
The Plancherel Measure for Polygonal Graphs (*). 

G A B R I E L L A  K U H ~  ~ - P A O L O  ~r SOARDI  (Milano) 

S u m m a r y .  - We compute explicitely the Plancherel measure /or groups acting isometrically and 
simply transitively on polygonal graphs. 

1 .  - I n t r o d u c t i o n .  

A. IozzI and M. PICARDELLO ([6], [7]) extended to the context of groups acting 
isometrically and simply transitively on a polygonal graph the theory of spherical 
functions, representations and convolution operators studied in [4], [5] in the case 
of free groups (and in [1] in the case of homogeneous trees). In particular, they 
define a commutative algebra (for the convolution product) A of radial functions 
and compute the Gelfand spectrum of the completion of A in the 11 norm. If  A* 
is the completion in the l 2 eonvolntor norm, A* is a commutative C* algebra with 
unit which can be identified, via the Gelfand transform, to the space of all continuous 
functions on a compact subset of the real line. AS in the case of free groups, this 
isomorphism can be extended to an isometry between 12 radial and L2(S, dtt), where 
d# is a suitable probability measure called the Plancherel measure. The aim of this 
paper is to compute explicitely d#, and, as an application, to extend to polygonal 
graphs the Plancherel theorem proved in [4] for the free groups (see also [1]). 

In the case of groups acting faithfully on homogeneous trees the explicit form 
of d/~ was already known. The computation was carried out by C ~ T ~  [2] and 
SAwYE~ [9] in the context of random walks on a tree, by PYmLmx [8], FIG~-TALA- 
~[ANCA and PICARDELLO [4] and by BETOR.I and ~)AGLIACCI [1]  in the context of 
ha.rmonic analysis on trees. Our methods are elementary and lead to a direct 
computation of d/~ in the general case. 

2 .  - N o t a t i o n .  

A connected homogeneous graph 1~ is called a polygonal graph if: i) there exist 
integers k and r (larger or equal to 2) such that  every vertex v belongs to exactly r 
polygons, each one with k sides, contained in the graph and having no side and no 

(*) Entrata in Redazione il 23 ma,rzo 1983. 
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ve r t ex  in common except  v; ii) every  nont r iv ia l  loop runs through all the  edges of 

a t  least one polygon (see [6]). The distance between two ve r t ex  vl and v~ is the 
block distance defined in [6]: it  is the  min imum number  of polygons crossed by  a 
pa th  connect ing v~ with v~. I f /c  = 2 the  polygonal  graph reduces to a homogeneous 
t ree  of order  r. I t  is not  difficult to prove (e.g. using the same arguments  of theo- 

rem 1.1 of [1]) t ha t  a group G~ act ing fa i thful ly  (i.e. isometr ical ly and simply t ran-  
sitively) on F is necessari ly isomorphic to the  free product  of r copies of Zk (integers 

modulo k) if k > 2, while, for k = 2, G~ is isomorphic to  the  free p roduc t  of t copies 
of Z and  s copies of Z~ (2t @ s = r). 

Denote  by  V(IV) the  set of all ve r t ex  of F and by  E~ the  set of all ve r t ex  having 

distance n f rom a ve r t ex  o fixed once for all. A funct ion ] on V(F) can be identified 
in the  obvious way with a funct ion on G~. We say t h a t  / is radial  if i t  is cons tant  
on  E~ for all n = 0, 1, 2, .... The space of all f initely suppor ted  radia l  funct ions is 
denoted  by  A. Actual ly  A is a commnta t ive  algebra for the convolut ion product .  
I f  Z~ denotes the character is t ic  funct ion of E~, we have  the  following iden t i ty  
(see [7]): 

(1) { z~* z . =  x.+~+ ( ~ -  2)zn+ ( r -  1) (~-  1)z,,_~, 

z~* z~= x~+ ( k -  2)x~+ r ( k -  1);r 

i f n > l  

Hence A is genera ted  by  X1 and the  iden t i ty  Z0. Le t  A* denote  the  complet ion 
of A in the l~(G~) convolutor  norm. Then A* is a commuta t ive  C* a lgeb ra  whose 
spectrum coincides, by  (1), with the  spectrum of Z~ as an e lement  of A*. The fol- 
lowing inequal i ty ,  which is crucial in the  proof of theorem 1, was proved  in [6], 

Theorem 1. 

