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S u m m a r y .  - The paper deals with a rigorous analysis o] the (~ wave hierarchie ~) related to the 
operator 1.~ quoted i~ the title. Whatever the qvamber n = 1, 2, 3 o] space dimensions may 
be, the ]undamental solutions E n are constructed. These distributions are tempered positive 
Rado~ measures associated with positive value ]unctions which have numerous basic proper- 
ties. So the Cauchy problem ~ ,  (n = 1, 2, 3) with quite arbitrary data is explicitly solved. 
As  another example, also the solution o] the signaling problem ~ is established. Then, various 
basic aspects o] the wave behavior such as di]]usion, asymptotic properties, maximum prin- 
ciples and the generalized Huyghens principle are evaluated. Moreover, singular perturbation 
problems as e --> O, with estimates o] the remainder terms uni]ormly valid ]or all t ~ O, are 
discussed too. 

O. - I n t r o d u c t i o n .  

Let  L, be the  s t r ic t ly-hyperbol ic  opera tor  

(o.1) 

where n ~ 1, 2, 3 is the  n u m b e r  of space dimensions,  x e R ~, t is the  t ime  and  A ,  is 

the  Laplace  opera tor  in R ~. F u r t h e r  s, c~, e~, are  three  posi t ive constants ,  with 
2 v~< v 1 as it resul ts  in m a n y  usual  physica l  s y s t e m s .  

We propose a r igorous analysis  of var ious  basic aspects  of wave  propaga t ion  in 
dissipat ive media  character ized b y  l.~. For  this we will discuss the general  behavior  

of the  solutions of some boundary-va lue  p rob lems  re la ted  to (0.1), such as the  ini- 
t ia l -value p rob lem ~ in all the  three  cases n z 1, 2, 3 and the  one-dimensional  
half -space p rob lem J~f. 

Typieul  examples  of physical  phenomena  re la ted  to !., can be found in dynamic  

of re laxing gases [1 ... 4], in m a g n e t o h y d r o d y n a m i c s  [1, 10], in he red i t a ry  elec- 

t r omagne t i sm  [11, 12] and  in isotropic viscoelastici ty,  where I.~ describes the  mot ions  
of the  s t anda rd  l inear  solid [5 ... 9]. In  all these models  s is a (( smal l  parameter  ,) 
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indicative of the dissipative cause (e.g. a relaxation time or an absorption coefficient), 
while co and el are characteristic speeds depending on the material properties of 
the medium. 

There is an extensive literature on the operator L~ (see the references in [1 ... 9] 
and [13 ... 18]}. The main concern has been the study of one-dimensionM problems 
with very particular boundary data. But, even in these cases, some of the re- 
sults--at different levels of mathematicM rigor--are often incomplete in two re- 
spects. The solutions computed by meatus of series expansions or integral represen- 
tations lead to very unt ractable expressions. Many /ormal approximations are not 
rigorous, as estimates of the remainder terms are missing. 

In [16] we succeeded in constructing the fundamental solution /~s of the oper- 
ator Ls in terms of a C ~ rapidly decreasing and positive-value function /F(r, t) 
( r =  l~l) which has other basic properties. 

In this paper, extending such analysis, at first we prove that  also the funda- 
mental solutions E~ of L,~ for n----1, 2 are expressible by means of the only F. 
Gonsequently, for any n the distributions E~ are tempered positive l%adon measures 
associated with positive-value functions (Sect. 3). Then, on the basis of these ex- 
plicit formulae for E~, the distribution and the classic solutions of problems ~ 
(n = 1, 2, 3) are established for quite arbitrary data (Sect. 4). As another example 
also the problem ~ is explicitly solved (Sect. 5). . . . .  

Successively, to obtain a rigorous and sufficiently exhaustive evaluation of the 
various w~ve phenomena connected to L~ (see Sect.  1), a qualitative analysis of 
the solutions of ~n and W is given. This survey concerns with va.rious basic aspects 
of wave beho~viour such as maximum principles (Sect. 7), diffusion of waves, asymp- 
totic properties as t or lxl -+ co (sect. 8) and generalized ttuyghens principle (Sect. 9). 
~oreover, singular perturbation problems as s ->  0, with pointwise estimates Of ~he 
remainder uniformly valid for all t>0 ,  are also examined (Sect: 10). 

On this subject it is worth not ing that  When 0 < t  < T ( T <  0C)and the initial 
data ar~e elements Of Sob01ev spaces, well-known the0rems of modern meth0ds in 
p~rtiM differential equations [23] imply a priori integrM estimates. T h e  transi: 
tion to pointwise estimates can be obtained by means of the Sobo]evinequalities [24]. 
But Unfortunately these results hold for hyperbolic operators only in the slab 
0 < t < T, while we are interested also in the case T ---- ~ .  In order to achieve uniform 
estimates for all t>0 ,  we shall prove that  the solutions of Y~ and J4 P have the same 
asymptotic properties of the solution oI the Cauchy problem (with suitable datum) 
for the heat equation (see Sect. 1). 

Lastly we observe that  the explicit construction of E,  permits us to solve also 
the general Cauchy problem with dat~ prefixed on ~ hypersurface in xt-space. This 
explicit solution, together with maximum principles, is of primary importance to 
analyse Mso unilateral problems for the equation we deal with; such applieation, 
for n = 1, has been discussed in [29]. 

In the next section we state the problem and the main results. 
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1. - W a v e  hierarchies .  S ta tement  of  the  m a i n  results .  

The opera tor  I.,~ is a typ ica l  not iceable example  of the  s i tuat ion when waves  
of different orders and  with different speeds e0, e~,, appea r  in the same p rob lem 

(Wave hierarchies). According to the  celebrated qual i ta t ive  anamlysis of W h i t h a m  

on l inear  and  non-l inear  waves [1, 2], to ob ta in  a r igorous and  exhaus t ive  p ic ture  
of the  wave mot ion,  the  following questions mus t  be examined .  

a) To analyse  the roles of the << highest  order waves >> (with speed e~)and the 

~<lowest order waves >> (with speed co), so to es tabl ish  which set of waves is 
the mos t  i m p o r t a n t  and  will be rea l ly  observed.  

b) Generally,  the  speed a t  which the ma in  signal t ravels  differs f rom the speed 

e~ of the  wave-front .  Indeed,  the  dissipation often determines  a diffusion 

of waves which is connected with  the character is t ic  speed co of the  lowest  
order opera tor  and  represents ,  a t  large t, the  ma in  p a r t  of the dis turbance.  

e) When  singular pe r tu rba t ion  problems re la ted  to /.. for s -+ 0 are  discussed~ 
a t t en t ion  mus t  be pa id  to the bo~tndary or interior layers which can appear  

in dependence of the  var ious  boundary -va lue  problems which one deals 
with. Fu r the r ,  when e -> 0, a s ingular i ty  a t  t = c~ migh t  be too. I n  fac t  

the  lowest  order opera tor  e l - -  ~ e~zJ~, which one deduces f r o m  !.~ pu t t ing  

fo rmal ly  s = 0, is typ ica l  of undamped  motions~ while 1.~ generMlyrepresen ts  
d a m p e d  wave motions .  

