The Plancherel Measure for Polygonal Graphs (*).

Gabriella Kuhn - Paolo M. Soardi (Milano)

Abstract

Summary. - We compute explicitely the Plancherel measure for groups acting isometrically and simply transitively on polygonal graphs.

1. - Introduction.

A. Iozzi and M. Picardello ([6], [7]) extended to the context of groups acting isometrically and simply transitively on a polygonal graph the theory of spherical functions, representations and convolution operators studied in [4], [5] in the case of free groups (and in [1] in the case of homogeneous trees). In particular, they define a commutative algebra (for the convolution product) A of radial functions and compute the Gelfand spectrum of the completion of A in the l^{1} norm. If A^{*} is the completion in the l^{2} convolutor norm, A^{*} is a commutative C^{*} algebra with unit which can be identified, via the Gelfand transform, to the space of all continuous functions on a compact subset of the real line. As in the case of free groups, this isomorphism can be extended to an isometry between l^{2} radial and $L^{2}(S, d \mu)$, where $d \mu$ is a suitable probability measure called the Plancherel measure. The aim of this paper is to compute explicitely $d \mu$, and, as an application, to extend to polygonal graphs the Plancherel theorem proved in [4] for the free groups (see also [1]).

In the case of groups acting faithfully on homogeneous trees the explicit form of $d \mu$ was already known. The computation was carried out by Cartier [2] and Sawyer [9] in the context of random walks on a tree, by Pytiik [8], Figì-Talamanca and Picardello [4] and by Betori and Pagliacci [1] in the context of harmonic analysis on trees. Our methods are elementary and lead to a direct computation of $d \mu$ in the general case.

2. - Notation.

A connected homogeneous graph Γ is called a polygonal graph if: i) there exist integers k and r (larger or equal to 2) such that every vertex v belongs to exactly r polygons, each one with k sides, contained in the graph and having no side and no

[^0]vertex in common except v; ii) every nontrivial loop runs through all the edges of at least one polygon (see [6]). The distance between two vertex v_{1} and v_{2} is the block distance defined in [6]: it is the minimum number of polygons crossed by a path connecting v_{1} with v_{2}. If $k=2$ the polygonal graph reduces to a homogeneous tree of order r. It is not difficult to prove (e.g. using the same arguments of theorem 1.1 of [1]) that a group G_{r}^{k} acting faithfully (i.e. isometrically and simply transitively) on Γ is necessarily isomorphic to the free product of r copies of Z_{k} (integers modulo k) if $k>2$, while, for $k=2, G_{r}^{2}$ is isomorphic to the free product of t copies of Z and s copies of $Z_{2}(2 t+s=r)$.

Denote by $V(I)$ the set of all vertex of Γ and by E_{n} the set of all vertex having distance n from a vertex o fixed once for all. A function f on $V(\Gamma)$ can be identified in the obvious way with a function on G_{r}^{r}. We say that f is radial if it is constant on E_{n} for all $n=0,1,2, \ldots$. The space of all finitely supported radial functions is denoted by A. Actually A is a commutative algebra for the convolution product. If χ_{n} denotes the characteristic function of E_{n}, we have the following identity (see [7]):

$$
\left\{\begin{array}{l}
\chi_{1} * \chi_{n}=\chi_{n+1}+(k-2) \chi_{n}+(r-1)(k-1) \chi_{n-1}, \quad \text { if } n>1 \tag{1}\\
\chi_{1} * \chi_{1}=\chi_{2}+(k-2) \chi_{1}+r(k-1) \chi_{0}
\end{array}\right.
$$

Hence A is generated by χ_{1} and the identity χ_{0}. Let A^{*} denote the completion of A in the $l^{2}\left(G_{r}^{k}\right)$ convolutor norm. Then A^{*} is a commutative C^{*} algebra whose spectrum coincides, by (1), with the spectrum of χ_{1} as an element of A^{*}. The following inequality, which is crucial in the proof of theorem 1 , was proved in [6], Theorem 1.

$$
\begin{equation*}
\left\|\chi_{n}\right\|_{A^{*}} \leqq C_{k}(n+1)\left\|\chi_{n}\right\|_{2} \quad \text { for all } n \geqq 0 \tag{2}
\end{equation*}
$$

where C_{k} is a constant depending only on k.
Finally, the following notation will be used throughout the paper: $\sigma=(k-2)$, $\varrho=((k-1)(r-1))^{\frac{1}{2}}$.

