Oscillations of First-Order Differential Inequalities
with Deviating Arguments (*).

JAROSEAW WERBOWSKI (Poznan, Poland)

Summary. ~ This paper contains some new results on the oscillatory behaviours of differential
inequalities (N,) and (L) caused by retarded, advanced and general deviating arguments g;(t)
(i=1,..,n).

1. — Introduction.

In this paper we consider the oscillatory behaviour of first-order funectional-
differential inequalities of the forms

k4

(N.) (— D=y’ () sgny (@) >p@) [] lylg.)

§=1

la3

(L) (— 1)y’ () sgny(H) > > p(W)ly(g.1)],

i

%

where z = 1,2, r; (¢ = 1, ..., n) are nonnegative numbers with », + ... + r,=1, the
functions g,: B, —~ R, = [0, c0) and p, p,: B, — (0, c0) (i = 1,..., %) are continuous
and Jim g,(t) = co. We consider only solutions of (N,) or (L.) which are defined
for all large t. The oscillatory character is considered in the usual sense, i.e. a solu-
tion of (N,) or (L,) is ealled oscillatory if it has no last zero, otherwise it is called
nonoseillatory.

In recent years, the oscillations of the solutions of first-order functional-dif-
ferential equations and inequalities caused by retarded or advanced arguments,
has been studied in the papers [11-[17]. A characteristic feature of these papers
is the fact that the results obtained there are not valid for corresponding ordinary
differential equations and inequalities. In this paper we give sufficient conditions
under which all solutions of (N,) or (L,) oscillate. Our results generalize and improve
some results of the papers [2] and [4]-[15]. Some specific comparisons to known
results will be made in the text of the paper.

(*) Entrata in Redazione il 18 giugno 1984.
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2. — Retarded differential inequalities.

In this seetion we will assume without further mention that g,(f)<? (1 =1, ..., n)
on B, and let k(1) = sup g.(s).

0<s<it

THEOREM 1. — Assume that
t

(1) 3 lim int rk~J‘p(8) s>t
k=1 t—>co ¢

ox(t)

then all solutions of (N,) oscillate.

ProoF. — Suppose that there exists a nonoscillatory solution y(¢) of (¥,). Without
loss of generality we may suppose that y(¢) is positive for ¢>¢,. There is a ¢, >1,
sueh that y(g.(¢) >0 (i =1,...,n) for t>t, From (N,) it follows, that y(i) is
decreasing for t>%,. Since g,(t)<h;(#) (¢ =1, ..., n) for t>1,, then from (N,) we get
for i>1, i

n

(2) —y' @ =p@) [T ly(R()]" .

g=1

We follow similar arguments as in [6]-[8]. Dividing (2) by ¥(#) and next integrating
from h,(¢) to ¢ we obtain for ¢>1,

where

w(t) = ZIf[l [y—-(—y}%;—))]“ >1 for i>1,.

Multiplying both sides of the above inequalities by r, and next adding these ine-

qualities we derive
i

kaw(s)p(s) ds< Y r,In
1 ) k=1

n

y(t)

= In w(f) .
o=

Let y = li1tx_1> <imnf w(t). Then y>1 and is finite or infinite.

(a) Case y is finite. Then taking limit inferiors on both sides of the last ine-

quality, we obtain
[

y En: lim inf wkfp(s) ds<In y
A )
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that is
¢

> liminf Tkjp(s) ds<

Iny 1
k=1 {0 € ’
hi(t)

— <
4

which gives a contradiction, since (1) is equivalent to the following condition
[

(3) > liminf rkfp(s) ds >1 .
k=1 {—>co ¢

ha(t)

(b) Case p is infinite. Then

(4) Hm w(t) =00

f—>c0

From (3) it follows, that there exists a k € {1, ..., n} such that
|1

(5) lim inf kap(s) ds>C >0,
t—>o0

hi(t)

where C is some constant. Then (cf. [4]) for any t>1,>1, there exists a t* > ¢ such
that
t i*
C
(6) re | p(s) ds> 3 and 7 | p(s) ds>
he(t*) 11

Integrating now (2) from A,(f) to ¢ we derive
4

—y(t) + y(h(t)) > f P(s) ﬁ [y(hi(s))]r ds

i=1
he(t)

which imply, by monotonicy of k,(t) and y(t),

|2

> w(t) fp(s) ds .

hx(t)

In view of (4) and (5), from the last inequality we get

. y(t)
@ )

= Q.

