Critical Points with Lack of Compactiness
and Singular Dynamical Systems (*) (*+).
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Sunto., — St prova Uesistenza di punii critici di funzionali che non verificano la condizione (PS).
I teoremi astraiti vengono applicati per trovare soluzionsi periodiche di sistemi dimamici con
potenziali sia limitati sia con singolariia.

0. — Introduction.

This paper has two main purposes: first, to prove the existence of 7-periodic
solutions of w-dimensional dynamical systems like

(0.1) — ¥ = grad, V(t,9) ,

with potential V which (is Z-periodic in ¢ and) has singularities; second, to study
the critical points of funetionals whose Euler equations are (0.1). More precisely,
the kind of functionals we are interested in are that ones of the form

(0.2) f(u) = §(Au, w) + g(u),

where A is a linear selfadjoint operator acfing on a Hilbert space E, (-,-) denotes
the sealar product in ¥ and ¢ is a nonlinear C' map.
The main specific features of f are:

(¢) A has a kernel X with » = dim X < oo and, roughly, both ¢(x) and
grad g(z) —> 0 as € X and x|, — oo;

() ¢ (and hence f) are possibly defined on an open subset A of Z.
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As a congequence of (a), f does not satisly the compactness condition introduced
by Palais and Smale (see § 1). Actually here we show that ¢ = 0 is the only level
where PS8 fails to hold.

The idea to overcome such a lack of compactness is the following: under some
mild agsumptions involving, roughly, the behaviour of gjy at infinity, we are able
to prove that the level set {f<e} is topologically equivalent to an n-dimensional
sphere. This enables us to find critical points for f on A, via Morse type arguments.
It A is a proper subset of ¥, a control on the behaviour of f on 24 is needed; on the
othe hand, our approach permits to take advantage of the possibly rich topological
structure of A: for example, if A has infinitely many non frivial homology groups,
then we show that f has infinitely many eritical points on A.

The abstract setting is contained in Part I, consisting of sections 1, 2 and 3:
in § 1 we list the preliminaries, while § 2 and § 3 contain the theorems on the
existence of critical pointy of f under two different kinds of assumptions at infinity
for g|x.

The results of Part I are applied in Part II to find periodic solutions of (0.1).
More precisely, we agsume V: R X Q2 — R ({2 open subsget of R®) is T-periodic in ¢
and is such that:

(0.3) Vit,y) -0 and grad V{t,y) -0 a8 |y| — oo,

and look for T-periodic solufions of (0.1) as eritical points of
::l' T

{0.4) flu) == —;—J lu'|® dt ——fV(t, u) di
0 0

on A= {ueH¥8, R"): u(t)e 2}. The functional f in (0.4) is of the form (0.2)
and exhibits (a) and (b), so that the abstract results apply. After dealing in § 5
with bounded potentials (i.e. & = R» and A = H*?), we consider in § 6, 7 the situa-
we are mainly interested in: when £ has a compact boundary 002 and V(i, y) —
~—>— oo a8 4 — 0f2. In such a cage A has a richer topological structure and the
stronger critical points theorems of Part I can be employed provided & further condi-
tion on the behaviour of V near ¢f is assumed; namely that grad, V(i,y) is a
« strong force » in the sense of Gorpon [16]. The kind of results we can prove are
illustrated by the following example: if £ = R™\{0} (n>2), and V({,y) behaves
like — |#|™* with «>2 near » = 0 and like || with >0 as |z| — oo, then (0.1)
has infinitely many 7-periodic solutions.

According to the Abstract Sefting, we point out that in the applications to (0.1)
only asymptotic conditions on V are required.

In the last section (§ 7) we shortly discuss extensions to cover autonomous
systems, i.e. to the case when V is does not depend on .

Papers somewhat related to ours are [6; 9; 10; 12; 13; 16; 17; 18; ...]. We refer



ANTONTO AMBROSETTI - VITTORIO COTI ZELATL: Critical points with, ete. 239

t0 Remarks 3.6, 5.5 and 6.8 for comparison with those papers. Here we would like
to spend few words to indicate the differences with [12] and [16].

The idea to overcome the lack of PS evaluating directly the topology of {f<e}
has been first used in [12], even if in a particular case. Aectually, Part I here furn-
ishes & general abstract tool which can be used to study the specific problem of [12].

In [16], the definition of « strong force» has been first introduced. The main
difference with the present paper is that Gorden assumes 00 is complicated
enough, in such a way that the corresponding / splits in eomponents where the
functional f is coercive. In particular no lack of PS arises in [16]. For example, in
the case listed before (ie. Q@ = R"™\{0}), Gordon’s result applies only if n = 2
(see also [9, 10, 18]). »

Soms results and the mair ideas of this paper have been presented at the meeting
« Recent developements in Hamiltonian systems», held at I’Aquila, Italy, June
1986 [2]. At that meeting we learned that GrEco [19] had meantime proved the
existence of one periedic solution for (0.1) with singular potentials of the type we
study in Theorems 6.3 and 7.1.

Parr I: ABSTRACT SETTING

1. - Notations and preliminaries.

In this section we will state some basic tools and results in critical point and
Morse theory. Such results are essentially known even if not in the specific way
we shall need in the following.

