D_{π}-Property and Normal Subgroups (*).

Anna Luisa Gilotit

Summary. $-D_{\pi}$-property $(\pi=$ set of primes) in finite groups is not in general inherited by subgroups. In this paper, as evidence in favor of the following conjecture (F. Gross):
(o) If a finite group G satisfies D_{π} then its normal subgroups satisiy D_{π} as well.
the Author shows that if the D_{π} and the $D_{\pi^{\prime}-p r o p e r t i e s ~}$ ($\pi^{\prime}=$ set of the primes not in π) hold logether in a finite group G, then both are inherited by the normal subgroups of G. As a corollary, the characterization of the groups satisfying both the properties D_{π} and $D_{\pi^{\prime}}$ is given in terms of the composition factors.

0. - Introduction.

Let π be a set of primes and let G be a finite group,
Recall that G satisfies D_{π} if G has a Hall π-subgroup H and each π-subgroup of G is contained in a conjugate of H.

This definition, together with those of the properties C_{π} and E_{π}, were set by P. Hall in his well known article "Theorems like Sylow's" [1].

It is straigthforward to see that if a finite group G satisfies D_{π} (i.e. there exists in G a Hall π-subgroup) then its normal subgroups satisfy E_{π} as well.

Examples of finite groups satisfying the C_{π}-property (i.e. having a unique conjugacy class of Hall π-subgroups) but in which there are normal subgroups not satisfying C_{π}, have been provided by F. Gross in [2 see pg. 11].

In the same paper, F. Gross asks the question if the D_{π}-property is inherited by normal subgroups, or if this holds only for a special class of groups.

Counterexamples to the conjecture:
(o) If a finite group G satisfies D_{π} then its normal subgroups satisfy D_{π}
do not seem to exist.
As evidence in favor of this conjecture in this paper, it is shown that if a finite group G satisfies both the D_{π} and $D_{\pi^{\prime}}$ properties (π^{\prime} indicates the set of primes not in π) then normal subgroups have the same properties (see Theorem 1.4).

[^0]The proof of this theorem uses results by Arad-Fisman on factorizable simple groups [3] and so it holds modulo the finite simple groups classification.

Further, in the second section, it is shown that if $\operatorname{PSL}(2, q)$ satisfies the $D_{\pi^{-}}$ property then its automorphism group satisfies the same property.

This result with the already cited Theorem 1.4 is then applied to give a characterization of all finite groups satisfying both the D_{π} and D_{π}-properties, generalizing the results of the joint paper of the Author with L. Serena [4].

1. - All groups considered in this paper are finite and notation not explicitely introduced is standard (cfr. [5]).

Let \boldsymbol{P} the set of all primes. Let us denote by π a subset of \boldsymbol{P} and by π^{\prime} the complementary set of π in \boldsymbol{P}.

If n is a natural number, let us denote by $\pi(n)$ the set of primes dividing n.
If G is a finite group indicate by $\pi(G)=\pi(|G|)$.
Further, denote by D_{π} (resp. C_{π}, E_{π}) the class of finite groups satisfying the D_{π}-property (resp. C_{π}, E_{π}).

Finally, $D_{\pi, \pi^{\prime}}$ (resp. $C_{\pi, \pi^{\prime}}$) is the class of finite groups belonging to both D_{π} and $D_{\pi^{\prime}}\left(\right.$ resp. C_{π} and $C_{\pi^{\prime}}, E_{\pi}$ and $E_{\pi^{\prime}}$).

Let us list, in the following proposition, two preliminary observations:
Proposition. - Let G be a group belonging to D_{π} and let N be a normal subgroup of G.
i) N has H all π-subgroups and they have the form $H^{x} \cap N$, where H is a Hall π-subgroup of G and $x \in G$. So they are conjugate in G, in particular, isomorphic.
ii) If $N \in C_{\pi}$, then $N \in D_{\pi}$.

