Critical Points with Lack of Compactness and Singular Dynamical Systems (*) (**).

Antonio Ambrosettit - Vimtorio Coti Zelati (***)

Sunto. - Si prova l'esistenza di punti critici di funzionali che non verificano la condizione (PS). I teoremi astratti vengono applicati per trovare soluzioni periodiche di sistemi dinamici con potenziali sia limitati sia con singolarità.

0. - Introduction.

This paper has two main purposes: first, to prove the existence of T-periodic solutions of n-dimensional dynamical systems like

$$
\begin{equation*}
-\ddot{y}=\operatorname{grad}_{y} V(t, y), \tag{0.1}
\end{equation*}
$$

with potential V which (is T-periodic in t and) has singularities; second, to study the critical points of functionals whose Euler equations are (0.1). More precisely, the kind of functionals we are interested in are that ones of the form

$$
\begin{equation*}
f(u)=\frac{1}{2}(A u, u)+g(u), \tag{0.2}
\end{equation*}
$$

where A is a linear selfadjoint operator acting on a Hilbert space $E,(\cdot, \cdot)$ denotes the scalar product in E and g is a nonlinear C^{1} map.

The main specific features of f are:
(a) A has a kernel X with $n \equiv \operatorname{dim} X<\infty$ and, roughly, both $g(x)$ and $\operatorname{grad} g(x) \rightarrow 0$ as $x \in X$ and $\|x\|_{E} \rightarrow \infty ;$
(b) g (and hence f) are possibly defined on an open subset A of E.
(*) Entrata in Redazione il 9 novembre 1986.
(**) This work has been done during a visit at the Math. Dept. of the University of Chicago. The Authors whish to thank for the kind hospitality.
(***) Supported by Ministero Pubblica Istruzione, 40%, Gruppo Nazionale «Calcolo delle Variazioni».

Indirizzo degli A.A.: A. Ambrosetti: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa; V. Coli Zelati: International School for Advanced Studies, Strada Costiera 11, 34014 Miramare, Trieste.

As a consequence of $(a), f$ does not satisfy the compactness condition introduced. by Palais and Smale (see § 1). Actually here we show that $c=0$ is the only level where PS fails to hold.

The idea to overcome such a lack of compactness is the following: under some mild assumptions involving, roughly, the behaviour of $\left.g\right|_{x}$ at infinity, we are able to prove that the level set $\{f \leqslant \varepsilon\}$ is topologically equivalent to an n-dimensional sphere. This enables us to find critical points for f on Λ, via Morse type arguments. If Λ is a proper subset of E, a control on the behaviour of f on $\partial \Lambda$ is needed; on the othe hand, our approach permits to take advantage of the possibly rich topological structure of A : for example, if A has infinitely many non trivial homology groups, then we show that f has infinitely many critical points on A.

The abstract setting is contained in Part I, consisting of sections 1, 2 and 3: in $\S 1$ we list the preliminaries, while $\S 2$ and $\S 3$ contain the theorems on the existence of critical points of f under two different kinds of assumptions at infinity for $\left.g\right|_{x}$.

The results of Part I are applied in Part II to find periodic solutions of (0.1). More precisely, we assume $V: \boldsymbol{R} \times \Omega \rightarrow \boldsymbol{R}\left(\Omega\right.$ open subset of $\left.\boldsymbol{R}^{n}\right)$ is T-periodic in t and is such that:

$$
\begin{equation*}
V(t, y) \rightarrow 0 \quad \text { and } \quad \operatorname{grad}_{v} V(t, y) \rightarrow 0 \quad \text { as } \quad|y| \rightarrow \infty \tag{0.3}
\end{equation*}
$$

and look for T-periodic solutions of (0.1) as critical points of

$$
\begin{equation*}
f(u)=\frac{1}{2} \int_{0}^{t}\left|u^{\prime}\right|^{2} d t-\int_{0}^{T} V(t, u) d t \tag{0.4}
\end{equation*}
$$

on $A=\left\{u \in H^{1,2}\left(S^{1}, \boldsymbol{R}^{n}\right): u(t) \in \Omega\right\}$. The functional f in (0.4) is of the form (0.2) and exhibits (a) and (b), so that the abstract results apply. After dealing in $\S 5$ with bounded potentials (i.e. $\Omega=\boldsymbol{R}^{n}$ and $A=H^{1,2}$), we consider in $\S 6,7$ the situawe are mainly interested in: when Ω has a compact boundary $\partial \Omega$ and $V(t, y) \rightarrow$ $\rightarrow-\infty$ as $y \rightarrow \partial \Omega$. In such a case A has a richer topological structure and the stronger critical points theorems of Part I can be employed provided a further condition on the behaviour of V near $\partial \Omega$ is assumed; namely that $\operatorname{grad}_{y} V(t, y)$ is a «strong force» in the sense of Gordon [16]. The kind of results we can prove are illustrated by the following example: if $\Omega=R^{n} \backslash\{0\}(n \geqslant 2)$, and $V(t, y)$ behaves like $-|x|^{-x}$ with $\alpha \geq 2$ near $x=0$ and like $\pm|x|^{-\beta}$ with $\beta>0$ as $|x| \rightarrow \infty$, then (0.1) has infinitely many T-periodic solutions.

According to the Abstract Setting, we point out that in the applications to (0.1) only asymptotic conditions on V are required.

In the last section (§ 7) we shortly discuss extensions to cover autonomous systems, i.e. to the case when V is does not depend on t.

Papers somewhat related to ours are $[6 ; 9 ; 10 ; 12 ; 13 ; 16 ; 17 ; 18 ; \ldots]$. We refer
to Remarks $3.6,5.5$ and 6.8 for comparison with those papers. Here we would like to spend few words to indicate the differences with [12] and [16].

The idea to overcome the lack of PS evaluating directly the topology of $\{j \leqslant \varepsilon\}$ has been first used in [12], even if in a particular case. Actually, Part I here furnishes a general abstract tool which can be used to study the specific problem of [12].

In [16], the definition of "strong force" has been first introduced. The main difference with the present paper is that Gordon assumes $\partial \Omega$ is complicated enough, in such a way that the corresponding A splits in components where the functional f is coercive. In particular no lack of PS arises in [16]. For example, in the case listed before (i.e. $\Omega=\boldsymbol{R}^{n} \backslash\{0\}$), Gordon's result applies only if $n=2$ (see also [9, 10, 18]).

Some results and the main ideas of this paper have been presented at the meeting "Recent developements in Hamiltonian systems», held at L'Aquila, Italy, June 1986 [2]. At that meeting we learned that Greco [19] had meantime proved the existence of one periodic solution for (0.1) with singular potentials of the type we study in Theorems 6.3 and 7.1.

Part I: ABSTRAOT SETTING

1. - Notations and preliminaries.

In this section we will state some basic tools and results in critical point and Morse theory. Such results are essentially known even if not in the specific way we shall need in the following.

Let E be a Hilbert space with scalar product (\cdot, \cdot) and norm $\|\cdot\|$. We will deal in the following with functionals f wich are possibly defined on an open subset A of D. We denote by ∂A the (possibly empty) boundary of Λ. We also set $B_{R}=\{u \in E:\|u\| \leqslant R\}$.

If $f \in C^{1}(A ; \boldsymbol{R})$, we set $f^{\prime}(u)=\operatorname{grad} f(u), Z(f)=\left\{u \in A: f^{\prime}(u)=0\right\}$, and, for $e \in \boldsymbol{R}$, $Z_{c}(f)=\{u \in Z(f): f(u)=c\},\{f<c\}=\{u \in A: f(u)<c\},\{f \leqslant c\}=\{u \in A: f(u) \leqslant c\},\{a \leqslant$ $\leqslant f \leqslant b\}=\{u \in A: a \leqslant f(u) \leqslant b\}$, etc. We will also abbreviate $f^{\varepsilon}=\{f \leqslant \varepsilon\}$.

If S is a subset of A, we say that f satisfies the PS (Palais-Smale) condition on S if for every sequence $\left\{u_{n}\right\}$ in S such that $f\left(u_{h}\right)$ is bounded and $f^{\prime}\left(u_{h}\right) \rightarrow 0$ there exists a converging subsequence $u_{\bar{n}_{i}} \rightarrow u \in \Lambda$.

We will often refer to the steepest descent flow associated to a functional f. This is, essentially, the flow defineted by the differential equation $x^{\prime}=-f^{\prime}(x)$. We will not enter here in the details of the construction of such a flow; we only recall its properties which we will need in the paper.

Proposition 1.1. - Let A be an open subset of a Hilbert space E, and let $f \in O^{1}(\Lambda ; \boldsymbol{R})$ be bounded from below on Λ and such that $f(u) \rightarrow+\infty$ as $u \rightarrow \partial \Lambda$.

Then there exists $\eta \in C\left(\boldsymbol{R}^{+} \times \Lambda ; A\right)$ (the steepest descent flow) such that the function $f(\eta(\cdot, u))$ is not increasing.

Proof. - See [21]. \therefore
We will say that a subset Y of a Hilbert space E is positively invariant under the steepest descent flow or, simply, positively invariant if $\eta(t, y) \in Y, \forall y \in Y, \forall t \geqslant 0$.

