D _-Property and Normal Subgroups (¥).

ANNA LUumsA GILOTIT

Summary. — D,-properly (m = sel of primes) in finite groups is not in general inherited by
subgrowps. In this paper, as evidence in favor of the following conjecture (F. Gross):

(o) If a finite group G satisfies D, then its normal subgroups satisfy D, as well.

the Author shows that if the D and the D, -properties (n'= set of the primes not in x) hold
together in a finite group G, then both are inherited by the normal subgroups of G. As o
corollary, the characterization of the groups satisfying both the properties D and D is given
in terms of the composition factors.

0. — Introduction.

Let = be a set of primes and let G be a finite group,

Recall that G satisfies D if G has a Hall z-subgroup H and each z-subgroup
of ¢ is contained in a conjugate of H.

This definition, together with those of the properties €, and E., were set by
P. HALL in his well known article « Theorems like Sylow’s» [1].

It is straigthforward to see that if a finite group G satisfies I, (i.e. there exists
in G a Hall z-subgroup) then its normal subgroups satisfy H, as well.

Examples of finite groups satisfying the Cn-property (i.e. having a unique con-
jugacy class of Hall z-subgroups) but in which there are normal subgroups not
satisfying Cn, have been provided by F. Gross in [2 see pg. 111

In the same paper, F. Gross asks the question if the D-property is inherited
by normal subgroups, or if this holds only for a special class of groups.

Counterexamples to the conjecture:

(o) If a finite group G satisfles D, then its normal subgroups satisfy D,

do not seem to exist.

As evidence in favor of this conjecture in this paper, it is shown that if a finite
group ¢ satisfies both the D, and D_, properties (7' indicates the set of primes not
in zr) then normal subgroups have the same properties (see Theorem 1.4).

(*) Entrata in Redazione il 10 marzo 1986.
Indirizzo dell’A.: Istituto di Matematica Applicata « G. Sansone», Universitd degli Studi
di Pirenze, Via di 8. Marta 3 - 50139 Firenze, Italia.
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The proof of this theorem uses results by Arad-Fisman on factorizable simple
groups [3] and so it holds modulo the finite simple groups classification.

Further, in the second section, it is shown that if PSL(2, q) satisfies the Dj-
property then its automorphism group satisfies the same property.

This result with the already cited Theorem 1.4 is then applied to give a char-
acterization of all finite groups satisfying both the D, and D,-properties, general-
izing the resulfs of the joint paper of the Author with L. SERENA [4].

L. — All groups considered in this paper are finite and notation not explicitely
introduced is standard (cfr. [5]).

Let P the sét of all primes. Let us denote by z a subset of P and by #' the com-
plementary set of z in P.

If » is a natural number, let us dencte by z(n) the set of primes dividing n.

If @ is a finite group indicate by =(G) = ={|G]).

Further, denote by D, (resp. U., E.) the class of finite groups satisfying the
Da-property (vesp. Cn, Hx).

Finally, D, . (resp. O, ) is the class of finite groups belonging to both D, and
D, (resp. C, and O, E_  and E ).

Let us list, in the following proposition, two preliminary observations:

PROPOSITION. — Let G be a group belonging to D, and let N be a normal sub-
group of @.

1} N has Hall m-subgroups and they have the form H* N\ N, where H is o Hall

m-subgroup of G and we G. So they are conjugate in G, in particular, isomorphic.

ii) If Ne Ca, then N€ Dy,
ProoOF. — 1) is straigthforward; ii) is immediate by i) see alse [2 Corollary 4.3].

Lemma 1.1. — Let G be a group and M be a normal subgroup of &, if G/M is a
s-group and if G € Da, then Mec Dy,

ProoF. — We have ¢ = MH where H is a Hall n-subgroup of ¢. By the previous
Proposition i), the Hall n-subgroups of M are of the form H*n M, z€ G. But
2 = hm for some he H, me M and so H*N M = H* N M = (HN M)~

It follows M € Un, so by Proposition ii), M € D, as claimed.

