
Locally Pseudo-Valuation Domains (*). 
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S u n t o .  - In  questo lavoro ve~gono studiate due controparti globali della nozione di dominio di 
pseudo.valutazione (abbreviato, PVD), un tipo di dominio quasi-locale diviso introdotto da 
Hedstrom.Houston (Pat. J. Math., 75 (1978), pp. 137-147). La pi~ larga di queste contro. 
patti ~ la classe dei domini localmente di pseudo-valutazione (abbr., LPVD), la qualc ~ con. 
tenuta tra la classe dei domini di Pr4/er e quella dei domini seminormali localmente divisi. 
L'altra ~ quella dei domini fflobalmente di pseudo.valutazione (abbr., GPVD); ciascun do- 
miuio R di tale classe ~ un LPVD con un sopraanello di Pri~]er unibranehed canonicamente 
associato. Per i domini quasi-locali, le nozioni di LPVD, GPVD e PVD coincidono. Eq~- 
trambe le classi (dei GPVD c dei LPVD) sono stabili in relazione a svariate costruzioni ed 
operazioni della teoria dei domiui. Ciascun sopraanello di un dominio R ~ un LPVD se, e 
solamente se, R ~ uu LPVD la cui ehiusura integrale ~ uu dominio di t'ri~]er. Se R ~ un PVD 
avente V come sopraanello di valutazione canonicamente associato e se ~* (risp., V*) ~ la 
chiusura integrale di R (risp., V) in un campo contenente R, aUora R* ~ un GPVD, avente V* 
come sopraanello di Pri~/er eanonicamente associato. Numerosi esempi di LPVD e GPVD 
vengono costruiti. 

1 .  - I n t r o d u c t i o n .  

One of the most  fruitful  recent  generalizations of the concept  of a valuat ion 
domain is t ha t  of a pseudo-valuat ion domain, or PVD. This type  of quasi-local 
domain, in t roduced by  HEDST~O~-tIo~sTo~ [17] and studied extensively thereaf ter  ([6], 
[18], [1], [11]), is par t icular ly  interest ing since any  pseudo-valuat ion domain R ad- 
mits a canonically associated valuat ion overring V with the  same set of prime ideals 

as/~,  such tha t  R m a y  be recovered from its residue-class field and V by  a pullback 
construction [1, Proposit ion 2.6]. I t  happens tha t  any  PVD is a di~dded domain, a 
t ype  of quasi-local going-down ring int roduced in [5] (ef. also [12]), and one now 
has at  hand  a theory  of the  so-called locally di~dded domains ([7], [12]). Accordingly, 
it  is na tura l  to ask if 1)VD's also admit  a global counterpar t ,  forming a class of semi- 
normal  domains in termediate  between Priifer domains and locally divided domains, 
possibly such tha t  each of these new domains has an associated unibranehed Prfifer 
overring from which its s t ructure  m ay  be recovered a by  pullback. This paper  answers 
the  above question by  finding two such counterparts .  
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The first, and larger, of these counterparts is the class of locally pseudo-valuation 
domains, or IJPVD's, introduced in section 2. A domain /~ is naturally defined to 
be a LPVD in case Rp is a PVD for each prime ideal P of R. The class of LPVD's 
clearly contains all Priifer domains and all PVD's; it contains an abundance of 
other semi-quasi-local domains, by  applying the construction in [14, section 3] (see 
Example 2.5 and l~emarks 2.11 (b), (c)); and it is stable under several domain- 
theoretic constructions (see Remarks 2.4 (e) and Propositions 2.6 and 2.7). Perhaps 
the most interesting result in section 2 is the following part of Theorem 2.9: if /~ 
is a LPVD~ then each overring of/~ is an LPVD if and only if the integral closure 
of R is a Priifer domain. While this statement may be viewed as a globalization 
of [18, Proposition 2,7], its proof uses recent work on seminormality [2]. 

Section 3 treats the class of GPVD's, a second global counterpart to PVD's. 
Roughly speaking, a domain R is a GPVD in ease R is an LPVD whose loealizations 
have pullback descriptions arising from a canonically associated unibranched Priifer 
overring of R which has the same Jacobsen radical as R. (For a more precise state- 
ment, see the characterization of GPVD's in Theorem 3.1.) Examples of Hoetherian 
GPVD's are provided by the rings Z[V/d.], where d is a square-free integer such that 
d ~- 5 (rood 8) (see [8] for details). By using the material on K-rings in [21], Ex- 
ample 3.2 (b) presents a one-dimensional non-~oetherian GPVD whose associated 
Prfifer overring is the Priifer domain with uncountable maximal spectrum con- 
structed in [13, Example 1]. Example 3.4 presents an LPVD which, although not a 
GPVD, has Prfifer integral closure. (Its construction depends on some lemmas of 
independent interest concerning locally finite intersections; their proofs, patterned 
after [19], may be found in the appendix.) l~evertheless, the class of GPVD's is 
quite extensive, containing in particular all Priifer domains and all PVD's, as well 
as the semi-quasi-local LPVD's mentioned earlier. I t  also behaves well under in- 
tegral closure (Proposition 3.5), and l~oetherian GPVD's can be characterized by  a 
global counterpart of [11, Corollaire 1.6] (Proposition 3.6). Perhaps the following 
is the most natural way for GPVD's to arise. Let R be a GPVD (for instance, a 
PVD) with associated Prfifer domain T, let /7 be a field containing T, and let R* 
(resp.,/ '*) be the integral closure of R (resp., T) in i7. I t  is a classic result of Priifer 
that  T* is a Priifer domain; Corollary 3.9 asserts that/~* is a GPVD, with associated 
Prfifer domain Y*. Results in the same vein for more general classes of going-down 
rings have been scarce (cf. [6, Theorem 3.2]). 

All rings considered below are commutative, with 1. Data consisting of a quasi- 
local ring R with maximal ideal M and residue-class field k = RIM will be summa- 
rized as either (R, M) or (R, M, k), with k denoted by  either h(R) or k(M). l~Iore 
generally, if P is a prime ideal of a ring R, then k(P) denotes t~p/PRp. If R is a ring 
then the Krull dimension of /~, the Jgcobson radical of R, the complete integral 
closure of R and the integral closure of 1~ are denoted by dim (R), J(/~), C(R) and R' 
respectively. We assume familiarity with the literature on PVD's and with pull- 
back techniques, as in [9]. Any unexplained terminology is standard, a.s in [15] 
and [t9]. 
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2. - Local ly  pseudo .va luat ion  domains.  

L e t / ~  be a domain, with quotient  field K. As in [17], we say tha t  a pr ime ideal P 

o f /~  is strongly prime in ease, whenever  elements x and y of K satisfy xy ~ 1 ), then  
ei ther x e P or y a P ;  and tha t  R is a pseudo-valuation domain (or, in short ,  a PVD) 
in case (/~, M) is quasi-local and M is s trongly prime. In  order to globalize the  
PVD concept,  we need the  following definition and prel iminary result. We shall 
say tha t  a pr ime P of /~ is locally strongly prime (in R) if PRz is s t rongly pr ime;  
equivalent ly,  if Rp is a PVD. 

L E n A  2.1. - I f  Q c Y are distinct primes of a domain R and P is locally strongly 
pr ime in R, then  Q is also locally strongly pr ime in R. 

Pl~ooP. - Since QRp is a nonmaximal  pr ime of the  pseudo-valuat ion domain 
/~p [17, Proposi t ion 2.6] guarantees tha t  (Bp)QR ~ ~ RQ is a valuat ion domain and, 

hence, a PVD, as required. 

PEOPOSITION 2.2. - For  a domain R, the following conditions are equivalent :  

(1) RM is a PVD, for each maximal  ideal M of R;  

(2) Each prime of R is locally strongly pr ime in R. 

Pt~OOF. - By  the above comments ,  (1) is equivalent  to requiring each maximal  
ideal of R to be locally strongly prime. However  the  la t ter  condition is equivalent  
to (2) by  vi r tue  of Lemma 2.1, since each pr ime is contained in a suitable maximal  

ideal. 