Proposimon 1.2. - Let A be an open subset of a Hilbert space E, and let $f \in$ $\in C^{1}(\Lambda ; \boldsymbol{R})$ be bounded from below on Λ and such that $f(u) \rightarrow+\infty$ as $u \rightarrow \partial \Lambda$. Let Y be a closed subset of A such that Y is positively invariant and. PS holds for f in Y. Then it exists $u \in Y$ such that $f(u)=\min \{f(u): u \in Y\}$.

Proof. - The proof is the usual one (see [21], [20]). We only point out that the deformation arguments can be carried over in our setting because: (i) Y is positively invariant; (ii) since Y is closed and PS holds in Y, then $\forall a, b \in \boldsymbol{R}$, with $Z(f) \cap$ $\cap\{a \leqslant f \leqslant b\} \cap Y=\emptyset, \exists \delta>0$ such that $\mid f^{\prime}(u) \| \geqslant \delta, \forall u \in\{a \leqslant f \leqslant b\} \cap Y . \quad \therefore$

Essentially using the same arguments, one can prove:

Proposition 1.3. - Let A be an open subset of a Hilbert space E, and let $f \in C^{1}(A ; \boldsymbol{R})$ be such that $f(u) \rightarrow+\infty$ as $u \rightarrow \partial A$. If PS holds in $\{a \leqslant f \leqslant b\}$ (where $-\infty<a \leqslant b \leqslant+\infty)$, and $Z(f) \cap\{a \leqslant f \leqslant b\}=\emptyset$, then f^{a} is a deformation retract of f^{b}. Moreover, if Y is a closed and positively invariant subset of Λ such that PS holds in $Y \cap\{a \leqslant f \leqslant b\}$ and $Z(f) \cap\{a \leqslant f \leqslant b\} \cap Y=\emptyset$, then $f^{a} \cap Y$ is a deformation retract of $f^{b} \cap Y$.

Proof. - See [20, Lemma 3.3.-a), b)] and the proof of Proposition 1.2. \therefore
With $H_{*}(A),\left(H_{\%}(A, B), A \supset B\right)$ we will indicate the Singular Homology groups of the topological space A (of the couple of topological spaces (A, B)). From proposition 1.3. it follows that, if PS holds in $\{a \leqslant f \leqslant b\}$ (where $-\infty<a \leqslant b \leqslant+\infty$), and $Z(f) \cap\{a \leqslant f \leqslant b\}=\emptyset$, then

$$
\begin{equation*}
H_{*}\left(f^{a}\right)=H_{*}\left(f^{b}\right) \tag{1.1}
\end{equation*}
$$

Moreover:
Proposition 1.4. - Let $f \in C^{2}(A ; \boldsymbol{R})$ be such that $f(u) \rightarrow+\infty$ as $u \rightarrow \partial \Lambda$ and let Y be a closed, positively invariant subset of Λ. Suppose: a) f satisfies $P S$ in $\{a \leqslant f \leqslant b\} \cap Y$, with $-\infty<a<b \leqslant+\infty ; b) Z(f) \cap\{a \leqslant f \leqslant b\} \cap Y$ is compact (if $b<+\infty$ this follows from $a)) ;$ c) $Z(f) \cap \partial(\{a \leqslant f \leqslant b\} \cap Y)=\emptyset ; d) f$ is Fredholm of
index 0 in $Z(f) \cap\{a \leqslant f \leqslant b\} \cap Y$. Then $\exists q^{\prime} \in \mathbf{N}$ such that

$$
\begin{equation*}
H_{q}\left(f^{b} \cap Y\right) \cong H_{q}\left(f^{a} \cap Y\right), \quad \forall q \geqslant q^{\prime} \tag{1.2}
\end{equation*}
$$

Proof. - Since PS holds in $\{a \leqslant f \leqslant b\} \cap Y$, and $Z(f) \cap\{a \leqslant f \leqslant b\} \cap Y$ is compact we can use [20, thm. 2.2] to deduce the existence of g for which: (i) a), b) and c) hold; (ii) g is close to f in the C^{1} norm and differs from f only in a small neighborhood of the critical points; (iii) g has only a finite number of nondegenerate critical points in $\{a \leqslant g \leqslant b\} \cap Y$. From (ii) it follows that Y is positively invariant for g, too. From this fact, and well known results of Morse theory (see, for example [7, thm. B]) it follows (taking into account also the proof of Proposition 1.2) that (1.2) holds for g. Since from (ii) one deduces that $f^{b} \cap Y=g^{b} \cap Y$ and $f^{a} \cap Y=g^{a} \cap Y$, the Proposition follows.

From this Proposition we deduce
Proposition 1.5. - Let Λ be an open set of a Hilbert space E, and let $f \in C^{2}(E ; \boldsymbol{R})$ be Fredholm of index 0 and such that $f(u) \rightarrow+\infty$ as $u \rightarrow \partial \Lambda$. Moreover suppose f satisfies PS in the set $\{f \geqslant \varepsilon\}, \forall \varepsilon>0$.
(i) if $\exists \varepsilon^{*}: H_{a}\left(f^{*}\right) \neq H_{a}(\Lambda)$, then $Z(\hat{f}) \cap\left\{f \geqslant \varepsilon^{*}\right\} \neq \emptyset$;
(ii) if:
(A)

$$
H_{g}(\Lambda) \neq 0 \quad \text { for infinitely many } q \in \boldsymbol{N}
$$

while $\exists \varepsilon^{*}>0, \exists q_{1} \in N$ such that $\left.\left.H_{q}\left(f^{\varepsilon}\right)=0, \forall q \geqslant q_{1}, \forall \varepsilon \in\right] 0, \varepsilon^{*}\right]$, then f has infinitely many critical points.

Proof. - (i) Suppose $Z(f) \cap\left\{f \geqslant \varepsilon^{*}\right\}=\emptyset$. Then from (1.1) it follows $H_{q}(A) \equiv$ $\equiv H_{q}\left(f^{\varepsilon^{*}}\right), \forall q \in \boldsymbol{N}$, a contradiction.
(ii) Suppose, by contradiction, that $Z(f)$ is finite and take $\left.\varepsilon \in] 0, \varepsilon^{*}\right]$ such that $Z_{\varepsilon}(f)=\emptyset$. From the assumptions and using Proposition 1.4 with $a=\varepsilon$ and $b=+\infty$ one finds $q_{2}>0:$

$$
H_{q}(\Lambda) \cong H_{q}\left(f^{e}\right), \quad \forall q \geqslant q_{2}
$$

a contradiction. \therefore
Remark 1.6. - Actually a stronger result can be obtained: suppose the assumptions of Proposition 1.5 - (ii) hold. Further, suppose $Z_{\varepsilon}(f)=\emptyset$ for some $\left.\left.\varepsilon \in\right] 0, \varepsilon^{*}\right]$. Then f has infinitely many critical points u_{\hbar} such that $f\left(u_{h}\right) \rightarrow+\infty$.

In fact if $\sup \{f(u): u \in Z(f)\} \equiv \sigma<+\infty$, then, applying Proposition 1.4 with $b=\sigma+1$ and $a=\varepsilon$, we reach a contradiction as before. \therefore
2. - Existence of critical points: a first case.

2.a. The PS condition.

We will deal here with functionals $f \in C^{1}(\Lambda ; \boldsymbol{R})$ of the form

$$
f(u)=\frac{1}{2}(A u, u)+g(u),
$$

where $A: E \rightarrow E$ and $g: A \rightarrow \boldsymbol{R}$ satisfy the assumptions listed below. First of all:
A1. A is a linear bounded selfadjoint operator in E with finite dimensional kernel:

$$
X=\operatorname{Ker} A, \quad \operatorname{dim} X=n<\infty
$$

$\forall x \in X$, the norm $\|x\|$ will be simply denoted (according to the notation of Part II), by $|x|$. Denoted by W the orthogonal complement to X, one has

$$
E=X \oplus W
$$

If P indicates the orthogonal projection onto X, we will set

$$
x_{u}=P u, \quad w_{u}=u-x_{u} .
$$

If no confusion arises, the subscript u will be omitted. We will also suppose:
A2.

$$
\exists \alpha>0:(A w, w) \geqslant \alpha\|w\|^{2}, \quad \forall w \in W .
$$

On g we will assume:
g1. $\quad g \in \mathbb{C}^{1}(\Lambda ; \boldsymbol{R})$ and $\exists m \geqslant 0: g(u) \geqslant-m, \forall u \in A ;$
g2. $\quad u_{n} \in \Lambda, u_{n}$ converges weakly to $u \in \partial \Lambda$ implies $g\left(u_{n}\right) \rightarrow+\infty$;
g3. let $e^{*}=(2 / \alpha)(m+1)$. Corresponding to c^{*} there exists $r^{*}>0$ and $g_{1}, g_{2} \in$ $\in O\left(\boldsymbol{R}^{n}, \boldsymbol{R}\right)$ such that:

$$
\begin{gather*}
g_{i}(x)>0, \quad \forall x \in \boldsymbol{R}^{n}, i=1,2,|x| \geqslant r^{*} ; \tag{2.1}\\
g_{i}(x) \rightarrow 0 \quad \text { as }|x| \rightarrow \infty, i=1,2 ; \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
g_{1}(P u) \leqslant g(u) \leqslant g_{2}(P u), \quad \forall u \in A \quad \text { with }|P u| \geqslant r^{*} \text { and }\left\|w_{u}\right\| \leqslant c^{*} \tag{2.3}
\end{equation*}
$$

REMARK 2.1. - We esplicitely note that from ($g 1$) and ($g 3$) it follows that $\{u=$ $\left.=P u+w_{u} \in E:|P u|>r^{*},\left\|w_{u}\right\| \leqslant 0^{*}\right\} \cap \partial \Lambda=\emptyset . \quad \therefore$

First of all we derive from the preceding assumptions some consequences.
Lemma 2.2.- (i) If $u \in f^{\varepsilon}, 0<\varepsilon \leqslant 1$, then $\left\|w_{u}\right\| \leqslant c^{*}$. (ii) There exists $\varepsilon^{*}>0$ such that if $u \in f^{\varepsilon}, 0<\varepsilon \leqslant \varepsilon^{*}$, then $|P u| \neq r^{*}$.

