D_{π} -Property and Normal Subgroups (*).

Anna Luisa Gilotti

Summary. – D_{π} -property (π = set of primes) in finite groups is not in general inherited by subgroups. In this paper, as evidence in favor of the following conjecture (F. Gross):

(o) If a finite group G satisfies D_{π} then its normal subgroups satisfy D_{π} as well.

the Author shows that if the D_{π} and the $D_{\pi'}$ -properties ($\pi' = \text{set of the primes not in }\pi$) hold together in a finite group G, then both are inherited by the normal subgroups of G. As a corollary, the characterization of the groups satisfying both the properties D_{π} and $D_{\pi'}$ is given in terms of the composition factors.

0. - Introduction.

Let π be a set of primes and let G be a finite group,

Recall that G satisfies D_{π} if G has a Hall π -subgroup H and each π -subgroup of G is contained in a conjugate of H.

This definition, together with those of the properties C_{π} and E_{π} , were set by P. HALL in his well known article «Theorems like Sylow's » [1].

It is straightforward to see that if a finite group G satisfies E_{π} (i.e. there exists in G a Hall π -subgroup) then its normal subgroups satisfy E_{π} as well.

Examples of finite groups satisfying the C_{π} -property (i.e. having a unique conjugacy class of Hall π -subgroups) but in which there are normal subgroups not satisfying C_{π} , have been provided by F. GROSS in [2 see pg. 11].

In the same paper, F. GROSS asks the question if the D_{π} -property is inherited by normal subgroups, or if this holds only for a special class of groups.

Counterexamples to the conjecture:

(c) If a finite group G satisfies D_{π} then its normal subgroups satisfy D_{π}

do not seem to exist.

As evidence in favor of this conjecture in this paper, it is shown that if a finite group G satisfies both the D_{π} and $D_{\pi'}$ properties (π' indicates the set of primes not in π) then normal subgroups have the same properties (see Theorem 1.4).

^(*) Entrata in Redazione il 10 marzo 1986.

Indirizzo dell'A.: Istituto di Matematica Applicata «G. Sansone», Università degli Studi di Firenze, Via di S. Marta 3 - 50139 Firenze, Italia.

The proof of this theorem uses results by Arad-Fisman on factorizable simple groups [3] and so it holds modulo the finite simple groups classification.

Further, in the second section, it is shown that if PSL(2, q) satisfies the D_{π} -property then its automorphism group satisfies the same property.

This result with the already cited Theorem 1.4 is then applied to give a characterization of all finite groups satisfying both the D_{π} and D_{π} -properties, generalizing the results of the joint paper of the Author with L. SERENA [4].

1. – All groups considered in this paper are finite and notation not explicitly introduced is standard (cfr. [5]).

Let **P** the set of all primes. Let us denote by π a subset of **P** and by π' the complementary set of π in **P**.

If n is a natural number, let us denote by $\pi(n)$ the set of primes dividing n. If G is a finite group indicate by $\pi(G) = \pi(|G|)$.

Further, denote by D_{π} (resp. C_{π} , E_{π}) the class of finite groups satisfying the D_{π} -property (resp. C_{π} , E_{π}).

Finally, $D_{\pi,\pi'}$ (resp. $C_{\pi,\pi'}$) is the class of finite groups belonging to both D_{π} and $D_{\pi'}$ (resp. C_{π} and $C_{\pi'}$, E_{π} and $E_{\pi'}$).

Let us list, in the following proposition, two preliminary observations:

PROPOSITION. – Let G be a group belonging to D_{π} and let N be a normal subgroup of G.

i) N has Hall π -subgroups and they have the form $H^x \cap N$, where H is a Hall π -subgroup of G and $x \in G$. So they are conjugate in G, in particular, isomorphic.

ii) If $N \in C_{\pi}$, then $N \in D_{\pi}$.

PROOF. - i) is straightforward; ii) is immediate by i) see also [2 Corollary 4.3].

LEMMA 1.1. – Let G be a group and M be a normal subgroup of G, if G/M is a π -group and if $G \in D_{\pi}$, then $M \in D_{\pi}$.