A domain R satisfying the  equivalent  conditions in Proposit ion 2.2 will be called a 
locally pseudo-valuation domain (or, in short,  an LPVD).  I t  is clear t ha t  any  Priifer 
domain is an LPVD, and so is any  PVD. A more interest ing family of examples 
is given in Example  2.5. First,  we pause to relate  the  LPVD concept  to the  studies 

in [5], [7]. 

CogoLl, AlCu 2.3. - Any  LPVD is a locally divided domain. 

PROOF. - I t  suffices to recall  tha t  any  PVD is a divided domain [6, p. 560]. 

RE~ARI(S 2.4. - (a) As in the  proof of Corollary 2.3, we m ay  use earlier studies 
of PVD's  to show tha t  LPVD's  satisfy addit ional  local properties.  For  instance, 
any  LPVD must  be seminormal,  since it  is known (cf. [2, Proposit ion 3.1 (a)]) t ha t  
any  PVD is seminormal. 

(b) The converse of Corollary 2.3 fails, even in the  quasi-local integrally 
closed case [6, Remark  4.10 (b)]. 
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(c) By combining Corollary 3 with [7, p. :L24], we see tha t  any  LPVD is treed, 
in the sense tha t  its prime spectrum, as a poser under inclusion, forms a tree. A 
similar appeal to [7~ Theorem 2.4] reveals tha t  if R is an LPVD, then /? ~- PUp is 
an R-flat overring, for each prime P of R. 

(d) The LPVD concept has appeared recently in [2, Corollary 3.6], which 
produced a natural  class of one-dimensional domains satisfying condition (2) in 
Theorem 2.9 below. 

(e) In view of what  is known about PVD's,  Proposition 2.2 readily yields 
tha t  if R is an LPVD, then R/P and Rs are also LPVI)'s,  for each prime ideal P 
and multiplieatively closed subset S of R. 

EXAMPLE 2.5. -- Let  n > 2  be a positive integer. Then there exists a locally 
pseudo-valuation domain/~  with precisely n maximal  ideals, such tha t  T is neither a 
Prtifer domain nor a PVD. 

To indicate such a construction, consider a field k with the following two proper- 
ties: (1) there exist n pairwise incomparable valuation domains V~ = k @ M~ having 
(maximal ideal M~, residue class field k and) a common quotient field; (2) there 
exist n distinct proper subfields k~ of k. Then T = E/(/~ @ M~) has the asserted 
properties. 

For a proof, first ,set Q~ = M~ (3 T for each i. By appealing to [14, Theorem 3.1] 
(el. also [10, Proposizione 5.6.1 (])]), we have tha t  Q~, ..., Q~ are distinct and form 
the maximal  spectrum of iv. Since n>2, T is not quasi-local and, hence, is not a 
PVD. ~'Ioreover, for each i, we claim tha t  T Q ~  k~@ M~, As each / ~ - M ~  is a 
PVD but  not a valuation domain (by, for instance, [17, Example  2.1]), it  will follow 
tha t  T is an LPVD but  not  a Prfifer domain. 

To complete the proof, we proceed to establish the above claim. First ,  recall 
tha t  P = ~ V~ is a Prtifer domain with precisely n distinct maximal  ideals, given 
by hr~= M~n P, such tha t  Pr,= V~ for each i (cf. [19, Theorem 107]). Next,  i t  
will be convenient to regard T as being constructed in n steps. The first of these 
steps produces a domain~ say T~, as the pullback of the diagram 

; 
in which the vertical map is the inclusion and the horizontal map is the composite 
of the canonical surjection P-+2P/2V1 with the isomorphism P/2gl-~ k. By [9, 
Theorem 1.4], T l c  P is a unibranched extension; in particular, the primes of T1 
are 2V~ and ideals of the form I (3 T1, for primes I =~ 2V~ of P ;  and (T~)~r 1 = .P~ 
( =  Vj) for each j > 2 .  We shall next  describe the localization of T1 at  its remaining 
maximal  ideal, N1. 



DAVID E. DOBBS - MARCO FO~NTAh-A : _Locally pseudo-valuation domains 151 

Since [9, Theorem 1.4] yields that  Spec (T~) and Spec (P) are homeomorphic, 
it follows readily that  P~N~ is the saturation in P of the multiplicatively closed 
set T~'~NI. Thus Pr~\~v~ = P~-~ (---- V~), so that  [9, Proposition 1.9] supplies the pull- 
back description (Y~)~ ~ k~ • ~r V~ whence (T~)~----kl ~-M~. The next step of the 
construction produces T~ as the pullback of the diagram 

~2 

l 
T~-----~ 

in which the vertical map is the inclusion and the horizontal map is the composite 
of the canonical surjection TI-+ T1/N253 T~ and the isomorphisms T1/N~(~ TI-+ 
-+ VJMs-+I~. As above, [9, Theorem 1.4] may be applied to show that  T2c T~ 
is a unibranched extension; and, besides /V~ 53 T~, the other primes of Ts take the 
form J(~ Ts, for primes J~= N~53 T1 of Y~: We shall next de,~cribe the localiza- 
tions of T2 at each of its maximal ideals. 

To this end, note first that  Ms53 T~r (Otherwise, k~-[- M i ~  (T~)~vc (T~)~r~ = 
= k -{- M2, whence Vlc Vs, contraryto hypothesis.) Accordingly, [9, Theorem 1.4(o)] 
applies, giving (T2)~.~r ~ ----- (T~)~ (---- lq ~- M0. Moreover, if j > 3 ,  then N253 T~ CNj. 
(The point is that  the homeomorphism Spec (Ts) -+ Spec (T~), given by [9, Theo- 
rem 1.4], induces an isomorphism of the underlying posets.) Accordingly, [9, The- 
orem 1A (c)] applies again, yielding (f~)~. ~ r ,=  (T~)~. or~ (=  V~) for j > 3 .  For the 
localization of T2 at its remaining maximal ideal, Ns 53 T~, one may argue as above 
invoking the pullback description k 2 @ M~ ~ P ~  x k k2 to show that  (T 2)~ ~ f~ ---- k s @ M~. 

By iteration of the above process, we arrive at a domain T, ,  with precisely n 
distinct maximal ideals, at which the respective ]ocalizations are the domains 
k~ @ M~. Since T~ is the intersection of its localizations at maximal ideals, T~ = T, 
and the proof is complete. 

Propositions 2.6 and 2.7 offer additional ways to construct LPVD's. First, in 
order to ease the statement of Lemma 2.8, it is convenient next to recall the follow- 
ing terminology and facts. Let (R, M) be a quasi-local domain with quotient field K. 
R is a PVD if and only if M is also a maximal ideal of some valuation overring V 
of R [17, Theorem 2.7]. In this case, V is uniquely determined as the conductor 
V = (M:M) ~ {x e K:  x M  c M}, by [1, Proposition 2.5], and is called the valuation 
domain associated to R; Spec ( R ) =  Spec(V) as sets; if R:/= V, than V =  (R'M),  
by [17, Theorem 2.10]; and R may be recovered as the pullback R = V • 
by [1, Proposition 2.6]. 

PROPOSITIO~ 2.6. - If S is an overring of a locally pseudo-valuation domain R 
such that  the extension R c S satisfies LNC, then S is also an LPVD. In particular, 
each integral overring of an LPVD must be an LPVD. 
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PBOOF. - It is enough to show that S~v is a P~I), for each maximal ideal N of S. 

Note that R~n R is a PVD by virtue of Proposition 2.2. Since the overring extension 

R~c S~ inherits INC from R c S, an application of [17, Theorem 1.7] completes 

the proof. 

P~oPosITIO~- 2.7. - Le t  R c S be an integral  extension of domains, such tha t  R 
is integral ly closed. Then:  

(1) I f  S.v is a PVD for some prime ideal N of S, then R v ~  is also a PVD. 

(2) I f  S is an LPVD, then  R is also an LPVD. 

