The Plancherel Measure for Polygonal Graphs (*).

GABRIELLA KUHN - Paoro M. Scarpi (Milano)

Summary. — We compute explicitely the Plancherel measure for groups acting isometrically and
simply transitively on polygonal graphs.

1. — Introduction.

A. Tozz1 and M. PICARDELLO ([6], [7 ]) extended to the context of groups acting
isometrically and simply transitively on a polygonal graph the theory of spherical
functions, representations and eonvolution operators studied in [4], [5] in the case
of free groups (and in [1] in the case of homogeneous trees). In particular, they
define a commutative algebra (for the convolution product) A of radial functions
and compute the Gelfand spectrum of the completion of 4 in the I* norm. If A*
is the completion in the I? convolutor norm, 4* is a commutative C* algebra with
unit which can be identified, via the Gelfand transform, to the space of all continuous
functions on a compact subset of the real line. As in the case of free groups, this
isomorphism can be extended to an isometry between I* radial and L*(8, du), where
du is a suitable probability measure called the Plancherel measure. The aim of this
paper is to compute explicitely du, and, as an application, to extend to polygonal
graphs the Plancherel theorem proved in [4] for the free groups (see also [l]).

In the case of groups acting faithfully on homogeneous trees the explicit form
of du was already known. The computation was carried out by CARTIER [2] and
SAWYER [9] in the context of random walks on a tree, by PYTLIK [8], FIGA-TALA-
MANCA and PrcArRDELLO [4] and by BeTorI and Paciiacci[1] in the context of
harmonic analysis on trees. Our methods are elementary and lead to a direct
computation of dy in the general case.

2. — Notation.

A connected homogeneous graph /" is called a polygonal graph if: ) there exist
integers k¥ and » (larger or equal to 2) such that every vertex v belongs to exactly r
polygons, each one with % sides, contained in the graph and having no side and no

(*) Enfrata in Redazione il 23 marzo 1983,
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vertex in common except v; ii) every nontrivial loop runs through all the edges of
at least one polygon (see [6]). The distance between two vertex v, and v, is the
block distance defined in [6]: it is the minimum number of polygons crossed by a
path connecting v, with »,. If k = 2 the polygonal graph reduces to a homogeneous
tree of order . It is not difficult to prove (e.g. using the same arguments of theo-
rem 1.1 of [1]) that a group G* acting faithfully (i.e. isometrically and simply tran-
sitively) on I'is necessarily isomorphic to the free product of » copies of Z, (integers
modulo k) if k > 2, while, for k& = 2, G2 is isomorphic to the free product of ¢ copies
of Z and s copies of Z, (2t + s = #).

Denote by V(I') the set of all vertex of I" and by E, the set of all vertex having
distance » from a vertex o fixed once for all. A function f on V(I") can be identified
in the obvious way with a function on G*. We say that f is radial if it is constant
on ¥, for all n = 0,1, 2, .... The space of all finitely supported radial functions is
denoted by A. Actually 4 is a commutative algebra for the convolution product.
If y, denotes the characteristic function of #,, we have the following identity

(see [7]):

(l) %1*%": Z"+1+(k_z)Xn+(7'_1)(]‘;“‘1)){13_17 1fn>1
g = ot (k—=2)p+r(k—1) .

Hence 4 is generated by y, and the identity y,. Let A* denote the completion
of A in the I*(G¥) convolutor norm. Then A* is a commutative 0* algebra whose
spectrum coincides, by (1}, with the spectrum of 4; as an element of 4% The fol-
lowing inequality, which is erucial in the proof of theorem 1, was proved in [6],
Theorem 1.

(2) Il o < Culn 4+ D) a], for all n=0

where C, is a constant depending only on .

Finally, the following notation will be used throughout the paper: ¢ = (k — 2),
0 == ((7{;— 1)y — 1))l

3. — The spectrum of y,.

Let 8 denote the spectrum of y, in the C* algebra A*. Then we have the follow-
ing result.