PROOF. – We have G = MH where H is a Hall π -subgroup of G. By the previous Proposition i), the Hall π -subgroups of M are of the form $H^x \cap M$, $x \in G$. But x = hm for some $h \in H$, $m \in M$ and so $H^x \cap M = H^m \cap M = (H \cap M)^m$.

It follows $M \in C_{\pi}$, so by Proposition ii), $M \in D_{\pi}$ as claimed.

LEMMA 1.2. – Let $2 \in \pi$ and let G be a group in D_{π} . Let M be a normal subgroup of G. Assume that G has a Hall π' -subgroup K, then $MK \in D_{\pi,\pi'}$.

PROOF. – It is easily seen that $MK \in E_{\pi,\pi'}$.

By results in [3] $MK \in D_{\pi'}$.

The Hall π -subgroups of MK coincide with those of M and so, by Proposition i) are of the form $H^g \cap M$, $g \in G$ (H indicates a Hall π -subgroup of G).

Since G = HK, there exist elements $h \in H$ and $k \in K$ such that g = hk. So $H^g \cap M = H^k \cap M = (H \cap M)^k$.

Thus the Hall π -subgroups of MK are conjugate by elements of K, so, in particular, they are conjugate in MK.

It follows $MK \in C_{\pi}$. But, since each π -subgroup of MK is necessarily contained in M, by Proposition ii) $MK \in D_{\pi}$. So $MK \in D_{\pi,\pi'}$.

LEMMA 1.3. – Let M be a simple group and let G be a group such that M is normal in G and $C_G(M) = 1$. Suppose $G \in D_{\pi,\pi'}$, then $M \in D_{\pi,\pi'}$.

PROOF. - Identifying M with Inn (M) we can write $M \leq G \leq \text{Aut}(M)$.

Let $2 \in \pi$, so π' is a set of primes, all odd. Since $M \in E_{\pi,\pi'}$, by results in [3], $M \in D_{\pi'}$. We need only to show that $M \in D_{\pi}$, and, by Proposition ii), it will be enough to show that $M \in C_{\pi}$.

For our analysis, we can restrict ourselves to the list of factorizable simple groups see [3 Theorem 1.1].

By Lemma 1.1 we can eliminate all the following possibilities for $M: A_r; M_{11}; M_{23}; PSL(2, q)$ (q a prime); PSL(5, 2).

By Lemma 1.2, we can assume G/M to be a π' -group. Further, by Proposition i), we can also assume that the maximal π -subgroups of M are isomorphic, since, by the hypothesis on G, they are necessarily Hall π -subgroups of M. This enables us to eliminate the cases: $M \simeq PSL(2, 2^k)$ and $M \simeq PSL(2, q)$ (with $2, 3 \in \pi$) (for the second case see also next Lemma 2.1).

It only remains to analyze the following two cases:

I) M = PSL(r, q) where r is an odd prime and (r, q-1) = 1 $q = p^n$, and A is a maximal parabolic subgroup such that PSL(r-1, q) is involved in A (A indicates here a Hall π -subgroup of M).

II) M = PSL(2, q), where $q = p^n$, $3 < q \neq 1(4)$ and π is such that

$$\pi \frac{(q(q-1))}{2} \subseteq \pi'$$
 and $\pi(q+1) \subseteq \pi$.

In the case I) $PSL(r, q) \simeq SL(r, q)$ and since (r, q-1) = 1 and G/M is a π' -group, |G/M| divides n.

It follows then that G/M is isomorphic to a subgroup of the cyclic group of the automorphisms of $GF(p^n)$.

As in [4], by considering the Hall π -subgroups of M,

$$A_{1} = \begin{cases} 1 & r-1 & r-1 & 1 \\ r-1 & * & * \\ r-1 & * & * \\ 1 & * & * \\ 1 & 0 & * \\ \end{cases} \qquad A_{2} = \begin{cases} r-1 & * & * \\ 1 & * & * \\ 1 & 0 & * \\ 1 & * & * \\ 1$$

we have that A_1 and A_2 are not conjugate in M.

But they cannot be conjugate also in G, since if φ is a field automorphism $A_i^{\varphi} = A_i$, for i = 1, 2.

So this case does not appear, since G must belong to D_{π} .