PROOF. -- Since integral  extensions satisfy the lying-over proper ty  (cf. [19, The- 
orem 44]), (2) follows immedia te ly  from (1). As for (1), note  tha t  [15~ Proposi- 
t ion 12.7] guarantees t ha t  Sx(h K = R ~ ,  where K denotes the  quotient  field of/~, 
so tha t  (1) is a consequence of par t  (1) of the following result. 

PROPOSITION 2.8. - Le t  S be a PVD with maximal  ideal N, quotient  field ~,  
and associated v a l u a t i o n d o m a i n  V. Le t  K be a subfield of t7. Set R = S n K,  
W---- V A K  and M = S V ( ~ R .  Then:  

(1) R is a PVD with maximal  ideal M ~ N n K and associated va.luation 
domain W. 

(2) I f  F is algebraic over K, then  the  contract ion map Spec (S) -~ Spec (R) 
is an inclusion-preserving bijection and hence dim (/~) ---- dim (S). 

(3) Assume tha t  [ F : K ]  < c~. Then R is Noether ian if and only if S is I~o- 
etheri~n such tha t  [k(S):k(R)] < c~. 

P ~ O O F .  - (1) Since V is a valuat ion domain of 2' with maximal  ideal N, [15, 
Theorem 19.16 (a), (b)] implies tha t  W is a valuat ion domain of K with maximal  
ideal s n K = M. Moreover, M is also the unique maximal  ideal of R. To see 

this, observe for any r E R ~ M  t ha t  r e S ~ N ,  so tha t  r -1 e S (h K ---- R, as desired. 
Since R ~- W • the assertions in (1) now follow directly from [1, Proposi- 
t ion 2.6]. 

(2) As F/K is algebraic, [15, Theorem 19.16 (b), (c)] assures tha t  the  contrac- 
t ion map Spec (V) -~ Spec (W) is an inclusion-preserving bijection and dim (W) = 
= dim (V). Since Spec (S) ---- Spee (V) and Spec (R) ~ Spec (W), (2) readily follows. 

(3) Suppose first tha t  (the pseudo-valuat ion domain) R is Noetherian.  By  [17, 
Proposi t ion 3.2], dim (R) <1.  I f  dim (R) ---- 0, then  (2) shows tha t  S is a field, tr iv- 
ially Noetherian.  In  the remaining case, dim (R)--~ 1, and the  Krull-Akizuki the- 
orem m a y  be applied, to conclude tha t  S is Noetherian.  Moreover, applying [11, 

Corollaire 1.6] to the pullback description of R reveals tha t  [k(W):h(R)] < c~. How- 
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ever, finiteness of [F :K]  guarantees finiteness of [k(V):k(W)]  (el. [4, Lemma 2, 
p. 417]). Then [k(S):k(R)],  being a divisor of [k(V):k(/~)] = [k(V):k(W)][k(W): 
:k(R)], is necessarily finite. 

Conversely, to show that  ~ is Noetherian, [11, Corollaire 1.6] reduces the task 
to proving [k(W):k(R)]  < c~ and W is a DVR. Since S is assumed Noetherian, 
applying [11, Corollaire 1.6] to the pullback description of S yields that  [k(V): 
:k(S)] < c~ and V is a DVI~. As [k(S):k(R)] < ~ by hypothesis, we argue as 
above that  [k(V):k(R)]<c>o, whence [ k ( W ) : k ( R ) ] < c ~ .  Finally, W inherits the 
DVI~ property from V, by [4, Corollary 3, p. 418], to complete the proof. 

Le~ R be a domain, with integral closure R'. I f /~  is g coherent LPVD, then [6, 
Proposition 4.2] readily implies that  R' is a Priifer domain and [18, Theorem 1.9] 
readily imphes that  each overring of R is an LPVD. The relation between these 
conditions is given next in Theorem 2.9, this section's main result. First, recall 
from [20] that  R is said to be an i-domain if the contraction map Spec (S) -> Spec (R) 
is an injection for each overring S of R; equivalently (cf. [20, Corollary 2.15]), if 
the integral closure of Rs is a valuation domain for each maximal ideal M of R. 

THEOriEs[ 2.9. - Let R be a domain, with integral closure R'. Then the following 
conditions are equivalent: 

(1) Each overring of R is an LPVD; 

(2) R is an LPVD and each overring of R is seminormal; 

(3) /~ is an LPVD and J~ is a Priifer domain; 

(4) _~ is an LPVD and an /-domain. 

P~ooF. - (I)~ (2): Use the fact that any LPVD is seminormal (cf. Re- 

marks 2.4 (a)). 

(2) ~ (3): Use the fact [2, Theorem 2.3] that if each overring of R is semi- 

normal, then R' is a Priifer domain. 

(3) ~ (4): Assume (3). By [20, Proposition 2.14], proxdng (4) reduces to 

showing that  the (surjective) contraction map Spee (R') ---> Spec (R) is an injection. 
To this end, one need only show for each prime ideal P of R, that  S = (R ' )s \ s  is 
of the form (R')~ for some (uniquely determined) prime ideal Q of/V.  As ~ '  is a 
Priifer domain, [19, Theorem 65] reduces the task to showing that  S is a valuation 
domain. However this follows from [17, Theorem 1.7] (cf. also [6, Proposition 4.1]) 
since the Priifer domain S, being an integral extension of the pseudo-valuation 
domain Rp, must be quasi-locM. 

(4) ~ (1): Apply the  first assertion in Proposition 2.6. The proof is complete. 
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COROLSA]~u 2.10. - Le t  /~ be a PVD, with associated valuation domain V and 
integral closure /~. Then the following conditions are equivalent: 

(1) Each overring of /~ is seminormal; 

(2) Each overring of /~ is an LPVD;  

(3) Each overring of ~ is a PVD; 

(4) ~ ' =  v .  

P~ooF. - The assertion follows directly from Theorem 2.9 in view of the follow- 
ing observations. I f  the pseudo-valuation domain R is an i-domain, then R ' =  V 
(cf. [6, Remark  4.8 (a)]) and each overring of R is quasi-local (by [20, Proposi- 
tion 2.34]). 

R~A~IcS 2.11. - (a) The following result gives a sufficient condition for an 
LPVD to be a Priifer domain. Let  R be a domain, bu t  not  ~ field. Then R is a 
Prfifer domain each of whose maximal  ideals is finitely generated if (and only if) R 
is an LPVD each of whose maximal  ideals is invertible. For the proof, note for 
each maximal  ideal M of R, tha t  /~>~ is a PVD whose maximal  ideal is invertible, 
and hence principal (cf, [19, Theorem 59]); thus, by [17, Corollary 2.9], R~ is a 
valuation domain, as desired. 

(b) Le t  T be the LPVD constructed in Example  2.5. If  each field extension 
kic k figuring in the construction of T is taken algebraic, then [14, Proposition 3.4] 
shows tha t  the integral closure of T is N (k -~ Mi), which is well-known to be a 
Prfifer domain. Thus, in this case, each overring of T is an LPVD, by virtue of 
Theorem 2.9. The same conclusion follows (for algebraic kick)from [2, Corol- 
lary 3.6] in (the less general) case dim (k ~ M,) = ] for each i, for T is then (a 
seminormal i-domain and) one-dimensional (cf. [14, Lemma 3.1 and Theorem 3.1]). 

Of course, the integral closure of T need not  be a Prfifer domain in general. For 
instance, if each k, is algebraically closed in k, then T is integrally closed. 

(c) Let  l~<d~<oo. Then there exists a d-dimensionM LPVD, S, which is nei- 
ther a Prfifer domain nor a PVD, such tha t  each overring of S is an LPVD. 

For the construction, note tha t  the ring T in the first paragraph of (b) certainly 
takes care of the case d = 1. Let  F be the quotient field of T. I f  d>~2, consider a 
(d-- 1)-dimensional valuation domain (V, M) of the form V =- J~ ~- M. Then S 
---- /~ ~ M has the asserted properties. To see this, it  is easiest to verify condi- 
tion (3) in Theorem 2.9, using the lore of the D ~- M-construction (cf. [6, Proposi- 
tion 4.9 (i)]). 