(2) ]Ix, H~.~ c~(~ +  )llzG for all n ~ 0 

where Us is a cons tant  depending only on k. 
Finally,  the  following nota t ion  will be used th roughout  the  paper :  ~ = ( k -  2), 

e = ( ( ~ -  1 ) ( r -  1))~. 

3.  - T h e  s p e c t r u m  o f  Z~. 

Let  2 denote the spectrum of X1 in the  C* algebra A*. Then  we have the follow- 

ing result.  

T ~ O B E ~  1. -- I f  k = r t hen  S = [a -- 2~, ~ + 2~]. I f  k > r then  8 -= [-- r} U [a - 
- 2Q, ~ + 2~] .  
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PRooF. - ~'or any  given real  y we have  to solve the  equat ion  

+ o o  

(3) rZo) * a . z .  = Zo.  
n=O 

I f  / - - - - ~  a~Z~ is a solution of (3) such t h a t  

+ o o  

(4) la !(n + 1 )0"<  co 
~ l = 0  

then,  by  (2) and  the  fac t  t h a t  ilX.i]2= ( r -  1)-~r~0" if n >  0, ] s 2 *  and  y ~ S .  If ,  
on the  o ther  hand,  every  solution ] of (3) satisfies 

+ o o  

n = 0  

t hen  Y e S. I t  is easily seen tha t ,  b y  (1), (3) is equivalent  to the  following finite 
difference equat ion 

(6) 02a~+1-~ - (a--y)a~--[-a~_l--~ O, n ~ l  

wi th  the  ini t ia l  condi t ion 

(7) r ( k - - 1 ) a l - - y a o = l .  

Suppose first [ a - - y ]  < 2 0 and  set cos 9 - - - - -  ( a - - y ) / 2  0. The general  solution 
of (6) has  the  fo rm:  a m =  O-"(Cld ~ + C~e-*'~). Since the  null  solution does not  

satisfies (7), we have  ta.[ ~ C0-" for some posi t ive  cons tan t  C and  inf ini tely m a n y  n. 
Then  (5) holds and  y e S .  Hence  [ a - - 2 0 ,  a + 2 p ] _ C S .  Suppose now [ a i y I > 2 ~ .  

The genera l  solution of (6) has  the  fo rm:  a m-~ C12~+ q- C22~_, where  2 + = -  (0 - -  

- -  r)  2 -  4q ) f20 I02+1 < 1 if a -  y > 20 and  le~,+l > 1 if a - -  
- -  Y < - 2 0 .  On the  con t ra ry ,  102_i > 1 if a --  y > 2~o and  1~2_i < 1 if a --  y < - -  2o. 

Therefore,  if a - -  1~ < - -  20, (4) can be satisfied if and  only if C~ = 0 and  C~(r(k -- 
- -  1) 4_--  1~) ---- 1, i.e. if and  only  if r(k i 1) ~ - -  y r 0, which is a lways  t rue  in the  

ease considered. Hence,  if a - - y < - - 2 0 ,  y ~ S .  L e t  us consider now the  c~se 

a - - y  > 2~. As before,  we can find a solution sat is fying (~) if and  only if r ( k - -  
- - 1 )  2 + - - y v a 0 .  This t ime ,  however ,  the  equat ion:  r(k - - 1 )  2+--  y ---= 0 has  one 

solution, y = - -  r, in the  case k > r (and only in this case). I t  follows tha t ,  if k > r 

and  y = - - r ,  eve ry  solution of (3) satisfies (5) and  - - r ~ S .  I n  conclusion, if 
a - - y > 2 0  and  k__< r there  is a solution (and on ly  one) of (3) sat isfying (4), so t h a t  

y ~ S. The  same is t r ue  if k > r, except  for  the  po in t  y = - -  r which belongs to the  
spe c t rum  of Z~. 
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RE)~ARK. -- I f  k > r the  point  -- r is isolated in S, while if k = r i t  coincides with 
- -2~ .  I n  the  first ease the above arguments  show also t h a t -  r belongs to the 

point  spec t rum of the  convolut ion opera tor  on l~(G~) defined by  Z~. 