LeMMA 1.2. — Let 2 € and let G be a group in Dn. Let M be a normal subgroup
of G. Assume that G has o Hall '-subgroup K, then MKeD, .

PROOF. — It is easily seen that MK e H __ ..

By results in [3] MK e D .

The Hall z-subgroups of MK coincide with those of M and so, by Proposition i)
are of the form H*N M, ge & (H indicates a Hall z-subgroup of ).
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Since G = HK, there exist elements A€ H and ke K such that ¢ = hk. So
H'N M= H:N M = (HnN M)~

Thus the Hall z-subgroups of MK are conjugate by elements of K, so, in par-
ticular, they are conjugate in MK.

It follows MK e C,. But, since each n-subgroup of MK is necessarily contained
in M, by Proposition ii) MK € D.. So MKeD,_ ..

LumMA 1.3. ~ Let M be a simple group and let G be a group such that M is nor-

mal in G and Cy(M)=1. Suppose GeD, ., then MeD,_ ..

ProoF. — Identifying M with Inn (M) we can write M <G <Aut (M).

Let 2 €m, so n' is a set of primes, all odd. Since M e E_ ., by results in [3],
MeD,. We need only to show that M € Ds, and, by Proposition ii), it will be
enough to show that M € Cn.

For our analysis, we can restrict ourselves to the list of factorizable simple groups
see [3 Theorem 1.1].

By Lemma 1.1 we can eliminate all the following possibilities for M: A,; My;
M,y; PSL(2,q) (¢ a prime); PSL(5, 2).

By Lemma 1.2, we can assume G/M to be a n'-group. Further, by Proposi-
tion i), we can also assume that the maximal s-subgroups of M are isomorphic,
since, by the hypothesis on @, they are necessarily Hall n-subgroups of M. This
enables us to eliminate the cases: M ~ PSL(2, 2%) and M ~ PSL(2, q) (with 2,3 € m)
(for the second case see also next Lemma 2.1).

It only remains to analyze the following two cases:

I) M = PSL(r, q) where r is an odd prime and (r,¢— 1) =1 ¢ = p*, and A
is a maximal parabolie subgroup such that PSL(r— 1, ¢) is involved in A (4 in-
dicates here a Hall zm-subgroup of M).

II) M = PSL(2,q), where ¢ = p», 3 < ¢ = 1(4) and = is such that

Cx and m{g+1i)Cm.

In the case I) PSL(r,q) =~ SL(r,q) and since (r,¢—1)=1 and G/M is a
n'-group, |G/M| divides n.

It follows then that G/ is isomorphic to a subgroup of the cyclic group of the
automorphisms of GF(p").

As in [4], by considering the Hall =-subgroups of M,

1 r—1 r—1i 1

we have that 4, and 4, are not conjugate in M.



230 ANNA LUISA GILOTTI: Dy-property and normal subgroups

But they cannot be conjugate also in @, since if ¢ is a field automorphism
AP = A4, for i =1, 2.

So this case does not appear, since G must belong to Dn:

In the case 1I), the Hall m-subgroups of M are either the normalizers of some
Sylow t-subgroup (where ¢ is an odd prime, ¢ € n(g -+ 1)) or the Sylow 2-subgroups
(if q is Mersenne); so, with the same argument as in [4], we can prove that M € Dy,
as we needed to show. The Lemma is proved.

REMARK. — We actually characterize all simple groups in D, . in the Section 3.

We can now prove:

THEOREM 1.4. — Let G be a group such that Ge D, ., and let M be o normal
subgroup of G, then MeD, .. '

PrROOF. — We proceed by induction on |G|+ |M|.

Let N be a minimal normal subgroup of & contained in M.

If N < M, then, by induction, Ne D, .. Further G/Ne D, ., and so, since
|G/N| < |G| and M/N=G/N, we have, by induction, M|/NeD,, . But then, from
NeD,,, M[NeD,_ ., and GeD by [2 Lemma 4.2], we get MeD, ., as
we claimed.