3. - The spectrum of χ_{1}.

Let S denote the spectrum of χ_{1} in the O^{*} algebra A^{*}. Then we have the following result.

Theorem 1. - If $k \leqq r$ then $S=[\sigma-2 \varrho, \sigma+2 \varrho]$. If $k>r$ then $\mathcal{S}=\{-r\} \cup[\sigma-$ $-2 \varrho, \sigma+2 \varrho]$.

Proof. - For any given real γ we have to solve the equation

$$
\begin{equation*}
\left(\chi_{1}-\gamma \chi_{0}\right) * \sum_{n=0}^{+\infty} a_{n} \chi_{n}=\chi_{0} . \tag{3}
\end{equation*}
$$

If $f=\sum a_{n} \chi_{n}$ is a solution of (3) such that

$$
\begin{equation*}
\sum_{n=0}^{+\infty}\left|a_{n}\right|(n+1) \varrho^{n}<\infty \tag{4}
\end{equation*}
$$

then, by (2) and the fact that $\left\|\chi_{n}\right\|_{2}=(r-1)^{-\frac{1}{-\frac{1}{2}}} e^{n}$ if $n>0, j \in A^{*}$ and $\gamma \notin S$. If, on the other hand, every solution f of (3) satisfies

$$
\begin{equation*}
\sum_{n=0}^{+\infty}\left|a_{n}\right|^{2} \varrho^{2 n}=\infty \tag{5}
\end{equation*}
$$

then $\gamma \in S$. It is easily seen that, by (1), (3) is equivalent to the following finite difference equation

$$
\begin{equation*}
\varrho^{2} a_{n+1}+(\sigma-\gamma) a_{n}+a_{n-1}=0, \quad n \geqq 1 \tag{6}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
r(k-1) a_{1}-\gamma a_{0}=1 \tag{7}
\end{equation*}
$$

Suppose first $|\sigma-\gamma|<2 \varrho$ and set $\cos \varphi=-(\sigma-\gamma) / 2 \varrho$. The general solution of (6) has the form: $a_{n}=\varrho^{-n}\left(C_{1} e^{i n \varphi}+C_{2} e^{-i n \varphi}\right)$. Since the null solution does not satisfies (7), we have $\left|a_{n}\right| \geqq C \varrho^{-n}$ for some positive constant C andinfinitely many n. Then (5) holds and $\gamma \in S$. Hence $[\sigma-2 \varrho, \sigma+2 p] \subseteq S$. Suppose now $|\sigma-\gamma|>2 \varrho$. The general solution of (6) has the form: $a_{n}=C_{1} \lambda_{+}^{n}+C_{2} \lambda_{-}^{n}$, where $\lambda_{ \pm}=-(\sigma-$ $-\gamma) / 2 \varrho^{2} \pm\left((\sigma-\gamma)^{2}-4 \varrho^{2}\right)^{\frac{1}{2}} / 2 \varrho^{2}$. Now $\left|\varrho \lambda_{+}\right|<1$ if $\sigma-\gamma>2 \varrho$ and $\left|\varrho \lambda_{+}\right|>1$ if $\sigma-$ $-\gamma<-2 \varrho$. On the contrary, $\left|\varrho \lambda_{-}\right|>1$ if $\sigma-\gamma>2 \varrho$ and $\left|\varrho \lambda_{-}\right|<1$ if $\sigma-\gamma<-2 \varrho$.