(d) Let  R satisfy the equivalent conditions in Theorem 2.9. For each maximal  
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ideal M of ]~, let  V(M) be the  valuat ion domain associated to /~M. I t  follows readily 

f rom the proof of (3) ~ (4) in Theorem 2.9 tha t  R'-~ N V(M). 

(e) The equivalence (3) ~ (4) in Corollary 2.10 was also established in [18, 
Proposit ion 2.7] (cf. [11], Corollaire 1.4 (c)]). 

3. - Global ized pseudo-va luat ion  domains .  

One reason tha t  the  theory  of PVD's  is so t ractable  is the presence of a valuat ion 
overring sharing the  spectrum of a given PVD. As [1, Proposit ion 3.3] shows, a 
non-quasi- local  LPVI)  (which is not  a Priifer domain) cannot  admit  a (Priiier) 
overring with the  same spectrum. However,  an analogue of the << same spectrum >> 

phenomenon is available for the  non-quasi- local  case. Indeed,  we now proceed to 
introduce and characterize this section's object  of s tudy,  a well-behaved class of 

LPVD's  admit t ing  unibranehed Priifer overrings. 

THEORElVi 3.1. -- Le t  R be a subring of a Priifer domain T. Then the  following 

two conditions are equivalent :  

(1) (a) R c T is a unibranched extension; 

(b) There  exists a nonzero radical ideal A common to T and R such tha t  

each pr ime ideal of T (resp., 1~) which contains A is a maximal  ideal 
of T (resp., _R). 

(2) There  exist a nonzero radical  ideal B common to T and 2~ such t h a t / ~  ~- 
22/B and T ~ T/B satisfy the  following: 

(i) R c T is a unibranched extension; 

(ii) dim (/~) ---- dim (T) ---- 0. 

Next ,  suppose t ha t  (1) and (2) hold. Then,  if A is as in (1) and 2V is a maximal  

ideal of T containing A, the square 

l ; 
is a pullback diagram. Moreover, J(R) = J (T ) ;  :r = A V(M), where the index M 
runs over the maximal  ideals of R and for each M, V(M) denotes the valuation 
domain associated to the  pseudo-valuat ion domain RM; and 1~ ~ T • H ~(~) 1-[ k(hT (h/~), 
where the index  iV runs over the maximal  ideals of T. 

Each domain 1~ for which there  exists a Priifer domain T satisfying the  equivalent  
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conditions in Theorem 3.1 will be called a globalized pse~tdo-valuation domain (or, 
in short, a GPVD); and T will be called the Prii]er domain associated to R. 

I t  will be shown, in the course of proving Theorem 3.1, that  if R is a GPVD with 
associated Priifer domain T, then the contraction map Spec (T)-+ Spec (R) is a 
homeomorphism. The induced order-theoretic isomorphism guarantees, in particular, 
tha t  a prime idea1 of T is maximal if and only if its contraction is a maximal ideal 
of ~.  

Granting Theorem 3.1 for the moment, we shall show next that  any GPVD, R, 
must be an LPVD. Indeed, let T be the Priifer domain associated to R, consider 
any nonzero maximal ideal M o f / ~  and let 27 be the maximal ideal of T contracting 
to M. Let A be as in condition (1) of Theorem 3.1. If A r 27 then, a ]ortiori, the 
conductor (R: T) is not contained in N, and so R~ coincides with the (pseudo-) valua- 
tion domain T~- (cf. [19, Exercise 41 (b), p. 46]). On the other hand~ if A a 27, 
then [1, Proposition 2.6] translates the first pullback assertion in the statement 
of Theorem 3.1 into the statement that  RM is a PVD with associated valuation 
domain TN. 

I t  is important to observe that  if R is a GPVD, then its associated Priifer 
domain /~ is uniquely determined by conditions (1) and (2) in Theorem 3.1. Indeed 
T = N V(M) where, as above, V(M) denotes the valnation domain associated to 
RM. To see this~ without loss of generality~ /~ is not a field. Then it suffices to 
note that  the preceding paragraph established that  V(M) ~ T~. 

Any Prfifer domain R is a GPVD and coincides with its associated Priifer domain. 
To see this, take A = R = T in condition (1) of Theorem 3.1; or take B ---- R ~ T 
in (2), invoking the convention that  the zero ring has Krull dimension 0. If the 
Priifer domain R is not a field, one may verify (1) and (2) somewhat less artificially 
by setting T = R ~nd choosing A or B to be any (necessarily nonzero) maximal 
ideal of /~. 

I f  (R, M) is a PVD with associated valuation domain V, then R is a GPVD with 
associated Prfifer domain V. To see this, the preceding example allows us to assume 
/ ~ # V :  Then (1) and (2) hold with A =  M----B. 

Additional examples of GPVD's will be given in Examples 3.2 and 3.4. 

P~ooF oF TKE0~E~[ 3.1. -- (1) ~ (2): Given (1), set B = A. Then (i) follows 
from (a) and the observation that  (Q/A)n  ( R / A ) =  (Q (3 R)/A for each prime Q 
of T which contains A. In addition, (ii) follows readily from (b) and the assump- 
tions about A. 

( 2 ) ~  (1): Given (2), set A----B. Since A is an ideal of both R and T, it 
follows readily that  R~- /~  x~T. Applying [9, Theorem 1.4] to this pullback de- 
scription reveals that  Spec (R) is canonically homeomorphic to a certain quotient 
space which, by (i), may be identified with Spee (T). In particular, (a) holds. In 
addition, (b) follows readily from (ii) and the assumptions about B. This completes 
the proof of the equivalence of (1) and (2). 
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Hencefor th ,  suppose t ha t  (1) and (2) hold. Le t  N be a maximal  ideal of T 
containing B and set M = N n R. Since Spec (R) and Spec (T) are order-isomor- 
phic, the saturat ion in T of the  mult ipl icat ively closed set R ~ M  is easily seen to 

be T ' \ N ,  whence T~\~ = T~. Thus, applying [9, Proposit ion 1.9] to the pullback 
description /~ ----/7 •  yields 

However ,  (b) guarantees that M R ,  is the only prime ideal of /~M which contains 
B / ~ .  Since BR~ inherits f rom B the proper ty  of being a radical  ideal, B R ,  -~ MR~, 
whence RM/B~M~ k(M). Similarly, :I'~/BT~v~ k(N), and so the  above pullback de- 
scription of R,~ simplifies to k(M) • as asserted. 

Le t  N be a maximM ideal of T and set M : N (~ R. We claim tha t  MR~ : NTis. 
This follows f rom the observation tha t  V(M)~-T~v (whose proof was indicated 
earlier) since a PVD and its associated valuation domain have the same m~ximM 

ideal. Hence,  J(R) = n  M = n  MRM ~-n N T ~ : n  N -= J(T), and so the square 

R > R/J(R) 

l ,[ 
T , ~ / J ( T )  

is a pullback diagram. ~oreover ,  the  above claim also implies tha t  

R/J(R) > 1-[ k(M) 

l 1 
is a pullback diagram. Juxtaposi t ion  of the preceding two diagrams yields the 
asserted pullback description of R. As the proof tha t  T----(~ V(M) was given in 
the  comments  following the s ta tement  of the theorem, the proof is complete. 

The reader  may  have noticed tha t  the proof of above equivalence (1) r (2) 
carries over if one deletes the  conditions A r 0 and B r 0. However,  the  only 
addit ional  si tuation covered by  such general i ty is the case in which R c T is a 
proper  extension of fields. 

EXA~m'LES 3.2. - (a) The domain i r constructed in Example  2.5 is a GPVD with, 
to use the earlier notat ion,  associated Priifer domain P ~ A (k ~-M~). Indeed,  
one verifies condition (2) of Theorem 3.1 as follows. Set B : [-] N~, the intersec- 
tion of the n maximal  ideals Ni  of P ;  evidently,  B is a nonzero radical ideal of /~. 
However ,  B is also N Q~, the  intersection of the n maximal  ideals of T (cf. [14, 
p. 156, last line]); in part icular,  B is an ideal of T as well. Set T : T/B and 
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P = P/B. Then T c P is readily shown to satisfy conditions (i) and (if) by virtue 
of the observations that  Spec ( T ) =  (Qi/B}, Spec ( P ) =  {N~/B} and (NdB) ch T = 
-----Qi/B for each i. 