Proof. - i) is straigthforward; ii) is immediate by i) see also [2 Corollary 4.3].
Lemma 1.1. - Let G be a group and M be a normal subgroup of G, if G / M is a π-group and if $G \in \bar{D}_{\pi}$, then $M \in D_{\pi}$.

Proof. - We have $G=M H$ where H is a Hall π-subgroup of G. By the previous Proposition i), the Hall π-subgroups of M are of the form $H^{x} \cap M, x \in G$. But $x=h m$ for some $\hbar \in H, m \in M$ and so $H^{x} \cap M=H^{m} \cap M=(H \cap M)^{m}$.

It follows $M \in C_{\pi}$, so by Proposition ii), $M \in D_{\pi}$ as claimed.
Lemma 1.2. - Let $2 \in \pi$ and let G be a group in D_{π}. Let M be a normal subgroup of G. Assume that G has a Hall π^{\prime}-subgroup K, then $M K \in D_{\pi, \pi^{\prime}}$.

Proof. - It is easily seen that $M K \in E_{\pi, \pi^{\prime}}$.
By results in [3] $M K \in D_{\pi^{\prime}}$.
The Hall π-subgroups of $M K$ coincide with those of M and so, by Proposition i) are of the form $H^{g} \cap M, g \in G$ (H indicates a Hall π-subgroup of G).

Since $G=H K$, there exist elements $h \in H$ and $k \in K$ such that $g=h k$. So $H^{g} \cap M=H^{k} \cap M=(H \cap M)^{k}$.

Thus the Hall π-subgroups of $M K$ are conjugate by elements of K, so, in particular, they are conjugate in $M K$.

It follows $M K \in C_{\pi}$. But, since each π-subgroup of $M K$ is necessarily contained in M, by Proposition ii) $M K \in D_{\pi}$. So $M K \in D_{\pi, \pi^{\prime}}$.

Lemma 1.3. - Let M be a simple group and let G be a group such that M is normal in G and $C_{G}(M)=1$. Suppose $G \in D_{\pi, \pi^{\prime}}$, then $M \in D_{\pi, \pi^{\prime}}$.

Proof. - Identifying M with $\operatorname{Inn}(M)$ we can write $M \leqslant G \leqslant A u t(M)$.
Let $2 \in \pi$, so π^{\prime} is a set of primes, all odd. Since $M \in E_{\pi, \pi^{\prime}}$, by results in [3], $M \in D_{\pi^{\prime}}$. We need only to show that $M \in D_{\pi}$, and, by Proposition ii), it will be enough to show that $M \in C_{\pi}$.

For our analysis, we can restrict ourselves to the list of factorizable simple groups see [3 Theorem 1.1].

By Lemma 1.1 we can eliminate all the following possibilities for $M: A_{r} ; M_{11}$; $M_{23} ; \operatorname{PSL}(2, q)$ (q a prime); $\operatorname{PSL}(5,2$).

By Lemma 1.2, we can assume G / M to be a π^{\prime}-group. Further, by Proposition i), we can also assume that the maximal π-subgroups of M are isomorphic, since, by the hypothesis on G, they are necessarily Hall π-subgroups of M. This enables us to eliminate the cases: $M \cong \operatorname{PSL}\left(2,2^{k}\right)$ and $M \cong \operatorname{PSL}(2, q)$ (with $2,3 \in \pi$) (for the second case see also next Lemma 2.1).

It only remains to analyze the following two cases:
I) $M=P S L(r, q)$ where r is an odd prime and $(r, q-1)=1 q=p^{n}$, and A is a maximal parabolic subgroup such that $P S L(r-1, q)$ is involved in A (A indicates here a Hall π-subgroup of M).
II) $M=\operatorname{PSL}(2, q)$, where $q=p^{n}, 3<q \not \equiv 1(4)$ and π is such that

$$
\pi \frac{(q(q-1))}{2} \subseteq \pi^{\prime} \quad \text { and } \quad \pi(q+1) \subseteq \pi
$$

In the case I) $P S L(r, q) \cong S L(r, q)$ and since $(r, q-1)=1$ and G / M is a π^{\prime}-group, $|G| M \mid$ divides n.