Therefore, if $\sigma-\gamma<-2 \varrho$, (4) can be satisfied if and only if $C_{1}=0$ and $C_{2}(r(k-$ $\left.-1) \lambda_{-}-\gamma\right)=1$, i.e. if and only if $r(k-1) \lambda_{-}-\gamma \neq 0$, which is always true in the case considered. Hence, if $\sigma-\gamma<-2 \varrho, \gamma \notin S$. Let us consider now the case $\sigma-\gamma>2 \varrho$. As before, we can find a solution satisfying (4) if and only if $r(k-$ $-1) \lambda_{+}-\gamma \neq 0$. This time, however, the equation: $r(k-1) \lambda_{+}-\gamma=0$ has one solution, $\gamma=-r$, in the case $k>r$ (and only in this case). It follows that, if $k>r$ and $\gamma=-r$, every solution of (3) satisfies (5) and $-r \in S$. In conclusion, if $\sigma-\gamma>2 \varrho$ and $k \leqq r$ there is a solution (and only one) of (3) satisfying (4), so that $\gamma \notin S$. The same is true if $k>r$, except for the point $\gamma=-r$ which belongs to the spectrum of χ_{1}.

Remark. - If $k>r$ the point - r is isolated in \mathcal{S}, while if $k=r$ it coincides with $\sigma-2 \varrho$. In the first case the above arguments show also that $-r$ belongs to the point spectrum of the convolution operator on $l^{2}\left(G_{r}^{k}\right)$ defined by χ_{1}.

The spectrum of χ_{1} was computed in the case where $k=2$ by several people (see e.g. [2], [3], [4], [8], [9]) and indipendently, by other methods, in [7] in the general case.

4. - The Plancherel measure.

For every $f \in A^{*}$ let \hat{f} denote the Gelfand transform of f. We define a probability measure $d \mu$ on S by the rule

$$
\begin{equation*}
\int_{s} \hat{f} d \mu=f(o) \tag{8}
\end{equation*}
$$

It is immediately seen (see e.g. [8]) that the mapping $f \rightarrow \hat{f}$ extends to an isometric isomorphism between $l^{2}\left(G_{r}^{k}\right)$ radial and $L^{2}(S, d \mu)$. In this section we compute explicitely $d \mu$.

For every $n \geqq 0$ and $x \in S$ let $P_{n}(x)=\chi_{n}(x)$. Suppose $x \in[\sigma-2 \varrho, \sigma+2 \varrho]$. Then we set $x=\sigma+2 \varrho \cos \theta$ and define $Q_{n}(\theta)=\varrho^{-n} P_{n}(\sigma+2 \varrho \cos \theta)$. If $k>r$ and $x=$ $=-r$ we let $Q_{n}(-r)=\varrho^{-n} P_{n}(-r)$. This simply amount to identifying S with $[0, \pi]$ if $k \leqq r$ and S with $\{-r\} \bigcup[0, \pi]$ if $k>r$. Finally we introduce the functions: $X_{n}(\theta)=\sin ((n+1) \theta) / \sin \theta$ if $n \geqq 0$ and $\theta \in[0, \pi], X_{n}(\theta)=0$ otherwise.

Lemma. - For every r and k

$$
\begin{align*}
Q_{n}(\theta)=X_{n}(\theta)+\varrho^{-1} \sigma X_{n-1}(\theta)-(r-1)^{-1} X_{n-2}(\theta) & \tag{9}\\
& \text { for all } n \geqq 0 \text { and } \theta \in[0, \pi]
\end{align*}
$$

Moreover, if $k>r$,

$$
\begin{equation*}
Q_{n}(-r)=-r(1-r)^{n-1} \varrho^{-n} \tag{10}
\end{equation*}
$$