Let E be a Hilbert space with sealar product (-,-) and norm |-[. We will deal
in the following with functionals j wich are possibly defined on an open subset A
of B. We denote by 04 the (possibly empty) boundary of 4. We also set
B,={unek: |u]| <R}

If fe CY(A; R), we set f'(u) = grad f(u), Z(f) = {u € A: f'(v) = 0}, and, for ce R,
Z(f) = {ue Z(f): flu) = ¢}, {f <} = {wed: flu) < e}, {f<e} = {ued: flu)<el}, {a<
<f<b} = {ued: a<flu)<b}, etc. We will also abbreviate f*= {f<s}.

1f 8 is a subset of A, we say that f satisfies the PS (Palais-Smale) condition on §
if for every sequence {u,} in § such that f(u,) is bounded and f'(u,) — 0 there exists a
converging subsequence u, —> % € /.

We will often refer to the sicepest descent flow associated to a functional f. This
is, essentially, the flow defineted by the differential equation #'= —f'(»). We will
not enter here in the details of the eonstruection of such a flow; we only recall its
properties which we will need in the paper.

ProposimioNn 1.1. — Let A be an open subset of a Hilbert space X, and let
fe 0YA; R) be bounded from below on A4 and such that f(u) - -+ oo as u — 04.
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Then there exists e O(R* x4; A) (the steepest descent flow) such that the function
f(n(-, w)) is not increasing.

ProOOF. — See [21].

We will say that a subset Y of a Hilbert space E is positively invariant under
the steepest descent flow or, simply, positively invariant if (t,y) e ¥, Vy e ¥, Vi 0.

ProrosiTioN 1.2. — Let A be an open subset of a Hilbert space X, and let fe
€ 0'(4; R) be bounded from below on A and such that f(u) — - oo as u — 0.
Let ¥ be a closed subset of /A such that YV is positively invariant and P8 holds for §
in Y. Then it exists we Y such that f(u) = min {f(u): v e ¥Y}.

Proo¥. — The proof is the usual one (see [21], [20]). We only point out that the
deformation arguments can be carried over in our setting because: (i) Y is positively
invariant; (ii) since ¥ is closed and PS holds in Y, then Ve, be R, with Z(f)N
N{a<f<b}N Y =0, 38 > 0 such that [f'(w)]|>9d, Yue{a<f<b}N Y.

Essentially using the same arguments, one can prove:

ProrosiTION 1.3. — Let A be an open subset of a Hilbert space H, and let
fe C4; R) be such that f(u) — + oo as u — 04. If PS holds in {a<f<b} (Where
— o< a<b<+ o0), and Z(f) N {a<f<b} = 0, then f* is a deformation retract of
f*. Moreover, if Y is a closed and positively invariant subset of A such that PS holds
in YN {a<f<b} and Z(/)n {a<f<b}N Y = 0, then {*N Y is a deformation retract
of PN Y.

Proor. - See [20, Lemma 3.5. - a), b)] and. the proof of Proposition 1.2.

With H.(4), (H.(4, B), A> B) we will indicate the Singular Homology groups
of the topological space A (of the couple of topological spaces (4, B)). From proposi-
tion 1.3. it follows that, if P8 holds in {a<f<b} (where — co < a<b< - o0), and
Z(fy n {a<f<b} = 0, then

(1.1) H(f") = Hy(f") .
Moreover:

ProPOSITION 1.4. — Let fe O*A; R) be such that f(u) - 4 oo as w — 04 and
let ¥ be a closed, positively invariant subset of /4. Suppose: a) f satisfies PS in
fa<f<d}NY, with — co<<a<b<+ oo; b) Z(f)N {a<f<b}N Y is compact (if
b < - oo this follows from a)); ¢) Z(f) N o({a<f<d}N Y) = 6; d) f is Fredholm of
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index 0 in Z(fyn {a<f<b}N Y. Then d¢'e N such that
(1.2) H{NnY)=H{f'nY), V¢

ProoOF. ~ Since PS holds in {a<f<d} N Y, and Z(f) N {a<f<b}N Y is compact
we can use [20, thm. 2,2] to deduce the existence of g for which: (i) @), b) and ¢) hold;
(ii) g is close to f in the C* norm and differs from f only in & small neighborhood of
the critical points; (iii) g has only a finite number of nondegenerate critical points
in {a<g<b}N Y. From (ii) it follows that Y is positively invariant for g, too.
From this fact, and well known results of Morse theory (see, for example [7, thm. B])
it follows (taking into account also the proof of Proposition 1.2) that (1.2) holds
for g. Since from (ii) one deduces that N Y =¢gN Y and "N Y = ¢g°N ¥, the
Proposition follows.

From this Proposition we deduce
ProPosITION 1.5. ~ Let /1 be an open set of a Hilbert space X, and let f € O*(E; R)

be Fredholm of index 0 and such that f(u) — -+ oo a8 4 — 04. Moreover suppose f
satisfies P8 in the set {f>e}, Ye > 0.

(i) if Je*: Hy(f") # Hy(A), then Z(f) N {f>e*} # 6;
(if) if:
(A) H(A)# 6 {for infinitely many ¢ge N,

while Je* > 0, 3¢, NV such that H,(f*) = 0, Vg>¢,, Ve € ]0, £¥], then f has infinitely
many critical points.

ProoF. — (i) Suppose Z(f)N {f>¢*} = 0. Then from (1.1) it follows H, ()=
= H,(f*"), Vg€ N, a contradiction.

(ii) Suppose, by centradiction, that Z(f) is finite and take &€ ]0, e*] such
that Z,(f) = 0. From the assumptions and using Proposition 1.4 with o = ¢ and
b = - co one finds ¢,> 0:

HQ(A) %Hq(fe) y Vq>612 ’
a contradiction.

