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Summary, — We consider the existence of weak solutions of the periodic-Divichlet problem on
10, 2a[ X 10, =[ for the semi-linear wave equation
WU — Wy — f(t5 Z, u) =0
when

o(t, ») <liminf w' f(t, @, ) <lim sup w1 {(@, z, u) < B, z)

|ul—>o0 lul—c0

and o and f satisfy some nonresonance conditions of non uniform type withr espect to two con-
secutive nonzero eigenvalues of the associated linear problem. The proof is based wpon one
generalized continuation theorem for some perturbations of mappings which are not of Fre-
dholm type.

0. - Introduction.

Let J =10, 2a[ X 10, #[ and let f: J xR — R be a function such that f(-, -, u)
is measurable on J for each # e R, f{{, x, *) is continuous on R for a.e. (, x)ed.
Assume moreover that, for each r > 0, there exists 4, e L3*(J) such that

(0.1) f(ty @, w)| <h.(t, @)

when (4, z) eJ and |u[<r, with L3(J) the space of measurable Lebesgue square
integrable real functions on J. We gshall then say that 7 satisfies the Caratheodory
conditions for L2(J).

Consider the semi-linear wave equation

(0.2) Wis— Upy— [(E @y %) == 0.

A weak solution of the periodic-Dirichlet problem on J for (0.2) will be a u € L2(J)
such that

Jutt, @)1vatty 2) — vuutty, ) dtas = [(t, 2, ut, @) olt, 2) dt o
J J

(*) Entrata in Redazione il 16 marzo 1983,
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for every ve 0*(J) satisfying the boundary conditions

o3, 0) = o(t,z) =0 (t[0, 2a]),

(0, ) — v(27, @) = v,(0, z) — 1,27, 2) = 0 (xe[0,x]) .

In particular, the periodie-Dirichlet problem on J for the nonhomogeneous linear
equation

Wyy— Ugy— A = h(, ©)

is uniquely solvable for every he L*J) if and only if
(04) Agmi—m=t meZ,neN* = 2,<A_ <l=0<i<l<..)
(see e.g. [1] or [2]). In [3], it has been proved that the periodic-Dirichlet problem
on J for (0.2) has ar least a weak solution if there exists real numbers p, ¢, » such
that

Ay<p<uf(t, #, u) <q < Aysa
for some N € Z, a.e. (f, ) eJ and all v € R with |4|>r, and if moreover the fune-
tion signpf(t, z, +) is nondecreasing for a.e. (f,x) e J. In this paper, we generalize
this result for N ¢ {— 1, 0} by proving the following

THEOREM 1. — Assume that the inequalities

(0.5) a(t, ») <lim inf w=tf(t, @, w) <lim sup v~ f{t, z, w) <p(t, z)

ful->o0 ful>o0

hold wniformly a.e. in (¢, x) € J where « and f are functions in L (J) such that for some
N 0 and — 1 one has

(0.6) Ay <alt, 2) <P 7) <Aaia
.. With
An<< aft, x)
on & set of positive measure and
B, 2) < Ay

on & set of positive measure.
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Then if the function sign 1y-f(t, z, ) is nondecreasing for a.e. (¢, x) € J, the periodic-
Dirichlet problem on J for equation (0.2) has at least one weak solution.

Conditions of the form (0.5) and (0.8) were first introduced in elliptic Dirichlet
problems by the authors in [6] and then used in [7] for periodic solutions of ordinary
differential equations. The approach used in those papers has to be substantially
modified here because the abstract realization in L*(J) of the wave operator 92/ot* —
— 02/ox? with the periodic-Dirichlet boundary conditions on J has a noncompact
resolvant. This is due to the fact that the spectrum ¢(L) of L, which is in fact given
by the right hand member in (0.4), contains an eigenvalue of infinite multiplicity
(namely A, = 0), the other ones having however finite multiplicity. It is also the
infinite multiplicity of 4, which implies the exclusion of the couples (4,, 4,) and {4,, 4,)
in the extension of the uniform nonresonanece conditions of [3] to the non-uniform
situation (with respect to (7, m)) given by the theorem above. Of course, our tech
niques would give results for N = 0 by assuming « constant and for ¥ = — 1 by
assuming B constant, which still is better than the result of [3]. The reader can easily
check the details.