Thus we may assume N = M, so that M is a minimal normal subgroup of .
In particular, we may assume.that M is the direct product of non abelian simple
isomorphic groups

X

M=8x8X%..%X8,

where 8, ~2 8, where § is a group in the list of [3 Theorem 1.1], and §j =1, ...,%.
Assuming that 2 e, 7' consists only of odd primes, so, by [3], Me D_. It is
enough to prove then that M e Dy.
By Lemma 1.2, we may assume G/M is a =m'-group.
Now let 4; and A¥ be Hall m-subgroups of §,.
For 1<i<n, there exists g,e G such that 8, = 8%, and choose g, = 1.
Let A, = A% and A] = A¥. Let H = (A;: 1<i<n) = A, XA, X... X A,,

H* = (Af,1<i<n)y = AFxAFx. .. xA¥.

Then H and H* are Hall z-subgroups of G and so, since G € D,, there exists
g € G such that H* = Ho,

Now, g must permute 8§, ..., 8, and so 87 = §,, for some 4.

For this 4, g, e Ng(8,) and A¥=H*NJ, =H' N 8" = (HN 8,)? = A% = A~

Hence A¥ and Al are conjugate in Ng(8,). It now follows that

(Na(8)/(8a X . X 8 ) (81 X oo X 8,)[(8y X .. X 8,))

- is a a’-group.
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Since every zm-subgroup of 8, is contained in some Hall m-subgroup of §,, it
follows that Ng(8,)/(8:x...x8,) € Da.

Since Cg(8,)>8: X ... x8,, we have that Ny(8;)/Cs(8;) € Ds.

But 8, <Ne(8:)/Ce(8,) <Aut ;.

Since M satisfies D_., 8, satisfies D, (see [2]), further (Ny(8,)/Ca(8y))/8; is a
7i’-group.

So, by Lemma 1.1, Ng(8,)/Cc(8:) € D_..

It now follows, by Lemma 1.3, that 8;e D, .. But then ¥ e D ., and Theo-
rem 1.4 is proved.

2. — The Ds-property and the simple groups PSL(2, q).

In this Section, we expose some results on the property D, in the groups
PSL(2, ¢); some of which will be applied in the third Section.
All trough this Section, no requirements on the D_-property have been done.

Lemma 2.1. ~ Let G = PSL(2, q), where ¢ = p*. Let us assume that G € Dy and
2,3ecm. Then n(G)Cam.

Proor. ~ We can obviously assume ¢> 3. Let H be a Hall z-subgroup of &
and let 2,3 ex. Let us examine the possibilities for H, looking at the Dickson’s
list (see [5]).

1st StEP. — H cannot be oyclic.

In fact if H were cyclic of ocrder ¢, ¢ should divide (¢ - 1)/e where ¢ = (2, ¢ — 1).
But there is an involution normalizing H so that H cannot be Hall.

2nd StEP. — H cannot be dihedral of order 2t where t divides (¢ +1)/e, e = (2,¢4—1).

Since ¢ > 3, 4, is a subgroup of G and so A, should be contained in a dihedral
group and this is not possible.

3rd StEP. — H cannot be isomorphic to A,.

If H ~ A,, then for p = 2 we get G =~ PSL(2,4) =~ A;, which does not satisfy
Dy, 5. For p> 3, then there exists in ¢ a dihedral group of order 6 which cannot
be contained in any copy of 4,.

4th STEP. — H cannot be isomorphic to S,.

If 8, were a Hall msubgroup of @, then & ¢ (5, since there would be two con-
jugacy classes of subgroups isomorphic to 8, in G (see [5 pg. 202]).

5th StEP. — H cannot be isomorphic to A;.

Let H =~ A, then {2, 3,5} Ca.
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It ¢ = 5, 4 then G ~ 4, and in this case the theorem holds.