THEOREM 1. - If k < rthen 8§ = [0 — 20, 0 - 2p]. Ifk>rthen§ = {— s} U[o—
— 2¢, 0 4 2¢].
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Proor. — For any given real y we have to solve the equation

+ oo

(3) (a— VXo) * 2 @nYn= o -

n=0
If f =3 a,x. is a solution of (3) such that

+ oo

(4) > Jasi(n + 1) on< o0

n=0

then, by (2) and the fact that |y, = (r — 1)~trign if n>0,fe A* and y¢ 8. If,
on the other hand, every solution f of (3) satisfies

+ oo

(5) D Jan?o¥n = oo

n=0

then y e 8. It is easily seen that, by (1), (3) is equivalent to the following finite
difference equation

(6) 0+ (0— V)t =0, n=1
with the initial condition
(1) Pk — 1ya;— ya,= 1.

Suppose first [0 — y| <29 and set cos ¢ = — (0 — y)/20. The general solution
of (6) has the form: a,= ¢7(C, ™% 4 Cye ™?). Since the null solution does not
satisfies (7), we have |a,| = Cg~" for some positive constant € andinfinitely many =.
Then (5) holds and y € §. Hence [0 — 29, ¢ 4 2p]C 8. Suppose now |¢— y| > 2p.
The general solution of (6) has the form: a, = C A% 4 C,2*, where 1. = — (¢ —
— y)20*+((o — p)*— 40%)}/20%. Now |od,|<1 if 60—y >2p and |pA.|>1 if o~
— ¥ <<— 2p. On the contrary, |[pA_[>1ifc—y>2pand [pd_|<1lifo— y <— 20.

Therefore, if ¢ — y << — 20, (4) can be satisfied if and only if ;= 0 and C,(r{k —
—1)A_—y) =1, i.e. if and only if #(k— 1)A_— v 0, which is always true in the
case considered. Hence, if 0 —y <— 29, y¢ 8. Let us consider now the case
o—y>2p. As before, we ecan find a solution satisfying (4) if and only if »(k —
—1)A,—y+#0. This time, however, the equation: ¢(k— 1)J.— p = 0 has one
solution, y = — r, in the case k¥ >  (and only in this case). It follows that, if k> r
and y = —r, every solution of (3) satisfies (5) and —re 8. In conclusion, if
o—y>2p and k<r there is a solution (and only one) of (3) satisfying (4), so that
y ¢ 8. The same is true if k > », except for the point y = — ¢ which belongs to the
Spectrum of y,.
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REMARK. — If k& > r the point — r is isolated in §, while if k = » it coincides with
o — 2¢9. In the first case the above arguments show also that — # belongs to the
point spectrum of the convolution operator on [*(G¥) defined by y,.

The spectrum of y; was computed in the case where k = 2 by several people
(see e.g.[2], [3], [4], [8], [9]) and indipendently, by other methods, in [7] in the
general case.

4., — The Plancherel measure.

For every f € 4* let f denote the Gelfand transform of f. We define a probability
measure dy on S by the rule

(8) [Fau =100 .
8

It is immediately seen (see e.g. [8]) that the mapping f — f extends to an iso-
metric isomorphism between I*(G*) radial and L(8, du). In this section we compute
explicitely du.

For every n = 0 and » € 8 let P,(%) = y,(x). Suppose z &[0 — 2¢, ¢ + 20]. Then
we set # = ¢ + 2p cos 0 and define @,(0) = o "P,lo + 20cos0). If k>r and z =
= —r we let Q.(— r) = p~"P,(— #). This simply amount to identifying § with
[0, 7] if & < r and 8 with {— ¢} [0, #] if & > r. Finally we introduce the functions:
X,(0) = sin ((n + 1)0)/sin 0 if n =0 and 6 [0, z], X,(0) = 0 otherwise.

LemmA. — For every r and %
(9)  Qu(0) = Xu(0) + 070X, 4(0) — (r — 1)1 X, ,(6) ,
for all w = 0 and 6 [0, n] .