(b) Let A be the domain of all algebraic integers, pZ a maximal ideal of Z, 
(M,} the uncountable set of maximal ideals of A which contract to pZ, S ---- A\[ .]  {Mr}, 
T : As and N~---- M,As: Then, as noted by GILME~ [13, Example 1], T is a one- 
dimensional Priifer (in fact, B4zout) G-domain with {N~} as its set of maximal 
ideals. Then there exists a non-lgoetherian one-dimensional GPVD, /~, with as- 
sociated Priifer domain T (re R). (Thus, in contrast with the example in (a), R is 
not semi-quasi-local.) 

Observe that J(T) : p T  =/= 0, so that  T : T/pT  is absolutely flat. Then I 
-~ Spec (T), endowed with the Zariski topology, is a Boolean space. Betting K 
---- (I, {k(N~)}), we thus have that T is a K-ring, in the sense of [21, p. 369]. (Igote 
that condition (1) in [21, Th~or~me 3.1] is easily verified.) In particular, view 
as embedded in 1-[ k(2~). Bet 

/~ : {x e T: for each i, the coordinate x~e Z/pZ} : T XH~(~) I-[ {Z/pZ: i e I} .  

Then/~ is absolutely fiat and one may check (cf. [21, Corollaire 3.6]) that /~ is the 
smallest K-ring. In particular, R c T is a unibr~nched extension. 

Define /~---- T xiI~(~, ) 1] {Z/pZ: i e I} .  Evidently, R ~ R / p T . "  The foregoing in- 
formation assures that  R c T satisfies condition (2) of Theorem 3.1 (with B -=-pT) 
and so R is indeed a GPVD with associated Priifer domain T. Moreover, the home- 
omorphism Spec (T) -> Spec (R) yields dim (R) =: dim (T) ---- 1. Finally, that  /~ is 
non-Noetherian follows by, for example, appeal to condition (2) in Proposition 3.6 
below: it suffices to observe that  T, being a one-dimensional domain with infinitely 
many maximal ideals and nonzero pseudo-radical, cannot be Noetherian (cf. [19, 
Theorem 88]) and, hence, is not a Dedekind domain. 

Despite the abundance of GPVD's supplied by Examples 3.2, not every LPVD 
is a GPVD. An example to this effect, such that its integral closure is actually a 
Priifer domain, is given in Example 3.4. First, we isolate some needed iacts concern- 
ing locally finite intersections of PVD's. Lemma 3.3 is a PVD-theoretic analogue 
of some results on locally finite intersections of valuation domains in [19, Theo- 
rems 111-113]. Its proof is a rather straightforward adaptation of the approach of 
KAPLANSKY [19] and, for that reason, has been placed in the appendix. 

I~EMMA 3.3. - Let the domain 2~ be a locally finite intersection ~ {Wi: i ~ I} 
of one-dimensional pseudo-valuation overrings W~. For each i ~ I, let V~ be the 
valuation domain canonically associated to W~. Assume that the V2s are pairwise 
incomparable. Then: 

(1) If S is any multiplieatively closed subset of /~ not containing 0, then 2s  
is a locally finite intersection of those W, which contain Rz. 



DAWD E. DOBBS - MARCO ~O~TANA : Locally pseudo-valuation domains 159 

(2) If  _R is one-dimensional and quasi-local, then ~ = W~ for some i. 

(3) If  P is a height 1 prime ideal of /~, then  /~e = W~ for some i. 

EXAMPLE 3.4. - There exists a one-dimensional LPVD, D, which is not  a GPVD. 
Moreover, D can be arranged Noetherian (in which case, D is not  integrally closed 
and D' is a Dedekind domain); alternatively,  D m a y  be chosen integrally closed 
(in which case, D is not  Noetherian). 

We next  assemble the da ta  for the construction of such D. Let  k be an infinite 
field, I an infinite index set with cardinali ty a t  most  t h a t  of k~ {Xd i e I} a family 
of algebraically independent indeterminates over k, K = k({X~: i~1}) ,  ~ an in- 
determinate  over K,  f = K(Y), n an integer exceeding 1, and {e~: i e I} a subset 
of k (such tha t  e ~ :  ej whenever i : / : j  in 1). For each i E I, set ~ :~= k({Xj: j 
e I \ { i } ) ,  K ~ = / ~ ( X ? ) ,  V~ the valuation domain K[Y]<r_~, , expressed as usual  as 
K @ M~ where M ~ =  (17-- e~)V~, W~= ~C~-t- M~, and W~= K ~ -  Mi. %'inally, set 
/) = f~ W~,/~ = ~ W~, and T = f~ V~. Then _~ and /~ are  each one-dimensional 
LPVD's with quotient field F ,  neither /~ nor /~ is a GPVD, ~ is integrally closed 
(but not  Noetherian), and /~ is Noetherian (but not  integrally closed) with T its 
integral closure. 

The proof of the above assertions will follow from a series of observations. First~ 
we shall show tha t  F is the  common quotient field of /~,/~ and T. Since J) = R c 
c T c /7 ,  i t  suffices to verify the s ta tement  for _~. To this end, note first t ha t  k c _~ 
since k c K ~  for each i ;  and tha t  Y e ~  since Y = ~ @ ( : g - - ~ ) e k - t - 3 f ~ c f ~ V ~  
for each i. Accordingly, i t  remains only ~o show tha t  each X~ is in the quotient 
field of R. For  this, write X ~ = u v  -~ where v =  1 z - a ~ ,  and note tha t  v e R - ~  
~- k = _~, so tha t  we need only prove tha t  u e 2~. Now if j # i in I ,  X~ is a unit  of 
fVr since X~e ~:;, whence u = vX~e _ ~  = fV~. On the other hand,  

whence q~ E/) ,  aS desired. 
Consider the multiplicatively closed set S = K[IZ]'~ u ( Y - -  oh) of K[Y]. I t  is 

s traightforward to check tha t  S satisfies the conditions in [15, (4.7)] (essentially 
because K[Y] is a principal ideal domain) and so, by  [15, Lemma 5.4], 

K[r]  = N K[Y]r = n V,  = T 

I t  follows that T is a principal ideal (hence Dedekind, hence Priifer) domain. By 

abus de langage, we shall let M~ denote (~g-- ~i)T, the typical  nonzero prime ideal 
of T. Of course, T~, = V:~. 

As T is a Dedekind (hence Krull) domain, the expression of T as ~ V~ is locally 
finite. Therefore both the expressions R = ~ fV~ and /?-=--~ W~ are also locally 
finite since, for each i, ~f~ and W~ both have the same unique maximal  ideal as V~. 

1 0  - A n n a l i  di  Matemat ica  
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)[oreover, each V~ (resp., W~) is a one-dimensional quasilocal (indeed, pseudo- 
valuation) overring of/~ (resp., R), and so [19, Theorem 110] may be applied to the 
above locally finite intersections. Setting ~ = M~ n / ~  and N~---- M~ (h/~ for each 
i ~ I, we deduce the following. For each nonzero prime ideal P of R (resp., ~), 
there exists i ~ I  such that N ~ c P  (resp., N~cP) .  

I t  will be useful to observe next that  for i C j  in I, N~ and N~ (resp., N~ and s 
are comaximal ideals of R (resp., /~). This follows since 

and ~ - -  ~j is a unit of both R and /~. The final comment of the preceding para- 
graph now yields that  each N~ (resp., 2Y~) has height 1 ill /~ (resp., /~). 

We shall show next, for each i ~ I, that  / ~  = W~ and /~g, = ~TV~: The proofs 
being similar, we shall tend only to the first of these. As N~ has height 1, 
Lemma 3.3 (3) applies to the above noted locally finite expression for /~, with the 
result that  / ~  = W~ for some j e I depending on i. The above observation concern- 
ing eomaximality leads easily to i = j, as desired. 