These var ious  wave phenomena  can be r igorously  eva lua ted  only if one establishes 
Mso the  t ime- intervMs when each of them:prevMls .  3Ioreover  the remainder  t e rms  
of the  approx imat ions  proposed mus t  be es t imated .  

Some of the ma in  resul ts  of our analysis  can be outl ined briefly as follows. 

1.1. Classic solution el ~ and maximum principles. 

Refer r ing  to the  half-space 

(1.1) v-+~ ~ +  = ((x, ~): x e /?~ ,  t > 0 } ,  

by  means  of an  appropr ia t e  l inear  subst i tu t ion on x, the  classic forward  Cauchy 
p rob lem N ,  can be given the  fo rm 

(1.2) 

(1.3) 

L ~  = ea,(a~-- A,,)~ --  ( ~ - -  e~A,,)u = / ,  (x, t) ~ Y$+* 

~u(x,  0) = f~(x) ,  (i = 0, 1, 2),  x ~ / ? ~  

with d ~ 2 = co~el< 1. Therefore  in what  follows we will refer  to ~ .  where c1=- 1 and  
eo~  e <  1. 
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I f  the source t e rm ](x, t) and the initial data  /i(x) are sufficiently smooth,  ~ ,  
has a unique regular  solution (Sect. 4) wh ich - - in  all the three cases n = 1, 2, 3- - i s  

given by  

(1A) (1 @ e~t) fr~(r , t )]~(x,r)dr + 
0 0 t 

+ (se - + e,)frr(r, r) dr + u,. 
0 

In  (1A) ]~(x, r) are the classic mean values of the data  defined by  (2Aa, b, e) ac- 
cording to the number  n of space dimensions (Sect. 2) and % is the Duhamel 's  in- 
tegral  related to the inhomogeneous case (see (4.6)). Fur ther ,  the kernel  ~ is a 
positive value C~-function which is given by  (3.2) and has numerous  ba.sie prop- 

ert ies (see Theorems 3.2 and 6.1 and 6.3). 
On the basis of these properties,  a t  first one deduces some max imum principles 

(Theorems 7.1 and 7.2) which permi t  us to es t imate  u in terms of the data.  Some 

consequences of these theorems are (Sect. 7): 

A) I f  ] > 0 ,  ]~>0 (i = 0, 1, 2) (and A~]o>O only when n = 2, 3), everywhere  

in :Y~+~ one has 

~ n + l  (1.5) u(x,t)>O, ( x , t )  e ~ +  . 

B) In  the homogeneous case (] = 0), referr ing to the mean values ]~(x, r) with 
r e [0, t], everywhere  in :Y"+~+ (n = 1, 2, 3) it  results 

2 

(1.6) I~I<sup lo~(r]o)I +e-~-~suplr]d, ( 0 < r < t ) ,  
r i ~ l  r 

C) In  the inhomogeneous ease, Theorem 7.2 provides explicit  bounds for the 
est imate of remainder  te rms in i terat ive approximat ion methods.  

These est imates generally imply rigorous evaluations of u for all t between 0 
and a prefixed T < oo. Thus, for example,  one can prove tha t  the first signM when 
0 <t<e- -appears  as a <~ sma l l ,  preeursor wave propagat ing  obviously with the  faster  

speed of wave-front  (see Sect. 8). Moreover, in this t ime-intervM [0, el one can 
est imate  u with a degree of accuracy  however  prefixed (Sect. 8). 

1.2. Di]fusion o] waves and asymptotic behavior. 

When t is large compared with e, i.e. t e]e, c~[, the  analysis of the  wave 
behavior  is obviously ~J more difficult question. However ,  v e ry  useful theorems 
for this analysis can be inferred f r em the basic Theorem 6.3 on the asymptot ic  
propert ies  of the kernel  F .  This theorem proves tha t  when t/s > 1 the main part 
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o] F coincides with the ]undamental solution o] the classic heat equation 

1 - -  0 2 

(1.7) U~ -  2 su,~ , 

where the space variable Iyl = I r -  ct] is connected with the boundary of the forward 
characteristic cone 

(1.8) A,~{(t,x):t>O, ]x]<et}, ( x ~ )  

related to the lowest order operator ~--c~A~. Consequently, if one puts [2(1-- 
- -  c~) ] - l=  b 2 ~nd 

(1.9a) 

(1.9b) IIT!] = sup IT(x ,r ) I ,  ( x e t t  5 0 < r < t )  

considering the function u~, given by 

b2 
(1.1o) u~(x, t ) - ~ f e x p [ - ~ ( r - c t ) ~ ] W ( x , r )  d r  

the following theorem can be stated (Sect. 8). 

Ttt-EOI~E~I 1.1. - Z] the data ],(x) are such that the ]unction T(x, r) is bounded ]or 
x e R  ~ and r e [0, t] then, as t > e, the solution u o] ~ ,  (with ]-~ 0), in all the three 
cases n = 1, 2, 3, is approximated by the solution u~ o/ the heat equation (1.7) de]ined 
by (1.10). This approximation is uni]ormly valid in x e _!~,, and is given by 

V- (1.11) l u -  ~[ <eonst, ][~'[/ t '  x e _~'~, t > e ,  

where the constant depends only on c. 

Therefore, according to what foreseen by WHITKA~ [1, 2], these results imply 
rigorously the following basic conclusions. 

For small values o] t (i.e. 0 < t < e )  a small precursor wave which propagates with 
the ]aster speed o] wave-]ront appears. But, when t is large compared with s [0 < e < t), 
the main signal is related to the speed co] the lowest order waves and propagates into 
the medium as a di]]usion process. 

Theorem 1.1, besides proving and evaluating diffusion ~t large t, achieves ob- 
viously the asymptotic anMysis of u by means of well-known properties of the 
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comparison function u~ given by (1.10). Clearly this analysis can be improved fur ther  

on when the data are specified. Some typical  cases are discussed in Section 8.2. 

So e.g. the solution of ~1 with periodic initial data and ] = 0, unlike the classic 

case, vanishes as t--> c~ uniformly in x. Referring to singular per turbat ion prob- 
]ems~ this proves the singularity of the per turbat ion as t--> ~ .  

1.3. Generalized Huyghens principle. 

As /.. characterizes dissipative media, when n - =  3 the <~ Huyghens  principle in 

the strong form ~) does not hold, owing to the diffusion of waves above stated. How- 

ever we will show that ,  also for the dissipative media we deal with, a substantial  dif- 

ference exists between the case n = 3 and the other cases n = 1, n = 2. I n  fact, 

when n = 3, there is a t ime-instant  t~ nfter which the effect of initial localized distur- 

b a n c e s - t h o u g h  not vanishing--decays exponentially in time. This result does not  
subsist when n = 2 or n = 1 (see Sect. 9). 