Proof. - (i) Let $u \in f^{\varepsilon}$, with $0<\varepsilon \leqslant 1$. Using (A2) and ($g 1$) it follows:

$$
\frac{1}{2} \alpha\|w\|^{2}-m \leqslant \frac{1}{2}(A w, w)+g(u)=f(u) \leqslant \varepsilon
$$

Hence

$$
\|w\|^{2} \leqslant(2 / \alpha)(m+\varepsilon) \leqslant o^{*} .
$$

(ii) By contradiction, let $u_{n} \in A$ be such that $f\left(u_{n}\right) \leqslant 1 / n$ and $\left|P u_{n}\right|=r^{*}$. Letting $w_{n}=w_{u_{n}}$, from (the preceding) (i) one has $\left\|w_{n}\right\| \leqslant 0^{*}$. Then (2.3) of ($g 3$) implies:

$$
g\left(u_{n}\right) \geqslant g_{1}\left(P u_{n}\right)
$$

Therefore it follows:

$$
\begin{equation*}
f\left(u_{n}\right)=\frac{1}{2}\left(A w_{n}, w_{n}\right)+g\left(u_{n}\right) \geqslant g\left(u_{n}\right) \geqslant g_{1}\left(P u_{n}\right) \tag{2.4}
\end{equation*}
$$

Since $\left|P u_{n}\right|=r^{*}$, then $g_{1}\left(P u_{n}\right) \geqslant \delta \equiv \min \left\{g_{1}(x):|x|=r^{*}\right\}$. By (2.1) $\delta>0$ and hence we deduce from (2.4):

$$
f\left(u_{n}\right) \geqslant \delta>0
$$

a contradiction which proves (ii). \therefore
Corollary 2.3. - For all $\varepsilon \leqslant \varepsilon^{*}$ one has

$$
f^{\varepsilon}=\Gamma_{1}^{e} \cup \Gamma_{2}^{\varepsilon}
$$

where

$$
\begin{aligned}
& \Gamma_{1}^{\varepsilon}=\left\{u \in f^{\varepsilon}:\left|P u_{n}\right|<r^{*}\right\} \\
& \Gamma_{2}^{\varepsilon}=\left\{u \in f^{f}:\left|P u_{n}\right|>r^{*}\right\}
\end{aligned}
$$

In particular $\bar{\Gamma}_{1}^{\varepsilon} \cap \bar{\Gamma}_{2}^{e}=\emptyset$. Moreover the sets $I_{1}^{s}, \Gamma_{2}^{e}$, are positively invariant under: the steepest descent flow of f.

Proof. - The first statement is a direct consequence of Lemma 2.2. The positive invariance of $\Gamma_{i}^{\varepsilon}(i=1,2)$ follows from the fact that $\eta(t, u) \in f^{\varepsilon}, \forall t \geqslant 0, \forall u \in f^{\varepsilon}$ and by continuity, from (ii) of Lemma 2.2. \therefore,

Remariss 2.4. - (i) Γ_{1}^{ε} could possibly be empty, while $\Gamma_{2}^{\varepsilon} \neq 0$ for $\varepsilon>0$. In fact the set $\{x \in X:|x|>r\}$ is contained in Γ_{2}^{ε} provided $r>0$ is large enough, because $g(x) \rightarrow 0$ as $x \in X,|x| \rightarrow \infty$ (immediate consequence of (22) and (2.3)).
(ii) $f(u)>0, \forall u \in \Gamma_{2}^{\varepsilon}$. This follows from (g3) and Lemma 2.2 -(ii). \therefore

Lemma 2.5. - Let $u_{n} \in A$ be such that $f\left(u_{n}\right) \leqslant 1 / n$ and $\left|P u_{n}\right|>r^{*}$. Then, setting $w_{n}=w_{u_{n}}$, one has
(i) $\left\|w_{n}\right\| \rightarrow 0$;
(ii) $\left|P u_{n}\right| \rightarrow \infty$.

Proof. - From Lemma, 2.2 - (i) one has $\left\|w_{n}\right\| \leqslant c^{*}$. Since $\left|P u_{n}\right|>r^{*}$ by assumption, we can use ($g 3$) to infer that $g\left(u_{n}\right) \geqslant g_{1}\left(P u_{n}\right)>0$. Hence, using also (A2),

$$
\frac{1}{2} \alpha\left\|w_{n}\right\|^{2} \leqslant \frac{1}{2}\left(A w_{n}, w_{n}\right)+g\left(u_{n}\right)=f\left(u_{n}\right) \leqslant 1 / n
$$

and (i) follows.
As for (ii), we remark that (2.4) still holds here. If $\left|P u_{n}\right| \leqslant$ const., it would follow that $P u_{n} \rightarrow x \in X$, for a subsequence, and $g_{1}\left(P u_{n}\right) \rightarrow g_{1}(x)$. Since $g_{1}(x)>0$ by (2.1), (2.4) implies $f\left(u_{n}\right) \geqslant \delta>0$ for n large, a contradiction. \therefore

We are now in position to investigate the PS condition. An assumption on g^{\prime} is in order:
g4. (i) $u_{n} \in A, u_{n}$ converges weakly to $u \in \Lambda$ implies $g^{\prime}\left(u_{n}\right) \rightarrow g^{\prime}(u)$ and
(ii) $g^{\prime}\left(u_{n}\right) \rightarrow 0$ for all $u_{n}=w_{n}+x_{n}$ such that $\left\|w_{n}\right\| \leqslant$ const. and $\left|x_{n}\right| \rightarrow \infty$.

Let us point out that ($g 4$) implies that
f^{\prime} is Fredholm of index 0.

In fact $f^{\prime}(u)=A u+g^{\prime}(u)=A u+P u-P u+g^{\prime}(u)$ and $A u+P u$ is a linear homeomorphism, while $g^{\prime}(u)-p u$ is compact.

Under the above assumptions, the PS condition fails to hold at the level $c=0$. In fact, if $x_{n} \in X$ and $\left|x_{n}\right| \rightarrow \infty$ then $\left(x_{n} \in A\right.$, see Remark 2.1, and) $f\left(x_{n}\right)=g\left(x_{n}\right) \rightarrow 0$, while, as a consequence of $(g 4)$, one has $g^{\prime}\left(x_{n}\right) \rightarrow 0$. The following Lemma says that the preceding one is essentially the only situation in which PS fails to hold.

Lemma 2.6. - (i) For all $\varepsilon>0$ PS holds in the set $\{f \geqslant \varepsilon\}$; (ii) PS holds in every set where $|P u| \leqslant$ const,

Proof. - (i) Let $w_{n} \in A$ be such that

$$
\begin{gather*}
\varepsilon \leqslant f\left(u_{n}\right)=\frac{1}{2}\left(A w_{n}, w_{n}\right)+g\left(u_{n}\right) \leqslant c_{1} \quad\left(w_{n}=w_{u_{n}}\right) \tag{2.6}\\
f^{\prime}\left(u_{n}\right)=A w_{n}+g^{\prime}\left(u_{n}\right) \rightarrow 0 \tag{2.7}
\end{gather*}
$$

From the righ-hand side of (2.6) and $(g 1)$ we deduce that $\left\|w_{n}\right\| \leqslant c_{2}$ and hence w_{n} converges weakly, up to a subsequence, to w. We claim that $\left|P u_{n}\right| \leqslant c_{3}$. In fact, otherwise, from ($g 4$) we have that

$$
\begin{equation*}
g^{\prime}\left(u_{n}\right) \rightarrow 0 \tag{2.8}
\end{equation*}
$$

Multiplying (2.7) by w_{n}, it follows:

$$
\left(A w_{n}, w_{n}\right)=\left(f^{\prime}\left(u_{n}\right), w_{n}\right)-\left(g^{\prime}\left(u_{n}\right), w_{n}\right)
$$

and hence

$$
\alpha\left\|w_{n}\right\|^{2} \leqslant\left\|f^{\prime}\left(u_{n}\right)\right\|\left\|w_{n}\right\|+\left\|g^{\prime}\left(u_{n}\right)\right\|\left\|w_{n}\right\| .
$$

Since both $f^{\prime}\left(u_{n}\right)$ and $g^{\prime}\left(u_{n}\right)$ tend to 0 (see (2.7) and (2.8)), then $w_{n} \rightarrow 0$. We can now use the right-hand of (2.3) to find

$$
\begin{equation*}
f\left(u_{n}\right) \leqslant \frac{1}{2}\left(A w_{n}, w_{n}\right)+g_{2}\left(P u_{n}\right) \tag{2.9}
\end{equation*}
$$

Since $w_{n} \rightarrow 0$ and $\left|P u_{n}\right| \rightarrow \infty$, we have from (2.2)

$$
\frac{1}{2}\left(A w_{n}, w_{n}\right)+g_{2}\left(P u_{n}\right) \rightarrow 0
$$

From (2.9) it finally follows that $f\left(u_{n}\right) \rightarrow 0$, in contradiction with the left hand side of (2.6), so that the claim is proved.