We are now in a position to  verify that  R and R are one-dimensional domains, 
with maximal spectra {N~} and {2Y~}, respectively. (By virtue of the preceding para- 
graph, it will then follow that both /~  and R are LPVD's.) As before, we shall give 
only the argument for /~, by proving that each non-zero prime ideal P of R must 
coincide with some 5V~. To this end, apply Lemma 3.3 (1) to the above-noted locally 
finite expression for /~, with the result that  R~ ---- ~ {Wj: j ~ J}, for some subset J 
oi I depending on s If j ~ J,  then ~ c  Wj-- - - /~ ,  whence N~cP .  The earlier 
observation about comaximality therefore guarantees that  J is a singleton set, 
say {i}. The above expression for Rp simplifies to Rp = W~ = / ~ , ,  whence P = N~, 
as asserted. 

We shall show next that  neither/~ nor/~ is a GPVD. As above, we argue only 
for R. Note, for each i, that  the associated valuation domain of s (----- W~) is 
V(s = V~. Thus if one supposes tha t /~  is a GPVI), Theorem 3.1 implies that  the 
associated Prfifer domain of R is ~ V~ = T. The desired contradiction will arise 
by showing that the conductor C = (R: T) is zero, although C contains the non- 
zero ideal A satisfying condition (1) in the statement of Theorem 3 .1 .  To this end, 
note first via [15, Corollary 5.2] that  T ~ \ ~ =  TM, (----Vi)since M~ is the only 
prime ideal of T which is disjoint from R'~SV~; consequently, 

o c f ~  (R~: ~.\~,) = f~ (w~:vi) = N ~ .  

However, the locally finite property of the expression T = ~ V~ guarantees (since I 
is infinite) that  A M~ = 0, whence C ---- 0, as desired. 

To check that /~ is integrally closed, it is enough to verify that  e a c h / ~  ( =  ~V~) 
is integrally closed. However, this is a well-known consequence of the fact that  ~7~ 
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is algebraically closed in K. (Moreover, R is not  lqoetherian. Indeed,  [6, Corol- 
lary 3.5] reveals t ha t  ~ is not  even a locally finite-conductor domain, lest _~ become a 
Prtifer domain which is not  a GPVD, an absurdity.)  

We tu rn  to the  remaining assertions about  /~. Of course, /2 is not  integrally 
closed since its typica l  localization, R~-~ W~, is not  integrally closed. The point  
is t ha t  W',--~ K,(Xi)  + Mi---- K + M~-~ V,. In  fact ,  

N N v,  = s  

Finally,  one may  see in a var ie ty  of ways tha t  ~ is l~oetherian. For  instance, 
combine the  following two remarks.  R is locally lqoetherian (since, for each i, V~ 

is a discrete valuat ion domain and [ K : K ~ ] - - - - n < c ~ ) .  Moreover, each nonzero ele- 
ment  r ~ R lies in only finitely many  maximal  ideals of R (since r e s entails r ~ M~). 
This completes the proof of Example  3.4. 

Pl~oPosmmIo~ 3.5. - Any integral  overring of a GPVD is also a GPVD. 

PI~OOF. - Le t  R be a GPV]) with associated Priifer domain T, and let  2 be an 
integral  overring of /~. We shall show tha t  S is a GPVD with associated Prtifer 
domain T as well. 

Le t  A be an ideal of b o t h / ~  and T which satisfies condition (1) of Theorem 3.1. 
Since R c 2 c ~ ' c  2"'==- T, it  follows tha t  A is also an ideal of S. I f  ~Y is a prime 
ideal of S which contains A, then  condition (b) of Theorem 3.1 assures tha t  s ~ R 
is a maximal  ideal  of R and so, by  integrali ty,  27 is maximal  in S. 

I t  remains only to prove t h a t  2 c T is a unibranched extension. Since /~ c /~  
is unibranched,  i t  suffices to show tha t  if N is a pr ime ideal of S, then  there  exists a 

prime of T which contracts  to N. To this end, set M ~ N (~ R and let Q be the 
unique prime of T satisfying Q (~ R ~- M. Recall  tha  t TQ is the  associated valuation 
domain of the  pseudo-valuat ion domain /~M. (If M ~ A, this is the  content  of the 

first pullback assertion in the  s ta tement  of Theorem 3.1 ; if M ~ A, then  TQ = ~ [19. 
Exercise 41 (b), p. 46].) Thus, by  [11, Proposit ion 1.3 (a)], S~ and T o are compar- 
able (via inclusion). I f  TQ c $~ then  S~v is a localization of the  valuat ion domain 

TQ at  some nonmaximal  prime, whence 2:,, = _T~ for some pr ime I r Q of T;  then  
Q n / ~  ---- M --  27S~ n / ~  = I / ~  (~ R ---- I n R, contradict ing the unibranchedness of 
R c T. Therefore  S~vc T ~  whence QT~ (~ SNC 272~, so tha t  intersecting with S yields 
Q ~ S c N .  As Q ( ~ $  and 3? each contract  to M, it  follows tha t  Q v h S = N  since 
the  extension R c %, being integral,  must  satisfy INC. This completes the proof. 

The nex t  result  is mot iva ted  by  the following consequence of [1~, Theorem 3A]. 
I f  T is the  ring constructed in Example  2.5, then  T is Iqoetheriau if and only if 

[k:k~] < c~ and /c -~ M~ is a DVR for each i. 

Pnol,  osza:ioI~ 3.6. - Le t  R be a GPVD, with associated Priifer domain T and 

integral  closure /~'. Then the  following three conditions are equivalent-  

(1) R is ~oe ther ian ;  
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(2) T is a Dedekind domain and [k(T~v):k(l~,~n)]<cr for each maximal  
ideal N of T; 

(3) T is a Dedekind domain and NTz~ is a finitely generated / t ~ - m o d u l e  
for each maximal  ideal 2V of 2 ~. 

Moreover, if the above conditions hold, then dim ( R ) < I  and t t ' =  f .  

Pl~ooF. - (1) ~ (2): Assume (1). Then dim (R)41  since J~ is a treed Noetherian 
domain (cf. t~emark 2.4 (c) and [19, Theorem 144]). By the Krul l -A~zuki  theorem, 
T is ~loetherian, and hence satisfies lgoether's conditions for a Dedekind domain. 

~lext, let N be a maximal  ideal of T and set M ~- ~V c~ R. Since/t.** is a Noethe- 
rian PVD with associated valuation domain T~, [11, Corollaire 1.6] yields [k(N)" 
:k(M)] < c~, as desired. 

(2) <=> (3): This follows directly from the corresponding result in the quasi- 
local case [11, Corollaire 1.6]. 

(2) ~ (1): Let  M be a maximal  ideal of R, with 2V the maximal  ideal of T 
contracting to M. Assume (2). Then T.v is a DVR and [11, Corollaire 1.6] assures 
tha t  the pseudo-valuation domain/tM is 2ffoetherian. Hence, (]~')z\~f = (1~,)'---- T~ = 
= Tn\~,  the last equality holding since T ~ N  is the saturat ion in T of R \ M .  By 
globalization, ] T =  T. 

Since the maximal  ideals of/~ are in one-to-one correspondence with the maximal 
ideals of T and since f is a Dedekind domain, R inherits from T the property t ha t  
each nonzero element lies in only finitely many  maximal  ideals. As we have also 
shown tha t  /~ is locally 2ffoetherian,. a s tandard argument  now yields tha t  J~ is lgo- 
etherian (el. [3, Exercise 9, p. 85]). This completes the proof. 

The next  result, together ~4th Corollary 3.9, indicates compatibility of behavior 
between the  LPVD datttrn and the Priifer da tum of a GPVI) in the context of 
Priifer's ascent theorem (of. [15, Theorem 22.3]). 

THEOREm[ 3.7. -- Let  R be a PVD, with associated valuation domain V and quo- 
t ient  field K.  Let  K* be an extension field of K. Let  R* (resp., V*) denote the 
integral closure of /~  (resp., V) in K*. Then/~* is a GPVD, with associated Priifer 
domain V*. 