The proof of the theorem is based on two lemmas (for linear problems) which
are given in Section 1 and whose assertions are reminiscent of the preliminary
lemmas of [6] and [7], but whose proofs are different for the reason explained above.
Also the lack of compactness prevents the use of a usual Leray-Schauder’s degree
argument in the proof of the theorem and we have to make use of a generalized
continuation theorem of one of the authors [4] (see also [5]) based on combination
of compactness and monotonicity methods. This is where the monotonicity assump-
tion on f(f, , -) is effectively used. We state here, for the reader’s convenience,
the special case of the theorem 2 and Remark 1 of [4] which will be used in this
paper. This requires some preliminary definitions.

Let H be a real Hilbert space, with inner product (-, -) and corresponding
norm |-|. Let us denote by /A the class of operators L: D(L)c H — H which are
linear, closed, have domain D(L) dense in H and are such that their kernel N(IL)
and range R(L) satisty the condition

An example of such a L is a self-adjoint operator with closed range. Denote by K
the right inverse of I defined by

K = [Llpgyapmi™: B(L) - R(L),

and by @ the orthogonal projector onto R(L).
Recall that if F: H — H is a (possibly) nonlinear operator, then F is said to
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be monotone (resp. strongly monotone) on H if, for all u, v in H one has

(Fv— Fo, u— 0) >0

(resp. (F'w— Fo, u— v)>elu— v, ¢>0),

and demi continuous on H if

Uy, —> 4 => Fu, — Fu,

where — denotes the weak convergence in H.
We can now state the special case of Theorem 2 of {4] used here and refer to it
as the continuation lemma.

CONTINUATION LEMMA. — Let Led (with right inverse K) and let F: H - H
be a monotone demi continuous operator.

Assume that there exisis a linear, strongly monotone operator A: H — H and a
number o > 0 such that the following conditions are satisfied:

a) KQF and KQA are compact on the closed ball B(g) of center O and radius o
in H.

b) F(B(o)) is bounded.
¢) (YAe[0,1[) (Yue D(L) N 2B(g)):
Ly— (1 — D Au— AFu=-0.

Then the equation

Ly — Fy =10

has at least one solution w e D(L) N B(p).

1. — Preliminary lemmas on linear problems.

Let H = LA(J) with the usual inner product (-, -) and corresponding norm |-|.
Let

Vmalty ) = 7~ exp (imi) sin(nz)
for me Z and ne N*. Bach 4 e H can be written as the Fourier series

U = Z UmnVma
mEZ
neN*

where #,, = (4, ¥,.). Note that, since u is real, Uy n= U_mnr.
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We define the abstract realization L in H of the above operator with the periodic-
Dirichlet conditions on J as follows. Let

D(L) == {u eH: > (n2— m2)2|upm|2< oo} ,
meL
'ILEZ\Y*

L:DIL) ~H, w4 Lu= 7Y (52— M) Uny Vs -
mez
neEN*

L is a self-adjoint operator in H with pure point spectrum consisting of its eigen-
values

o(L) = {n*—m*: meZ, neN*}.

One can see that O is an eigenvalue of infinite multiplicity and that the others have
finite multiplicity. Moreover, one can show that if he H, and w e D(L), then

Ly =h
if and only if % is a weak solution of the periodic-Dirichlet problem on J for the
equation
Wit Ugp = h; .
We refer to [1] or [2] for the corresponding details.

Let us number the eigenvalues of L consecutively, counting from 2, = 0, so
that the eigenvalues are

e < Z__g< l,_1< ;\.0: 0 < A1< ],2< eery
and let Ay, Ay, be a pair of consecutive eigenvalues of I, neither of which is zero.
Thus, either

0 < Ay< Ayia

or

j'N< ZN+1< O .