Moreover, if k> 7,

¥

(10) Qul—7) = — (L — r)r-1g=.

PROOF. — Suppose first @ € [ — 2¢g, 0 + 20] and set ¢,(0) = ¢"Q.(6). Then, by
(1), ¢, is the solution of the finite difference equation

(11) Gnpi— 20 €08 0, + 0%¢n =0, n>1
with the initial conditions

¢.=0 -+ 2¢0cos86,

(12)
g = (0 + 20c080)2— (0 +20c080)—r(k—1).
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The general solution of (11) can be written in the form: g, = g" Cy(e"— ¢~%) -

4 gV 0, ("0 — ¢ n 8 From (12) we obtain )= (o - 20 cos 0)/2ip sin 6 and

p ==~ #(k — 1)/2¢p 8in 0, whence (9). If k> r and z = — », equations (1) imply:
11y Po(—7)+ (o +#Pu—7r)+ P y(—r)=0, n>1

with the initial conditions

Pi(—r)=—r
(1zy
Py—1r)=1r"4or— (k— 1)7.

One checks immediately that, if @, is given by (10), P, = 0@, is the solution
of (11)' satisfying the conditions (12)'.

THEOREM 2. — If k<, then:

(13)  dp = ((2kn(l + o*+ o — @)= + (b — 1)(2kn((b— 1)* + ¢* + _
+ (k= D@ — 0))) (402~ (@ — 0))?) do.

If ¥ = r, then:

+ (k— 1)(2kno(20 + 2 — 0))}20 + 0 — @)t dz .

If k> r, then:

(18)  dp = (2ka(l + o*+ o — 2))7 - (r— 1)(2kn((r — 1)* + o>+
A (r — 1){x — a))—l)(492—— (z— o))t dw + kY k— r)d_,

where, in the above equations, # € [c — 29, o - 2¢0] and é_, is the unit mass at the
point — r.

PROOF. — Suppose first & < r and denote by dew the measure on [0, 7] correspond-
ing to du under the mapping z = o 4 20 cos . We set:

(16) Yo j X.(0) do .
]

By (8) and (9) we obtain:

(17) y“ + Qulay%—l"“ (’I’ - 1)‘1,’%_2 = 0 [ (G ; 2
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ho=1
(18) ’
Y+ o toyy=10.

The solution of (17) with the initial conditions (18) is given by
(20) Yo=Kkl + kU — 1)(L— K)o .
Suppose first k <». Then
+ oo
(21) D Y Xu(0) = k0% 1 — 2008 6) 4 ik — 1) 0*((B— 1)2F o+
n=0
+ 20(k — 1) cos 6)-*
and the convergence of the series is absolute and uniform. Denote by g(0) the func-
tion on the right hand side of (21). Since the functions X, form an orthonormal
complete system for the measure 2z~ sin®f df on [0, =], (16) implies

do == 2771g(0) 8in%0 df .

Changing back the variable we obtain (13).
If k=7 (20) reads: y,== k194 k~1(k— 1)(— 1)». This time we have:

+ oo

(21)’ Bt S gnX,(0) = k1 g*(1 + g*— 2¢ cos )~
=0
and
(21)" (—1)n= n—lf(l — o5 ) Xu0) @9, n=0,1,2,...
0

Denoting by A(0) the sum of the series in (21)’ and observing that the convergence
is absolute and uniform, we have from (21) and (21)": dw = 27~*h(0) sin®0 df -
4 71 k-Y(k — 1)(1 — cos 0) d9 whence, changing back the variable, we obtain (14).

Finally let k> . In this case we set dy = du,4- 0d_,, where dy, is concen-
trated on the interval [¢ — 2¢, ¢ - 2¢] and C is a constant to be determined. Let
dw, be the measure on [0, x] corresponding to du,. Set:

i3

(22) yi=[X,(6) do,

0

Observe now that, by (190),

(23) Qu(— 1) =Y, + 02eY,,— (r— 1) Y,
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where
(24) Y,=— (k— r)—lg—”((l — k)t — (1 — r)"+1) , n=0

and Y,==0 if n<<0. By (8), (9) and (23) we get that y, and C must satisfy the
equation:

(26) (4, + OY) + o0y, + O, ) — r = 1)y, , + CY, ) =0, forn=2

with the initial conditions:

Yo+ 0¥, =1
(26)
(y1-+ CY) + o7 oly; + CY,) = 0.