REMARK 1.6. — Actually a sfronger result can be obtained: suppose the assump-
tions of Proposition 1.5 - (ii) hold. Further, suppose Z, (f) = 0 for some &c 0, e*].
Then f has infinitely many critical points u, such that f(u,) — - co.

In fact if sup {f(u): w e Z(f)} = ¢ < + oo, then, applying Proposition 1.4 with
b=oc--1 and o =g, we reach a contradiction as before.
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2. — Existence of critical points: a first case.

2.4. The PS condition.

We will deal here with functionals fe OYd; R) of the form
flu) = § (Au, u) + glu)
where A: B — E and ¢: A — R satisfy the assumptions listed below. Rirst of all:

Al A iy a linear bounded selfadjoint operator in ¥ with finite dimensional kernel:

X=FKerd, dimX=n<co.

Vz e X, the norm [ will be simply denoted (according to the notation of Part II),
by |z|. Denoted by W the orthogonal complement to X, one has

E=XpW,
If P indicates the orthogonal projection onto X, we will set
By=Pu, w,=u—uwx,.
If no confusion arises, the subscript « will be omitted. We will also suppose:
A2, Jo > 0: (Aw, w)=alw|?, YweW.

On ¢ we will assume:

gl. ge C{A; R) and Im>0: g(u)>— m, Yued;
92. un € A, u, converges weakly to e 04 implies g{wu,) — - oo
g3. let ¢* = (2/a)(m + 1). Corresponding to ¢* there exists *> 0 and gy, g,€

e C(R*, R) such that:

(2.1) g{x) >0, VeeR+ ¢=1,2, #>r

(2.2) gi(@) >0 a8 |o| >0, i=1,2;

and

(2.3) 0:(Pu)<g(u)<go(Pu), Yued with [Puj>r* and |w,] <c*.

REMARK 2.1. — We esplicitely note that from (g1) and (g3) it follows that {u =
= Pu + w,e E: |Pu] > ¥, |w,] <e*}n 04 = 0.
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First of all we derive from the preceding assumptions some consequences.

LA 2.2, — (i) If wef’, 0 <e<d, then |w,|<e¥ (ii) There exists ¢* > 0 such
that if uefe, 0 <e<e®, then [Puf=r*

PrOOF. — (i) Let wef’, with 0 <<e<1. Using (42) and (g1) it follows:
fajw|— m<}(dw, w) + g(u) = fu)<e.

Hence

Jw|2< (2/a)(m 4 &) <<o* .

(ii) By contradiction, let u,c /4 be such that f(u.)<1/n and |Pu,| = r*. Letting
w, = w, , from (the preceding) (i) one has Jw.l<e*. Then (2.3) of (¢g3) implies:

g(1,) > g2 (Py) .
Therefore it follows:
(2.4) fltn) = §(Arwn, wy) + g(tn) > g{1n) > g(Pths) -

Sinee |Pu, = r*, then g¢,(Pu,)>0d = min {g:(#): o] = r*}. By (2.1) > 0 and hence
we deduce from (2.4):

flu,) >8>0,
a contradiction which proves (ii).
(CoROLLARY 2.3. — For all e<¢* one has
f=I1uly
where
Ir={uef: |Pu, <r¥},

It = {uef: |Puy) >} .

In partieular M I¢= 6. Moreover the sets I, IS, are positively invariant under

the steepest descent flow of f.

ProoF. — The first statement is a direet consequence of Lemma 2.2. The positive
invariance of I'* (i =1, 2) follows from the fact that (¢, w) € f, Vi>0, Vuef* and
by continuity, from (ii) of Lemma 2.2,
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REMARKS 2.4. — (i) I% could possibly be empty, while 1% 0 for ¢ > 0. In fact
the set {z e X: |#| > r} is contained in I provided » > 0 is large enough, because
g(z) —~0 as z€ X, \| — oo (immediate consequence of (22) and (2.3)).

(i) f(w) >0, YueI% This follows from (¢3) and Lemma 2.2 - (ii).

LeMma 2.5. — Let u,€.4 be such that f(u.)<1/n and [Pu,|> r*. Then, setting
Wy == W, , 0N has

(i) [wa] =05
(i) |Puy] — oo.

PrOOF. — From Lemma 2.2 - (i) one has |w,| <c*. Since |Pu,|> r* by assump-
tion, we can use (g3) to infer that g{u,)>g.(Pu,) > 0. Hence, using also (42),

Fofw,l2<§ (dwn, w,) + glu,) = flu,) <1/n

and (i) follows.

As for (ii), we remark that (2.4) still holds here. If |Pu,!<const., it would follow
that Pu,—x € X, for a subsequence, and ¢,(Pu,) — g:(x). Since ¢,(x) > 0 by (2.1),
(2.4) implies f(u,)>d > 0 for » large, a contradiction.

We are now in position to investigate the PS condition. An assumption on ¢
is in order:

g4. (i) wn€ A, u, converges weakly to wed implies ¢'(u,) — ¢'(u) and

(i) ¢'(%,) =0 for all w,= w,-+ », such that |w,| <const. and |z, — co.

Let us point out that (g4) implies that
(2.5) f' is Fredholm of index 0.

In fact f(u) = Auw + ¢'(u) = A4 - Pu— Pu - ¢'(#) and 4w - Py is a linear
homeomorphism, while ¢g'(#) — Pu is compact.