PROOF. - Without  loss of generality, /~ is integrally closed and distinct from V. 
We consider first the case in which [K*:K] < c.~. Let  V1, ..., V. be the (finitely 

many,  pairwise incomparable) valuation domains of K* such tha t  V~n K----V;  
recall tha t  [k(Vi):k(V)] < ~ in this case (cf. [15, Corollary 20.3]). We next  make 
two elementary observations. 

(a) If  W is a valuation ring of K such tha t  2~ c W c V and if W denotes the 
canonical image of W in k(V), then h(/~) c W c k(V) and the canonical homomor- 
phism W -+ W • is an isomorphism. (Apply [11, Proposition 1.3 (a)].) 
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(b) Let  W and W be as in (a). For each i ~ 1, ..., n, let {W~-: i < j < n i }  be 
the  set of (finitely many,  pairwise incomparable) valuation domains of k(V~) such 
tha t  W,~(~k(V)-= W. Set W~.= W~jxkcvaV~. Then, using (a), one sees easily 
tha t  {W~j: l < i < n ,  l < j < n ~ }  is the set of all valuation domains of K* such tha t  
W,g (3 K = W; and W,j r W~.j, if (i, j) ea (i', S). 

For each i----1, ..., n, let k~ be the algebraic closure of k(R) in k(Vi) and set 
R~--~ k~ xk(v, )V~. We claim tha t  /~*=- ~ R~. To see this, note first tha t  /~*=  
= f~ W~j, where W, i, j range as in (a), (b) above (eft [15, Theorem 19.8] and (b)). 
5[oreover the above pullback descriptions 5deld tha t  R~c W~- since kic W~j, whence 

R~c R*. For  the reverse inclusion, let x ~ R*. In view of the pullback descrip- 
tion of Ri, it  is enough to prove for each i tha t  x~, the canonical image of x in k(V~), 
is actually in k~. This, however, is clear since integrali ty of x over R assures integ- 
rali ty (algebraieity) of x~ over k(R), thus proving the claim. 

We proceed to show tha t  R* is a semi-quasi-local GPVD. By using the above 
claim and the definition of the R~, one readily checks tha t  an element x e V* = ~ V~ 
belongs to R* if (and only if) for each i, the canonical image of x in k(Vi) actually 
belongs to k~. Thus the square 

R* > 1-[ k~ 

is a pullback diagram. I ts  bot tom horizontal arrow is surjective by virtue of the 
Chinese l~emainder theorem. (The point is tha t  each V*-* k(Vi) is surjeetive. 
Indeed for each i, [19, Theorem 107] provides a maximal  ideal M~ of V* such tha t  
V / =  V~,, whence k(Vi) ~ V*/M~.) Therefore, the results of [9] apply to the above 
diagram. In particular, [9, Theorem 1.4 (]), (b)] guarantees tha t  the contraction 
map Spec (V*) --> Spee (R*) is a homeomorphism; and tha t  ker (V* ~ l-[ k(V~)) = 
= ~ M~ = J(V*) coincides with ker (R* -~ 1-[ lc~) = J(R*). I t  is now e~ddent t ha t  
R*c  V* satisfies condition (2) of Theorem 3.1, with the role of B played by J(R*), 
since the sets of prime ideals of R*/J(R*) and V*/J(V*) are but  {(M~(3 R*)/J(/~*)} 
and {M#J(R*)} respectively. 

GENERAL CASE. -- We may  assume tha t  K* is a]gebraic over K. Let  M denote 
the maximal  ideal of /~. I t  is well-known (cf. [3, Lemma 5.14]) tha t  J(R*)-~ 
= rude. (MR'.:) = {x e R*: x is integral over M} = {x e g * :  x is integral over M} = 
= {x e V*: x is integral over M} = radv. (MV ~) = J(V*). Thus R*/J(R*) c V*/J(V*) 
is an extension of zero-dimensional rings, hence satisfies the lying-over property [19, 
Exercise 2, p. 41]. In order to verify tha t  condition (2) of Theorem 3.1 is satisfied, 
i t  therefore suffices to show tha t  distinct primes of V*/J(R*) cannot contract to 
the same prime of R*/J(R*). If  the assertion fails, one readily produces distinct 
maximal  ideals 2V 1 and N2 of V* such tha t  ~'1 (3 R* = -Y2 (~/~* ( =  P, say). Select 
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y ~ N1~37 ~ and set L = K(y). Let  RL (resp., VL) denote  the  integral  closm'e of /2 
(resp., V) in Z. By  the  finite-RimensionM case established above, RL is a GPVD 

with associated Prfife~' domain Vz; in part icular ,  RLC V L is a unibranched exten- 
sion. However,  iV1 n VL and 372 (~ VL are distinct (since y lies in the  former bu t  
not  the  latter) prime ideals of VL which each meet  ]~L in P (~ L. This contradict ion 
completes the  proof. 

CO~OLLARY 3.8. - With  the  same notat ion and hypotheses as in Theorem 3.7, 
we have:  

(1) Suppose tha t  K* is algebraic over K. I f  W is a valuat ion domain of K* 
which contains 2~*, then  W is comparable with at  least one valuat ion domain of K* 
which contains V. 

(2) I f  V* has nonzero pseudo-radical,  then  C(R*)= C(V*)= ~ W~, where 
{W~} is the set of all one-dimensional valuation domains of K* which contain V*. 
I f  each nonzero element  of V* is contained in only finitely m an y  maximal  ideals, 
thed  dim (C(V*) )< I .  I f  Rim(V) = 1, then  V * =  C(V*) = C(t~*). 

P~oor .  - (1) By  [11, Propcsi t ion 1.3 (a)], W (~ K and V are comparable  valua- 
tion overrings of ]L Le t  T denote  the integral  closure of W n K in K*. Since W 
is a valuat ion overring of the  Priifer domain T, there  exists a prime ideal N of T 
such tha t  W = T~. 

Suppose first t ha t  W(~ K c  V. One sees readily tha t  R*c T c  V*~  W. Set 
P = 37 ~ R* and let Q be the  unique prime ideal of V* lying over P.  (Note tha t  Q 

* * 
is well-defined by  vir tue of Theorem 3.7.) A s / ~ e c  T~ = W and VQ is the associated 
valuat ion domain of the  psendo-valuat ion domain 1~*, it  follows from [11, Proposi- 
t ion 1.3 (a)] tha t  W and V~ are comparable,  as desired. (In fact,  one m ay  show in 
this case t ha t  W c V~.) 

In the remaining ease, V c W (~ K,  so tha t  V* r T. Thus W = T~v must  contain 
the valuat ion domain V*n~. , as desired. 

(2) The first assertion follows from [16, Proposit ion 4] and Theorem 3.7 since 
R* and V*, having a common nonzero (radical) ideal, must  also have a common 
complete integral  closure (el. [15, Lem m a  26.5]). As V* is a Priifer domain, the 

second assertion is a direct consequence of [16, Corollary 9]. Finally,  the  th i rd  
assertion follows from the equali ty C(R*) = C(V*) noted above and the fact  t ha t  V*, 
being a one-dimensional Priifer domain, must  be completely integrally closed. 

COI~OLLARY 3.9. -- Le t  ~ be a GPVD, with associated Priifer domain T and 
quot ient  field K. Le t  K* be an extension field of K.  Le t  R* (resp., T*) denote the 
integral  closure of R (resp., 2") in K*. Then R* is a GPVD, with associated Priifer 
domain T*. 

P~ooF. - I f  N is a prime ( resp,  maxima]) ideal ef T and M ---- N • R the corre- 
sponding prime (resp.i maximal) ideal of R, then  Theorem 3.7 readily implies tha t  
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(R~)* is a GPVD, with associated Priifer domain (T~-)*. (Of course, D* generally 
denotes the  integral  closure of D in K*.) Moreover, one has canonical isomorphisms 
R*QRR,s~ (R,s)* and T*QrT~.~_ (T~.)* (el. [3, Proposit ion 5.12). 