Suppose tha t  initially the disturbance is localized in a ball B(O, ~) of radius 

and center 0. Then, if one puts t~= e-~(Ixl -6 o~), one has 

TttEOREh~ 1.2. - When x ~ ~ and the initial data are el compact support, ]or all 
t > t~ and uniformly in x ~ .B(O, ~) the solution u of ~3 (with f = O) satisfies the ]el- 
rowing estimate 

(1.12) lu(x, t)] < const,  exp [-- ~ (1  - tl/t)~t] , x ~ i~ a, t > tl . 

1.4. Singular perturbation problems. 

The results above stated imply also a correct analysi s of singular perturbations 

which appear as a - ~  0. To show the possibility of various singularities which the 

p e r t u r b a t i o n  as v - ~  0 can exhibit., two one-dimensional problems are discussed 

(Sect. 10). The former concerns with the signaling problem where an interior layer 
appears near to the subcharacterist ic Ix] = et related to the speed c < 1. A the- 

orem like Theorem 1.1 provides al~ approximat ion uniformly valid for all t > 0  and 

x > e (see Theorem 10.1). The latter deals with the problem ~1 defined by  periodic 

initial disturbances (Sect. 10.2). In  this case, as ~ --~ 0, the per turbat ion shows two 

singularities: one at  t = 0, where ~Uo(X, O) ~ ]2(x), and another  at  t = ~ where 

lira u ~ -0  (see Example  8.1). Theorem 10.2 provides an approximat ion of u uni- 
~--> r 

formly valid for all t> 0 and  x e/7.  

Referring, as an example, to the viscoelastic case (Sect. 10.3), Theorem 10.2 

implies for s -> 0 an  uniform representat ion such as 

(1.13) u = exp [ -  boe~]uo(x, et) § exp  [--  t/e]z(x, t) -6 ee 

where uo is the pure e~astiv wave which one has when v ~- 0 and is associated with the 
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lowest speed c. Further,  z(x, t) is another pure wave related to the speed of the wave- 
front and the remainder ~ is uni]ormly bounded ]or all t>~ 0 and x ~ ft. 

Consequently the evolution of viscoelastic waves induced by periodic initial 
disturbance is characterized, when ~ --~ 0, by the rapidly damped signal exp [-- t/e]z 
related to the  last-time t/e and by the main signal represented by slowly damped 
oscillating wave exp [--bost]q~o associated with the slow-time st. Further the for- 
mula (1.13) enables us to evaluate also the times of validity of elastic or viscous 
behavior. In fact 

1) When t ~ [0, el, there is a q~asi-elastie behavior described by the pure wave uo 
with speed c, in front of which there is a damped precursor propagating 
at the faster speed of the wave-front. 

2) When t ~ [e, e-~]i the main signal related to the elastic wave uo with 
speed c prevails. 

3) When t > s -~, there is a viscous behavior with rapidly damped signal. 

REMARK 1.]. - Clearly, the rigorous approximations proposed can be iterated 
as one wants. Then the remainder term is the solution of the inh0m0geneous case; 
so Theorem 7.2 gives explicit bounds for this solution (see e.g. the proof of :Theo- 
rem 10.2). 

2 .  - N o t a t i o n s .  

Let Acft ~ be an open set; ~'(A) is the set of M1 distributions on A, while g '  
is the subspace of N' consisting of all distributions with bounded supports. The 
value of a functional F, e ~ '  at a function ~ of the space Co(A ) will be denoted by 
EiF ] or i~y (E, ~v}. The symbOl s will denot e thec las  s of rap!aiy decreasing 
functions and 5P~(R~ i the totali ty of temperecl distributions on /~". In connection 
With 5f, denote by ~ ~ 5D~ (R) the space 0f functions ~f e C~'(R '~) such tha, t for a, ny v >  o 
there exists a Bo > 0 fulfilling the inequality . . . .  

(2.1) (1 + [xi~)~lD~v(~)l < ~ for txl > Bo, [~l<m, 

with m, k positive integers. The norm i [] in 5 ~  is 

(9• 9,~ 

TccI~<m x 

Referring to the D'Alembertian ~ o , - -  A. with the fastest speed, we will denote 
by An the forward characteristic cone 

(2.3) il~-{(~eR~,,t): t>o, ]x[<t}, ( n = 1 , 2 , 3 )  

and by ~A~ the boundary of A~. 
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Lastly,  the classical mean values ]i, ] Of the  data  /~(x), /(x,  t) of the problem ~ 
are defined as follows, according to the number  n of space dimensions. 

a) Case n = 3: 

(2.4a) ]~(x, r) = f f / y) 
I~-y l=r  

](x, r; t) -= ~ /(y, t) dS.~ . 

I~-z1=r 

In  this ease the domain of dependence of ]~(x, r) is the sphere of radius r about  
the point  (xl, x~, xa). 

b) Case n = 2 : 

]~(x, r) = 1 f f /~(y) dy ; 
2 ~ r  V r ~ -  Ix - yl ~ 

(2.tb) 

](x, r; t) = 1__ f f  /(y ,t) ~y. 
2 ~ r  V~- Ix- yl ~ 

lu - -x l~r  

Here  the domain of dependence of ]~(x, r) consists of the whole circular disc of 

radius r about  the point  (x~, x2). 

e) Case ~ = 1 :  

5f (2.~e) ]~(x, r) = f(y) @ ; :/(x, r; t) = ~-i f(y' t) ~y . 
z--r ~--r 

3.  - F u n d a m e n t a l  s o l u t i o n s  o f  t h e  operators  I. D i s t r i b u t i o n  s o l u t i o n s .  

The operator  f-~ is s t r ict ly hyperbolic  a.s it  verifies the Garding's condition; then  
there  exists one and only one fundamenta l  solution with support  contained in the 
half-space ~V~ +~ (n ---- 1, 2, 3). The impor tance  of explicit  fundamenta l  solutions of 
given operators is well known. In  [16] we have constructed the fundamenta l  solu- 
t ion of the operator  i3; to achieve explicit  formulae  also when n = 1 and n ~- 2, 
a t  first we briefly refer  to some results stated in [16J. Le t  lxI = r be and  

(3.1) 

A~ _-- (1 - - e  ~) c 2 1 + c 2 i 2 ( t -  r) 
�9 _ - -  k2; y ~ =  - - - ;  ~ - -  

2 ' ~ 2e 2e 

If  I~ is the modified Bessel funct ion of first kind, let 

(3.2) E(r,  t) = ~-1 exp [-- y2t + k*r][Io(co) + 
1 

+fexp b~,v~][4~V• + ~zl(ev)]Zo(~O v~-~) ~zv]. 
o 
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Then,  if we refer  e.g. to the space 5:(R-) of rapid ly  decreasing funct ion Z, the  
fundamenta l  solution ( E , ,  Z} of the operator  L,, is a dis t r ibut ion associated with 

the  funct ion  

E~(x, t) = ~ n ( t  - -  lxl)iF(lxl, t) , (3.3) 

where H(t) is the Heaveside function.  In  fact,  if we consider the following distribu- 

t ion-valued funct ion  

t 

(t) f (3.4) [0, co) 9 t ---> E .  [Z] = F(r ,  t)r~(r, t) dr eSa'(R ') 
{} 

where ~,(r, t) is the  spherical mean  of Z over the sphere with center  0 and radius r 

in the hyperp lane  t ---- const,  i t  can be shown [16]: 

Tm~o~gE~ 3.1. - For any real t > O, let E~ t) be the distribution de]ined by (3.4). 