It follows then that G / M is isomorphic to a subgroup of the cyclic group of the automorphisms of $G F\left(p^{n}\right)$.

As in [4], by considering the Hall π-subgroups of M,

$$
\left.A_{1}=\left\{\begin{array}{c:c}
1 & r-1 \\
r-1 & * \\
\hdashline 0 & *
\end{array}\right)\right\} \quad A_{2}=\left\{\begin{array}{c}
r-1 \\
1
\end{array}\left(\begin{array}{c:c}
* & * \\
\hdashline 0 & *
\end{array}\right)\right\}
$$

we have that A_{1} and A_{2} are not conjugate in M.

But they cannot be conjugate also in G, since if φ is a field automorphism $A_{i}^{\varphi}=A_{i}$, for $i=1,2$.

So this case does not appear, since G must belong to D_{π}.
In the case II), the Hall π-subgroups of M are either the normalizers of some Sylow t-subgroup (where t is an odd prime, $t \in \pi(q+1)$) or the Sylow 2 -subgroups (if q is Mersenne); so, with the same argument as in [4], we can prove that $M \in D_{\pi}$, as we needed to show. The Lemma is proved.

Remark. - We actually characterize all simple groups in $D_{\pi, \pi^{\prime}}$ in the Section 3.
We can now prove:
Theorem 1.4. - Let G be a group such that $G \in D_{\pi, \pi^{\prime}}$, and let M be a normal subgroup of G, then $M \in D_{\pi, \pi^{\prime}}$.

Proof. - We proceed by induction on $|G|+|M|$.
Let N be a minimal normal subgroup of G contained in M.
If $N<M$, then, by induction, $N \in D_{\pi, \pi^{\prime}}$. Further $G / N \in D_{\pi, \pi^{\prime}}$, and so, since $|G / N|<|G|$ and $M / N \unlhd G / N$, we have, by induction, $M / N \in D_{\pi, \pi^{\prime}}$. But then, from $N \in D_{\pi, \pi^{\prime}}, M / N \in D_{\pi, \pi^{\prime}}$, and $G \in D_{\pi, \pi^{\prime}}$, by [2 Lemma 4.2], we get $M \in D_{\pi, \pi^{\prime}}$, as we claimed.

Thus we may assume $N=M$, so that M is a minimal normal subgroup of G. In particular, we may assume that M is the direct product of non abelian simple isomorphic groups

$$
M=S_{1} \times S_{2} \times \ldots \times \boldsymbol{S}_{n}
$$

where $S_{j} \cong S$, where S is a group in the list of [3 Theorem 1.1], and $j=1, \ldots, n$.
Assuming that $2 \in \pi, \pi^{\prime}$ consists only of odd primes, so, by [3], $M \in D_{\pi^{\prime}}$. It is enough to prove then that $M \in D_{\pi}$.

By Lemma 1.2, we may assume G / M is a π^{\prime}-group.
Now let A_{1} and A_{1}^{*} be Hall π-subgroups of S_{1}.
For $1 \leqslant i \leqslant n$, there exists $g_{i} \in G$ such that $\mathcal{S}_{i}=\mathcal{S}_{1}^{g_{i}}$, and choose $g_{1}=1$.
Let $A_{i}=A_{1}^{g_{i}}$ and $A_{i}^{*}=A_{1}^{* g_{i}}$. Let $H=\left\langle A_{i}: 1 \leqslant i \leqslant n\right\rangle=A_{1} \times A_{2} \times \ldots \times A_{n}$,

$$
H^{*}=\left\langle A_{i}^{*}, 1 \leqslant i \leqslant n\right\rangle=A_{1}^{*} \times A_{2}^{*} \times \ldots \times A_{n}^{*}
$$

Then H and H^{*} are Hall π-subgroups of G and so, since $G \in D_{\pi}$, there exists $g \in G$ such that $H^{*}=H^{g}$.