Now, if $\left|P u_{n}\right| \leqslant c_{3}$, one has that $P u_{n} \rightarrow \xi$ (up to a subsequence) and then $u_{n}=w_{n}+$ $+P_{u_{n}}$ converges weakly to $w+\xi=u$. Since $g\left(u_{n}\right) \leqslant c_{1}$, then by $(g 2)$ we infer that $u \in A$. Then from ($g 4$) it follows that $g^{\prime}\left(u_{n}\right) \rightarrow g^{\prime}(u)$, and

$$
A w_{n}=f^{\prime}\left(u_{n}\right)-g^{\prime}\left(u_{n}\right) \rightarrow g^{\prime}(u)
$$

Then $w_{n} \rightarrow w$ and $u_{n} \rightarrow u$. This completes the proof of (i).
(ii) As in the proof of (i), $f\left(u_{n}\right) \leqslant c_{1}$ implies $\left\|w_{n}\right\| \leqslant c_{2}$. If, in addition, $\left|P u_{n}\right| \leqslant$ \leqslant const, the PS follows as above. \therefore

2.b. The topology of f^{6}.

We will always assume $(A 1,2)$ and $(g 1,2,3,4)$. We recall that, by Corollary 2.3 one has

$$
f^{\varepsilon}=\Gamma_{1}^{s} \cup \Gamma_{2}^{s}, \quad \forall \varepsilon \leqslant \varepsilon^{*}
$$

with $\bar{\Gamma}_{1}^{\varepsilon} \cap \bar{\Gamma}_{2}^{\varepsilon}=\emptyset$. The purpose of this subsection is to study the topology of Γ_{2}^{ε}. Let

$$
\Pi(t, u) \equiv t w_{u}+P u
$$

Lemma 2.7. For all $0<\varepsilon \leqslant \varepsilon^{*}$, there exists $\varepsilon^{\prime} \leqslant \varepsilon$ such that

$$
\Pi(t, u) \in \Gamma_{a}^{\varepsilon}, \quad \forall t \in[0,1], \forall u \in \Gamma_{2}^{\varepsilon^{\prime}} .
$$

Proof. - First we remark that $|P(I I(t, u))|=|P u|>r^{*}, \forall t \in[0,1], \forall u \in \Gamma_{2}^{\varepsilon^{\prime}}$. Then, arguing by contradiction, we let $t_{n} \in[0,1], u_{n} \in I_{2}^{1 / n}$ be such that

$$
\begin{equation*}
0<\varepsilon<f\left(\Pi\left(t_{n}, w_{n}+x_{n}\right)\right)=\frac{1}{2} t_{n}^{2}\left(A w_{n}, w_{n}\right)+g\left(t_{n} w_{n}+x_{n}\right) \tag{2.10}
\end{equation*}
$$

with $x_{n}=P u_{n}$ and $w_{n}=u_{n}-x_{n}$. From the definition of $\Gamma_{2}^{1 / n}$ we have

$$
f\left(u_{n}\right) \leqslant 1 / n \quad \text { and } \quad\left|x_{n}\right|>r^{*}
$$

Using Lemma 2.5 we get

$$
\begin{equation*}
w_{n} \rightarrow 0 \quad \text { and } \quad\left|x_{n}\right| \rightarrow+\infty \tag{2.11}
\end{equation*}
$$

Since $t_{n} \in[0,1]$ and $P\left(t_{n} w_{n}+x_{n}\right)=x_{n}$, then (2.11) permits to use ($g 3$) to estimate

$$
g\left(t_{n} w_{n}+x_{n}\right) \leqslant g_{2}\left(x_{n}\right)
$$

Since from (2.11) it follows that $\left(A w_{n}, w_{n}\right) \rightarrow 0$ as well as $g_{2}\left(x_{n}\right) \rightarrow 0$, this gives a contradiction with (2.10). $\quad \therefore$

Set $S^{n-1}=\{x \in X:|x|=1\}$. We can now state:
Lemma 2.8. - If $Z(f) \cap \Gamma_{2}^{\varepsilon}=\emptyset, 0<\varepsilon \leqslant \varepsilon^{*}$, then S^{n-1} is a deformation retract of Γ_{2}^{e}.

Proof. - Since $Z(f) \cap \Gamma_{2}^{\varepsilon}=\emptyset$ and by the positive invariance of Γ_{2}^{ϵ} under the steepest descent flow η (see Corollary 2.3), one has (see § 1, Proposition 1.3) that, $\forall \varepsilon^{\prime} \leqslant \varepsilon, \Gamma_{2}^{\varepsilon^{\prime}}$ is a deformation retract of Γ_{2}^{ε}. From the fact that $g(P u) \rightarrow 0$ as $|P u| \rightarrow$ $\rightarrow+\infty$ we infer that $\exists r^{\prime}>0$ such that $X-B_{r}$ is a subset of Γ_{2}^{ε}. Let $\varepsilon^{\prime} \leqslant \varepsilon$ be such that Lemma 2.7 holds. By Lemma 2.5 - (ii) it is possible to take $\varepsilon^{\prime} \leqslant \varepsilon$ in such a way that (Lemma, 2.7 continues to hold and)

$$
|P u|>r^{\prime}, \quad \forall u \in \Gamma_{2}^{\varepsilon^{\prime}}
$$

Lastly, fix $\varrho \geqslant r^{\prime}$ in such a way that $\Gamma_{2}^{\varepsilon^{\prime}} \supset \partial B_{\varrho} \cap X$ and let θ be the radial projection

$$
\theta(t, x) \equiv t \varrho \frac{x}{|x|}+(1-t) x, \quad x \in X, x \neq 0, t \in[0,1]
$$

By the preceding remarks it is readily verified that $\theta\left(t, P_{u}\right) \in \Gamma_{2}^{\varepsilon}, \forall t \in[0,1], \forall u \in \Gamma_{2}^{\varepsilon_{2}^{\prime}}$. Hence $\partial B_{\theta} \cap X$ turns out to be a deformation retract of Γ_{2}^{e} through the homotopy obtained combining η, Π and θ, and the lemma follows. \therefore

From the preceding lemma we infer:
Corollary 2.9. - Under the hypothesis of Lemma 2.8 one has

$$
\begin{equation*}
H_{*}\left(\Gamma_{2}^{\varepsilon}\right)=H_{*}\left(S^{n-1}\right) . \quad \therefore \tag{2.12}
\end{equation*}
$$

2.e. Existence results.

Our first result is an immediate consequence of Lemma 2.8 and will be applied when, essentially, $A=E$.

Theorem 2.10. - Suppose (A1, 2), (g1, 2, 3, 4) and

$$
\begin{equation*}
H_{*}(\Lambda) \neq H_{*}\left(S^{n-1}\right) \tag{2.13}
\end{equation*}
$$

Then f has at least a critical point in A.
Proof. - Since PS holds in $\{f \geqslant \varepsilon\}, \forall \varepsilon>0$ (Lemma 2.6-(i)), then, if $Z(f)=\emptyset$, we can use the steepest descent flow to obtain (see $\S 1$, Proposition 1.3)

$$
H_{*}(A)=H_{*}\left(f^{\varepsilon}\right), \quad \forall \varepsilon>0 .
$$

Using Corollary 2.3 we have (see [15, Proposition 4.12])

$$
\begin{equation*}
H_{*}(\Lambda)=H_{*}\left(T_{1}^{\epsilon}\right) \oplus H_{*}\left(\Gamma_{2}^{\varepsilon}\right), \quad \forall 0<\varepsilon \leqslant \varepsilon^{*} \tag{2,14}
\end{equation*}
$$

If $\Gamma_{1}^{\varepsilon}=\emptyset$, we can use Corollary 2.9 to find

$$
H_{*}(A)=H_{*}\left(\Gamma_{2}^{\delta}\right)=H_{*}\left(S^{n-1}\right),
$$

which contradicts (2.13).
If $\Gamma_{1}^{\varepsilon} \neq \emptyset$, a critical point of f on Λ will be found as the minimum of f on Γ_{i}^{k}. Such a minimum exists because: (a) f is bounded from below on Λ (hence on Γ_{1}^{ε}), since, as a consequence of ($g 1$):

$$
f(u)=\frac{1}{2}(A u, u)+g(u) \geqslant-m, \quad \forall u \in \Lambda ;
$$

(b) PS holds on Γ_{1}^{e} (see Lemma 2.6-(ii)); (c) Γ_{1}^{ε} is positively invariant under the steepest descent flow η (see Corollary 2.3). Then Proposition 1.2 applies. \therefore

Coroclary 2.11. - Suppose $(A 1,2),(g 1,3,4)$ and let $A=E$. Then $Z(f) \neq 0$. If, in addition, $\Gamma_{1}^{\varepsilon} \neq \emptyset$ for some $\varepsilon \leqslant \varepsilon^{*}$, then $\# Z(f) \geqslant 2$.