From (25) and (26) we then get: y,+ CY,=Fk o~ k2 (k— 1)(1 — k)ro".
Since y; can not tend exponentially to infinity (by (22)), we have, remembering (24):

Yr=k"o "+ k(r— 1A — 7)o"
(27)
C=k—r).
Now, z yr X, (0) converges absolutely and uniformly on [0, ] to the function

n=0
5:(0) = k10*(1 -+ 92— 2p co8 0)1  k~ir — 1)@*((r — 1)2-} 0% 20(r — 1) cos 6) .
Hence do, = 2n-1¢,(0) sin?0 df. Changing back the variable and taking the second
equation of (27) into account we get (15).

5. — The Plancherel theorem.

In this section we extend to G* the Plancherel theorem proved in {4] (theo-
rem 7) for the free groups (see also the extension of [1] to homogeneous trees). We
refer to [7] for all unexplained notation and definitions.

Denote by £ the Poisson boundary of G* and by dv the quasi invariant proba-
bility measure on £ associated to the Poisson kernel. Iozzr and PICARDELLO define,
by means of the Poisson kernel, a family of representations z, on L2(Q, dv). If
Re ¢ =4, n, is irreducible and unitary, while, if Im 2z = nz/log o* (» an integer)
and Rez50,1, n, is unitarizable. The first family is called the principal series,
the second one the complementary series. By means of the mapping y(z) = ¢* +
+ .0 4 ¢ the interval § = [0, w/log ¢*] on the line Rez = } corresponds biuni-
vocally to the interval [0 —2¢, 0 + 2¢] and, if k> », w = (log g?)log (k— 1) +
-+ im/log p* is mapped into — #, so that =, belongs to the complentary series. We
denote by (, ), an inner product on L2(Q2, dv) that makes m,, unitary (e.g. like in [4],

25 - Annali di Matematica
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seetion 3, or in [7]). Define, for every finitely supported function 7 on G*:

weG’ﬁ

where « is the function identically 1 on (2. Finally we identify, via the mapping v, S
with J, if k<7, and § with J U {w}, if k> r. It is easy to write explicitely the
expression of the Plancherel measure in the new variable. If we call dm this measure,
a moment’s reflection show that dm can be obtained from the measure deo (introduced
in the proof of Theorem 2 above), if k < r, simply replacing § by 6log g% If k> 7,
denoting by dm, the restriction of dm to J, dm, can be obtained from dw; by means
of the same substitution. We then have:

itk<r

dm = 271k g% log ¢*((1 + ¢*— 20 cos (0 log %)~ + (b — 1)((k— 1)*+ o>+
+ 20(k — 1) cos (0 log g*))~1) xsin? (0 log ) 48 ,
iftk=r

dm = 23k~ 0* log 9*(1 - ¢*— 2¢ cos (0 log @*))~* sin* (6 log ¢*) df +-
+ a1 k1 (k — 1) log 0*(1 — cos (6 log ¢2)) df

if k>r

dm = 2n-1k 1 0% log 92((1 1 0*— 20 cos (flog @)1+ (r — 1)((r — 1)* + 0* +

+ 20(r — 1) cos (0 1og ¢))~) xsin*(6 log ) 49 ++ k= (k— 7) b, .

THEOREM 3. — For every finitely supported function 7 on G* we have:

it ke 2 =[lfralio,mdn,
J

11) if k> Hf“g :j”f%%—iﬂn.%'(ﬂ,dv) dml "‘i‘ k_l(k - fr)(fw? fw)w M
J

The proof of this theorem can be obtained exactly by the same arguments used
in the proof of theorem 7 of [4].
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