Now from (2), by the fact that y(h,(f))>y(t) (i =1, ..., n) for ¢>¢,, we obtain

(8) —y' OO > p )y (Re(®)]™ .
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Integrating both sides of this inequality from &,(t*) to ¢ (cf. [4]), by (6), we find

for t>1,
[ ¢

. [y(hk(t*))]’k——[y(t)]fk>mfp(s)[y(hk(s))]”ds>m[y(hk(t))]“=' f p(s) ds> g[y(hk(t))]”-
hu(t*) he(8*)

Now, integrating (8) from ¢ to #*, similarly as above, we obtain
t*

(10) [y(&) s — [y(t*)]e =7, f 2()[y(hul(s)) ] ds> g[@/(hk(t*))]” .

i

Therefore from (9) and (10) we have

[y(t)]> (g)2 [y(h,c(t))]"k y izt

which contradicts (7). Thus the proof is complete,

REMARK 1. ~ Similar result as in Theorem 1 has been obtained recently by
LApas [6] in the ease n = 1 and g,(f) =t — 7,, 7, is positive constant, by KoPLA-
TADZE and CHANTURIA [4] in the case n = 1.

COROLLARY 1. — Consider the retarded differential imequality

(1) v) [y @) + aw) + 20 [Ty o)) <o,

=1

where r; (i =1,...,n) are the ratio of odd natural numbers with v, + ... +r,=1,
q: B, — R is continuous function, p(t) and ¢,(t) <t are the same as in (N,). Let

[ 8
(12) S lim in 'rkfp(s) exp( s r,fq(v) d'v) ds >12.

k=1 i-—>oc0 J=1

ox(t) 95(s)

Then all solutions of (11) oscillate.

12
PrOOF. — Putting in (11) y(f) = =(t) exp (—fq(v) dv) we obtain
1]
&

a®)| @'(0) + pit) exp( 3 s [ aw) av) - [T [algu0)]| <o
J=1 =1

91(t)

By Theorem 1 #(¢) ogeilate. Therefore y(f) also oscillate.
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REMARK 2. — In the case ¢,(t) = t — 7;, 7. is a positive constant, and ¢(¢})>0 for
te R, the analogous problem as in Corollary 1 has been considered by LADAS and
STAVROULAKIS [7] for # = 1, and by STAVROULAKIS [15] for #>1. According to
Theorems 1 and 2 of {15] all solutions of (11) with g¢,(f) = { — 7, are oscillatory if

i t
. 1 o C
(13) lim me.p(s) ds >zexp (—— lim 1nffq(s) ds), T == MiN (Ty, vy Tp) -
f~>oc0 f—>» o0
i—7 t—1 -

Notice that if the condition (13) is satisfied, then also the condition (12) holds.

THEOREM 2. ~ Hach one of the following conditions

1 8
n
(14) lim inffpk(s) exp( f 2 24(v) dv) ds >—1é
e ax(t) o1(s) :;;

for some ke {1, ..., n},

t
(15) lim in f S pdsds >, o) = max (g(0), .., 6a(0)
=1

{—>co

a(t)

implies that every solution of (L,) oscillates.

Proor. — Let y(f) be a nonoseillatory solution of (Z,) and let y(¢) >0 and
y(g:() >0 (i =1,...,n) for 1>1%,. Since y(g.(t)>y(9(¢)) >y(?) for ¢>1,, therefore
from (Z,) we get respectively

y'(t) + y(t).Z P:(t) + px(t)y(g:(2)) <O
ot
and

y' @) +ylg®) 3 pi<0.
i=1

By Corollary 1, in view of (14) and (15) respectively, y(¢) oscillate. But this con-
tradicts our assumption that y(¢) > 0. Thus the proof is complete.

REMARK 3. — The analogous results as in the case (15) of Theorem 2 has been
obtained by LADDE [9] and by LapAS and STAVROULAKIS [8] for g,(f) =t — 7,.

3. — Advanced differential inequalities.

In this section we will assume without further mention that g,(f)>¢ (4 =1, ..., n)
on B . By a similar argument as in the proofs of Theorems 1 and 2 we ean obtain
the following dual results about advanced differential inequalities (N,) and (L,).
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THEOREM 3. — Assume that
ox(t)

(16) > liminf rkfp(s) ds > 12,

k=1 {->o0

then all solutions of (N,) oscillate.

THEOREM 4. — Hach one of the following conditions
gx(t) ox(8)

(17) lim inf | p(s) exp( P{) dv) ds >%
=1
b

t—>00 ]

.

8

.

for some ke {1, ..., n},
a(f)
K

(18) lim inff pis) ds > }é’ g(t) = min (g,(2), ..., ga(t)) ,
=1

t—>co 4
t

implies that every solution of (L,) oscillates.

REMARK 4. — From Theorem 4, in the case g;({)=1¢ + 7;,, 7, >0 (¢ =1, ..., n),
we obtain some results of LADAS and STAVROULAKIS [8] if #>1 and of KuUsANno [5]
if » = 1. We notice that the condition (17) is better than the analogous condition
of [8] which has the form

i+ Tx

lim inffpk(s) ds >% .

>0

4. — Inequalities with general deviating arguments.