Then, the ]~nctional 

= f • .  [z(t,-)] at, z ese(2~') (3.5) <E., z> ~'~ 
0 

is a tempered positive lgadon measure which represents the only ]undamental solution 
o] the operator I., with support contained in Y+. 

These results are  consequences of various propert ies  of the funct ion /~ given 

by  (3.2) and defined in 

(3.6) 9 = {(t, r)  e / ~ * :  t > 0, 0 < r < t}. 

According to [16] one has 

T~:EORV.~ 3.2. - The kernel E(r,  t) has the ]ollowing basic properties: 

(3.7a) F(r ,  t) ~ G~(12) and 

(3.7b) F(r ,  t) > 0 ,  (r, t) a 
t 

(3.7e) .IF(r, t) dr<c -1 , t>O 
0 

(3.7d) iF(t, t) = s -1 exp [-- J2t/e], 

L,F  = 0 in ~2 

2'(0, t) = e -1 exp [-- k~t]. 

Fur the rmore ,  if .~f, denotes the Laplace t r ans fo rm and s is the pa ramete r  of 

the  t ransformat ion ,  it  must  be also remarked  tha t  
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Tm~o~E~ 3.3. - I n  the hall-plane Re ( s ) ~ -  e~/e the .Laplace integral ~ ' t H ( t -  
--r)/~(r, t) converges absolutely and one has: 

(3.8) gf  ~tt(t - -  r ) ~ ( r ,  t) = exp [-- rs ~ / ~  + :~)/(ss + e ~) = P ( r ,  s) 
~8 - j -  e ~ 

Now we ~re going to prove that this analysis can be applied to obtain also E~ 
and E~. :For this, let 

~ t 

(3.9) _~(r, t) = f ~ ( z ,  t) dz ,  P~(r, t) =.] %/z~_~_r ~(~fi)- 

(3.10) 

If we consider the following functionals associated with ~ (k ~ 1, 2) 

co 

(3.11) <~':, Z} = f d t f x ( t ,  y)Ek(y, t) dy ,  Z eSP(Rk+~) 

one ha, s 

T~IE0~.~ 3.4. - I n  the eases n ~- 1 and n ~ 2, like when n ~ 3, the ]unetional8 
<E~, g) de]ined by (3.11) are tempered positive distributions of order ze~v. Furthermore 
( E , ,  g) is the only /~tndamentat solution oi the operator l.~ with support contained 

t)~ooF. - By means of Fourier and Laplace's operators, it is possible to verify 
that  E~ and E~ are formally defined by  the symbolic relations 

(3.12a) LftE~ = 2~(x, s) ----- (Pa)-'_P([xl, s) ,  x e R 

(3.12b) 

where ~(r~ s) is the Laplace transform defined in (3.8), Ko is the modified Bessel 
function of second kind and a ~ [sP(~s -~ 1)/(~8 -~ 02)] �89 

Now, being the inverse transform of 27 constructed (see (3.8))~ E~ und E2 can 
be computed too. In  f~ct, on the basis of Theorem 3.2 and applying the Fubini- 
Tonelli theorem~ in the half-plane l~e ( s ) ~  0 one has 

o~ co 

~ , ( ~ . ,  t) = �89 [ -  8t]Fl(r, t) dt = ~fP(~, s) d~ = (2~)-I2(r, 8). 
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As for E~, we observe t ha t  

c o  

c~f tE~(r, t) = (2=)- fexp [- st] 

r 

- -  d z  - -  

Ko(ra) 

The functions ~ ( r ,  t), achieved by  means of ~his heuristic formal  analysis, are 
C~(t~) positive value functions (see (3.9)-(3.7b)) bo th  expressible in te rms of the  
kernel  ~ which satisfies (3.7e). Therefore  the distr ibution valued functions 

[0, co) e t  -->E~ [)/] = Z(Y, t)Ek(y, t) dy ,  

are of class C ~ and bounded for all t~>0. Consequently the distributions induced 
(3.11) are positive tempered  I~adon measures.  

Fur the rmore ,  according to the  results of [16] re la ted to the  case n = 3, it  is 
easy to prove tha t  

(3.13) Lk[~]  =-- ~,  ~ e ~,(/~k+~), 

where (~ is the Dirae measure in ~k+~. At last, as supp E~= A~ (k = i, 2), the 
uniqueness of the  fundamenta l  solution in the  class of distributions with support  
in F ~+1 is a consequence of well known theorems of the theory  of distributions.  

~FA~L~I~K 3.1. - Obviously, the construct ion of E~ and  E~ can be achieved also 
by  means of the cl~ssieM t t adamard ' s  me thod  of descent. 

Final ly,  if the  symbol  | denotes the convolut ion in /~+~ of two distribu- 
t ions e ~'(R~+I), by  Theorems 3.1-3.4 it  follows: 

Tm~o~v.~ 3.5. - Let / ~ ~I(~+~)  be a distribution with support in T ~+~ Then the + �9 

/unetional ul = ~ | / (n = 1, 2, 3) is the unique distribution solution o/ the eguation 
L~u -~ / with support in Y~+~ Moreover, i/ / e #'(_~+~), then useSF(/~,~+l) (n = 1, 2, 3). + �9 

IPI~OOF. - As 

Y~+I supp E~ = ~A3, = (k = 1, 2) (3.14) supp / c + , supp E~ Ak, 

the convolution E .  |  exists and is a dis tr ibut ion solution of (1.2). Moreover,  
as consequence of (3.14)~ supp u f c  ~+1  and this condition characterizes the unique- 
ness. At last, when / e d~'(~-+l), uj is the convolution of two tempered  distributions, 
one of which has bounded support ;  consequently also us is a tempered  distribution. 
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4. - The forward Cauchy problem. Classic solutions. 

For functions u(x,  t), with x e/~" (n : 1, 2, 3), we use the differentiation symbols 

D o - -  ~, ,  9 = (91, ..., D~) = (~x~, ..., ~x~), (n = l ,  2, 3 ) ,  

where D is the gradient vector with respect to the space variables. By  means of 
the Schwartz notations we have 

(~.1) e-~ 1.,, = P,,(Do, D) = D~ + e - x D ~ -  .D:.Do-- e%-~.D ~ 

and we can write the problem (1.2)-(1.3) in the form 

(4.2) s-P.(Do, D ) u  =-- ] , t > O, x e ~ ~ ( n = 1 , 2 , 3 )  

(4.3) Dgu(x, o) = / , ( x ) ,  (i = o, : ,  2) . 