In the case II), the Hall π -subgroups of M are either the normalizers of some Sylow t-subgroup (where t is an odd prime, $t \in \pi(q+1)$) or the Sylow 2-subgroups (if q is Mersenne); so, with the same argument as in [4], we can prove that $M \in D_{\pi}$, as we needed to show. The Lemma is proved.

REMARK. – We actually characterize all simple groups in $D_{\pi,\pi'}$ in the Section 3.

We can now prove:

THEOREM 1.4. – Let G be a group such that $G \in D_{\pi,\pi'}$, and let M be a normal subgroup of G, then $M \in D_{\pi,\pi'}$.

PROOF. – We proceed by induction on |G| + |M|.

Let N be a minimal normal subgroup of G contained in M.

If N < M, then, by induction, $N \in D_{\pi,\pi'}$. Further $G/N \in D_{\pi,\pi'}$, and so, since |G/N| < |G| and $M/N \leq G/N$, we have, by induction, $M/N \in D_{\pi,\pi'}$. But then, from $N \in D_{\pi,\pi'}$, $M/N \in D_{\pi,\pi'}$, and $G \in D_{\pi,\pi'}$, by [2 Lemma 4.2], we get $M \in D_{\pi,\pi'}$, as we claimed.

Thus we may assume N = M, so that M is a minimal normal subgroup of G. In particular, we may assume that M is the direct product of non abelian simple isomorphic groups

$$M = S_1 imes S_2 imes ... imes S_n$$

where $S_j \cong S$, where S is a group in the list of [3 Theorem 1.1], and j = 1, ..., n.

Assuming that $2 \in \pi, \pi'$ consists only of odd primes, so, by [3], $M \in D_{\pi'}$. It is enough to prove then that $M \in D_{\pi}$.

By Lemma 1.2, we may assume G/M is a π' -group.

Now let A_1 and A_1^* be Hall π -subgroups of S_1 .

For $1 \leq i \leq n$, there exists $g_i \in G$ such that $S_i = S_1^{g_i}$, and choose $g_1 = 1$.

Let $A_i = A_1^{g_i}$ and $A_i^* = A_1^{*g_i}$. Let $H = \langle A_i : 1 \leqslant i \leqslant n \rangle = A_1 \times A_2 \times ... \times A_n$,

$$H^*=\langle A_i^*, 1\!\leqslant\! i\!\leqslant\! n
angle=A_1^*\! imes\!A_2^*\! imes\!\dots\! imes\!A_n^*$$

Then H and H^* are Hall π -subgroups of G and so, since $G \in D_{\pi}$, there exists $g \in G$ such that $H^* = H^g$.

Now, g must permute $S_1, ..., S_n$ and so $S_i^g = S_1$, for some *i*. For this *i*, $g_i g \in N_G(S_1)$ and $A_1^* = H^* \cap S_1 = H^g \cap S_i^g = (H \cap S_i)^g = A_i^g = A_1^{g_ig}$. Hence A_1^* and A_1 are conjugate in $N_G(S_1)$. It now follows that

$$(N_G(S_1)/(S_2 \times \ldots \times S_n))/((S_1 \times \ldots \times S_n)/(S_2 \times \ldots \times S_n))$$

is a π' -group.

Since every π -subgroup of S_1 is contained in some Hall π -subgroup of S_1 , it follows that $N_G(S_1)/(S_2 \times ... \times S_n) \in D_{\pi}$.

Since $C_{\mathfrak{g}}(S_1) \ge S_2 \times \ldots \times S_n$, we have that $N_{\mathfrak{g}}(S_1)/C_{\mathfrak{g}}(S_1) \in D_{\pi}$.

But $S_1 \leq N_G(S_1) / C_G(S_1) \leq \text{Aut } S_1$.

Since *M* satisfies $D_{\pi'}$, S_1 satisfies $D_{\pi'}$ (see [2]), further $(N_G(S_1)/C_G(S_1))/S_1$ is a π' -group.

So, by Lemma 1.1, $N_G(S_1)/C_G(S_1) \in D_{\pi'}$.

It now follows, by Lemma 1.3, that $S_1 \in D_{\pi,\pi'}$. But then $M \in D_{\pi,\pi'}$, and Theorem 1.4 is proved.