Under the above assumptions, the PS condition fails to hold at the level ¢ = 0.
In fact, if #,€ X and |#,| — oo then (x,€ 4, see Remark 2.1, and) f(#,) = g(#,) - 0,
while, as a consequence of (g4), one has g'(x,) -+ 0. The following Lemma says
that the preceding one is essentially the only situation in which PS fails to hold.

Lemma 2.6. — (i) For all ¢ > 0 P8 holds in the set {f>¢}; (ii) PS holds in every
set where |Pu|<const.
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Proor. — (i) Let w,e A be such that

(2.6) e<flun) = § (Awn, wa) + gua) <0 (Wn=wy)

() = dw, + g'(u,) = 0.

From the righ-hand side of (2.6) and (g1) we deduee that jw.|<e, and hence w,
converges weakly, up to a subsequence, to w. We claim that [Pu,|<e¢,. In fact,
otherwise, from (g4) we have that

(2.8) g'(1,) —0 .
Multiplying (2.7) by w,, it follows:

(A’Ll)n, wn) == (f/(u‘n), wn) - (g,(un)y wn)
and hence

o] <[ ()| f0n | 4 g ()] 0n] -

Sinee both f'(u,) and g'(u,) tend to 0 (see (2.7) and (2.8)), then w,—0. We can
now use the right-hand of (2.3) to find

(2.9) Flun) <3 (Awy, wa) 4+ go{ Pthy) .
Sinee w, 0 and |Pu,| — oo, we have from (2.2)

F(Aw,, w,) + go{Puy) — 0.

From (2.9) it finally follows that f(u,.) — 0, in contradiction with the left hand side
of (2.6), so that the claim is proved.

Now, if |Pu,|<c¢;, one has that Pu,— & (up to a subsequenee) and then w, = w, +
-+ Pu, converges weakly to w - & = u. Since g(u.)<¢,, then by (¢2) we infer that
wed. Then from (g4) it follows that ¢'(w,) — ¢'(4), and

Ay = '(tn) — ' (1) — g'(1) .

Then w, — w and w4, — «. This completes the proof of (i).

(ii) As in the proof of (i), f(u,)<¢, implies !w,| <c,. If, in addition, [Pu,|<
< const, the PS follows as above.
2.b. The topology of f°.

We will always assume (41, 2) and (g1, 2, 3, 4). We recall that, by Corollary 2.3
one has

fe=IT0 Ty, Vese®



246  ANTONIO AMBROSETTI - VITTORIO COTI ZELATI: C(ritical points with, elc.

with I'*N %= §. The purpose of this subsection is to study the topology of I, Let

I (t, ) = tw, + Pu .

Levma 2.7. For all 0 < e<e*, there exists ¢ < e such that
i, wyel=, Vte[0,1], Vuel? .

ProOF. — First we remark that |P(I1(Z, u))| = |Pu| > r*, Vi€ [0,1], Vue It Then,
arguing by confradiction, we let 1,[0,1], #,€ I''™ be such that

(2.10) 0 < & < f(HI(tny wn+ %)) = §12(A10n, wy) + glEarw, + @)
with #,= Pu, and w, = %,— x,. From the definition of F;/” we have

flug)<1/n  and  |z.|>r¥.
Using Lemma 2.5 we get
(2.11) Wy—>0 and  |@,] - 4 oo,
Since t,¢€[0,1] and P(t,w, + x,) = x,, then (2.11) permits to use (g3) to estimate
gt + ) < galn) -

Since from (2.11) it follows that (Aw,,w,) —0 as well as g.(x,) — 0, this gives a
contradietion with (2.10).

Set S~1= {we X: x| =1}. We can now state:

LemMa 2.8, - If Z(fyn Ie=0, 0 <e<e*, then &' is a deformation retract
of I7%.

PROOF. ~ Since Z(f) N I"= 0 and by the positive invariance of I; under the
steepest descent flow 5 (see Corollary 2.3), one has (see § 1, Proposition 1.3) that,
Ve'<e, I' is a deformation retract of I®. From the fact that g(Pu) — 0 as |Pu| —
—> -+ oo we infer that Jr'> 0 such that X — B,, is a subset of I;. Let &'<e be
such that Lemms 2.7 holds. By Lemma 2.5 - (ii) it is possible to take ¢’ <& in such a
way that (Lemma 2.7 continues to -hold and)

Pu|>r, Yuel®.
Lastly, fix p>#' in such a way that F;’: 6B,N X and leb 6 be the radial projection

9(t,m)ztg%{+{l»t)w, veX, 40, te[0,1].
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By the preceding remarks it is readily verified that 0(2, Pu)e I, ¥t [0, 1], Yu e re.
Hence aBQﬁ X turns out to be a deformation retract of I through the homotopy
obtained combining #, /7 and 6, and the lemma follows.

From the preceding lemma we infer:

CoroLLARY 2.9. — Under the hypothesis of Lemma 2.8 one has
(2.12) H,(I%) = H, (81,

2.e. Huxistence resulis.

Our first result is an immediate consequence of Lemma 2.8 and will be applied
when, essentially, A = E.

THEOREM 2.10. - Suppose (41, 2), (g1, 2, 3, 4) and
(2.13) H,(A) # Hy(8%1) .

Then f has at least a critical point in A.

Proor. — Since PS holds in {f>¢}, Ve > 0 (Lemma 2.6 - (i)}, then, if Z(f) = 0,
we can use the steepest descent flow to obtain (see § 1, Proposition 1.3)

Hy(A) = Hy(fe), Ve>0.
Using Corollary 2.3 we have (see [15, Proposition 4.12])
(2.14) H(A)=HI)DHLT), Vo<e<e*.
If /® =0, we can use Corollary 2.9 to find
Hy(A) = Hy(I73) = H, (81,
which centradicts (2.13).