Proof. - $Z(f) \neq 0$ since for $A=E$ (2.13) holds and Theorem 2.10 applies. Let $\Gamma_{1}^{e} \neq \emptyset$ for some $\left.\left.\varepsilon \in\right] 0, \varepsilon^{*}\right]$. According to the proof of Theorem 2.10, f has a minimum $u_{1} \in \Gamma_{\mathrm{i}}^{e}$. A second critical point can be found using a mountain pass type argument taking paths connecting the minimum and a point in Γ_{2}^{ε}. Every such a path has to cross the surface $|P u|=r^{*}$ where f takes values $\geqslant \varepsilon^{*}$, see Lemma 2.2 - (ii). Then the mountain pass level $c \geqslant \varepsilon^{*}$ is a critical value since PS holds in $\{f \geqslant \varepsilon\}, \forall \varepsilon>0$. We leave the details to the reader.

REMARK 2.12. - In the case in which Corollary 2.11 applies one can be slightly more precise. Namely, if $f \in C^{2}(E, \boldsymbol{R})$ and is a Morse functional one can find at least 3 critical points provided $n \geqslant 2$. In fact the mountain pass critical point has Morse index $=1$ [1] and to find a third critical point it suffices to argue by contradiction, using the Morse inequalities, as in Theorem 2.10. We do not carry over the details. \therefore

Our main existence theorem of this section is:
Theoren 2.13. - Suppose (A1, 2), $(g 1,2,3,4)$ and (4) hold. Suppose, also, that $g \in C^{2}(\Lambda ; \boldsymbol{R})$. Then f has infinitely many critical points on A.

Proof. - First of all, Corollary 2.3 yields

$$
\begin{equation*}
\left.\left.H_{q}\left(f^{s}\right)=H_{q}\left(\Gamma_{1}^{\varepsilon}\right) \oplus H_{q}\left(\Gamma_{2}^{\varepsilon}\right), \quad \forall \varepsilon \in\right] 0, \varepsilon^{*}\right], \forall q \in \mathbb{N} \tag{2.15}
\end{equation*}
$$

Next suppose, by contradiction, that $Z(f)$ is finite. Then $\left.\exists \varepsilon \in] 0, \varepsilon^{*}\right]$ such that

$$
\begin{align*}
& Z(f) \cap \Gamma_{2}^{e}=\emptyset \tag{2.16}\\
& Z_{\varepsilon}(f) \cap \Gamma_{1}^{\mathrm{E}}=\emptyset \tag{2.17}
\end{align*}
$$

(2.16) allows us to use (2.11) to find

$$
\begin{equation*}
H_{q}\left(T_{2}^{\varepsilon}\right)=\{0\}, \quad \forall q \neq 0, n-1 \tag{2.18}
\end{equation*}
$$

Next let $Y=\Gamma_{\mathrm{I}}^{e}, b=\varepsilon$ and $a<-m$. From Lemma 2.6 - (ii) and (2.5) assumptions a), b) and d) of Proposition 1.4 hold. Moreover $\partial \Gamma_{1}^{\varepsilon}=\{f=\varepsilon\} \cap \Gamma_{1}^{\varepsilon}$ and (2.17) yield 0). Then from Proposition 1.4 we deduce the existence of $q_{2} \in \boldsymbol{N}$ such that

$$
\begin{equation*}
H_{q}\left(\Gamma_{\mathbf{1}}^{\varepsilon}\right)=\{0\}, \quad \forall q \geqslant q_{2} . \tag{2.19}
\end{equation*}
$$

Thus (2.15), (2.18) and (2.19) imply:

$$
H_{\imath}\left(f^{\varepsilon}\right)=\{0\}, \quad \forall q \geqslant \max \left(q_{2}, n\right) .
$$

We can now apply Proposition 1.5 - (ii) and find a contradiction. \therefore
According to remark 1.6 we can prove here a stronger result.
Theorem 2.14. - Suppose $(A 1,2),(g 1,2,3,4)$ and (A) hold. Suppose, also, that $g \in C^{2}(\Lambda ; \boldsymbol{R})$ and that
(2.20) $\exists R, \delta>0$ such that $\left(g^{\prime}(u), P_{u}\right)<0, \quad \forall u$ such that $\left|w_{u} \leqslant \delta,\right| P_{u} \geqslant R$.

Then f has infinitely many critical points $u_{k} \in \Lambda$ such that $f\left(u_{k}\right) \rightarrow+\infty$.
Proof. - We first remark that, under the assumption $(2.20), Z(f) \cap \Gamma_{2}^{\varepsilon^{*}}$ is compact. In fact let $u_{n} \in Z(f) \cap \Gamma_{2}^{\varepsilon^{*}}$. We know that $f\left(u_{n}\right)>0, \forall n$. Actually we claim that $f\left(u_{n}\right) \geqslant \mu>0, \forall n$. Otherwise, up to a subsequence, $f\left(u_{n}\right) \rightarrow 0$, and we deduce from Lemma 2.5 that $\exists N>0$ such that $\forall n \geqslant N,\left|P u_{n}\right|>R$ and $\left\|w_{n}\right\| \leqslant R$. For such n 's we therefore have

$$
\left(g^{\prime}\left(u_{n}\right), P u_{n}\right)<0, \quad \forall n \geqslant N .
$$

But $u_{n} \in Z(f)$ implies

$$
\begin{aligned}
0 & =\left(f^{\prime}\left(u_{n}\right), P u_{n}\right) \\
& =\left(A w_{n}, P u_{n}\right)+\left(g^{\prime}\left(u_{n}\right), P u_{n}\right) \\
& =\left(g^{\prime}\left(u_{n}\right), P u_{n}\right)<0,
\end{aligned}
$$

contradiction which proves the claim. Now the precompactness of $\left\{u_{n}\right\}$ follows from the PS. Set $\varepsilon=\inf \left\{f(u): u \in Z(f) \cap \Gamma_{2}^{\varepsilon^{*}}\right\}>0$, and suppose, by contradiction, that there exists $b<+\infty$ such that $Z(f)$ is contained in f^{b}. Then $Z(f)$ is compact and, as in proposition 1.4 we can find $g \in C^{2}(\Lambda ; \boldsymbol{R})$ which has only finitely many nondegenerate critical points in $g^{b+1}=f^{b+1}$. Reasoning as in Proposition 1.4 we deduce the existence of $q_{1}, q_{2} \in \boldsymbol{N}$ such that

$$
\begin{aligned}
H_{q}(\Lambda) & \cong H_{q}\left(f^{b+1}\right), \\
& \cong H_{q}\left(g^{b+1}\right), \\
& \forall q \in \mathbf{N} \\
& \cong H_{q}\left(g^{\varepsilon / 2}\right),
\end{aligned} \quad \forall q \geqslant q_{1} .
$$

It is easy to see that Corollary 2.3 and Lemma 2.6 holds for g as well. Hence

$$
\begin{array}{rlrl}
H_{q}\left(g^{\varepsilon / 2}\right) & \cong H_{q}\left(\left\{u \in A: g(u) \leqslant \varepsilon / 2,|p u| \leqslant r^{*}\right\}\right) \oplus H_{q}\left(I_{2}^{\varepsilon / 2}\right), & & \forall q \geqslant q_{1} \\
& \cong H_{q}\left(\Gamma_{2}^{\varepsilon / 2}\right), & \forall q \geqslant q_{2} \\
& \cong H_{q}\left(S^{n-1}\right), & & \forall q \geqslant q_{2}
\end{array}
$$

This is a contradiction which proves the Theorem. \therefore
Remark 2.15. - Using Lusternik-Schnirelman category it is possible to prove a result similar to Theorem 2.14, namely:

Suppose $(A 1,2),(g 1,2,3,4)$ hold and let cat $A=+\infty$. Then f has infinitely many critical points in A. Moreover there is a sequence of critical points $\left\{u_{n}\right\}$ such that $f\left(u_{n}\right) \rightarrow+\infty$.

The proof is based on the fact that under such assumptions cat ${ }_{\Lambda} f^{\varepsilon}$ is finite since: it is finite in Γ_{1}^{e} since Γ_{1}^{e} is positively invariant and f is bounded from below and satisfies PS there, while Γ_{2}^{ε} is a subset of $\Sigma^{*}=\left\{u \in A:\left\|w_{u}\right\| \leqslant c^{*},|P u|>r^{*}\right\}$ and $\operatorname{cat}_{\Sigma^{*}} \Sigma^{*}=2 \mathrm{imply} \operatorname{cat}_{A} \Gamma_{2}^{e} \leqslant \operatorname{cat}_{A} \Sigma^{*} \leqslant \operatorname{cat}_{\Sigma^{*}} \Sigma^{*}=2$. We remark that cat $A=+\infty$ implies (A). \therefore

3. - Existence of critical points: a second case.