2. – The D_{π} -property and the simple groups PSL(2, q).

In this Section, we expose some results on the property D_{π} in the groups PSL(2, q); some of which will be applied in the third Section.

All trough this Section, no requirements on the $D_{n'}$ -property have been done.

LEMMA 2.1. – Let G = PSL(2, q), where $q = p^n$. Let us assume that $G \in D_{\pi}$ and 2, $3 \in \pi$. Then $\pi(G) \subseteq \pi$.

PROOF. – We can obviously assume q > 3. Let H be a Hall π -subgroup of G and let $2, 3 \in \pi$. Let us examine the possibilities for H, looking at the Dickson's list (see [5]).

1st Step. -H cannot be cyclic.

In fact if H were cyclic of order t, t should divide $(q \pm 1)/\varepsilon$ where $\varepsilon = (2, q - 1)$. But there is an involution normalizing H so that H cannot be Hall.

2nd STEP. – H cannot be dihedral of order 2t where t divides $(q \pm 1)/\varepsilon$, $\varepsilon = (2, q-1)$. Since q > 3, A_4 is a subgroup of G and so A_4 should be contained in a dihedral group and this is not possible.

3rd Step. - H cannot be isomorphic to A_4 .

If $H \simeq A_4$, then for p = 2 we get $G \simeq PSL(2, 4) \simeq A_5$, which does not satisfy $D_{\{2,3\}}$. For p > 3, then there exists in G a dihedral group of order 6 which cannot be contained in any copy of A_4 .

4th STEP. – H cannot be isomorphic to S_4 .

If S_4 were a Hall π -subgroup of G, then $G \notin C_{\pi}$, since there would be two conjugacy classes of subgroups isomorphic to S_4 in G (see [5 pg. 202]).

5th STEP. – H cannot be isomorphic to A_5 .

Let $H \simeq A_5$, then $\{2, 3, 5\} \subseteq \pi$.

If q = 5, 4 then $G \simeq A_5$ and in this case the theorem holds.

If q > 5, let 5/(q-1). If 2,3 do not divide (q-1)/2 then 2,3 divide q+1 and so there exists in G a dihedral subgroup of order 12, that cannot be contained in any copy of A_5 . So either 2 or 3 divide (q-1)/2. Then there exists a cylic group of order either 10 or 15, that cannot be contained in any copy of A_5 .

The same if 5/(q+1).

6th STEP. – H cannot be a Frobenius group of order $q(q-1)/\varepsilon$ (or in general of order qt, where $t/((q-1)/\varepsilon)$, $\varepsilon = (2, q-1)$).

Since in G there exists a dihedral group of order 2(q-1) (resp. 2t), it should be $q = 2^k$. But the dihedral group of order $2(2^k - 1)$ is maximal in G and so it cannot be contained in any copy of H.

So if $2, 3 \in \pi$, we get H = G.

REMARK 2.2. - Suppose $G = PSL(2, 2^k)$ and $G \in D_{\pi}$ for a set of primes π such that $\pi(G) \notin \pi$. If $2 \in \pi$, then $\pi = \{2\}$.

THEOREM 2.3. – Let G be a group such that $M \leq G \leq \operatorname{Aut}(M)$, where M = PSL(2, q), $q = p^{m}$ (p a prime). If $M \in D_{\pi}$, for some set π , then $G \in D_{\pi}$.

REMARK. - The following proof is based on the proof of Theorem 2.2 [4], for that reason we omit those steps that can be found in [4].

PROOF. – The proof is, by induction on |G:M| + |M|.

Let G be a minimal counterexample to the Theorem.

As in [4], $G \in C_{\pi}$. Let H be a Hall π -subgroup of G. Since $G \notin D_{\pi}$, there exists a π -subgroup K, such that $K \leq H^{x}$, for every $x \in G$. We can assume $K \pi$ -maximal. As in [4] we can assume G = HM and so $G/M \pi$ -group. Further we observe that if T is a solvable subgroup of M, since $N_{G}(T)/N_{M}(T)$ is solvable and $N_{M}(T)$ is solvable, $N_{c}(T)$ is solvable too.

So as in [4] we get G = KM and $K \cap M \leq H \cap M$.