If I 0, a critical point of f on /A will be found as the minimum of f on I%.
Such a minimum exists because: (a) f is bounded from below on A (hence on I%),
since, as a consequence of (gl):

flw) = § (4w, w) + glw)>—m, Yued;

(b) P8 holds on I (see Lemma 2.6 - (ii)); (¢) I"® is positively invariant under the

)
steepest descent flow # (see Corollary 2.3). Then Proposition 1.2 applies. .,
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COROLLARY 2.11. — Suppose (41, 2), (g1, 3, 4) and let 4 = E. Then Z(f) # 0.
H, in addition, I% 0 for some s<¢&*, then # Z(f)>2.

PROOF. — Z(f) 0 since for A = F (2.13) holds and Theorem 2.10 applies. Let
I== § for some ¢ € 10, £¥]. Aeccording to the proof of Theorem 2.10, f has a minimum
u, € I';. A second critical point ecan be found using a mountain pass type argument
taking paths connecting the minimum and a Ppoint in I';. Every such a path has
to cross the surface |Pu| = r* where f takes values >e¢*, see Lemma 2.2 - (ii), Then
the mountain pass level ¢>¢* is a critical value since PS holds in {f=¢}, Ve > 0.
We leave the details to the reader.

~ REMARK 2.12. — In the case in which Corollary 2.11 applies one can be slightly
more precise. Namely, if fe CHE, R) and is a Morse functional one can find at
least 3 eritical points provided n>2. In fact the mountain pass critical point has
Morse index =1 [1] and to find a third critical point it suffices to argue by con-
tradiction, using the Morse inequalities, as in Theorem 2.10. We do not carry over
the details.

Our main existence theorem of this section is:

THEOREM 2.13. — Suppose (41, 2), (g1, 2, 3, 4) and (A) hold. Suppose, also, that
ge 03(A; R). Then f has infinitely many critical points on .

Proor. — First of all, Corollary 2.3 yields

(2.15) H(f*) = H([ D HE), Veel0,e*], Vge N .

Next suppose, by contradiction, that Z(f) is finite. Then e e 10, &*] such that
(2.16) : ZHnTe =9
(2.17) ZHhn1=90
(2.16) allows us to use (2.11) to find

(2.18) H (%) = {0}, VYg==0,n—1.

Next let ¥ = 1%, b = ¢ and ¢ < — m. From Lemma 2.6 - (ii) and (2.5) assump-
tions @), b) and d) of Propesition 1.4 hold. Moreover o017 = {f = e} N I'? and (2.17)

1
yield ¢). Then from Proposition 1.4 we deduce the existence of ¢, N such that

(2.19) H(IY) = {0}, Vg>¢,.
_ Thus (2.15), (2.18) and (2.19) imply:

Hq(f's) = {O} 3 V{l>max ({127 ") .
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We can now apply Proposition 1.5 - (ii) and find a contradiction.
According to remark 1.6 we can prove herc a stronger result.

THEOREM 2.14. — Suppose (41, 2), (g1, 2, 3, 4) and (A) held. Suppose, also, that
ge 0¥A4; R) and that

(2.20) 3R, 6>0 such that (g'(w), Pu)<0, VYu such that |w, <4, Pu/>R.
Then f has infinitely many critical points u,€ A such that f(u,) — 4+ oo.

PrOOF. — We first remark that, under thé assumption (2.20), Z(Hn F;* is com-

pact. In fact let w,c Z(f)yN IS, We know that f(u,) > 0, ¥n. Actually we claim
that f(#.)>pu > 0, Vn. Otherwise, up to a subsequence, f(u,) — 0, and we deduce
from Lemma 2.5 that IN >0 such that Va>N, |[Pu,]> R and Jw,|<R. For
such »’s we therefore have :

(gl(un)y .P%n) <0 ; V’n}N .
But u,e€ Z(f) implies

0 = (f'(u,), Pu.,)

= (Awn’ P/U’n) + (gl(un)y Pu’n)

= (gl((u’n)7 Pun) <0 ’
contradiction which proves the claim. Now the precompactness of {u,} follows from
the PS. Set & = inf {f(u): w € Z(fy" I'"'} > 0, and suppose, by contradiction, that
there exists b < -- oo such that Z(f) is contained in f*. Then Z(f) is compact and‘, as
in proposition 1.4 we can find g e C2(/4; R) which has only finitely many nondegen-
erate critical points in g™ = f*+1. Reasoning as in Proposition 1.4 we deduce the
existence of ¢, ;€ IV such that '

HyA) = H(f**), VgeN

= H(g""), VqeN

=~ H(g?), Ve>q..

It is easy to see that Corollary 2.3 and Lemma 2.6 holds for g as well. Hence

~ H,(I%"), Vg=>q.

H(g"%) =~ H,({uecd: glu)<e/2, |Pul<r*}) @ HE?, Vez=q

%Hq(sﬂ_l) ; Vq}qz .
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This is a contradiction which proves the Theorem.