We deal here with a functional $f \in C^{1}(A, R)$ of the form

$$
f(u)=\frac{1}{2}(A u, u)+g(u)
$$

with A satisfying (A1, 2) and g satisfying $(g 1,2),(g 4)$ and
g5. $\forall c>0, \exists r>0$ such that for all $u \in A$ with $|P u|>r$ and $\left|w_{u}\right| \leqslant 0$ one has

$$
\begin{equation*}
g(u)<0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(g^{\prime}(u), u\right)>0 \tag{3.2}
\end{equation*}
$$

As in § 2 we start investigating the PS condition.
Ifimma 3.1. - The PS condition holds in $\{f \geqslant \varepsilon\}, \forall \varepsilon>0$, and in $f^{\delta}, \forall \delta>0$.
Proof. - As in Lemma 2.6, if $u_{n} \in A$ satisfies (2.6) and (2.7) one finds $w_{n} \| \leqslant c_{2}$ (where $w_{n}=w_{u_{n}}$). If $\left|P u_{n}\right| \rightarrow \infty$, one finds again that $w_{n} \rightarrow 0$. We can now use (3.1) of ($g 5$) to get

$$
f\left(u_{n}\right)=\frac{1}{2}\left(A u_{n}, u_{n}\right)+g\left(u_{n}\right) \leqslant \frac{1}{2}\left(A u_{n}, u_{n}\right) .
$$

Hence $f\left(u_{n}\right) \rightarrow 0$, in contradiction with (2.6). Thus $\left|P u_{n}\right| \leqslant$ const. and the conclusion follows as in Lemma 2.6. This proves that the PS holds in $\{f \geqslant \varepsilon\}, \forall \varepsilon>0$. The same argument works for the second statement as well. \therefore

As a consequence of (3.2) one has:
Lemma 3.2. - For all $\varepsilon>0, \exists R>0$ such that

$$
\left(f^{\prime}(u), u\right)>0, \quad \forall u \in f^{\varepsilon}, \| u \geqslant R .
$$

In particular $f^{\varepsilon} \cap B_{R}$ is positively invariant under the steepest descent flow of f.
Proof. - Arguing by contradiction, suppose there exist $\varepsilon^{\prime}>0$ and a sequence $u_{n} \in f^{\varepsilon^{\prime}}$ such that $\left\|u_{n}\right\| \rightarrow+\infty$ and $\left(f^{\prime}\left(u_{n}\right), u_{n}\right) \leqslant 0$. From $u_{n} \in f^{\varepsilon^{\prime}}$ we infer readily that $\left\|w_{n}\right\| \leqslant$ \leqslant const. Then $\left|P u_{n}\right| \geqslant\left\|u_{n}\right\|-\left\|w_{n}\right\| \geqslant\left\|u_{n}\right\|-c$, hence $\left|P u_{n}\right| \rightarrow+\infty$. Using (3.2) of ($g 5$) one has

$$
\left(f^{\prime}\left(u_{n}\right), u_{n}\right)=\frac{1}{2}\left(A w_{n}, w_{n}\right)+\left(g^{\prime}\left(u_{n}\right), u_{n}\right) \geqslant\left(g^{\prime}\left(u_{n}\right), u_{n}\right)>0,
$$

a contradiction. \therefore
We are in position to state:

Theorem 3.3. - Suppose $(A 1,2)$ and $(g 1,2,4,5)$ hold and that $g \in C^{2}(A ; \boldsymbol{R})$. Then:
(i) $Z(f) \neq \emptyset$;
(ii) if (A) holds, then $\exists u_{k} \in A$ such that $f^{\prime}\left(u_{k}\right)=0$ and $f\left(u_{k}\right) \rightarrow+\infty$.

Proof. - (i) f is bounded from below on A and

$$
\inf _{A} f \leqslant \inf _{x} f \leqslant \inf _{x} g<0
$$

because of (3.1). Since PS holds on $f^{-\delta}, \forall \delta>0$ (Lemma 3.1), then f attains its minimum on some $\bar{u} \in \Lambda$:

$$
f(\bar{u})=\min \{f(u): u \in A\}
$$

(ii) Fixed $\varepsilon>0$, let us take $R>0$ according to Lemma 3.2. Set

$$
S(t, u)= \begin{cases}u & \text { if }\|u\| \leqslant R \\ (1-t) u+t R u /\|u\| & \text { iô }\|u\| \geqslant R\end{cases}
$$

We claim
Lemma 3.4. $-f^{\varepsilon} \cap B_{R}$ is a deformation retract of f^{ε} through \mathbb{S}.

Proof. - By a direct calculation one has

$$
\begin{equation*}
\frac{d}{d t} f(S(t, u))=\left(f^{\prime}(S(t, u)), S(t, u)\right) \frac{(R /\|u\|)-1}{1+t[(R /\|u\|)-1]} \tag{3.3}
\end{equation*}
$$

Since $\|S(t, u)\| \geqslant R$ whenever $\|u\| \geqslant R$, then, using Lemma 3.2, it follows that

$$
\frac{d}{d t} f(S(t, u))<0 \quad \text { whenever }\|u\| \geqslant R \text { and } S(t, u) \in f^{\varepsilon}
$$

In particular $u \in f^{\varepsilon}$ implies that $\left.(d / d t) f(S(t, u t))\right|_{t=0}<0$. Thus $S(t, u) \in f^{\varepsilon}$ for $t \in[0, \mu]$ for some $\mu>0$. If the Lemma is not true, it would exists $\tau>0$ such that $\mathcal{S}(\tau, u) \in f^{\varepsilon}$ and $\left.(d / d t) f(S(t, u))\right|_{t=\tau}=0$. This is clearly a contradiction which proves the Lemma. \therefore

Proof of theorem complefed. - The proof is similar to that of Theorem 2.14. In fact also here we have that, $\forall b \leqslant+\infty, Z(f) \cap f^{b}$ is compact. This follows, essentially, from Lemma 3.2. More precisely, let $u_{n} \in Z(f) \cap f^{\circ}$. Take a subsequence u_{n} such that $f\left(u_{k}\right) \rightarrow c$. If $c \neq 0$, the precompactness follows from PS. If $f\left(u_{k}\right) \rightarrow 0$, from Lemma 3.2 we deduce that $\left\|u_{k}\right\| \leqslant R$ and it is easy to find a converging subsequence. The proof now follow by contradiction as in theorem 2.14, the only difference being that here $H_{q}\left(g^{\varepsilon / 2}\right) \cong H_{q}\left(g^{\varepsilon / 2} \cap B_{R}\right) \cong\{0\}, \forall q \geqslant q_{2}$ (g being, as before, a C^{2} function, having only nondegenerate critical points, which coincide with f outside a neighborhood of the critical points). \therefore

Remark 3.5. - Also here, as in Remark 2.15, one can show that $\# Z(f)=+\infty$ provided cat $A=+\infty . \quad \therefore$

Remark 3.6. - Among papers dealing with lack of PS, [6] have studied functionals with strong resonance at infinity. They have used different methods based on linking arguments and obtained results which are different from ours in generality and form.

Different questions concerning the lack of PS are investigated in $[4,23, \ldots] . \quad \therefore$

PaRt II: APPLIOATIONS

4. - Applications: general framework.

We will apply the abstract results of Part I to find T-periodic solutions of n-dimensional second order systems. Precisely, let Ω be an open subset of $\boldsymbol{R}^{n}, n \geqslant 2$ (even if some of the results below will be true even when $n=1$) and let $V: \boldsymbol{R} \times \Omega \rightarrow \boldsymbol{R}$
be such that

$$
\begin{equation*}
V \in C^{1}(\boldsymbol{R} \times \Omega), \quad V(t+T, y)=V(t, y), \quad \forall(t, y) \in \boldsymbol{R} \times \Omega \tag{V1}
\end{equation*}
$$

Set $V^{\prime}(t, y)=\nabla_{y} V(t, y)$. We look for T-periodic solutions of

$$
\begin{equation*}
-\ddot{y}=V^{\prime}(t, y) . \tag{4.1}
\end{equation*}
$$

Set $E=H^{1,2}\left(S^{1}, \boldsymbol{R}^{n}\right)$ where $S^{1}=\boldsymbol{R} /[0, T]$, with scalar product

$$
(u, v)=\int_{0}^{T}\langle\dot{u}, \dot{v}\rangle d t+\int_{0}^{T}\langle u, v\rangle d t
$$

and norm

$$
\|u\|=\left.\int\left|\dot{u}_{\left.\right|^{2}}+\int\right| u\right|^{2}\left(^{1}\right) .
$$

Here and below $\langle\cdot, \cdot\rangle$ and $|\cdot|$ denote the Euclidean scalar product and norm in \boldsymbol{R}^{n}.
Let $A: E \rightarrow E$ be defined by

$$
(A u, v)=\int\langle\dot{u}, \dot{v}\rangle .
$$

(A1) trivially holds with $X=\operatorname{Ker} A=\boldsymbol{R}^{n}$. Remark that here

$$
P_{u}=(1 / T) \int u
$$

and $W=\left\{u \in E: \int w=0\right\}$. The Poincare inequality implies that also (A2) holds. Let

$$
A=\{u \in E: u(t) \in \Omega, \forall t \in \boldsymbol{R}\}
$$

and define

$$
g(u)=-\int V(t, u(t))
$$

The T-periodic solutions of (4.1) are the critical points of the functional

$$
f(u)=\frac{1}{2}(A u, u)+g(u)
$$

Remark that f is $C^{1}\left(C^{2}\right)$ provided V is C^{1} in y (resp. C^{2} in y).
(1) From now on, we will write \int for $\int_{0}^{T} d t$.

