :[6 
d ~ 24. Reducing ourselves to a general  hyperp lane  section and using formula 

(1) of w 1 as before, we see t ha t  the only  possible value for d is 19. In  this case, for a 
general  hyperpl~ne H~ E ( - - 4 ) [ .  would be semistable by  [M], Th. 3.1 and would 
have Chern classes cl ~ 0 and c~ ~- 3; this is impossible for a rank  2 vector  bundle  
on P~, by  Prop.  3. 

RE~ARK 11. -- Le t  X be a smooth codimension 2 subvar ie ty  of p 6  with eoz-~ 
= Oz(e). The previous discussion shows t ha t  X ~s C.I. if e < l .  The same technique 
allows us to s ta te  the  same resul t  for e z 2. 

Namely,  formula (1) of w 1 for a generic intersect ion of X with a l inear 4-space, 
implies tha t  a priori  d - ~  d e g X  can only  have the  va lues  d < 2 0  or d~>24. In  the  
first ease X is contained in a quart ic hypersurface,  hence, by  Ran 's  theorems,  it  
is C.I. In  the  second case, if V is a general  smooth hyperp lane  section of X,  by  

RIEMA~-ROCg, Z(Ov)= 1 ~ d ( 4 2 -  d)/8 so that ,  since by  Kodai ra  vanishing and  
by  Bar th-Larsen ' s  theorem Z(0v) = ho(0r)-- h3(Ov) z 1 - -  h~ so we have 
h~ h~ i t  follows tha t  V is contained in a cubic hypersurfaee  
of pb, hence by  Ran 's  theorems V and X are C.I. 

Other  cases can be handled  in this way, bu t  t hey  seem to be too par t icu lar  to 
be interes t ing.  

We note  t ha t  Ran ' s  results  a), b) and our theorem 6 give at once the following 
in teres t ing  result .  

T~IEORE~ 12. - Let X be a non-singular codimension 2 subvariety o] P ' ,  n ~ 6; 
put c~:= d:= d e g X .  I] d ~ ( n - ~  2)3/4, then X is a complete intersection. 

Indeed look at  R~n's inequalit ies a), b). Pu t  ogx= Oz(e). I f  c l a n  ~ 1, then  X 
is a complete intersect ion by  theorem 6. If  n -~ 2 ~ c 1 ~ 2 n - -  4, by Ran 's  inequal i ty  

b), we have c ~ c ~ / 4 ~ ( n  ~- 2)~/4. I f  e l ~ 2 n - -  3, by  Ran's  inequal i ty  b)~ we have 
c~ > ( n -  2)(c~- n § 2)> ( n -  2 ) ( n -  1). 
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Note tha t  theorem 12 gives the first, known quadrat ic  bound for this problem. 
B A ~ [  and VA~ ~ DE VE~" proved the existence of a bound and then  in [B-V] gave a~ 

l inear  bound.  

RE~,~AmC 13. - We wish to point  out the following extension,  due to GRIFFI~tt 
and EVAXS, of a classical theorem of GHE~AnDELLI for subcanonical  curves (see [G]) : 

i/ X is a smooth subeanonieal variety o] eodimension 2 in P~, n > 3 ,  then X is 
C.I. i/ and only i[ Vm the ,map 

Ho(Ov,~(m)) -~ Ho(Ox(m)) 

is surjectiw~ (see [E-G], Th. 2A). 
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