REMARK 2.15. — Using Lusternik-Schnirelman category it is possible to prove a
result similar to Theorem 2.14, namely:

Suppose (41, 2), (g1, 2, 3, 4) hold and let cat, /1 = -+ co. Then f has infinitely
many critical points in A. Moreover there is a sequence of critical points {u.} such
that f{u,) — - oo

" The proof is based on the fact that under such assumptions cab , f¢ is finite since:
it is finite in I since I' iz positively invariant and f is bounded from below and
satisfies PS there, while I is a subset of %= {ue.d: |w,]<c*, |[Pu|>r*} and
caty, 2% = 2 imply cab, I <cat, 2% <caty. 2% = 2. We remark that cat, A = + oo
implies (A).

3. — Existence of critical points: a second case.

We deal here with a functional fe OY(A, RB) of the form
flu) = § (Au, u) + g(u)

with A4 satisfying (41, 2) and ¢ satisfying (g1, 2), (g4) and

gb. Ve > 0, 3r > 0 such that for all we A with [Pu|>r and [w,|<c one has
(3.1) g(u) < 0

and

(3.2) (g'(w),u)>0.

As in § 2 we start investigating the PS condition.
Lemya 3.1, — The PS condition holds in {f>e}, Ye > 0, and in £, ¥6 > 0.
PROOF. — As in Lemma 2.6, if u,€ A satisfies (2.6) and (2.7) one finds |w,| <c,

(where w, = wun). If |Pu,| — oo, one finds again that w,—0. We can now use
{3.1) of (¢5) to get

f(un) - % (Auns un) —’;‘ g(un)<%(Auny u‘n) .

Hence f(u,) — 0, in contradiction with (2.6). Thus |Pu,|<const. and the conclusion
follows as in Lemma 2.6. This proves that the PS8 holds in {f>e}, Ve > 0. The
same argument works for the second statement as well.
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As a consequence of (3.2) one has:
LEyMA 3.2, — For all ¢ > 0, IR > 0 sueh that
(f(w),u) >0, Yuecf, |u|>R.

In particular fen B, is positively invariant under the steepest descent flow of f.

PROOF. — Arguing by contradiction, suppose there exist ¢’ > 0 and a sequence u, € f*
such that [u,] — -+ co and (f'(#.), #,)<0. From u,ef* we infer readily that |w,| <
<const. Then |[Pu,|>|u,| — |w.|>[u,| — ¢, hence [Pu,| — -+~ oo. Using (3.2) of
(¢b) one has

(]U(%n)a “n) = %(Awm W) + (g’(”n% u,,)}(g’(u"), un) >0,

a contradiction.

We are in position to state:

THEOREM 3.3. — Suppose (A1, 2) and (g1, 2, 4, 5) hold and that ge C*A4; R).
Then:

(1) Z(f)# 9;

(ii) if (4) holds, then Ju,e A such that f'(u,) = 0 and f(u;) - 4 oo.
Proor. — (i) f is bounded from below on A and
inf f<inf f<infg< 0
A X X
because of (3.1). Since PS holds on F°,¥6 >0 (Lemma 3.1), then f attains its
minimum on some % € A:
f(@) = min {f(u): wed}.
(ii) Fixed &> 0, let us take B > 0 according to Lemma 3.2. Set

. u if fu| <R
Sty u) = (1 —1t)u + tRu/ju it Ju|=E.

We claim

LeEMMA 3.4. - f°N B, is a deformation retract of f° through 8.



252  ANTONIO AMBROSETTI - VITTORIO (0TI ZEUATI: Critical poinis with, ele.

Proor. - By a direct caleulation one has

N @ s sy (L) =1
\3.3) d_tf(S(t, 7.0)) == (f (S(t, ’lt)), S'\t, lt)) 1‘"_4_me .

Since |8(f, u)| >R whenever [u|>R, then, using Lemma 3.2, it follows that
af(S(i, u)) < 0  whenever |u|>R and S({, u)ej®.

In particular we f* implies that (d/dt)f{S(t, #))|,_,<< 0. Thus 8(t, «) e f* for {€[0, u]

for some u > 0. If the Lemma is not true, it would exists v > 0 such that S(z, u) € |

and (d/dt)f(8(t, w))|,-,= 0. This is clearly a contradiction which proves the Lem-

ma. ..

li=s

PROOF OF THEOREM COMPLETED. -~ The proof is similar to that of Theo-
rem 2.14. In fact also here we have that, Vb<+ oo, Z(f) N f* is compact. This
follows, essentially, from Lemma 3.2. More precisely, let w,c Z(f)n ff. Take a
subsequence u, such that f(u,) ¢ If ¢~ 0, the precompactness follows from PS.
If f(u,) -0, from Lemma 3.2 we deduce that ||u,|<R and it is easy to find a
converging subsequence. The proof now follow by contradiction as in theorem 2.14,
the only difference being that here H,(g?) > H,(g¢* N By) ~ {0}, Vg>¢, (g being, as
before, a (% funetion, having only nondegenerate critical points, which coincide
with f outside a neighborhood of the critical points).

REMARK 3.5. — Also here, as in Remark 2.15, one can show that # Z(f) = + o
provided cat, A = 4 oo.

REMARK 3.6. — Among papers dealing with lack of PS, [6] have studied fune-
tionals with strong resonance at infinity. They have used different methods based
on linking arguments and obfained results which are different from ours in generality
and form.

Different questions concerning the lack of PS are investigated in [4, 23, ...].

Part II: APPLICATIONS

4. — Applications: general framework.

We will apply the abstract results of Part I to find 7-periodic solutions of n-di-
mensional second order systems. Precisely, let £ be an open subset of R", n>2
(even if some of the results below will be true even when n =1) and let V: Rx Q2 — R
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be such that

(71) Ve O \Rx ), ViE+T,y)=Ty), Vi yeRxL.
Set V'(t,y) =V, V(t,y). We look for T-periodic solutions of

4.1) — i =V'{ty).