The spec t rum of Z~ was computed  in the  c~se where k = 2 by  several  people 
(see e.g. [2], [3], [4], [8], [9]) and indipendent ly ,  by  other  methods,  in [7] in the  
general  case. 

4 .  - T h e  P l a n e h e r e l  m e a s u r e .  

For  every  ] e A* let  f denote  the  Gelfand t r ans fo rm of ]. We define a probabi l i ty  
measure  d# on S by  the  rule 

(s) f ] @  = i(o). 
S 

It is immedia te ly  seen (see e.g. [8]) t h a t  the  mapping ] - + f  extends  to an iso- 
metr ic  isomorphism between P(G~) radial  and L~(S, d/~). In  this section we compute 
explici te ly d/~. 

For  eve ry  n ~ 0 and x e S let  P~(x) = g,(x). Suppose x e [ a - -  2~, a -~ 2Q]. Then  
we set x = a ~ - 2 ~ o c o s 0  and define Q,(O)=~-"P~(~-k2~ocosO) .  If k > r  a n d x =  
- ~ -  r we let  Q ~ ( - r ) =  ~ - " P , ( - r ) .  This s imply amount  to ident i fying S with 
[0, z] if k ~ r and S with {-- r} U [0, z] if k > r. F inal ly  we introduce the  funct ions:  
X~(O) = sin ((n -~ 1)0)/sin 0 if n ~ 0 and 0 e [0, ~], X~(O) = 0 otherwise. 

L E N A .  - For  eve ry  r and k 

(9) q~(o) = x~(o) § o - : ( r x ~ _ l ( o ) -  ( r -  1 ) - : x . _ ~ ( 0 ) ,  

for all n ~ 0  and 0 e [ 0 , ~ ] .  

Moreover,  if k > r, 

(10) Q ~ ( -  r) = - r ( 1 -  r)"-i e -'~ . 

PROOF. - Suppose first x e [ a - -  2q, ~ -F 2~] and set q~(O) = ~'Q.(O). Then,  by  

(i), q~ is the solution of the finite difference equat ion 

(li) q~+l-- 2~ cos Oq,~ ~ ~q,~_l = 0 ,  n > 1 

with  the  init ial  conditions 

(12) 
{ q ~ = a + 2 ~ c o s O  

q~ = (a + 2e cos 0 P -  (a + 2e cos O) - r(k - 1) 
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The genera l  solution of (11) can be wr i t t en  in the  fo rm:  q~ -~ 9 ~ C~(e ~"~ e -~"~ 

-~ 9'~-IC~(e " ' - ~ ) ~  e-~('~-~e). F r o m  (12) we ob ta in  C~ = (a -~ 2 9 cos 0)/2i 9 sin 0 and  

C s = - - r ( k - - 1 ) / 2 i  9 s i n 0 ,  whence (9). I~ k ~ r  and  x - - - - - - r ,  equat ions  (1) imply :  

(1 ! )  ~ P~+I(-- r) ~- (a ~- r ) P . ( - -  r) ~- o2P._~( - r) --~ 0 , n > 1 

wi th  the  ini t ial  conditions 

( 12 )  ~ { P i ( - r ) = - r  

P~( -  r) -- r~§  a r -  ( k -  1) r .  

One checks i m m e d i a t e l y  tha t ,  if Q~ is given b y  (10), P~----- 9"Q~ is the  solution 

of (11)' sa t i s fying the  condit ions (12)'. 