Proof. - Suppose first $x \in[\sigma-2 \varrho, \sigma+2 \varrho]$ and set $q_{n}(\theta)=\varrho^{n} Q_{n}(\theta)$. Then, by (1), q_{n} is the solution of the finite difference equation

$$
\begin{equation*}
q_{n+1}-2 \varrho \cos \theta q_{n}+\varrho^{2} q_{n-1}=0, \quad n>1 \tag{11}
\end{equation*}
$$

with the initial conditions

$$
\left\{\begin{array}{l}
q_{1}=\sigma+2 \varrho \cos \theta \tag{12}\\
q_{2}=(\sigma+2 \varrho \cos \theta)^{2}-(\sigma+2 \varrho \cos \theta)-r(k-1)
\end{array}\right.
$$

The general solution of (11) can be written in the form: $q_{n}=\varrho^{n} O_{1}\left(e^{i n \theta}-e^{-i n \theta}\right)+$ $+\varrho^{n-1} C_{2}\left(e^{i(n-1) \theta}-e^{-i(n-1) \theta}\right)$. From (12) we obtain $C_{1}=(\sigma+2 \varrho \cos \theta) / 2 i \varrho \sin \theta$ and $C_{2}=-r(k-1) / 2 i \varrho \sin \theta$, whence (9). If $k>r$ and $x=-r$, equations (1) imply:

$$
\begin{equation*}
P_{n+1}(-r)+(\sigma+r) P_{n}(-r)+\varrho^{2} P_{n-1}(-r)=0, \quad n>1 \tag{11}
\end{equation*}
$$

with the initial conditions

$$
\left\{\begin{array}{l}
P_{1}(-r)=-r \tag{12}\\
P_{2}(-r)=r^{2}+\sigma r-(k-1) r
\end{array}\right.
$$

One checks immediately that, if Q_{n} is given by (10), $P_{n}=\varrho^{n} Q_{n}$ is the solution of (11) satisfying the conditions (12) .

Theorem 2. - If $k<r$, then:

$$
\begin{align*}
d \mu=\left(\left(2 k \pi\left(1+\varrho^{2}+\sigma-x\right)\right)^{-1}+(k\right. & -1)\left(2 k \pi \left((k-1)^{2}+\varrho^{2}+\right.\right. \tag{13}\\
& \left.\left.+(k-1)(x-\sigma))^{-1}\right)\left(4 \varrho^{2}-(x-\sigma)^{2}\right)^{\frac{1}{2}}\right) d x
\end{align*}
$$

If $k=r$, then:

$$
\begin{align*}
& d \mu=\left(2 k \pi\left(1+\varrho^{2}+\sigma-x\right)\right)^{-1}\left(4 \varrho^{2}-(x-\sigma)^{2}\right)^{\frac{1}{2}} d x+ \tag{14}\\
&+(k-1)(2 k \pi \varrho(2 \varrho+x-\sigma))^{-\frac{1}{2}}(2 \varrho+\sigma-x)^{\frac{1}{2}} d x
\end{align*}
$$

If $k>r$, then:

$$
\begin{align*}
d \mu=\left(2 k \pi \left(1+\varrho^{2}+\sigma\right.\right. & -x))^{-1}+(r-1)\left(2 k \pi \left((r-1)^{2}+\varrho^{2}+\right.\right. \tag{1乞}\\
& \left.+(r-1)(x-\sigma))^{-1}\right)\left(4 \varrho^{2}-(x-\sigma)^{2}\right)^{\frac{1}{2}} d x+k^{-1}(k-r) \delta_{-r}
\end{align*}
$$

where, in the above equations, $x \in[\sigma-2 \varrho, \sigma+2 \varrho]$ and δ_{-r} is the unit mass at the point -r .