Now, g must permute S_{1}, \ldots, S_{n} and so $S_{i}^{g}=S_{1}$, for some i.
For this $i, g_{i} g \in N_{G}\left(S_{1}\right)$ and $A_{1}^{*}=H^{*} \cap S_{1}=H^{g} \cap S_{i}^{g}=\left(H \cap S_{i}\right)^{g}=A_{i}^{g}=A_{1}^{g_{i} g}$.
Hence A_{1}^{*} and A_{1} are conjugate in $N_{G}\left(S_{1}\right)$. It now follows that

$$
\left(N_{G}\left(\mathbb{S}_{1}\right) /\left(S_{2} \times \ldots \times S_{n}\right)\right) /\left(\left(S_{1} \times \ldots \times S_{n}\right) /\left(S_{2} \times \ldots \times S_{n}\right)\right)
$$

is a π^{\prime}-group.

Since every π-subgroup of S_{1} is contained in some Hall π-subgroup of S_{1}, it follows that $N_{G}\left(S_{1}\right) /\left(S_{2} \times \ldots \times S_{n}\right) \in D_{\pi}$.

Since $C_{G}\left(S_{1}\right) \geqslant S_{2} \times \ldots \times S_{n}$, we have that $N_{\theta}\left(S_{1}\right) / C_{G}\left(S_{1}\right) \in D_{\pi}$.
But $\Phi_{1} \leqslant N_{G}\left(S_{1}\right) / C_{G}\left(S_{1}\right) \leqslant \operatorname{Aut} S_{1}$.
Since M satisfies $D_{\pi^{\prime}}, S_{1}$ satisfies $D_{\pi^{\prime}}$ (see [2]), further $\left(N_{G}\left(S_{1}\right) / C_{G}\left(S_{1}\right)\right) / S_{1}$ is a π^{\prime}-group.

So, by Lemma 1.1, $N_{G}\left(S_{I}\right) / \theta_{G}\left(S_{1}\right) \in D_{\pi^{\prime}}$.
It now follows, by Lemma 1.3, that $S_{1} \in D_{\pi, \pi^{\prime}}$. But then $M \in D_{\pi, \pi^{\prime}}$, and Theorem 1.4 is proved.

2. - The D_{π}-property and the simple groups $P S L(2, q)$.

In this Section, we expose some results on the property D_{π} in the groups $P S L(2, g)$; some of which will be applied in the third Section.

All trough this Section, no requirements on the $D_{\pi^{\prime}}$-property have been done.
Lemma 2.1. - Let $G=\operatorname{PSL}(2, q)$, where $q=p^{n}$. Let us assume that $G \in D_{\pi}$ and $2,3 \in \pi$. Then $\pi(G) \subseteq \pi$.

Proof. - We can obviously assume $q>3$. Let H be a Hall π-subgroup of G and let $2,3 \in \pi$. Let us examine the possibilities for H, looking at the Dickson's list (see [5]).

1st Step. - H cannot be cyctic.
In fact if H were cyclic of order t, t should divide $(q \pm 1) / \varepsilon$ where $\varepsilon=(2, q-1)$. But there is an involution normalizing H so that H cannot be Hall.

2nd Step. - H cannot be dihedral of order $2 t$ where t divides $(q \pm 1) / \varepsilon, \varepsilon=(2, q-1)$.
Since $q>3, A_{4}$ is a subgroup of G and so A_{1} should be contained in a dihedral group and this is not possible.

3rd Step. - H cannot be isomorphic to A_{4}.
If $H \cong A_{4}$, then for $p=2$ we get $G \cong P S L(2,4) \cong A_{5}$, which does not satisfy $D_{\{2,3\}}$. For $p>3$, then there exists in G a dihedral group of order 6 which cannot be contained in any copy of A_{4}.