THEOI~EM 2. -- I f  k ~ r, then: 

(13) d~ = ((2k~(1 + o~ + ~ -  x))-~ + (k - 1)(2k~((k - 1)~ + 9 ~ + 

+ (k-  

I f  k----r ,  then :  

(14) @ = (2k~(1 + 9 3 + ~ -  ~ ) ) -~(4e~-  ( ~ -  ~)~)t d~ + 

I f  k ~ r, then :  

(15) ~ = (2k~(~ + o8 + ~ _  x))-~ + ( r -  1) (2k~((r -  1)~ + o~ + 

where,  in the  above equat ions,  x e [ a -  29, a ~- 29] and  (~_~ is the  un i t  mass  a t  the  
po in t  - -  r. 

PROOF. - Suppose first  k g r and  denote  b y  de) the  measure  on [0, z] correspond- 
ing to d# under  the  m a p p i n g  x = a ~- 29 cos 0. We set:  

(16) y .  = f x~(o)  do~ . 
0 

B y  (8) and  ( 9 ) w e  ob ta in :  

(17) y .  ~- 9-1ay._1 - (r --  1)-ly._~ = 0 ,  n ~ 2 
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and  

(18) 
Yl -{- @-*~Yo = 0 . 

The solution of (17) with the  ini t ial  conditions (18) is given by  

(20) y ~ =  k - ~ - ~ +  k - * ( k - - 1 ) ( 1 - -  k)"@--. 

Suppose first k < r. Then  

(21) ~_, y~X~(O) = k-1@2(@~-~ 1 - -  2@ cos 0)-~ ~ - k-~(k - 1)o2((k - 1 ) ~  - o-~  - 
n = 0  

+ 2~(~ - 1) cos 0)-* 

and the convergence of the  series is absolute and uniform. Denote  by  g(O) the  func- 
t ion on the  r ight  hand  side of (21). Since the fnnctions X~ form an or thonormul  
complete sys tem for the  measure 2~-* sin~0 dO on [0, ~r], (16) implies 

de) = 2z-*g(O) sin20 dO. 

Changing back the var iable  we obtain (13). 
I f  k = r (20) reads:  y ~ =  k - * ~ - ' - { - k - * ( k - - 1 ) ( - - 1 )  ". This t ime we have:  

(21)' k-* y_. e-'x~(o) = k-~e~(1 § g - -  20 cos 0) -1 

and 

(21)" ( -  1)- = ~ - ~ f ( 1 -  cos O)X.(O) dO, n = o, 1, 2, . . . .  

0 

Denot ing by  h(O) the  sum of the series in (21)' and observing t h a t  the  convergence 
is absolute and uniform,  we have f rom (21)' and  (21)": de)----2z-lh(0)sin20 dO ~- 

z-*k-l(k -- 1)(1 -- cos 0) dO whence, changing back the  variable,  we obtain (14). 
F ina l ly  le t  k > r. In  this case we set d/~ : d#l + C ~ ,  where d/~ is concen- 

t r a t ed  on the  in te rva l  [o - -  2@, a ~- 2@] and C is a constant  to be determined.  Le t  

de), be the  measure on [0, ~] corresponding to  d/x~. Set:  

(22) yi =fx~(0) de)l. 
0 

Observe now tha t ,  by  (10), 

(23) Q~(-  r) : Y,, + o-1~Y~_1 - ( r -  1) -1 Y~-2 
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where 

(2~) y ~  = - (~ - r ) - l e - , ( ( ~  - ~ ) , , + ~ -  (~ - r ) - §  n = > o 

and Y n =  0 if n ~ 0 .  By  (8), (9) and (23) we get t ha t  y~ and C must  satisfy the 
equation: 

(25)  ( y ~ + C z l ) +  -~ ~ _ f o r n >  

with the init ial  conditions: 

(26) { ylo § c ~ 0  = 

~o Z ( y o § 1 6 2  

1 k_l @-~ From (25) and (26) we then  get:  y ~ - ~ - C Y , =  -[-k-~(k--1)(1 - k)-@-,,. 
Since y~ can not  t end  exponential ly to infinity (by (22)), we have, remembering (24): 

(27) / y ~ =  k -~-~  -~ k ~(r-- 1) (1-- r )~o -" 

t C = k - ~ ( k -  r) . 