Set K = H»*(8% R") where S8'= R/[0, T], with scalar product

(1, v) :f@z, B> di +f<u, > dt

and norm

»

Juf = [l + [l ().

Here and below <-,-) and |-| denote the Euclidean scalar product and norm in R
Let A: E — F be defined by

(Au, v) = J iy B
(A1) trivially holds with X = Ker 4 = R". Remark that here
Pu = (1/T) f u

and W= {uek: f w = 0}. The Poincaré inequality implies that also (42) holds.
Let
A= {ueh: ut)c 2,VieR},

and define

g(w) = —J V(t, u(t)) .
The T-periodic solutions of (4.1) are the critical points of the functional
flwy = F(Au, w) + glu) .

Remark that { is C! (02) provided ¥V is €' in y (resp. C* in y).

T
(1) From now on, we will write | for [dt.
[}
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5. — Bounded potentiais.

In this section we will take Q2 = R" and V satisfying (V1) and:
(V2) V(t,y) =0 as |y — + co uniformly in ¢ and dr,> 0: V(i 9) < 0, V|y|=r:
(V3) Vi(t,y) =0 as |y| — + o uniformly in .

We check the assumptions of theorem 2.10 and Corollary 2.11 by showing

Lemua 5.1, — (i) If (V2) holds, then (g1) and (¢3) are true. (ii) If (V3) holds,
then (g4) is true.

ProOF. — (i) (g1) is trivial. As for (¢3), recall that Ywe W one has
0] o <yl
Tet #* be sueh that r¥— ¢;0* > r, and set
ply) — (T min {70, 8): te R, iy = et <lé <yl + et)
ply) = (1T) max {— [V(t,): te R, |y| — exo* < [£] <yl + 6ot
Properties (2.1) and (2.2) of g, ave immediate consequence of (V2). Moreover, from

it follows that Yue A with |w,|<c*
|Pu| — es0* < [u(t)| < | Pul + o50%;
from which (¢3) immediately follows.

(ii) It is well known that g’ is compact. Let wu, = 1w, &, be such that

fwalz<eonst,  [@n] > oo

From this and

D)3 0] — 100(8)] > 2] = &, ]
it follows that |u,(f)| — -4~ oo uniformly. Then from (V3) one deduces:
('), 0) = = [Pl wa)y 0> >0, Voe,

and the lemma follows.
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THEOREM 5.2. — Suppose @ = R" and V satisfies (V1, 2, 3). Then (4.1) has
at least one T-periodic solution.

Proor. — We remark that in the present case (2 = R"), (¢2) can be neglected.
The result follows, taking into account the discussion in § 4 and Lemma 5.1, from
Theorem 2.10.

The following is an example in which Corollary 2.11 applies:
THEOREM 5.3. — Suppose 2 = R" and V satisfies (V1, 2, 3, 4). In addition suppose

(5.1) Jte R fV(t, £)>0 .

Then (4.1) has at least 2 T-periodic solutions.

Proor. — It suffices to note that f(£) = —|V(f,é)<0. Hence, by Remark 2.4 -
(i) e T%, Ve > 0.

REMARK 5.4. ~ According to Remark 2.12 one could improve the preceding result
by showing that (4.1) has a third solution, provided V is €% in #, #>2 and (4.1) has
only non-degenerate solutions.

REMARK 5.5. ~ Periodic selutions for dynamical systems with bounded potentials
have beeen studied in the following papers: [8, 11, 12, 22, 23, ...].

Papers [8, 11, 23] deal with even or periodic potential; they both use linking
argument to prove existence of one (or more) solutions.

Papers [12, 22] deal with potential which are of the kind we have studied
here, but they obtain results different from ours. In particular, [22] proves existence
of only the solution corresponding to the minimum under the hypothesis of Theo-
rem 5.3, while [12], using & method similar to the one used here, proves analogous
results but under different assumptions.

6. — Strong forces.
Now we deal with with potentials V with singularities. Let
2 =R"X
with K compact. On the behaviour of V near K we will suppose:
(SF)  there exist e > 0 and U e CX£2; R) such that, setting U’'= grad U, one has

(6.1) Uly) »— o0 a8 y—>gekK, yel;
(6.2) Vi, y)<— |U'(9)]2, VteR, VyeK = {yeQ: dist (y, K) <e}.
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Condition (3F) (= Strong Foree) has been first introduced by GorDON [16]. If
K = {0}, (SF) implies that V(t,y) ~— [y|™* with «>2 as y — 0.

Lemma 6.1. — If (SF) holds, then (g2) is true.

Proor. ~ [16], [18].

In order to use Theorems 2.13, 2.14 and 3.3, we prove
LeMMA 6.2. — If Q = R K, with K compact, then (/) holds.

PRroOF. — The result is possibly well known, but we do not know a precise ref-
erence and thus we report here a sketch of the proof for completeness.

Let pe K and R >0 be such that K is contained in Bp. Set 0,= R\ B,
Q,=RN\{p}and A,= {ue B:u(t)e 2,,Vte R}, 4,= {uc B: u(t)c 2, Vie R}. Clearly
A, A> A, and since A, is a deformation retract of A,, 4, is a retract of A.
Then ({15, pag. 37])

(6.3) H(A) = H,(4,) D H,(4,4;) .