4th Step. - H cannot be isomorphic to \S_{4}.
If S_{4} were a Hall π subgroup of G, then $G \notin C_{\pi}$, since there would be two conjugacy classes of subgroups isomorphic to S_{4} in G (see [5 pg. 202]).

5th STEP. - H cannot be isomorphic to A_{5}.
Let $H \cong A_{5}$, then $\{2,3,5\} \subseteq \pi$.

If $q=5,4$ then $G \cong A_{5}$ and in this case the theorem holds.
If $q>5$, let $5 /(q-1)$. If 2,3 do not divide $(q-1) / 2$ then 2,3 divide $q+1$ and so there exists in G a dihedral subgroup of order 12 , that cannot be contained in any copy of A_{5}. So either 2 or 3 divide $(q-1) / 2$. Then there exists a cylic group of order either 10 or 15 , that cannot be contained in any copy of A_{5}.

The same if $\check{5} /(q+1)$.
6th Step. - H cannot be a Frobenius group of order $q(q-1) / \varepsilon$ (or in general of order $q t$, where $t /((q-1) / \varepsilon), \varepsilon=(2, q-1))$.

Since in G there exists a dihedral group of order $2(q-1)$ (resp. $2 t$), it should be $q=2^{k}$. But the dihedral group of order $2\left(2^{k}-1\right)$ is maximal in G and so it cannot be contained in any copy of H.

So if $2,3 \in \pi$, we get $H=G$.

REMARK 2.2. - Suppose $G=P S L\left(2,2^{k}\right)$ and $G \in D_{\pi}$ for a set of primes π such that $\pi(G) \nsubseteq \pi$. If $2 \in \pi$, then $\pi=\{2\}$.

Theorem 2.3. - Let G be a group such that $M \leqslant G \leqslant \operatorname{Aut}(M)$, where $M=P S L(2, q)$, $q=p^{m}(p$ a prime $)$. If $M \in D_{\pi}$, for some set π, then $G \in D_{\pi}$.

Remark. - The following proof is based on the proof of Theorem 2.2 [4], for that reason we omit those steps that can be found in [4].

Proof. - The proof is, by induction on $|G: M|+|M|$.
Let G be a minimal counterexample to the Theorem.
As in [4], $G \in C_{\pi}$: Let H be a Hall π-subgroup of G. Since $G \notin D_{\pi}$, there exists a π-subgroup K, such that $K \$ H^{x}$, for every $x \in G$. We can assume $K \pi$-maximal. As in [4] we can assume $G=H M$ and so $G / M \pi$-group. Further we observe that if T is a solvable subgroup of M, since $N_{G}(T) / N_{M}(T)$ is solvable and $N_{M}(T)$ is solvable, $N_{G}(T)$ is solvable too.

So as in [4] we get $G=K M$ and $K \cap M \leqslant H \cap M$.
Suppose first $K \cap M=1$. Then if $(|K|,|M|)=1$ we can proceed as in [4], once we observe that H is solvable.

So we can assume r is a prime dividing $|M|$ and $|K|$. Let y be an element of order r in K and let R be a Sylow r-subgroup of G containing $\langle y\rangle . C_{G}(y)$ has as a subgroup an elementary abelian subgroup of order r^{2}. Further $K \leqslant O_{G}(y)$, since K is abelian. Now $O_{G}(y)<G$, so either $C_{G}(y)$ is solvable or

$$
C_{\theta}(y) \cap M \cong\left\{\begin{array}{l}
P S L\left(2, p^{r}\right) \\
P G L\left(2, p^{s}\right)
\end{array} \quad \text { where } p^{r} / p^{m}=q \text { or } p^{2 s} / p^{m}=q\right.
$$

If $C_{G}(y)$ is solvable then we get the contradiction as in [4].