Proof. - Suppose first $k \leqq r$ and denote by $d \omega$ the measure on $[0, \pi]$ corresponding to $d \mu$ under the mapping $x=\sigma+2 \varrho \cos \theta$. We set:

$$
\begin{equation*}
y_{n}=\int_{0}^{\pi} X_{n}(\theta) d \omega \tag{16}
\end{equation*}
$$

By (8) and (9) we obtain:

$$
\begin{equation*}
y_{n}+\underline{o}^{-1} \sigma y_{n-1}-(r-1)^{-1} y_{n-2}=0, \quad n \geqq 2 \tag{17}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
y_{0}=1 \tag{18}\\
y_{1}+\varrho^{-1} \sigma y_{0}=0
\end{array}\right.
$$

The solution of (17) with the initial conditions (18) is given by

$$
\begin{equation*}
y_{n}=k^{-1} \varrho^{-n}+k^{-1}(k-1)(1-k)^{n} \varrho^{-n} \tag{20}
\end{equation*}
$$

Suppose first $k<r$. Then

$$
\begin{align*}
& \sum_{n=0}^{+\infty} y_{n} X_{n}(\theta)=k^{-1} \varrho^{2}\left(\varrho^{2}+1-2 \varrho \cos \theta\right)^{-1}+k^{-1}(k-1) \varrho^{2}\left((k-1)^{2}+\varrho^{2}+\right. \tag{21}\\
&+2 \varrho(k-1) \cos \theta)^{-1}
\end{align*}
$$

and the convergence of the series is absolute and uniform. Denote by $g(\theta)$ the function on the right hand side of (21). Since the functions X_{n} form an orthonormal complete system for the measure $2 \pi^{-1} \sin ^{2} \theta d \theta$ on $[0, \pi]$, (16) implies

$$
d \omega=2 \pi^{-1} g(\theta) \sin ^{2} \theta d \theta
$$

Changing back the variable we obtain (13).
If $k=r$ (20) reads: $y_{n}=k^{-1} \varrho^{-n}+k^{-1}(k-1)(-1)^{n}$. This time we have:

$$
\begin{equation*}
k^{-1} \sum_{n=0}^{+\infty} \varrho^{-n} X_{n}(\theta)=k^{-1} \varrho^{2}\left(1+\varrho^{2}-2 \varrho \cos \theta\right)^{-1} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
(-1)^{n}=\pi^{-1} \int_{0}^{\pi}(1-\cos \theta) X_{n}(\theta) d \theta, \quad n=0,1,2, \ldots \tag{21}
\end{equation*}
$$

Denoting by $h(\theta)$ the sum of the series in $(21)^{\prime}$ and observing that the convergence is absolute and uniform, we have from (21) and (21) $: d \omega=2 \pi^{\prime 1} h(\theta) \sin ^{2} \theta d \theta+$ $+\pi^{-1} k^{-1}(k-1)(1-\cos \theta) d \theta$ whence, changing back the variable, we obtain (14).

Finally let $k>r$. In this case we set $d \mu=d \mu_{1}+\sigma \delta_{-r}$, where $d \mu_{1}$ is concentrated on the interval $[\sigma-2 \varrho, \sigma+2 \varrho]$ and C is a constant to be determined. Let $d \omega_{1}$ be the measure on $[0, \pi]$ corresponding to $d \mu_{1}$. Set:

$$
\begin{equation*}
y_{n}^{1}=\int_{0}^{\pi} X_{n}(\theta) d \omega_{1} \tag{22}
\end{equation*}
$$

Observe now that, by (10),

$$
\begin{equation*}
Q_{n}(-r)=Y_{n}+\varrho^{-1} \sigma Y_{n-1}-(r-1)^{-1} Y_{n-2} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{n}=-(k-r)^{-1} \varrho^{-n}\left((1-k)^{n+1}-(1-r)^{n+1}\right), \quad n \geqq 0 \tag{24}
\end{equation*}
$$

and $Y_{n}=0$ if $n<0$. By (8), (9) and (23) we get that y_{n}^{1} and O must satisfy the equation:

$$
\begin{equation*}
\left(y_{n}^{1}+C Y_{1}\right)+\varrho^{-1} \sigma\left(y_{n-1}^{1}+C Y_{n-1}\right)-(r-1)^{-1}\left(y_{n-2}^{1}+C Y_{n-2}\right)=0, \quad \text { for } n \geqq 2 \tag{25}
\end{equation*}
$$

with the initial conditions:

$$
\left\{\begin{array}{l}
y_{0}^{1}+C Y_{0}=1 \tag{26}\\
\left(y_{1}^{1}+C Y_{1}\right)+e^{-1} \sigma\left(y_{0}^{1}+C Y_{0}\right)=0
\end{array}\right.
$$