If ¢>5, let 5/(¢q—1). If 2,3 do not divide (¢ — 1)/2 then 2,3 divide ¢ 41
and so there exigts in G a dihedral subgroup of order 12, that cannot be contained
in any copy of 4;. So either 2 or 3 divide (¢ — 1)/2. Then there exists a cylic group
of order either 10 or 15, that cannot be contained in any copy of 4;.

The same if 5/(¢ + 1).

6th StEP. — H cannot be a Frobenius group of order g(qg—1)/e (or in general of
order qt, where 1}{(qg—1)[e), e = (2,9 — 1)).

Since in G there exists a dihedral group of order 2{q — 1) (resp. 2t), it should
be g = 2*. But the dihedral group of order 2(2*— 1) is maximal in ¢ and so it
cannot be contained in any copy of H.

So if 2,3em, we get H = 6.

REMARK 2.2. — Suppose G = PSL(2, 2%) and ¢ €D, for a set of primes = such
that #(¢)¢ #. If 2 €, then n = {2}.

THEOREM 2.3. — Let G be a group such that M <G < Aut{M), where M = PSL(2, q),
q==p" (p @ prime). If Me Dy, for some set m, then Ge Dy,

REMARK. — The following proof is based on the proof of Theorem 2.2 [4], for
that reason we omit those steps that can be found in [4].

Proor. — The proof is, by induction on |G M| + M.

Let & be a minimal counterexample to the Theorem.

As in [4], G € O5: Let H be a Hall #z-subgroup of ¢. Since G ¢ Dy, there exists
a zw-subgroup K, such that KLH?>, for every 2 € G. We can assume K xm-maximal.
Ag in [4] we can assume G = HM and so G/M n-group. Further we observe that
if T is a solvable subgroup of M, since Ny (T)/N,(T) is solvable and N, (T) is
solvable, N, (T) is solvable too. :

So as in [4] we get G = HM and KN M<HN M.

Suppose first KN M = 1. Then if (|K|, |M|) =1 we can proceed as in [4],
once we observe that H is solvable.

So we can assume 7 is a prime dividing |M| and |K|. Let y be an element of
order r in K and let R be a Sylow r-subgroup of @ containing <y)>. Ciy) has as a
subgroup an elementary abelian subgroup of order 72. Further K < Cyy), since K
is abelian. Now Cg(y) << &, so either Cy(y) is solvable or

PSL(2, p)
Ooly) N M =~ where p7/p™ = q or p*[p™=q.
PGI(2, p°)

If Cy(y) is solvable then we get the contradiction as in [4].
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So suppose the other case holds. Let € = Cyy).

Then Oy (CN M) is solvable and C/C0,(Cn M)z Aut (ﬁgﬁ g’j:;) and
C|C(C N M) e Dy. It follows e D,. As before we get a contradiction.

So we may assume that KN M1 and KN M <HN M.

Since H and K are both solvable and K is a Hall m-subgroup of every solvable
subgroup of ¢ in which it is contained, it follows that K is a Hall z-subgroup of
NJK N M).

It follows then NJ(KN MYNHNM)=N, (KNM)=Kn M.

So, since K N M is properly contained in H N M, we can exclude the possi-
bilities H N M cyelic and HN M a Sylow r-subgroup of M (in general HN M
nilpotent).

If HN M is dihedral, then we can proceed as in [4], with just the remark that
the normalizer in & and so the cenfralizer of a solvable subgroup of M is solvable
and so it satisfies D_, and, further, that 3 cannot be in s in this case, by Lemma 2.1.

So H N M must be a Frobenius group of order a divisor of ¢(¢— 1).

Since K N M is selfnormalizing in H N M, K N M can be neither a p-subgroup
nor a subgroup of order a proper divisor of ((g— 1)/(2,¢—1), [H N M|). Further
K N M cannot have as order |[HN M|/q.