5. - Bounded potentials.

In this section we will take $\Omega=\boldsymbol{R}^{n}$ and V satisfying (V1) and:
(V2) $\quad V(t, y) \rightarrow 0$ as $|y| \rightarrow+\infty$ uniformly in t and $\exists r_{1}>0: V(t, y)<0, \forall|y| \geqslant r_{1}:$
(V3) $\quad V^{\prime}(t, y) \rightarrow 0$ as $|y| \rightarrow+\infty$ uniformly in t.
We check the assumptions of theorem 2.10 and Corollary 2.11 by showing
Lemma 5.1. - (i) If (V2) holds, then (g1) and (g3) are true. (ii) If (V3) holds, then ($g 4$) is true.

Proof. - (i) (g1) is trivial. As for (g3), recall that $\forall w \in W$ one has

$$
\|w\|_{L^{\infty}} \leqslant c_{3}\|w\|_{I}
$$

Let r^{*} be such that $r^{*}-c_{3} 0^{*}>r_{1}$ and set

$$
\begin{aligned}
& g_{1}(y)=(1 / T) \min \left\{-\int V(t, \xi): t \in \boldsymbol{R},|y|-c_{3} e^{*} \leqslant|\xi| \leqslant|y|+c_{3} c^{*}\right\}, \\
& g_{2}(y)=(1 / T) \max \left\{-\int V(t, \xi): t \in \boldsymbol{R},|y|-c_{3} c^{*} \leqslant|\xi| \leqslant|y|+c_{3} c^{*}\right\} .
\end{aligned}
$$

Properties (2.1) and (2.2) of g_{i} are immediate consequence of (V2). Moreover, from

$$
-|P u|+\left\|w_{u}\right\|_{L^{\infty}} \leqslant|u(t)| \leqslant\left|w_{u} \|_{L^{\infty}}+|P u|\right.
$$

it follows that $\forall u \in \Lambda$ with $\left\|w_{u}\right\| \leqslant c^{*}$

$$
|P u|-e_{3} 0^{*} \leqslant|u(t)| \leqslant|P u|+c_{3} e^{*} ;
$$

from which ($g 3$) immediately follows.
(ii) It is well known that g^{\prime} is compact. Let $u_{n}=w_{n}+x_{n}$ be such that

$$
\left\|w_{n}\right\|_{E} \leqslant \text { const }, \quad\left|x_{n}\right| \rightarrow+\infty .
$$

From this and

$$
\left|u_{n}(t)\right| \geqslant\left|x_{n}\right|-\left|w_{n}(t)\right| \geqslant\left|x_{n}\right|-e_{1}| | w_{n} \|_{L^{\infty}}
$$

it follows that $\left|u_{n}(t)\right| \rightarrow+\infty$ uniformly. Then from (V3) one deduces:

$$
\left(g^{\prime}\left(u_{n}\right), v\right)=-\int\left\langle V^{\prime}\left(t, u_{n}\right), v\right\rangle \rightarrow 0, \quad \forall v \in E,
$$

and the lemma follows. \therefore

Theorem 5.2. - Suppose $\Omega=\boldsymbol{R}^{n}$ and V satisfies ($V 1,2,3$). Then (4.1) has at least one T-periodic solution.

Proof. - We remark that in the present case $\left(\Omega=\mathbb{R}^{n}\right),(g 2)$ can be neglected. The result follows, taking into account the discussion in § 4 and Lemma 5.1, from Theorem 2.10. \therefore

The following is an example in which Corollary 2.11 applies:
Theorem 5.3. - Suppose $\Omega=\boldsymbol{R}^{n}$ and V satisfies ($V 1,2,3,4$). In addition suppose

$$
\begin{equation*}
\exists \xi \in \boldsymbol{P}^{n}: \int V(t, \xi) \geqslant 0 \tag{5.1}
\end{equation*}
$$

Then (4.1) has at least $2 T$-periodic solutions.
Proof. - It suffices to note that $f(\xi)=-\int V(t, \xi) \leqslant 0$. Hence, by Remark 2.4. (ii) $\xi \in \Gamma_{1}^{\varepsilon}, \forall \varepsilon>0 . \quad \therefore$

Remark 5.4. - According to Remark 2.12 one could improve the preceding result by showing that (4.1) has a third solution, provided V is C^{2} in $y, n \geqslant 2$ and (4.1) has only non-degenerate solutions. \therefore

Remark 5.s. - Periodic solutions for dynamical systems with bounded potentials have beeen studied in the following papers: $[8,11,12,22,23, \ldots]$.

Papers $[8,11,23]$ deal with even or periodic potential; they both use linking argument to prove existence of one (or more) solutions.

Papers [12, 22] deal with potential which are of the kind we have studied here, but they obtain results different from ours. In particular, [22] proves existence of only the solution corresponding to the minimum under the hypothesis of Theorem 5.3, while [12], using a method similar to the one used here, proves analogous results but under different assumptions. \therefore.

6. - Strong forces.

Now we deal with with potentials V with singularities. Let

$$
\Omega=\mathbf{R}^{n} \backslash K
$$

with K compact. On the behaviour of V near K we will suppose:
(SF) there exist $\varepsilon>0$ and $U \in C^{1}(\Omega ; R)$ such that, setting $U^{\prime}=\operatorname{grad} U$, one has
(6.1) $\quad U(y) \rightarrow-\infty \quad$ as $\quad y \rightarrow \bar{y} \in K, y \in \Omega$;
(6.2) $\quad V(t, y) \leqslant-\left|U^{\prime}(y)\right|^{2}, \quad \forall t \in \boldsymbol{R}, \forall y \in K_{\varepsilon} \equiv\{y \in \Omega: \operatorname{dist}(y, K)<\varepsilon\}$.

Condition (SF) (= Strong Force) has been first introduced by Gordon [16]. If $K=\{0\}$, (SF) implies that $V(t, y) \approx-|y|^{-\alpha}$ with $\alpha \geqslant 2$ as $y \rightarrow 0$.

Lemma 6.1. - If (SF) holds, then (g2) is true.
Proof. - [16], [18]. \therefore
In order to use Theorems 2.13, 2.14 and 3.3, we prove
Lemma 6.2. - If $\Omega=\boldsymbol{R}^{n} \backslash K$, with K compact, then (A) holds.
Proof. - The result is possibly well known, but we do not know a precise reference and thus we report here a sketch of the proof for completeness.

Let $p \in K$ and $R>0$ be such that K is contained in B_{R}. Set $\Omega_{1}=\boldsymbol{R}^{n} \backslash B_{R}$, $\Omega_{2}=\boldsymbol{R}^{u} \backslash\{p\}$ and $A_{1}=\left\{u \in E: u(t) \in \Omega_{1}, \forall t \in \boldsymbol{R}\right\}, \Lambda_{2}=\left\{u \in E: u(t) \in \Omega_{2}, \forall t \in \boldsymbol{R}\right\}$. Olearly $\Lambda_{2} \supset \Lambda \supset \Lambda_{1}$, and since Λ_{1} is a deformation retract of Λ_{2}, Λ_{1} is a retract of Λ. Then ([15, pag. 37])

$$
\begin{equation*}
H_{q}(A) \cong H_{q}\left(A_{1}\right) \oplus H_{q}\left(\Lambda, \Lambda_{1}\right) \tag{6.3}
\end{equation*}
$$

Since it is well known [7, (3.1.0)] that (A) holds for Λ_{1}, then (6.3) implies that (A) holds for A as well. \therefore

We can now prove
Theorem 6.3. - Suppose $\Omega=\boldsymbol{R}^{n} \backslash K$ and let $V \in C^{2}(\boldsymbol{R} \times \Omega ; \boldsymbol{R})$ satisfy ($V 1,2,3$) and (SF). Then (4.1) has infinitely many T-periodic solutions.

Proof. - Since V is bounded from above, $(g 1)$ holds. Moreover ($g 3,4$) continue to hold as in Lemma 5.1. Then the result follows from Lemmas 6.1, 6.2 and Theorem 2.13. \therefore

We can also prove

Theorem 6.4. - Let the assumptions of Theorem 6.3 be satisfied. If, moreover, $\exists R, \delta>0$ such that $|\xi| \geqslant R,|\eta| \leqslant \delta$ imply $\left\langle V^{\prime}(t, \xi+\eta), \xi\right\rangle>0$, then there exists a sequence u_{k} of T-periodic solutions of (4.1) such that $f\left(u_{k}\right) \rightarrow+\infty$.