As/)~ is an hyperbolic operator with constant  coefficients, the classic initiM value 
problem ~ . ,  as it  is well known, is a typical  well-posed problem. Obviously, by  a 
solution of ~ .  we shall mean a function which in ~y~+l is of class C 3 and satisfies 
(4.2), while in Y~_§ is of class C ~ and  verifies (4.3) (as t -* 0+). 

Of course, the foregoing construction of the E. ' s  enables us to determine the 
solution of ~ for general data  ] and ]~ and in all the three cases n = 1, 2, 3 of the 
space dimensions. In  fact,  when the data  are sufficiently regular functions, on the 
basis of the properties of E~ (Sect. 3), the convolutions of the E~'s with the da ta  
exist and ~re smooth functions. Consequently, referring to the polynomiMP~(1)0, D) 
arranged in (4.1) according to powers of DO, by means oi well known techniques 
(see e.g. [24]), one easily verifies tha t  the solution u of problem ~ ,  is given by the 
formula (x e / ~ )  : 

(4:.4) u ---- sE,~,f~-+- ( sDo+ ])E~*]I-+- (sD~-- s D ~ +  Do).E,,*)'o + E~ |  

where the symbol . denotes the convolution with respect to the space variables x 
for fixed t. 

However, we now want  to prove that ,  in all the three cases for n, these convolu- 
tions are expressible in a more concrete form in terms of the only kernel/~(r,  t) given 
by (3.2) and  of the classical mean values/~,  / of the data  ]~, ] defined by (2Aa, b, c), 

according to the number  n. 
In  fact we will prove tha t  when the data  are smooth functions the convolutions 
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O . .  f, and 0 ,  | ] are given by the integrals 

t 

(4.5) 2v . ,  f, = u~, =fr_F(r, t)?,(x, r) dr 
0 

t v 

(~ 6) o. |  u,=fd~fr~(r, t)i(x, r; t--~) dr 
o I} 

and consequently we will obtain:  

TI~OlCE~ 4.1. - Let x E R" and t>O. I] the source term ](x, t) ~ C3(X?~ +~) and the 
initial data/~(x) e C~-~(R ") (i ~- 0, 1, 2), then the initial-value problem ~ has a unique 
solution u ~ C2(~_ +~) whic7z--whatever the number n = 1, 2, 3 may be--admits the same 
following representation 

(~t.7) 

with ul, and uf given by (4.5)-(4.6). 

PI~OOF. - At first, let us consider the case when the initial data  f~ are vanishing. 
I f  we put  f ( x , t ) =  0 in 

(4.s) y~_+~ = {(t, x): t < o, ~ e R - } ,  

by Theorem 3.5 the convolution E .  | f is the only distr ibution solution of (4.2) 
vanishing in iV.+1 and in addit ion is a C3-function, as ] is of class C3(:Y~+1). Con- 
sequently E~ | f is also a classic solution of (4.2) and  is given by  

t 

(4.9) .E,~ | f ----=fO.(x, ~) , f(x, t -- 3) d~,  ( t>O).  
0 

~Tow, when n = 3, by  (3.3) easily one has 

(4.1o) O2(x, 3) , /(x, .) =frO(r, ~)?(x, r; .) dr, 
9 

where ](x, r ; . )  is the spherical mean of ](x,.)  defined in (2.4a). Thus, the formulae 
(4.9)-(4.10) imply (4.6) when n = 3. 

As for n = 2, by  (3.10)2 and (3.9)2 with s tandard  computations it draws 

(4.11) 

2 ~  

0 0 

7: 

_~ ~ F(r,  ~) dr _ 

Q 
.g 

=fro(r ,  ~)?(x, 
0 

r; .) d r ,  

' 2 3  - A n n a l i  d i  Matematiea 
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with ](x, r ; . )  defined in (2.4b). By (4.9)-(4.11) also for n = 2 one deduces (4.6). At  
last, when n --~ 1, by  (3.10)1-(3.9)1 one obtains (4.6) again, with ] defined according 
to (2.4e). 

By  (4.6), in any  case, it  is easy to ver i fy  thu t  

.D~u~(x, O) = 0 ,  (i = O, 1, 2), x e/r 

Analogously, when / =  0 and ]~# 0, as the initial data  ]~(x)e C~-~(R ~) then  the 
convolutions /i;=. ], are the smooth funct ions given by  (4.5) (see (4.10)-(4.11) with ]~ 
in the place of ]). Thus, the foregoing s ta tements  prove tha t  the formula (4.7) 

defines a classic solution of the problem ~ .  for n -~ 1, 2, 3. The uniqueness in the 
class of sufficently regular  solutions is a consequence of well-known theorems on 
hyperbolic  equations with constant  coefficients. Thus the proof is complete. 

R ~ . ~ K  4.1. - I t  is interest ing to r em ark  tha t  in (4.7) the unique e lement  which 
differentiates the three  cases for n is the funct ion w(x, r) = r]~(x, r) which represents  
the solution of the  s tandard  problem associated with the  n-dimensional D 'Alember t ian  

(4n2) 

(4.13) 

~ w -  A~w = 0 

w(x, o) = o ,  a,w(x, o) = l~(x). 

Analogous r emark  holds for the convolut ion E~ | ] related to the inhomogeneous 
case. Consequently the b~Jsic propert ies  of F ,  together  with the well-known behav- 
iota " of w ~- r]~, will enable us to make in the nex t  Section a wide analysis of the 
solution of ~ .  for ~ny n. 

5. - The one-dimensional  half-space problem. 

The kernels F and 171 which define the fundamenta l  solutions analysed previously 
allow us to obtain also explicit  solution o f  other  boundury-value  problems related 
to !.~, As an example,  we will consider the onedimensional  half-space or signaling 

problem ~gf defined by  :r 

(5.1) 

(5.2) 

(5.3) 

L l v = 0  , x ~ / ~  ~, t > 0  

~ v ( x , O ) = O ,  x~/~§ ( i = 0 , 1 , 2 )  

v(O, t) = ~ ( t )  , v ( x ,  t) --> O a s  x --> oo  (t > o) . 

B y  means of an inversion formula of Laplace t ransforms such as (3.8), we can 
see tha t  the kernel  /~o which characterizes the explicit  solution of problema ~ f  is 
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(see [271) 

(5.4) E0 = exp [ -  ~ x / e ] ~ ( t  - x) § t t ( t  - x)~'o(X, t) , x e ~ §  

where ~ is the Dirac measure in ~ and _Fo is the C~(f2) function given by  

(5.5) ~o(X, t) = ( ~  + e~)F(x, t ) ,  (O<x< t ) .  

Consequently one can prove that 

Tm~ol~E~ 5.1. - W h e n  the da tum r  Cs(_R +) and is such that ~b(~)(0)= 0 /or 
i = O, 1, 2, then the problem ~ f  has a unique regular solution given by 

(5.6) 
t 

v(x, t) = H ( t  - x ) [exp  [ -  2~x/e]q)(t - x) + f Fo(X, ~)r - 3) dr]. 