Let ¢ = (})(Ay + Av.1) and let {E;: 2€ R} be the spectral resolution of I, so
that L = II AdH,. Let P, P, be the orthogonal projections given by

P, =dei- ’ P, =J°‘;E7- ’
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and let H, = P,(H), Hy = P,(H). Then H, is spanned by the eigenfunctions of L
associated with the eigenvalues 4, for ¢< N and H, is spanned by the eigenfunetions
associated with 4; for >N 4 1.

Moreover

Pt =3 UpnVuns Poth = 2 UnnVun.
ni-miN nE=miZ N +1

Let us prove the fivst preliminary result.
LemMA 1. — Let o (resp. B) be functions in L(J) such that

ZN<d(t, Z‘)

(resp. B(l, @) < Ayia)
a.e. with

A< alt, x)

(?‘68}7. ﬂ(t, 50) < AN.H)

on & set of positive measure. Then there is a positive number 0, >0 (resp. d, > 0)
such that for any p e L (J) satisfying

oty #) <p(t, x)
(resp. p(t, ) <p(t, #))
and all w,e D(L) N Hy (resp. u,e D(L) N H,), one has
(1.1) (Lawy— pbyy ) <— O], |?

1.2) (resp. (Luy— ptia, ) > dslua?) .

PROOF. — The arguments for (1.1) and (1.2) are virtually identical, so we will
present the details only for (1.1). First of all, because p(t, #)> Ay for a.6. ({, %) €J,
it is easy to show that (Lu, — pu,, 4,)<0. Moreover, a(t, ) <p(t, ) a.e. on J and
hence
(1.3) {(Ltby— Py, ) <{Ltty— atty, %q) -

Thus if there is a 4, > 0 such that

(1.4) {(Ltby— oty ) <— 1)U, |2
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for all 4, € D(L) N H,, this will also establish (1.1). Suppose there is no such 4, > 0.
Then there is a sequence {u,,}, which we will denote simply by {u;}, in D(L) N H,
with ju,] =1 and

(1.5) - k—1<(Luk-“ auk’ %k) ) k - 1, 27 aee s

Now let Ay, < @< Ay<b < Ay, and define projections P, P by
o b
P:deA and P:deﬂ,

with H = P(H) and H = P(H), so that H, = H@® H, H is spanned by the eigen-
funetions associated with the 2, for i< N — 1 and H is the finite-dimensional space
spanned by the eigenfunctions associated with 4,. We will write w, = @i, + u,
where % = Pu, 4w = Pu. Now, since o(f, ) > Ay for a.e. (¢, #) € J, we have from (1.5)
that

— < (L — Ay iy, %)
which reduces to

— k< (g — Ay Uiy W) = z (n?— m? Iuknm{ - Z-Nfuk[ < (Ay_1— V)]aklgy

a—mi<AN,y

so that [#,] -0 as k — oo:
Now H is finite-dimensional and since 1 = |u,|2== |@,|*+ [i;]?>, we have that a

subsequence of {u,}, which we may relabel as {ur}, converges strongly to some
%e H, with |#] = 1. Consequently, we must have i({, ) + a.e. on J and

— k< (Lt — oty t0) = (Liy— otily, ) — 2 f alt, @) W (t, @) Tyt ) di da
J
- (Dl — ol W) <— (Ay— Ay_o)|a]2— 2 f alt, @) du(t, ) Tult, @) do
J
—l—J.(lN—— alty @) [@x(t, z)2dtdw .
J

Using @, — 0 and %, — % as k — oo, we obtain

0< [(Av— att, 2)fit, o) dbda,
J

and since Ay<«(?, ) for a.e. ({, x) eJ, we have

(1.6) [(as— att, @), @) parda = 0.
J

7 = Annali di Matematica
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However, (1.6) contradicts u(f, 2) 5= 0 a.e. on J since by hypothesis Ay — a(t, 2) < 0
on some subset of J of positive measure. This contradiction proves (1.4) and hence
{(1.1) and the proof of lemma 1 is complete.