§  

Now, ~ y~,X(O) converges absolutely and uniformly on [0, ~] to the function 
n = 0  

g~(O) = k - l ~ ( 1  § e ~ -  2 e cos  0) -1 ~-  k-~(r  - 1) ~o~((r - 1 ) ~ §  e ~ - ~  2 e ( r - - 1  ) cos  0) -~ . 

Hence d~ol---- 2z-~g~(0) sin~0 d0. Changing back the v~riable and taking the second 
equation of (27) into account we get (15). 

5 .  - T h e  P l a n e h e r e l  t h e o r e m .  

In  this section we extend to G~ the Plancherel  theorem proved in [4] (theo- 
rem 7) for the free groups (see Mso the extension of [1] to homogeneous trees). We 
refer to [7] for all unexplMned notat ion and definitions. 

Denote by  t9 the Poisson boundary  of G~ and by  dv the quasi invar iant  proba- 
bi l i ty  measure on .O associated to the Poisson kernel. IozzI and PICA~DELLO define, 
by  means of the Poisson kernel~ a family  of representations z~ on L~(~9, dr). I f  
Re z = �89 z~ is irreducible and  uni ta ry ,  while, if I m z  = nz/log ~2 (n an integer) 
and Re z r 0, 1, z~ is unitarizable.  The first fami ly  is called the principal series, 
the second one the complementary  series. By  means of the mapping y(z) -~ ~ -  
~_ ~2(1-~) _{_ a the ' interval S = [0, u/log ~o 2] on the line Re z = �89 corresponds biuni- 
vocMly to the in terval  [a --  2~, a ~- 2~] and,  if k > r, w = (log ~)-1 log (k -- 1) 
~- iz/log ~ is mapped into -- r, so t h a t  z~ belongs to the complentary series. We 
denote by ( , )~  an inner product  on L~(Y2~ dr) t ha t  makes z~ un i t a ry  (e.g. like in [4], 

25 - A n n a l i  d i  M a t e m a t i c a  
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section 3, or in [7]). Define, for every  finitely supported funct ion / on G ~-. 

xeq~ 

where u is the  funct ion identical ly I on tg. F inal ly  we identify,  via the mapping 7, S 
with J, if k < r, and S with J [J {w}, if k > r. I t  is easy to write explici tely the 
expression of the Plancherel  measure in the new variable.  I f  we call dm this measure,  

a moment ' s  reflection show tha t  dm can be obta ined f rom the measure do) ( introduced 
in the  proof of Theorem 2 above), if /~ < r, s imply replacing 0 by  0 log 0~. I f  k > r, 
denoting by  dm~ the  restr ict ion of dm to J, dm~ ca.n be obtained from dco~ by  means 

of the same substi tution.  We then  have:  

if l : < r  

d m  = 2~7~-1/t~-1~ 2 l og  ~o2((1 + 0 2 -  2o cos (0 log  ~2))-1 + (~ _ 1) ( (~  - -  1) 2 + ~2 _~ 

@ 2~(/~ -- 1) cos (0 log ~))-~) •  2 (0 log ~)  dO, 

if k = r  

d m =  2~-~Ic-~02 log ~o2(1 -[- o 2 -  2o cos (0 log 02)) -~ sin 2 (0 log o ~-) dO -{- 

@ 7~-~/c-~(k -- 1) log ~2(1 -- cos (0 log ~))  dO 

if / c > r  

d m =  2z-~k-~o~ ~ log ~ ( (1  @ ~o 2 -  2~o cos (0 log ~))-~ + (r -- 1)((r -- 1) 2 -~- o '2 @ 

-[- 2 ~ ( r -  1) cos (0 log e'~)) -x) • sin~(O log ~.2) dO -~- k - ~ ( k -  r ) ~ .  

T~monmf 3. - For  every  finitely supported funct ion ] on G~ we have:  

i) if k < r: [I/iI  =fIth§ = L'(~,d~) dm 
J 

= + k -  ii) if k > r: L!/II  dm 1 r)(]t~., ]w)w d 
J 

The proof of this theorem can be obta ined exact ly  by  the same arguments  used 

in the proof of theorem 7 of [4]. 
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