A qualitative analysis of this solution will be dealt with successively (Sections 7 
and 10.1), after establishing other properties of the kernels E, 171, and ~vo (Sect. 6). 
Now we observe only that  applying the Laplace transform to (5.4)-(5.5), by means 
of Theorem 3.3, one deduces the symbolic relation (see (3.8)) 

(5.7) ~q~tH(t - -  x)Fo(x ,  t) -=- 10o(% s) = exp [-- xa] =- exp [-- xs  - -  ).~x/e] , 

where the Laplace integral F o converges absolutely also when :Re ( s ) =  O. Con- 
seqaently, one can state rigorously that  

(5.s) fFo(Z, t) dt = _Po(X, o) = 1 - e x p  [ -  ~x/~]. 
x 

6. - Basic properties of  the fundamental solutions. 

Tow we deal with some basic properties of the kernels F,  El, Fo defined above. 
We begin by  proving that  

TKE0]~E~ 6.1. - The C~([2) posit ive value ]unctions F and ~'1 are such that every- 
where i n ~ o n e  has: 

(6.1a) 

(6.1b) 

(6.1c) [ s ~ -  ~ §  ( 1 -  e ~ ) ~ ] ~ > o  .~. 
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PI~ooF. - These inequalities ~re substantially consequences of the properties 
and recurrence formulae of the modified Bessel functions which appear in the defini- 
tions (3.2)-(3.9) of /~ and ~v~. So, letting 

(6.2) 
1 

0 

one has 

(6.3) ~ '  = - 3 , G  , G( t ,  t) = F(t ,  t) 

hence 

(6A) ~dm~ = f  O~F(z, t) dz + F(t, t) = G > 0 ,  (r,t) e~7. 

Further ,  by (6.2) easily it draws 

(6.5) 

and, being _F)G (see (3.2)-(6.2)), by (6.4)-(6.5) we obtain (6.1a). Now, referring 
to the kernel Fo which solves the problem 9ff and is defined by (5.5), we observe 
that  by means of integrations by parts one has 

(6.6) _F o = )3x(s~o~) -* exp [-- y2t + k2r] [.~2~Ii(o~) + 2c'%J exp [~]I1(~) + 

1 

-~ ).2~:flfexp r[~wj~176 -~ (t--x)v2]II(~v)dr] 
0 

which demonstrates /~o)O everywhere in .0. Then, as 

( ~  + 1) lv  = (1 - e2)tv § Fo > o ,  

also (6.16) is proved. As for (6.1c), the foregoing relations and standard computa- 
tions enable us to obtain finally 

(6.7) [ s ~ -  s ~  + (1 - c a) ~ , ] i ~  ---- o~F - o ~ , F ~  + 

1 

0 

which implies (6.1e) being _~> ~,/~ (see (6.1a)). 
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RE~AIr 6.1. - As it will be shown later (Sect. 7), being 2~ -~ -- ~Fz ,  the opera- 
tor which in (4.7) is applied to u~o is expressible in terms of 

(6.8) 2 ~ 2  ( ~ -  ~- ~ ) / ~ > 0 ,  

which is a positive value function everywhere in ~ ,  as it  is obvious by (6.7). Fur ther ,  
by  the definition (6.8) of R and by (6.7) one has 

(6.9a) 

(6.95) 

R(t, t) = c~ t'~(t, t) 

R(O, t) = k 2 exp [-- ?2t][(1 + 2~'te-2)Io().2t/e) + 22'te-~I~(~2t/s)] < 

<s-~(1 + t/e) exp [-- k~t]. 

To complemente the Theorem 6.1, sett ing 

(6.10a) h~(t) = j e x p  [-- ?2V]Io(~v/~) dv 
0 

' t  (6.105) h~(t) = ~-~h2(t) + h2( ) 

we prove now the following theorem 

TI~O~E~ 6.2. - The C~(~) positive value/unctions F and ~ de]ined by (3.2) and 
(6.8) are such that 

t 

(6.11) f F(r, t) dr 
0 

(6.12) 

t 

= e-lh~(t), fR(r, t) dr = 1 -- exp [-- k2t] 
0 

(1 + ~O,)fF(r, t) dr = h~(t) 
0 

where ]or hi and ha the ]ollowing estimates hold 

(6.13) l<h~( t )<e -1 , 0 <h2(t) <ee -1 , ( t > 0 ) .  

PaOOF. - The formulae (6.11) can be verified by means of Theorem 3.3. In  fac~ 

,s t )d r  : f - P ( r ,  s)dr 
0 0 

= s-~[(~s + 1)(,s + c~)] -�89 

hence, as it  follows by known La.place integTals (see [19], pag. 239), one has (6.11)1 
and as consequence (6.12). Likewise one obtains (6.11)2. Fur the r  one can see easily 
tha t  hi and h~ are increasing functions such tha t  hi(0) = 1, h l (~ )  ~ c -1 and h2(0 ) = 0, 
h2(~) ~ se-1; consequently also (6.13) are proved, 
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In  order to evMu~te the integrals of convolution uf, such as (4.5), consider now 
the asymptot ic  behaviour of the kernels /~, F0, R as t - > ~ .  For  this, let d =  
= do(e/t) ~ be, where do is an a rb i t ra ry  real positive constant  such tha t  do< rain (c, 
l - - e ) .  Then, if s <  t and observing tha t  in (4.5) it  is O < r < t ,  one has 

Q~_= (r e [(c - d)t, (e + ~)t])  c [o, t ] .  

Further ,  let E~ be the fundamentM solution of the heat  equation (1.7) where 

[yI = I t - ~ t l ;  i.e. 

(6.14) E~(r, t ) :  b exp [-- b2(r - -  etp/st] (b 2 _-- (4t2)_1) . 
= ~ / ~ - ~ t  ' 

Then, the following basic theorem can be proved.  

T~:EORE~ 6.3. -- Zet (r, t) e ~ and 0 < e < t. Then, /or any r e Qt, it results 

(6.15a) /~(r, t) c-1(1 ~ ~o) h ~ ~o 

! g 

where the remainder terms ~o, ~o satisfy the estimates 

(6.15b) leVI< ko 1 +  V ~  ] V t 

(6.15e) leVI < ko exp [-- fl~(t/e) ~] 

with ko, fl~ constants depending only on e' = 

PROOF. - See Appendix. 

RE~ARK 6.2. - The estimates of Theorem 6.3 hold also for the kernel Fo, R,  
e f t  + F .  In  fact, by  means of the method of proof  of Theorem 6,3i one can verifies 

tha t  for r e Q t a n d  0 < e < t  it  is 

! /f ! E 

(6.16b) (s~t ~ - i ) F  : ' " 

where the remainder terms satisfy estimates such as (6.15b, e). 
Let  now 

As another consequence of the method of proof of Theorem 6.3, one can deduces 
also an est imate uniformly valid for any  t>~0 and r e  [0, t]. In  fact 
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THEORE3[ 6.4. - For all t>O and r ~ [0, t],_F veri/ies the following ine~uality 

(6.18) eF(r, t) < l~ exp [-- z , ~ ~ot/ej ~- k~(t/e) exp [-- ~ ( r - -  et)~/st] 

where ~o and o:1 are the constants de/ined in (6.17).  