From (25) and (26) we then get: $y_{n}^{1}+C Y_{n}=k^{-1} \varrho^{-n}+k^{-1}(k-1)(1-k)^{n} \varrho^{-n}$. Since y_{n}^{1} can not tend exponentially to infinity (by (22)), we have, remembering (24):

$$
\left\{\begin{array}{l}
y_{n}^{1}=k^{-1} \varrho^{-n}+k^{1}(r-1)(1-r)^{n} \varrho^{-n} \tag{27}\\
C=k^{-1}(k-r)
\end{array}\right.
$$

Now, $\sum_{n=0}^{+\infty} y_{n}^{1} X_{n}(\theta)$ converges absolutely and uniformly on $[0, \pi]$ to the function $g_{1}(\theta)=k^{-1} \varrho^{2}\left(1+\varrho^{2}-2 \varrho \cos \theta\right)^{-1}+k^{-1}(r-1) \varrho^{2}\left((r-1)^{2}+\varrho^{2}+2 \varrho(r-1) \cos \theta\right)^{-1}$. Hence $d \omega_{1}=2 \pi^{-1} g_{1}(\theta) \sin ^{2} \theta d \theta$. Changing back the variable and taking the second equation of (27) into account we get (15).

5. - The Plancherel theorem.

In this section we extend to G_{r}^{k} the Plancherel theorem proved in [4] (theorem 7) for the free groups (see also the extension of [1] to homogeneous trees). We refer to [7] for all unexplained notation and definitions.

Denote by Ω the Poisson boundary of G_{r}^{k} and by $d \nu$ the quasi invariant probability measure on Ω associated to the Poisson kernel. Iozzi and Picardello define, by means of the Poisson kernel, a family of representations π_{z} on $L^{2}(\Omega, d \nu)$. If $\operatorname{Re} z=\frac{1}{2}, \pi_{z}$ is irreducible and unitary, while, if $\operatorname{Im} z=n \pi / \log \varrho^{2}$ (n an integer) and $\operatorname{Re} z \neq 0,1, \pi_{z}$ is unitarizable. The first family is called the principal series, the second one the complementary series. By means of the mapping $\gamma(z)=\varrho^{2 z}+$ $+\varrho^{2(1-z)}+\sigma$ the interval $S=\left[0, \pi / \log \varrho^{2}\right]$ on the line Re $z=\frac{1}{2}$ corresponds biunivocally to the interval $[\sigma-2 \varrho, \sigma+2 \varrho]$ and, if $k>r, w=\left(\log \varrho^{2}\right)^{-1} \log (k-1)+$ $+i \pi / \log \varrho^{2}$ is mapped into $-r$, so that π_{w} belongs to the complentary series. We denote by $(,)_{w}$ an inner product on $L^{2}(\Omega, d \nu)$ that makes π_{w} unitary (e.g. like in [4],
section 3, or in [7]). Define, for every finitely supported function f on G_{r}^{k} :

$$
f_{z}=\sum_{x \in G_{r}^{k}} f(x)\left(\pi_{z}(x) u\right)
$$

where u is the function identically 1 on Ω. Finally we identify, via the mapping γ, S with J, if $k \leqq r$, and S with $J \bigcup\{w\}$, if $k>r$. It is easy to write explicitely the expression of the Plancherel measure in the new variable. If we call $d m$ this measure, a moment's reflection show that $d m$ can be obtained from the measure $d \omega$ (introduced in the proof of Theorem 2 above), if $k \leqq r$, simply replacing θ by $\theta \log \varrho^{2}$. If $k>r$, denoting by $d m_{1}$ the restriction of dm to $J, d m_{1}$ can be obtained from $d \omega_{1}$ by means of the same substitution. We then have:
if $\pi<r$