In fact in this case, K N M would be a Hall my-subgroup of H N M with n, =
= 7 — {p}. Since H is solvable, by Frattini’s argument we would have

H = (HN M)Ny(EN M),

But Ny(KNnM)NHN M=K M, so it would follow |Ny(K N M)| = |K|.

Further No(KE N M)> K, Ngy(K N M).

Since N (K N M) is solvable and K is a Hall z-subgroup of it, K would be con-
jugate to Ny(K N M) and so we would have a contradiction. So K N M must have
a composite order prt where t is a divisor of pr—1, r<n.

Let H, be the Frobenius kernel of H N M and let K, that of K N M.

The Sylow p-subgroups of PSL(2,¢) are TI-sets. Hence KN M must nor-
malize the entire Sylow p-subgroup of PSL(2,q). So H, = K,.

But then H, K< Ny(K,) and with the same argument we get the final contra-
diction.

3. — We now apply the results of Theorem 1.4 and Theorem 2.3 to obtain a
characterization of finite groups in the class D, ..

The following Theorem 3.2 is a generalization of Theorem 2.2 [4].

First we need to characterize simple groups in D_ . in the following:

Lemma 3.1. — If G is a simple group in D, .., whose order is divisible by primes
n m and in 7', then G —= PSL(2,q), where ¢ >3, glg—1)=0(3), ¢=—1(4) and
(g +1)Cm, n{glg—1)/2)C .
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Proor. ~ Since the following proof is the revisioned version of the proof of
Theorem 1.1 [4], we omit the parts of the proof that can be found in [4]. Further
we adopt the same notation.

As in [4] G is one of the groups in the Arad-Fisman list [3], & = AB, where 4
is a Hall m-subgroup and B is a Hall n’-subgroup.

If G=A, or G =PSL2,q) qe{11,29,59} or G =~ PSL(r,q) r odd with
(r,g—1) =1, or G = PSL(5,2), then ¢ ¢ D__. and the proof is in [4].

If G = M,, then we have two possible cases ¢) A ~ M,,; b) A solvable.

In case @) @w=m(d) = {2,3,5}; n'= {11}. §; is a subgroup of G and it is
maximal. So ¢ ¢ D_ in this case,

In case b) @ = n(d) = {2,3}; a'= {5,11}. GL(2,3) is a subgroup of G and it
is not contained in any Hall z-subgroup of & (which is the normalizer of a Sylow
3-subgroup of &), since GL(2,3) is maximal (see [6]).

So G ¢ D_ also in this case.

If G = M,,, then we have to consider the following two cases: a) A = M,,
and B of order 23; b) B Frobenius group of order 11.23.

In case a) the proof is the same as in [4] and we get G¢D_ .

In case b) A is a split extension of an elementary abelian group of order 2¢
by A,. Since A, is contained in My, and it is maximal we get G €D, (see [6]).

It only remains the case G = PSL(2,q) where 3 < g = 1(4) and A solvable.

As in [4] the unique possible factorization for G is with A dihedral of order
g -+1 and B Frobenius group of order q(g— 1}/2.

As in [4] we have 3 divides g(¢— 1) and in such hypothesis, we can Pprove
GeD,,. (By Remark 2.2 we can exclude ¢ a power of 2).

Now we can prove:

THEOREM 3.2. — Let G be a group. Then G < D_ . if and only if the composition
factors of G are of the following types: 1) m-groups; 2) n'-groups; 3) simple groups
PSI(2,q), where ¢ >3, glg—1)=0(3), ¢ =—1(4), n(q+1)Cx and n(q(g —1)/2)Cn'.

Proor. - If Ge D, ., then, by Theorem 1.4 every subnormal subgroup of &
belong to D, .. It follows that, if M/N is a composition factor of G, M/N is a
m-group or a s’-group or M/N is isomorphic to & simple group PSL(2, q) with the
required properties by Lemma 3.2,

Viceversa follows using induction, Theorem 2.3 and [2, Th. 4.8].
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