F~OOF. - See Appendix.  

RE1VfAI~K 6,3. -- -When t > e and in ~ neighbourhood of the boundary, of. t h e  for- 
ward cone Ao~ the kernels F,  Fo and R are therefore  approximated  by  means of the 
fundamenta l  solution F-h of the heat  equat ion (1.7). 

7 .  - M a x i m u m  p r i n c i p l e s .  

At first we consider the Cauchy problem ~,, (n = 1, 2, 3). Le t  h, and h= be the 
funct ions defined in (6.10a, b) and let  ]~(x, r) the  mean  values of the data  ]~(x) given 
by  (2.4a, b, c) according to the number  n. W e  put  

2 

(7.1) u-(x,  t) = inf  ~dr]o) 4- ~, h~ inf (r/~), 0 < r < t  
r i = l  r 

2 

(7.2) u+(x, t) = sup ~,(r]o) + ~ hx sup (r]~) , O < r < t  
r i = 1  r . . 

where h~(t) are Positive value and bounded functions (See (6.13)). 

Tm~ol~3~ 7.1. - Whatever the number n = 1, 2, 3 0 ]  space dimensions may be~ 
�9 the solution o]the pi'oblem ~ -  (with f =  O) satis/ies: the following maximu-mprinciple 

(7.3) ~-<~,(x,t)<~+, ,ei~,~, t>o .  

PROOF.  - The proof is a consequenqe Of T h e o r e m s  6.1 and 6.2. Consider the  
representat io  n (4.7) of u and observe that ,  being the source t e rm f vanishing, one has 

(7.4) u = . e % +  (1 § e ~ , ) % d - : ~ * *  _ . -  

where u 6 are defined by  (4.5) and 

As ff  > 0 everywhere  in ~ ,  by  (6.11)1 it is 

h2 inf (r]s) <.sus.< h2 sup (r]2), 
t 

(O<<r<t) . 
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:Further 
t 

(7.5) 
0 

hence, applying (6.~b) and (6.12), it draws 

h~inf (r/~)<(1 Jr s~)uf~<h~sup(r/~), (O<r<t).  
r r 

As for u , ,  being L~ ---- -- ~ / ~ ,  by  means of s tandard computations and integrat- 
ing by  parts  (see (3.7d)), i t  results 

t 

f - (7.6) ~ ,  = exp [ -  k~t]h(x) + l~(r, t) ~,[r/o(X, r)] dr, 
0 

where /~ is the positive value function given by (6.8). Observe now tha t  

lo(x) = [a,(r/0(x, r)],=o 

and tha t  (6.11)~ holds. Consequently also for u ,  one has 

inf ~r(r]o) < u . < s u p  ~r(r]o), (O<r< t )  
r 

and the proof is complete. 

I n  view of other applications, we observe explicitly tha t  from (7.4)-(7.5)-(7.6) 
it  is evident tha t  when ] ---- 0 u can be expressed (see (3.7d)) also as follows (x e R',  
t > o )  

(7.7) u = e~,. + exp [-- ~2t/e]tTs(X, t) +jr/l(x,  r)(1 § t) dr § 
O t 

~- exp [-- k~tJ]o(X) +j /~( r ,  t) ~,[r]o(x, r)] dr ,  
0 

with 2~ given by  (6.8). 
Obviously various consequences can be obtained from Theorem 7.1, as show 

the following examples. 

ExA~a:P~E 7.1. - By  (7.2)-(6.13), for x e R ~ and t~>O immediately it follows 

2 

(7.8) [u] < s u p  [~,(r]o)l § e -~ ]~ s ~-~ sup [rill, ( 0 < r < t )  . 
r i - - 1  r 

EXA~s 7.2. - When all the data  have a same constant  sign, also the solution u 

has constant  sign. More precisely, if 

a) f~(x)>~0 (i = 0, 1, 2) when n ~--1 
X~R" 

b) ],(x)~O (i-----0, 1, 2) and A J o > 0  when n = 2, 3 
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then 

(7.9) u(x,t)>~O, x e R ' ,  t>~O, 

which gives also a ve ry  simple minimum principle when ]o(x) z 0. 
In  the inhomogeneous case the formula (7.9) holds too when, in addition, ](x, t) >~ 0 

in Y$+L 

EXA)~LE 7.3. - For  n = 1 and ]~(x)>O (i = 0, 1, 2) easily one has 

inf, io(X) < u < sup, Zo(X) + ('e)-lfCil(u) § eft(y)] dy. 
X - - t  

Fur the rmore ,  these results can be used also to s tate  comparison theorems and 
to obtain appropr ia te  approximat ions  of u with the de terminat ion  of an explicit  
bound for the error .  I t  suffices to apply  well known methods of the theory  on 
m~ximum principles (see e.g. [30]). 

Consider now the case with / =/= 0 and ], = 0 (i = 0, 1, 2). Then the solution 
(4.7) of .~. reduces it  self to the t e r m  ~ defined by  (4.6). So, if we pu t  

(7.10) ] , (x , t ,  ~:) ~- supr](x ,r ;  t - - z ) ,  x ~ t ~  ~, O < ~ < t  

f rom the  propert ies  of /~ it  draws: 

THEOREM 7.2. - Hor x e ~ (n = 1, 2, 3) and t > 0, the solution uf o] the problem 
~ with initial data vanishing satis]ies the ]ollowing estimate 

t 

(7.11) lu, l<e-lf l i*(x,  ~, ~)l d r ,  (x, t) e :~V 1 
0 

where ], is given by (7.10). 

P~ooF. - Referr ing to the definition (4.6) of u~, it suffices to observe t h a t / ~  > 0 
~nd the inequal i ty  (3.7e) holds; then  

f F ( r ,  v)rT(x , r; t -- v) dr < e-1/,(x, t~ ~) , 
o 

hence obviously one deduces (7.1!). 
Final ly  consider the solution v of the signaling problem ~ (Sect. 5). The proper- 

ties (6.1b) and (5.8) of the kernel  /~Q enable us to prove the following ma.ximum 
principle for v. 
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T~EO~E~[ 7.3. - ] i ] / o r  all t > 0 the datum ~(t) has a constant siggb also v has the 
constant sign o] ~P. ~urthermore, in any case~ it results 

(7.~2) Iv (x , t ) I<sup  l~(7)], t > x > ~ O .  

P~ooF. - The first p a r t  of Theorem is eviden~ on the basis of (5.6)-(6.1b). As 
for (7.12) we observe  tha t ,  being /~o>~0, by  (5.8) one has 

c o  

[ �9 ] ]vl<sup I~1 e x p [ -  ;~x/~] , o(x, ~) dT sup I~l. 