Sinee it is well known [7, (3.10)] that (A) holds for A,, then (6.3) implies that {A)
holds for /A as well. '

We can now prove

THEOREM 6.3. ~ Suppose 2 = R"™\ K and let V& C2(Rx 2; R) satisty (V1, 2, 3)
and (SF). Then (4.1) has infinitely many T-periodic solutions.

Proo¥. ~ Since V is bounded from above, (g1) holds. Moreover (g3, 4) continue
to hold as in Lemma 5.1. Then the result follows from Lemmas 6.1, 6.2 and Theo-
rem 2.13.

We ecan also prove

THEOREM 6.4. — Let the assumpfions of Theorem 6.3 be satisfied. If, moreover,
3R, 6 > 0 sueh that |£|>R, [y|<d imply <V'(,& - 5), &> > 0, then there exists a
sequence 4, of T-periodic solutions of (4.1) sueh that f(u,) — + oo.

Proor. ~ It is easy to show, using arguments already used several times, that
(2.20) holds and the result then follows from Theorem 2.14.

As a last application, we consider V satisfying (V1), (V3) and

(V4) V(t,y) -0 as |y| - + oo, uniformly in ¢, and 3r,>0: {V'{t, 9),y)> <0,
Vly|>re, Vt.
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We show:
LEMMA 6.5. — If V satisfies (V4), then (g5) holds.

Proor. — From (V4) it follows readily that V(¢, ) > 0, V|y|>r,, Vi. This together
with arguments already used in Lemma 5.1, yields (¢5).

THEOREM 6.6. — If Q = R"™\K and Ve C¥(R X 2; R) satisfies (V1, 3, 4) and (SF),
then (4.1) has infinitely many T-periodic solutions; moreover there exists & sequence
u, of sueh solutions such that fu,) — -4 oo.

Proor. — Apply Theorem 3.3, taking into account Lemmas 6.1, 6.2 and 6.5.

ReEMARK 6.7. — If
D={ye2:V'(t,y) =0, Vie R}

is not empty, each y € D is a (constant) solution of (4.1). If D is compact the ar-
guments of Theorems 6.3, 6.4 and 6.6 can be carried over to show that (4.1) has
actually infinitely many non-constant solutions. We remark that D is compact if
(V4) holds.

REMARK 6.8. — Besides [16], already discussed in the introduction, papers [3, 3,
9, 10, 13, 14, 18] deal with singular potentials. ’

[3, 5] consider potentials defined in a bounded well 2, with ¥V — + oo as y — 00.

[18] studies cases when V can have singularities both with ¥ — 4 co and
V —— co. The existence of one T-periodic solution 15 proved, assuming further
condition at y = 0.

[9, 10] are close to [16] and either # = 2 or geometrieal conditions are agsumed
which permit to avoid the lack of PS.

[13] studies potentials roughly of the type |y|=*— |y|~', case which is different
from ours because the corresponding functional is not bounded from below.

In all these papers, (SF) is assumed. The only work where (SF) is violated is [14],
but £ is a bounded well and V — — oo as # — 0f2. For a discussion of the prob-
lems arising when (SF) does not hold, see [17].

We esplicitely remark that, in analogy with what seen in § 5, an existence result

can be stated for bounded potentials verifying (V4) insted of (V2), namely:

THEOREM 6.9. — If V satisfies (V1, 3, 4) and 2 = R", then (4.1) has at least one
T-periodie solution.

Proor. — Apply Theorem 3.3 - (i). Notice that in this case, however, f attains
negative values and has a global (negative) minimum.
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7. — Autonomous systems.

If V does not depend on ?, our problem becames to find non-constant periodic
solutions of a given period 7' of the equation

(7.1) — =T,

Ag before, the T-periodic solution of (7.1) are the critical points of the functional
mT iy
folw) = 3 Wdtmfwu) dt .
0 0

All the setting and the results of the preceding seetions apply to the present
case, too. But now:

(i) the critical points of ¥V on  (i.e. the ye 2 such that V'(y) = 0) are also
critical points of f, on A corresponding to constant solution of (7.1) (henee periodic
of any given period T);

(ii) if we Z(f,), then also Sty == {u(t 4- 0), 0 € 8} is contained in Z(f,). In
particular Z(f,) is infinite whenever it contains a non-costant solution.

Thus additional arguments are required to deduce from the abstract results
of § 2,3 informations on the solutions of (7.1).

To overcome (i), one usually makes assumptions on the set of the eritical pionts
of V. In particular, the question arises if 2 = R" - case in which the existence of
one or two solutions for (7.1) has been proved (Theorems 5.2, 5.3, 6.9). This kind
of arguments have been discussed in [13, Step 4], where we refer to for statements
and details.

If V has singularities, we can take advantage of the fact that now, for all given T,
f» has infinitely many critical points. Suppose that

(7.2) Z(V) is compact .

Then, using the same arguments of theorems 2.14 and 3.3, we can show that,
for any fixed T >0, f, has at least one (actually infinitely many) critical points
w§ Z(V). As solution of (7.1) » has minimal period t = Tk for some interger
k>1. Take T'= 7/2. As above, f, has a eritical point v which is a solution of (7.1)
with period T'= 7/2 hence also a Z-periodic solution of (7.1). Moreover {v(t)},. 5
# {(t)},cq 8ince v was the minimal period of . Repeating this argument, one obtains:

THEOREM 7.1. — Suppose Ve 02Q; R) satisfies (SF), (7.2) and either (V1,
2,3) or (V1,3,4). Then V7> 0 (7.1) has infinitely many, non-constant, distinet
T-periodie solutions.
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