Suppose first $K \cap M = 1$. Then if (|K|, |M|) = 1 we can proceed as in [4], once we observe that H is solvable.

So we can assume r is a prime dividing |M| and |K|. Let y be an element of order r in K and let R be a Sylow r-subgroup of G containing $\langle y \rangle$. $C_G(y)$ has as a subgroup an elementary abelian subgroup of order r^2 . Further $K \leq C_G(y)$, since K is abelian. Now $C_G(y) < G$, so either $C_G(y)$ is solvable or

$$C_{g}(y) \cap M \cong \left\{egin{array}{c} PSL(2,\,p^{r}) \ PGL(2,\,p^{s}) \end{array}
ight. ext{ where } p^{r}/p^{m} = q ext{ or } p^{2s}/p^{m} = q
ight.$$

If $C_{\sigma}(y)$ is solvable then we get the contradiction as in [4].

So suppose the other case holds. Let $C = C_{\sigma}(y)$.

Then $C_c(C \cap M)$ is solvable and $C/C_c(C \cap M) \in \operatorname{Aut} \begin{pmatrix} PSL(2, p^r) \\ PGL(2, p^s) \end{pmatrix}$ and

 $C/C_c(C \cap M) \in D_{\pi}$. It follows $C \in D_{\pi}$. As before we get a contradiction.

So we may assume that $K \cap M \neq 1$ and $K \cap M < H \cap M$.

Since H and K are both solvable and K is a Hall π -subgroup of every solvable subgroup of G in which it is contained, it follows that K is a Hall π -subgroup of $N_{\sigma}(K \cap M)$.

It follows then $N_{G}(K \cap M) \cap (H \cap M) = N_{H \cap M}(K \cap M) = K \cap M$.

So, since $K \cap M$ is properly contained in $H \cap M$, we can exclude the possibilities $H \cap M$ cyclic and $H \cap M$ a Sylow r-subgroup of M (in general $H \cap M$ nilpotent).

If $H \cap M$ is dihedral, then we can proceed as in [4], with just the remark that the normalizer in G and so the centralizer of a solvable subgroup of M is solvable and so it satisfies D_{π} , and, further, that 3 cannot be in π in this case, by Lemma 2.1. So $H \cap M$ must be a Frobenius group of order a divisor of q(q-1).

So $M \in M$ must be a Frobenius group of order a divisor of q(q-1),

Since $K \cap M$ is selfnormalizing in $H \cap M$, $K \cap M$ can be neither a *p*-subgroup nor a subgroup of order a proper divisor of $((q-1)/(2, q-1), |H \cap M|)$. Further $K \cap M$ cannot have as order $|H \cap M|/q$.

In fact in this case, $K \cap M$ would be a Hall π_0 -subgroup of $H \cap M$ with $\pi_0 = \pi - \{p\}$. Since H is solvable, by Frattini's argument we would have

$$H = (H \cap M) N_{\scriptscriptstyle H}(K \cap M)$$
.

But $N_{H}(K \cap M) \cap H \cap M = K M$, so it would follow $|N_{H}(K \cap M)| = |K|$. Further $N_{G}(K \cap M) \ge K$, $N_{H}(K \cap M)$.

Since $N_{G}(K \cap M)$ is solvable and K is a Hall π -subgroup of it, K would be conjugate to $N_{H}(K \cap M)$ and so we would have a contradiction. So $K \cap M$ must have a composite order $p^{r}t$ where t is a divisor of $p^{r}-1$, $r \leq n$.

Let H_0 be the Frobenius kernel of $H \cap M$ and let K_0 that of $K \cap M$.

The Sylow *p*-subgroups of PSL(2, q) are TI-sets. Hence $K \cap M$ must normalize the entire Sylow *p*-subgroup of PSL(2, q). So $H_0 = K_0$.

But then $H, K \leq N_{G}(K_{0})$ and with the same argument we get the final contradiction.

3. - We now apply the results of Theorem 1.4 and Theorem 2.3 to obtain a characterization of finite groups in the class $D_{\pi,\pi'}$.

The following Theorem 3.2 is a generalization of Theorem 2.2 [4].