So suppose the other case holds. Let $O=C_{G}(y)$.
Then $\quad C_{C}(C \cap M) \quad$ is solvable and $\quad C / C_{C}(C \cap M) \approx \operatorname{Aut}\binom{P S L\left(2, p^{r}\right)}{\operatorname{PGL}\left(2, p^{s}\right)}$ and $C / C_{0}(C \cap M) \in D_{\pi}$. It follows $C \in D_{\pi}$. As before we get a contradiction.

So we may assume that $K \cap M \neq 1$ and $K \cap M<H \cap M$.
Since H and K are both solvable and K is a Hall π-subgroup of every solvable subgroup of G in which it is contained, it follows that K is a Hall π-subgroup of $N_{G}(K \cap M)$.

It follows then $N_{G}(K \cap M) \cap(H \cap M)=N_{H \cap M}(K \cap M)=K \cap M$.
So, since $K \cap M$ is properly contained in $H \cap M$, we can exclude the possibilities $H \cap M$ cyclic and $H \cap M$ a Sylow r-subgroup of M (in general $H \cap M$ nilpotent).

If $H \cap M$ is dihedral, then we can proceed as in [4], with just the remark that the normalizer in G and so the centralizer of a solvable subgroup of M is solvable and so it satisfies D_{π}, and, further, that 3 cannot be in π in this case, by Lemma 2.1.

So $H \cap M$ must be a Frobenius group of order a divisor of $q(q-1)$.
Since $K \cap M$ is selfnormalizing in $H \cap M, K \cap M$ can be neither a p-subgroup nor a subgroup of order a proper divisor of $((q-1) /(2, q-1),|H \cap M|)$. Further $K \cap M$ cannot have as order $|H \cap M| / q$.

In fact in this case, $K \cap M$ would be a Hall π_{0}-subgroup of $H \cap M$ with $\pi_{0}=$ $=\pi-\{p\}$. Since H is solvable, by Frattini's argument we would have

$$
H=(H \cap M) N_{H}(K \cap M)
$$

But $N_{H}(K \cap M) \cap H \cap M=K M$, so it would follow $\left|N_{H}(K \cap M)\right|=|K|$.
Further $N_{G}(K \cap M) \geqslant K, N_{H}(K \cap M)$.
Since $N_{G}(K \cap M)$ is solvable and K is a Hall π-subgroup of it, K would be conjugate to $N_{H}(K \cap M)$ and so we would bave a contradiction. So $K \cap M$ must have a composite order $p^{r} t$ where t is a divisor of $p^{r}-1, r \leqslant n$.

Let H_{0} be the Frobenius kernel of $H \cap M$ and let K_{0} that of $K \cap M$.
The Sylow p-subgroups of $P S L(2, q)$ are TI-sets. Hence $K \cap M$ must normalize the entire Sylow p-subgroup of $\operatorname{PSL}(2, q)$. So $H_{0}=K_{0}$.

But then $H, K \leqslant N_{G}\left(K_{0}\right)$ and with the same argument we get the final contradiction.
3. - We now apply the results of Theorem 1.4 and Theorem 2.3 to obtain a characterization of finite groups in the class $D_{\pi, \pi^{\prime}}$.

The following Theorem 3.2 is a generalization of Theorem 2.2 [4].
First we need to characterize simple groups in $D_{\pi, \pi^{\prime}}$ in the following:
Lemma 3.1. - If G is a simple group in $D_{\pi, \pi^{\prime}}$, whose order is divisible by primes in π and in π^{\prime}, then $G=P S L(2, q)$, where $q>3, q(q-1) \equiv 0(3), q \equiv-1(4)$ and $\pi(q+1) \subseteq \pi, \pi(q(q-1) / 2) \subseteq \pi^{\prime}$.

Proof. - Since the following proof is the revisioned version of the proof of Theorem 1.1 [4], we omit the parts of the proof that can be found in [4]. Further we adopt the same notation.

As in [4] G is one of the groups in the Arad-Fisman list $[3], G=A B$, where A is a Hall π-subgroup and B is a Hall π^{\prime}-subgroup.