In this section we consider the differential inequalities (¥,) and (L,) with general
deviating arguments g,(t), not necessarily retarded (g.(t)<?) or advanced (g:(f)>7)
arguments. :

We denote

Let a;,d;: R, -~ R, (¢ =1,..., n) be nondecreasing continuous functions such that

(19) d(t)<t<a;(t) fortekR,,
19
g.(t)<d,(t) forteD and a,f)<g:t) forited.



JAROSLAW WERBOWSKI: Oscillations of first-order differential, etc

3389
Set

Di(t) = DN [di(t), ], At) = AN, a.()].

THEOREM b. — If

(20) lim sup H [ f 8) ds] >1,
t—>ca

Dr(t)

then all solutions of (N,) oscillate.

Proor. — Let y(t) be a nonoscillatory solution of (N;) and let %(#) >0 and
¥{(g9:(t)) >0 (4 =1, ...,m) for t>1,. Integrating (N,) from d,(¢) to ¢ we obtain

s))rds, (k=1,..,n)
t=1 §=
dr(t) . Dx(t)

lau) == [ 26) [T Itg.) as [ 26s) [ 1ote

for t>t,>1,.

Since #(t) is decreasing, in view of (19), we have for se D.?)
(k=1,..,n) and t>1,

?/(gi(s)) >?J(di(3)) >?/(di(t)) y (t=1,..

Thus, we derive for t>1,

i

(1)) > ﬁ [y(a:1))] fp(S)dS, (k=1,..,n).
- Dxl(t)

Raising both sides of the above inequality to 7, and next multypling these ine-
qualities we obtain

;ﬁl [y(@.®)]> ,ﬁl Lﬁ [y(di(t))]"]rk : k[jl[ f p(s) dsr .

Dx(t)
Since 7, 4 ... + 7, =1, then the last inequality gives

n k23
SUEECLIE
= D(t)
which contradicts the condition (20).

In exactly the same way we can prove the following theorem
THEOREM 6. ~ If
(21) 11mSupH [f s)ds]k>1,

oo Ar()
then all solutions of (N,) oscillate.
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REMARK 5. — Similar results as in Theorems 5 and 6, in the case n = 1, have
been obtained in the paper [2]. The analogous problem for », 4 ... +7,>1 (< 1)
has been considered in the papers [2, 3] and [16, 17].

CoROLLARY 2. — Consider the retarded differential tnequality (11), where p, q, g;
and v, are the same as in Corollary 1. If

4

(22) lim sup H [f (8) exp (ﬁ: ijq(v) dv) ds]“ >1,

t—>co ji=1
dr(t) 95(s)

then all solutions of (11) oscillate.

REMARK 6. — In the case of retarded differential equations and inequalities oscil-
lation criteria of similar nature as in Corollary 2 have been obtained by Narro [11],
Sr1cas and Statkos [12], STAIKOS and STAVROULAKIS [14]. According to Th. 2
of [11] or Th. 4 of [12] or Th. 2 of [14] all solutions of (11) with ¢(¢) = 0, are
oscillatory if

i

(23) lim supfp(s) ds>1, d(t) = max (dy(t), ..., d.(3)) .
t-—>o0

o)
We notice that the condition (23) implies (22).

THEOREM 7. - If

(24) lim sup{}n: J‘pk(s) ds + 2 Zn: V J‘pi(s) ds- fpk(s) ds} >n,
t—>o0 k=1 k<i

Dx(t) kyi=1 Dr(l) Di(t)

then all solutions of (L) oscillate.

Proor. — Suppose, that (IL;) has a nonoscillatory solution y(t) >0 for t>t,.
Therefore y(g,-(t)) > 0 for t>1t,>1,. Integrating (I,) from d.(¢) to ¢ we get for t>1,

3

W) =)= [ 3 pdorsla) as, =10,

%(3)

which gives, by (19) and monotonicy of y(t),

wa0)> 3 [ powtots) as> 3 ala )fms)ds, (=1, m).

ch(t) Dr(t)
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Dividing now the both sides of the above inequality by y(d.(¢)) and next adding
these inequalities we derive ’

d y(dit)) | y(d(t)) . f
g f W8} ds + kg@[ fpi(s) ds + Y(4:0) Di(8) ds] )

Dx(t) kyi=1 Dr(t) Di(t)

Using the fact that

y(dz-(t);.fp,.@) ds—|—‘7;(gk_(t)) -fpk(s) ds>2V fpz-(S) ds- fpk(s) ds

Dr(t) Dq(t) Dx(t) Di(t)

the lagt inequality implies

%>z Puls ds+2§‘/f f Da(8) ds

Dk(t) k=1  Dx(t)

which contradicts (24).

In the case y(¢) << 0 the proof is analogous. Thus, the proof of Theorem is
complete.

In exaectly the same way we can prove the following theorem.

THEOREM 8. — if

(25) limsup{z fpk ds + 2 z Vf fp,c(s) ds}>n,
t—>co =1

Ax(t ,'L=1 Ar(t) Ai(t)

then all solutions of (L,) oscillate.
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