LEmMA 2. ~ Let o and B be functions in L®(J) such that

Iv<alt, ) <Pt, #) <lAyia
a.e. with

Aw << ally z)
on a set of positive measure and
B, @) < 1N+1

on a sei of positive measure. Then there ave numbers d >0 and &> 0 such that for
any p € L®(J) satisfying

alt, #) — e<p(t, ») <Pt 2) + ¢

a.e. on J, one has
|Lw — pul> dul
for all u e D(L).

PRrOOF. ~ Suppose the conclusion of the lemma is false. Then there exists a
sequence {#,} in D(L) with {u:| = 1 and a sequence {p,} in L*(J} with

o

(w.7) oty 2) — 7 <palt, @) <Blty @) +
a.e. for each % =1,2, .., and
[ Lot~ Ptz <k,
% =1,2,... Thatis
(1.8) Lty — Prthe = [
with [fu[<k? and luf =1 (k=1,2,..).
Writing w, = W, + %e With wy, = Piug, s, = Py 4, we have uy € D(L) N H,

and wy, € D(L) N Hy for &k = 1, 2, ..., and, taking inner products with (1.8), we have

(Lt — Prthy, Yop— U) = (Fey War— t1z) 5
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which reduces upon expansion to
(1.9) (Lo, — DiYopy Bar) — (Lthsg— D Uary Wan) = (Fry Yar— Ugz) .
Now, by (1.7),
oty 2) <alty ) + 7
and

palty 1) —7 <plt, )

a.e. for each k= 1,2, .... So, using Lemma 1 we obtain the existence of 8, > 0
and d, > 0 such that, for all k=1, 2, ..., one has

1
(L“m—(pk + z) Urry %k) <— 6 ’umlg

and
1
(Luzk— (Pk—‘ E) Uy “wc) >0, f’lllec|2 .
Combining with (1.9) and using Schwarz inequality, this gives

1 1
52[“%{2_% I“zk!z"l‘ 61!“1k12—k‘ !u1k12< Ifkl ’“21:— %ml y

and hence

EOES

62]“2k12 -+ 6liuxkl2<

which implies that w,= %;; - %, converges strongly to zero. This contradicts
[#;] = 1 and thus proves the lemma

2. — The proof of theorem 1.

We now return to the periodic-Dirichlet problem on J for the semi-linear wave
equation (0.2) and proceed to the proof of Theorem 1 stated in the introduction.

Let 6 > 0 and ¢ > 0 be given by Lemma 2. By (0.5) we can find r > 0 such that,
for a.e. (#,#) in J and all u with Ju|>r, we have

alt, 2) — e<uf(t, , w)<pB(t, @) + &,



94 J. MAWHIN - J. WARD: Asymptotic nonuniform nonresonance conditions, efo.

This implies, by (0.1) that

1, 2, )| <(C + &)u| + h,(t, )

for a.e. (t,»)cJ and all w e R, with ¢ = Ay, if Ay > 0 and
quently, the mapping F defined on H by

Ay

if Ay, << 0. Conse-

(Fu)(t, x) = f(ty @, u(t, w))
will map H eontinuously into itself and take bounded sets into bounded sets. More-
over, the weak solutions of the periodic-Dirichlet problem on J for (0.2) will be the
solutions in D(L) of the abstract equation in H

(2.1) Ly — Fu=0.

Without loss of generality, we can assume from now on that Ay > 0 because, if

Ay << 0, then 0 > N = — N and we can consider the equivalent problem
L — Fu =0
where I = — L and ¥ = — F. Defining

O<ZN:—1_N7 &‘:—69 5:_0" f:_]c’
we see that
o) = {. < 1< Ia<0< W< h<..},

that (0.5) and (0.6) hold with a, B, f, Ay, Av.. respectively replaced by & f§, £,/ Ay, Ay
and that the function signiy-f(t,®, ) = f(t, @, -) = signA_yf(t, @, -) is non de-
creasing. We are therefore reduced to the case of A4y > 0. It implies by our assump-
tions on f(t, #, -) that F is monotone on H. As the right inverse K of L is clearly
compact, we see that KQF is compact on bounded sets of H. Define the linear
operator 4: H — H by