$$
\begin{aligned}
& d \mathrm{~m}=2 \pi^{-1} k^{-1} \varrho^{2} \log \varrho^{2}\left(\left(1+\varrho^{2}-2 \varrho \cos \left(\theta \log \varrho^{2}\right)\right)^{-1}+(k-1)\left((k-1)^{2}+\varrho^{2}+\right.\right. \\
&\left.\left.+2 \varrho(k-1) \cos \left(\theta \log \varrho^{2}\right)\right)^{-1}\right) \times \sin ^{2}\left(\theta \log \varrho^{2}\right) d \theta
\end{aligned}
$$

if $k=r$
$d m=2 \pi^{-1} k^{-1} \varrho^{2} \log \varrho^{2}\left(1+\varrho^{2}-2 \varrho \cos \left(\theta \log \varrho^{2}\right)\right)^{-1} \sin ^{2}\left(\theta \log \varrho^{2}\right) d \theta+$

$$
+\pi^{-1} k^{-1}(k-1) \log \varrho^{2}\left(1-\cos \left(\theta \log \varrho^{2}\right)\right) d \theta
$$

if $k>r$

$$
\begin{aligned}
d m=2 \pi^{-1} k^{-1} \varrho^{2} \log \varrho^{2} & \left(\left(1+\varrho^{2}-2 \varrho \cos \left(\theta \log \varrho^{2}\right)\right)^{-1}+(r-1)\left((r-1)^{2}+\varrho^{2}+\right.\right. \\
& \left.\left.+2 \varrho(r-1) \cos \left(\theta \log \varrho^{2}\right)\right)^{-1}\right) \times \sin ^{2}\left(\theta \log \varrho^{2}\right) d \theta+k^{-1}(k-r) \delta_{w}
\end{aligned}
$$

Theorem 3. - For every finitely supported function f on G_{r}^{k} we have:
i) if $k \leqq r: \quad\|f\|_{2}^{2}=\int_{J}\left\|f_{\frac{1}{2}+i \theta}\right\|_{L^{2}(\Omega, d v)}^{2} d m$,
ii) if $k>r: \quad\|f\|_{2}^{2}=\int_{J}\left\|f_{\frac{1}{2}+i \theta}\right\|_{L^{2}(\Omega, d v)}^{2} d m_{1}+k^{-1}(k-r)\left(f_{w}, f_{w}\right)_{w}$.

The proof of this theorem can be obtained exactly by the same arguments used in the proof of theorem 7 of [4].

REFERENCES

[1] W. Betori - M. Pagliacce, Harmonic analysis for groups acting on tree, preprints 1982.
[2] P. Cartier, Harmonic analysis on trees, Proc. Symp. Pure Math. Amer. Math. Soc., 26 (1972), pp. 419-424.
[3] J. Cohen, Operators norms on free groups, Boll. Un. Mat. Ital., (VI) I-B (1982), pp. 1055-1065.
[4] A. Figà-Talamanca - M. Picardello, Spherical functions and harmonic analysis on free groups, J. Funct. Analysis, 47 (1982), pp. 281-304.
[5] A. Figà-Talamanca - M. Picardello, Harmonic analysis on free groups, to appear in Lecture Notes in Pure and Applied Mathematics, Marcel Dekker.
[6] A. Iozzi - M. Picardello, Graphs and convolution operators, preprint 1982.
[7] A. Iozzi - M. Picardello, Spherical functions on graphs, preprint 1982.
[8] T. Pytlik, Radial functions on free groups and a decomposition of the regular representation into irreducible components, J. Reine u. Angew. Math., 326 (1981), pp. 124-135.
[9] S. SAWYER, Isotropic random walls in a tree, Zeitsch. für Wahr., 12 (1978), pp. 279-292.

[^0]: (*) Entrata in Redazione il 23 marzo 1983.