First we need to characterize simple groups in $D_{\pi,\pi'}$ in the following:

LEMMA 3.1. – If G is a simple group in $D_{\pi,\pi'}$, whose order is divisible by primes in π and in π' , then G = PSL(2,q), where q > 3, $q(q-1) \equiv 0(3)$, $q \equiv -1(4)$ and $\pi(q+1) \subseteq \pi$, $\pi(q(q-1)/2) \subseteq \pi'$. **PROOF.** – Since the following proof is the revisioned version of the proof of Theorem 1.1 [4], we omit the parts of the proof that can be found in [4]. Further we adopt the same notation.

As in [4] G is one of the groups in the Arad-Fisman list [3], G = AB, where A is a Hall π -subgroup and B is a Hall π '-subgroup.

If $G \simeq A_r$ or $G \simeq PSL(2, q)$ $q \in \{11, 29, 59\}$ or $G \simeq PSL(r, q)$ r odd with (r, q-1) = 1, or $G \simeq PSL(5, 2)$, then $G \notin D_{\pi,\pi'}$ and the proof is in [4].

If $G \simeq M_{11}$ then we have two possible cases a) $A \simeq M_{10}$; b) A solvable.

In case a) $\pi = \pi(A) = \{2, 3, 5\}; \pi' = \{11\}$. S_5 is a subgroup of G and it is maximal. So $G \notin D_{\pi}$ in this case.

In case b) $\pi = \pi(A) = \{2, 3\}; \pi' = \{5, 11\}.$ GL(2, 3) is a subgroup of G and it is not contained in any Hall π -subgroup of G (which is the normalizer of a Sylow 3-subgroup of G), since GL(2, 3) is maximal (see [6]).

So $G \notin D_{\pi}$ also in this case.

If $G = M_{23}$, then we have to consider the following two cases: a) $A = M_{22}$ and B of order 23; b) B Frobenius group of order 11.23.

In case a) the proof is the same as in [4] and we get $G \notin D_{\pi,\pi'}$:

In case b) A is a split extension of an elementary abelian group of order 2^4 by A_7 . Since A_8 is contained in M_{23} and it is maximal we get $G \in D_{\pi}$ (see [6]).

It only remains the case G = PSL(2, q) where $3 < q \neq 1(4)$ and A solvable. As in [4] the unique possible factorization for G is with A dihedral of order q + 1 and B Frobenius group of order q(q-1)/2.

As in [4] we have 3 divides q(q-1) and in such hypothesis, we can prove $G \in D_{\pi,\pi'}$. (By Remark 2.2 we can exclude q a power of 2).

Now we can prove:

THEOREM 3.2. – Let G be a group. Then $G \in D_{\pi,\pi'}$ if and only if the composition factors of G are of the following types: 1) π -groups; 2) π' -groups; 3) simple groups PSL(2,q), where q > 3, $q(q-1) \equiv 0(3)$, $q \equiv -1(4)$, $\pi(q+1) \subseteq \pi$ and $\pi(q(q-1)/2) \subseteq \pi'$.

PROOF. – If $G \in D_{\pi,\pi'}$, then, by Theorem 1.4 every subnormal subgroup of G belong to $D_{\pi,\pi'}$. It follows that, if M/N is a composition factor of G, M/N is a π -group or a π' -group or M/N is isomorphic to a simple group PSL(2, q) with the required properties by Lemma 3.2.

Viceversa follows using induction, Theorem 2.3 and [2, Th. 4.6].

BIBLIOGRAPHY

[1] P. HALL, Theorems like Sylow's, Proc. London Math. Soc., (3) 6 (1956), pp. 286-304.

[2] F. GROSS, On the existence of Hall subgroups, J. of Algebra, 98 (1986), pp. 1-13.

[3] Z. ARAD - E. FISMAN, On finite factorizable groups, J. of Algebra, 86 (1984), pp. 522-548.

234

- [4] A. L. GILOTTI L. SERENA, A generalization of π -separability in finite groups, Arch. Math., 97 (1986), pp. 301-308.
- [5] B. HUPPERT, Endliche Gruppen, I, Springer-Verlag, Berlin-Heidelberg, 1967.
- [6] S. A. SISKIN, Abstract properties of the simple sporadic groups, Russian Math. Surveys, 35 (1980) II, pp. 209-246.