Proof. - It is easy to show, using arguments already used several times, that (2.20) holds and the result then follows from Theorem 2.14. \therefore

As a last application, we consider V satisfying (V1), (V3) and
(V4) $\quad V(t, y) \rightarrow 0$ as $|y| \rightarrow+\infty$, uniformly in t, and $\exists r_{2}>0:\left\langle V^{\prime}(t, y), y\right\rangle<0$, $\forall|y| \geqslant r_{2}, \forall t$.

We show:
Lemma 6.5. - If V satisfies ($V 4$), then ($g 5$) holds.
Proof. - From (V4) it follows readily that $V(t, y)>0, \forall|y| \geqslant r_{2}, \forall t$. This together with arguments already used in Lemma 5.1, yields ($g 5$). $\quad \therefore$

Theorem 6.6. - If $\Omega=\boldsymbol{R}^{n} \backslash K$ and $V \in C^{2}(\boldsymbol{R} \times \Omega ; \boldsymbol{R})$ satisfies $(V 1,3,4)$ and (SF), then (4.1) has infinitely many T-periodic solutions; moreover there exists a sequence u_{k} of such solutions such that $f\left(u_{k}\right) \rightarrow+\infty$.

Proof. - Apply Theorem 3.3, taking into account Lemmas 6.1, 6.2 and 6.5. $\quad \therefore$
Remark 6.7. - If

$$
D=\left\{y \in \Omega: V^{\prime}(t, y)=0, \forall t \in \boldsymbol{R}\right\}
$$

is not empty, each $y \in D$ is a (constant) solution of (4.1). If D is compact the arguments of Theorems $6.3,6.4$ and 6.6 can be carried over to show that (4.1) has actually infinitely many non-constant solutions. We remark that D is compact if (V4) holds.

Remark 6.8. - Besides [16], already discussed in the introduction, papers [3, 5, $9,10,13,14,18]$ deal with singular potentials.
$[3,5]$ consider potentials defined in a bounded well Ω, with $V \rightarrow+\infty$ as $y \rightarrow \partial \Omega$.
[18] studies cases when V can have singularities both with $V \rightarrow+\infty$ and $V \rightarrow-\infty$. The existence of one T-periodic solution is proved, assuming further condition at $y=0$.
$[9,10]$ are close to [16] and either $n=2$ or geometrical conditions are assumed which permit to avoid the lack of PS.
[13] studies potentials roughly of the type $|y|^{-2}-|y|^{-1}$, case which is different from ours because the corresponding functional is not bounded from below.

In all these papers, (SF) is assumed. The only work where (SF) is violated is [14], but Ω is a bounded well and $V \rightarrow-\infty$ as $x \rightarrow \partial \Omega$. For a discussion of the problems arising when (SF) does not hold, see [17]. \therefore

We esplicitely remark that, in analogy with what seen in $\S 5$, an existence result can be stated for bounded potentials verifying (V4) insted of ($V 2$), namely:

Theorem 6.9. - If V satisfies ($V 1,3,4$) and $\Omega=\boldsymbol{R}^{n}$, then (4.1) has at least one T-periodic solution.

Proof. - Apply Theorem 3.3-(i). Notice that in this case, however, f attains negative values and has a global (negative) minimum.

7. - Autonomous systems.

If V does not depend on t, our problem becames to find non-constant periodic solutions of a given period T of the equation

$$
\begin{equation*}
-\ddot{y}=V^{\prime}(y) \tag{7.1}
\end{equation*}
$$

As before, the T-periodic solution of (7.1) are the critical points of the functional

$$
f_{T}(u)=\frac{1}{2} \int_{0}^{T}|\dot{u}|^{2} d t-\int_{0}^{T} V(u) d t
$$

All the setting and the results of the preceding sections apply to the present case, too. But now:
(i) the critical points of V on Ω (i.e. the $y \in \Omega$ such that $V^{\prime}(y)=0$) are also critical points of f_{T} on Λ corresponding to constant solution of (7.1) (hence periodic of any given period T);
(ii) if $u \in Z\left(\overrightarrow{f_{T}}\right)$, then also $\mathbb{S}^{1} u=\left\{u(t+\theta), \theta \in \mathbb{S}^{1}\right\}$ is contained in $Z\left(f_{T}\right)$. In particular $Z\left(f_{T}\right)$ is infinite whenever it contains a non-costant solution.

Thus additional arguments are required to deduce from the abstract results of $\S 2,3$ informations on the solutions of (7.1).

To overcome (i), one usually makes assumptions on the set of the critical pionts of V. In particular, the question arises if $\Omega=\boldsymbol{R}^{n}$ - case in which the existence of one or two solutions for (7.1) has been proved (Theorems 5.2, 5.3, 6.9). This kind of arguments have been discussed in [13, Step 4], where we refer to for statements and details.

If V has singularities, we can take advantage of the fact that now, for all given T, f_{r} has infinitely many critical points. Suppose that

$$
\begin{equation*}
Z(V) \text { is compact. } \tag{7.2}
\end{equation*}
$$

Then, using the same arguments of theorems 2.14 and 3.3 , we can show that, for any fixed $T>0, f_{r}$ has at least one (actually infinitely many) critical points $u \notin Z(V)$. As solution of (7.1) u has minimal period $\tau=T / k$ for some interger $k \geqslant 1$. Take $T^{\prime}=\tau / 2$. As above, $f_{r^{\prime}}$ has a critical point v which is a solution of (7.1) with period $T^{\prime}=\tau / 2$ hence also as T-periodic solution of (7.1). Moreover $\{v(t)\}_{t \in \mathbb{S}^{1}} \neq$ $\neq\{u(t)\}_{t \in s^{1}}$ since τ was the minimal period of u. Repeating this argument, one obtains:

Theorem 7.1. - Suppose $V \in \mathbb{C}^{2}(\Omega ; \boldsymbol{R})$ satisfies (SF), (7.2) and either (V1, 2,3) or ($V 1,3,4$). Then $\forall T>0$ (7.1) has infinitely many, non-constant, distinct T-periodic solutions. \therefore

REFERENCES

[1] A. Ambrosetti, Elliptic problems with jumping nonlinearities, J. Math. Phys. Sci. (1984), pp. 1-10.
[2] A. Ambrosextr, Dynamical systems with singular potentials, to appear in the Proc. of the meeting "Recent developments in Hamiltoniau systems», L'Aquila, Italy, 1986.
[3] A. Ambrosetti - V. Coti Zelati, Solutions with minimal period for Hamiltonion systems in a potential well, to appear on Ann. I. H. P. "Analyse non linéaire».
[4] A. Bahri - J. M. Coron, Vers une théorie des points critiques à l'infini, Séminaire Bony-Söstrand-Moyer 1984-1985, Palaiseau, 1984.
[5] V. Benor, Normal modes of a Lagrangian system constrained in a potential well, Ann. I. H. P. «Analyse non linéaire», I (1984), pp. 379-400.
[6] P. Bartolo - V. Bencl - D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with «strong» resonance at infinity, Nonlinear Analysis, T.M.A., 7 (1983), pp. 981-1012.
[7] R. Bort, Lectures on Morse theory, old and new, Bullotin (New Series) A.M.S., 7 (1982), pp. 331-358.
[8] A. Capozzi - D. Fortunato - A. Salvatore, Periodie solutions of Lagrangian systems with bounded potential, preprint Università di Bari, 1985.
[9] A. Capozzi - C. Greco - A. Salvatore, Lagrangian systems in presence of singularities, preprint Università di Bari, 1985.
[10] A. Capozzi - A. Salvatore, Periodic solutions of Hamiltonian systems: the case of the singular potential, Proc. NATO-ASI (Singh Ed.) (1986), pp. 207-216.
[11] A. Capozzi - A. Salvatore, Periodic solutions for nonlinear problems with strong resonance at infinity, Comm. Math. Universitas Carolinae, 23 (1982), pp. 415-425.
[12] V. Coti Zelati, Periodic solutions of dynamical systems with bounded potential, to appear in Journ. of Diff. Eq.
[13] V. Coti Zelati, Dynamical systems with effeciive-like potentials, to appear in Nonlinear Analysis, T.M.A.
[14] V. Comi Zelati, Remarks on dynamical systems with weak forces, preprint S.I.S.S.A., Trieste, 1986.
[15] A. DoLd, Lectures on Algebraic Topology, second edition, Springer-Verlag, Berlin, 1980.
[16] W. Gordon, Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., 204 (1975), pp. 113-135.
[17] W. Gordon, A minimizing property of Keplerian orbits, Am. Journ. of Math., 99 (1977), pp. 961-971.
[18] C. Greco, Periodic solutions of some nonlinear ODE with singular nonlinear part, preprint Università di Bari, 1985.
[19] C. Greco, Periodic solutions of a class of singular Hamiltonian systems, preprint Università di Bari, 1986.
[20] A. Marino - G. Prodi, Metodi perturbativi nella teoria di Morse, Bollettino U.M.I. (4), I1. Suppl. fase. 3 (1975), pp. 1-32.
[21] R. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, 5 (1969), pp. 115-132.
[22] K. Thews, T-periodic solutions of time dependent Hamillonian systems with a potential vanishing at infinity, Manuscripta Math., 33 (1981), pp. 327-338.
[23] J. R. Ward, A boundary value problem with a periodic nonlinearity, Nonlinear Analysis, T.M.A., 10 (1986), pp. 207-213,