Hence,  if Q is a prime (resp., maximal)  ideal of R* and M = Q r~/~, then  Q in- 
duees a pr ime (resp., maximal)  ideal lP in (R~)*. I f  iV is the prime (resp., maximal) 
ideal of T lying over M, let  I be the prime (resp., maximal) ideal of (T~)* which lies 
over P.  Then J = I n T* is the unique prime (resp., maximal) ideal of T* lying 
over Q (since any  such ideal D must  satisfy D ( T s ) * =  I) .  In  particular,  R* c  T* 

is a unibranehed extension. 
In  order to complete the proof, it  suffices to produce a suitable ideal common 

to R* and T*. To this end, let  A be a nonzero radical ideal of T and R satisfying 
condition (b) of Theorem 3.1. We claim tha t  ~f = radr.  (AT*) has the desired prop- 

erties. 
Indeed,  ~n appeal  to [3, L e m m a  5.1.4] as in the proof of Theorem 3.7 reveals 

that. ~ = { x E T * :  x is integral  over A} = { x ~ K * :  x is integral  over A} = {x~ 
/~*: x is integral  over A} = fads. (AR*). In  particular,  ~ is a radical ideal of bo th  

T* and R* which, since i t  contains A, must  be nonzero. Finally,  if ~ is a pr ime ideal 

of T* (resp., R * ) w h i c h  contains 9X then  |  T ~ g X n T D A  (resp., |  
t~ D A), and so the  conditions satisfied by  A guarantee  tha t  ~ 5~ T (resp., | n R) 

is a maximal  ideal of T (resp., R); hence by  integrali ty,  ~ is a maximal  ideal of T* 

(resp., /~*). Thus 9d has all the  desired properties,  completing the  proof. 

REd'ARK 3.10. -- I t  is interest ing to note  the following analogue of Corollary 3.9. 
I f  Y~ is an LPVD with quotient  field K and if R* is the  integral  closure of R in a 
field extension K* of K,  then  R* is an LPVD. 

For  a proof, let  iv be a maximal  ideal of R*, and set M = iV n R. Since RM is a 

PVD, Theorem 3.7 assures that /~*\~r  is a GPVD, and hence an LPVD. Passing to 
its ring of quotients with respect  to R* \ IV,  we see tha t  (R*)N is an LPVD (cf. l~e- 
mark  2.4 (e)) which, being quasi-local, is then  a PVD, as desired. 

The ring R considered in Example  3.4 illustrates the  fact  t ha t  if R is as in 
Remark  3.10, then  ~* need not  be a GPVD even in ease K* = K. 

4 .  - A p p e n d i x .  

This brief final section contains the  proof of IJemma 3.3. First,  we give a PVD- 
theoret ic  analogue of [19, Theorem 107]. 

LEPTA A. - Le t  R, {Wi} and {Vi} be as in the riding hypotheses of Lemma 3.3. 
Assume also tha t  {i} is finite, say {1, ..., n}. Then:  

(1) For  each i, there  exists a uniquely determined prime ideal Q~ o f / ~  such 
t h a t  = 

(2) I f  Q~ is as in (1), then @l, ..., Q~ are precisely the  maximal  ideals of R. 
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PRooF. - For  each i, let  M~ denote the  m~xima.1 ideal of V~. Set S = V1 (~ ... (~ 

(~ V,  and P ~ =  M~(~ S for each i. By  [19, Theorem 107], {P~, ..., P~} is the set 
of maximal  ideals of S and V~ = Se, for each i. 

Consider the  pullback 

s I-[ = N 

where the right vert ical  map is induced by  the inclusions W~-> V, and the  bot tom 
horizontal  surjection is induced by  the  canonical surjections V, --> k(Vi).  B y  apply- 
ing [9, Theorem 1.4] to this pullback, we infer tha t  Spee (T) and Spec (S) are 

canonically homeomorphie.  (In computing the  intervening quotient  space, the  point  
is t ha t  Spee (T) and Spec (S) are in one - to -one  correspondence since (i} is finite.) 
In  particular,  S is then a unibranched extension of T and the maximal  spectrum 
of T consists of the  n ideals given by  Qt -~ P,  (~ T. Note  tha t  B ---- N -P~---- ker 

(S -~ S) = ker (T -~ T) is u nonzero radical ideal of both  T and S. Since Spec (T) 
and Spec ( S ) m a y  be identified with {Qi/B} ~nd {P,/B) respectively, we readily 
verify condition (2) of Theorem 3.1; i.e., T is a GPVD with associated Priifer 
domain S. Thus, by  Theorem 3.1, 

for each i. Since ker ( S - ~ S - + k ( V ~ ) ) - - - - P ~ ,  it  follows by  considering the above 
pullback diagram that ker (T  --> T --> k(W~)) = _P~ (~ T ---- Q~, so tha t  k(Q~) -~ T / Q ~  
~k(W~) .  Accordingly, Te, may  be identified with Vi x~m, l k(Wi) which, accord- 
ing to [1, Proposit ion 2.6], is just  W,: Thus T = N T q =  ~ W,---- R, and the  
required assertions are now immediate  consequences of the foregoing comments.  

PliooF oF L E p t A  3.3. - (1) Define J c I  so tha t  {W~: j e J}  is the  set of those 
W.i's which contain ]~s. Set A = A (W~: j e J}. Evident ly ,  Rsc  A. For  the reverse 
inclusion, let  x c A ,  and write x ~--rs -1 for snitab]e r, s e R; we shall show x e ~ .  

As usual, let Mi denote the common maximal  ideal of Wi and V,: Then I(s) = 

�9 - {k e l :  s ~ Mk} is finite since R ~ N Wt is loca]ly finite; moreover,  if k eI"...I(s), 
then  both  s -1 and s belong to W ~ M ~ ,  whence x e Wk. Next ,  set I(x)  ~ {k e I :  
x 6 W~}, a (necessarily finite) subset of I(s). Without  loss of generality,  I(x)  is non 
empty  (lest x e R c/~). 

Observe, for each /~ ~ I(x),  t ha t  Mk r S is nonempty.  Indeed,  one would other- 
wise have /~sc W~, so tha t  k ~ J ,  whence x ~ A c Wk, contradicting /r ~ I(x).  Select 
zke M ~  S. 

Evident ly ,  I(x)  = I I U  12, where 11 = {k e I :  x e Vk~.Wk} and I~ = {k e I :  x ~ V~}. 
I f  k e I ~ ,  then z ~ x e M ~ V k =  M k c W k .  I f  k e I 2 ,  then x -t  and z~ are each nonuni t  
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elements  of Wk; thus,  since Wk is quasi-local and one-dimensional,  [19, Theorem 108] 
yields a posi t ive integer  n~ so t h a t  yk = z~ ~ is divisible in Wk b y  x -~, t h a t  is, 

y~x ~ W~. 

Set z = ([Iz~)(1-Iyk), where the first p roduc t  is indexed b y  k ~I~  and  the  

second p roduc t  is indexed b y  /~ ~ I~. Then 0 r z ~ S and the  results of the  preced- 

ing p a r a g r a p h  guaran tee  t h a t  z x ~ B  = A  {W~: k ~ I ( x ) } .  Since i t  is t r ivial  t ha t  

zx e D = [7 {W~: k e / ~ I ( x ) } ,  we infer  t h a t  zx e B (~ D = ~ {W~: i ~ I} = R, whence 
x = ( z x ) z - ~ R s .  Thus /?s-~ A, evident ly  a locally-finite intersection. 

(2) Le t  M~ (resp., M) denote the  m a x i m a l  ideal of W~ (resp. , /?) .  The hypo th-  

eses on /~ guaran tee  tha t ,  for each i E ! ,  M ~ n R  is ei ther M or 0. Since R , ~  R 
embeds in its overring W~ which is not  a field, M~r~/~ r 0; thus,  M~(~ R = M 

for each i. B y  apply ing  the  locally f ini te  condition to a n y  nonzero e lement  of M, 
we see t h a t  I is finite, and the  assert ion therefore  follows f rom L e m m a  A (1). 

(3) By  tak ing  S = R \ P ,  we infer f rom (1) t h a t / ~ e  is a locally finite intersec- 

t ion of some W[s.  As R e is one-dimensional  and quasi-local, (2) m a y  be applied, 
to complete  the proof. 
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