(Aw)(t, ®) = alt, #) ult, @)
so that 4 is continuous and strongly monotone on H, as «a(t, x)>Ay >0 for a.e.
(t, ) e d.
According to the continuation lemma stated in the introduction, equation (2.1)

will have a solution if the set of possible solutions of the family of equations

(2.2) Iw—(1— NAu— AFu=0, Ae[0,1],
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is a priori bounded independently of A. Define g on J xR by
u=1f(t, 2, u) it [u|>r

8, q~)7—‘+(1—f‘—‘)a(t, o) if 0<u<r
g(ty &y “) = ¥ U

r*lf(t,w,——r)i—f{—(l—}—@—;)oc(t, x) if —r<u<0,
and b on J xR by b{t, x, u) = (i, x, u) — g{t, x, w)u. It is easy to check that

olt, @) — e<g(t, @, u) <Pt, ») + ¢

for a.e. (t,z)ed and all we R, that ) satisfies the Caratheodory conditions for
L3(J) and that

(2.3) b(t, @, w)| <2h,(t, @)

for a.e. ({,2)€J and all we R. If we define, for each % e H, the linear mapping
Gu): H - H by

[G(u)v](t, ©) = g(t, =, u(t, x)) v(t, )

and if we define B: H — H by
(Bu)(t, ) = b(t, @, u(t, #)) ,
then, for each u e H, we have
Fu = Guw)w -+ Bu .
Thus, if » € D(L) is a solution of (2.2) for some 4 € [0, 1], it also satisfles the equation
(2.4) Lu—[A1— 14— AGu)]u = ABu .
But, by construction, we have, for a.e. (i, #) €J and every Ae[0,1],
a(t, @) — e< (L — D(4u)(, 2) + AG(u)ull, 2) <P, ») + ¢,

and hence, using Lemma 2, (2.3) and (2.4), we obtain

2h,|> |ABu| = |Lu — [(1 — A) A — G u)lu|> bl
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i.e.
] <26~1|h,|.

The conditions of the Continuation lemma are therefore satisfied for any ¢ > 26-1/a,],
and the proof is complete.

COROLLARY 1. — Let f: J X R — R satisfy the Caratheodory conditions for L*(J)
and be such that '

f(t7 2Ty U) — ,f(ty 2, )

(2.5) x(t, 7)< -

<p(t, x)

for a.e. (t, x) € J and all w +# v € R, with « and B like in Theorem 1. Then the periodic-
Dirichlet problem for equation (0.2) has a unigque weak solution.

PrOOF. ~ It follows from (2.5) that condition (0.5) holds and that signly-f(f, x, )
is non decreasing for a.e. (f, #) € J. Thus, the existence follows from Theorem 1.
If now % and v are solutions, then, letting w — u — v, w will be a weak solution of
the periodic-Dirichlet problem for equation

(2.6) Wee— Weo— [f(E &, 0 - w) — f{t, @, 0)] = 0.
Setting

w[f{ty @, v + w) — ft, 2y 0)], w0,
glt, 2, w) = X
alt, z) , ifw=290,

we see that (2.6) can be written

(2.7 Wye— Wep— gl&, 2, w)w = 0
with

alt, ®) <g(t, @, w) <Pt )

for a.e. (f, ) € J and all w e R. Consequently, by Lemma 2, we easily see from (2.7)
that w == 0, i.e. ¥ = v, and the proof is complete.

REMARK 1. — Condition (2.5) is in particular satisfied if the partial derivative
f.(t, @, u) exists and satisfles the condition

a(t, '”)<f;(t7 @, %) </3(t’ x)

for a.e. ({, 7)€ J and all we R, with « and § like in Corollary 1.



J. MAWHIN - J. WARD: Asymptotic nonuniform nonresonance conditions, ete. 97

REMARK 2. — The above results shows that if J is partitioned into two meas-
urables subsets J, and J, of positive measure and if p is defined on J by p(f, 2) = Ay
for (t, ) €J; and p(t, #) = Ay, for ({, x) € J,, then the periodic-Dirichlet problem
on J for the equation

Uy Upu— P, ) U = h{1, 2)

has a unique weak solution for every ke L3(J).
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