If $G \cong A_{r}$ or $G \cong P S L(2, q) \quad q \in\{11,29,59\}$ or $G \cong P S L(r, q) \quad r$ odd with $(r, q-1)=1$, or $G \cong P S L(5,2)$, then $G \notin D_{\pi, \pi^{\prime}}$ and the proof is in [4].

If $G \cong M_{11}$ then we have two possible cases a) $A \cong M_{10} ; b$) A solvable.
In case a) $\pi=\pi(A)=\{2,3,5\} ; \pi^{\prime}=\{11\} . S_{5}$ is a subgroup of G and it is maximal. So $G \notin D_{\pi}$ in this case.

In case b) $\pi=\pi(A)=\{2,3\} ; \pi^{t}=\{5,11\} . G L(2,3)$ is a subgroup of G and it is not contained in any Hall π-subgroup of G (which is the normalizer of a Sylow 3 -subgroup of G), since $G L(2,3)$ is maximal (see [6]).

So $G \notin D_{\pi}$ also in this case.
If $G=M_{23}$, then we have to consider the following two cases: a) $A=M_{22}$ and B of order $23 ; b$) B Frobenius group of order 11.23.

In case a) the proof is the same as in [4] and we get $G \notin D_{\pi, \pi^{\prime}}$:
In case b) A is a split extension of an elementary abelian group of order 2^{4} by A_{7}. Since A_{8} is contained in M_{23} and it is maximal we get $G \in D_{\pi z}$ (see [6]).

It only remains the case $G=P S L(2, q)$ where $3<q \not \equiv 1(4)$ and A solvable.
As in [4] the unique possible factorization for G is with A dihedral of order $q+1$ and B Frobenius group of order $q(q-1) / 2$.

As in [4] we have 3 divides $q(q-1)$ and in such hypothesis, we can prove $G \in D_{\pi, \pi^{\prime}}$. (By Remark 2.2 we can exclude q a power of 2).

Now we can prove:
Theorem 3.2. - Let G be a group. Then $G \in D_{\pi, \pi^{\prime}}$ if and only if the composition factors of G are of the following types: 1) π-groups; 2) π^{\prime}-groups; 3) simple groups $\operatorname{PSL}(2, q)$, where $q>3, q(q-1) \equiv 0(3), q \equiv-1(4), \pi(q+1) \subseteq \pi$ and $\pi(q(q-1) / 2) \subseteq \pi^{\prime}$.

Proof. - If $G \in D_{\pi, r_{i}^{\prime}}$, then, by Theorem 1.4 every subnormal subgroup of G belong to $D_{\pi, \pi^{\prime}}$. It follows that, if M / N is a composition factor of $G, M / N$ is a π-group or a π^{\prime}-group or M / N is isomorphic to a simple group $\operatorname{PSL}(2, q)$ with the required properties by Lemma 3.2.

Viceversa follows using induction, Theorem 2.3 and [2, Th. 4.6].

BIBLIOGRAPHY

[1] P. Hall, Theorems like Sylow's, Proc. London Math. Soc., (3) 6 (1956), pp. 286-304.
[2] F. Gross, On the existence of Hall subgroups, J. of Algebra, 98 (1986), pp. 1-13.
[3] Z. Arad - E. Fisman, On finite factorizable groups, J. of Algebra, 86 (1984), pp. 522-548.
[4] A. L. Gilotti - L. Serena, A generalization of π-separability in finite groups, Arch. Math., 97 (1986), pp. 301-308.
[5] B. Huppert, Endliche Gruppen, I, Springer-Verlag, Berlin-Heidelberg, 1967.
[6] S. A. Sismin, Abstract properties of the simple sporadic groups, Russian Math. Surveys, 35 (1980) II, pp. 209-246.

[^0]: (*) Entrata in Redazione il 10 marzo 1986.
 Indirizzo dell'A.: Istituto di Matematica Applicata «G. Sansone», Università degli Studi di Firenze, Via di S. Marta 3-50139 Firenze, Italia.