8. - General behaviour of  the solutions o f  ~ .  

~ o w  we deal with a qual i ta t ive  anMysis of the solution u of 2~. (n = -1 ,  2, 3) 
for all  t >~ 0. 

At  first we observe t ha t  the kernel  F(r ,  t) depends on r = Ixl, t~ e b y  means  of 

the rat ios r/s and t/s (with r<~t) and  tha t  the  modified Bessel funct ions which appear  
in the definition (3.2) o f / ~  are  series of power of (r/e)(t-- r)/e and  (t 2 -  r2)/s ~. Con- 

sequently,  when t / s <  1 (hence also r / s <  1)~ there  is not  p rob lem;  well knowu 
propert ies  of the Bessel functions enable  us to es t imate  F with  ~ degree of accuracy  

however  prefixed, par t i cu la r ly  near  to the  wave-f ront  r = t and  near  r = 0. 

As an example ,  let  us consider the  ease f~ - - /2  = 0, f =  0 ~nd let  (see (6.9b)) 

(8.~) t~o(t) = R(o, t)<~-~(1 § t/s) e x p [ -  k~t], 

As JR(r, t) -- R(O, t)t ~ eonst (t/e), when fo is a smooth  funct ion and  t/~ ~ 1~ b y  (7.7) 
one deduces 

with 

u~-~ exp [ k~t]fo(x) ~- ho(t)t]o(X, t) . 

Therefore~ being ho of the order of exp [-- t/s], the first signal appears  as exponent ia l ly  
d a m p e d  small  precursor  wave p ropaga t ing  with the speed of the  wave-front .  

8.1. Diffusion of waves. Proof of Theorem 1.1. 

On the  cont ra ry ,  ~ h e n  t/s ~ l i  the  anMysis is more  difficult. Obviously the  
~sympto t ic  proper t ies  of u depend on the  behavior  of the  dat~ 1i(x). f o r  example ,  

constant  da ta  can imply  t ha t  ~ - ~  as t - ~ ;  in fac t  the  p rob lem ~1, with 
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/o = / z  = / =  0 and ]~ ~ A2 (const) admits  the unbounded solution 

q~ ---- A~e t  - -  A~e~-(1 -- exp [--  t/el) . 

Theorem 6.3 on the asymptot ic  beh~vior of the kernel F is basic for this anMysis. 
By means of this theorem one deduces tha t  u and the solution ~t~ of the Cauchy 
problem related to heat  equation (1.7) with da tum L# (see (1.9a)) have the same 
asymptot ic  properties. Therefor% referring to the Section 1.2~ we prove now The- 
orem 1.1. 

PI~oo:~ o F  TttEO1~E~ 1.1. - By  (7.7) and (6.16a, b) one deduces 

u =f/~(r, t)T(x, r) dr § ~ 
O 

where T is defined by (1.9a) and /%~ is the fundamenta l  solution of (1.7) given by 
(6.14). Fur ther ,  let us consider the estimates (6.15b, v) and Remark  6.2; being T a 
bounded func t ion  by hypothesis,  one hams e a s i l y  

l e,~[ < const 11 ~l[(8/t)~. 

Lastly,  by  definitions (1.10) and (6.14) of u~ a n d / ~  it is obvious t h a t  

0 

hence (i.ii) follows. 

5 

l~E~I~l~K 8 . 1 . -  Obviously the hypothesis of Theorem 1.1 tha t  L# is a bounded 
function can be a t tenuated.  In  fact  in any  case, when tie > 1, ~t~ represents the 
mMn par t  of ~. 

RE~AlCK 8.2. - Le t  us observe tha t ,  by  means of well-known properties of the 
comparison function u~ and  with appropriate hypotheses . on ~v, ]or al l  t > 0 by  
(i.ii) one has 

lim u(x ,  t) -~ l im T(x, at) -~ ~r(r/0)-~ c-Zr]z 
~"-> 0 $-9-0 

which is the classic solution of th  e problem deduced from ~ setting formally e : 0. 
Therefore, to draw a conclusion, one can a.ssemble all the times in two intervMs 

such as [0, e] and  ]e, oo[, so the results foreseen by Whi tham and advanced in 
Sect. 1.2 are rigorously proved a~nd evMuatcd. 
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8.2. Asymptotic properties. 

Theorem 7.1, besides proving and evaluat ing diffusion at l~rge t/s, can be applied 
also to obtain the asympto t ic  behavior  of u. Clearly, this analysis c~n be improved 
when the data  ~re specified. For  this we deal with some examples.  

EXA3fI'LE 8.1. - -problem ~ with periodic initial data. 

I f  /~(x)-~ Ai  sen w~x one h~s 

(8.2) r]~(x, r) = (A~/a)~) sen (co~x) sen (o~r),  (i = 0, 1, 2) 

and these functions ver i fy  the hypothesis  of Theorem 1.1. 

(see [19], p. 158) 

+ m  

b ~ [ b~v ~] 

- -co  

Consequently, being 

( ~ =  (4b~)-9 

by  (1.10)-(1.9a) one obtains 
2 

(8.3) U h = [~r(rio)Jr=et exp [-- i'~Ogoet] + ~ a~-lt]~(x, et) exp [-- i2co~et]. 
i = 1  

Therefore,  unlike the classic case, when the initial disturbances are periodic and 
] = 0, the solution of ~ vanishes as t --> c~ un i formly  in x. 

R E ~ K  8.3. - For  periodic initial dat~, the asymptot ic  formula (8.3) exhibits 

the slow-time st which accounts the singulari ty of the pertm~bation as e--> 0 and 

t ~ c ~  (see Sect. 10.2). 

EXA_m'LE 8.2. -- _Problem ~ with initial data /~(x) eS:~(Rs). 

When the initial da ta  are suitable vanishing as Ix] -> ~ ,  it  must  needs apply  
direct ly  Theorem 6.4 for asymptot ic  estimates.  So, in the c~se we deal with, when 

/ =  0 one obtains 

~rt 4, /,(x) e 5:~(m) ~ u  e5:1 (:+) �9 

In fact,  we will prove t ha t  

Tn-~olr 8.1. - Let fo~Sf~(t~ 3) be and /1, /~5f~(1~) �9 Then, /or large t and uni- 
/ormly in x e ~ 8, the solution o/ ~3 (with / :  O) satis/ies the /ollowing asymptotic 

estimate 

const,  t 
(8.4) lul < 1 + [xl2 + t ~ (]I]~ + 1!/1[]o~ + []/~i/o2) 

with the constant depending only on e. 
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F~OOF. - Being ]~eSP~(/~ ~) (m = 0, 1), one has 

F u r t h e r  

f f  dS~ (1 + r 

I@,(% r)[< lli,ll-~ f f a8~ (z + y~).' 
[u-xl=r 

x e / ~ .  

hence 
t 

f rE(r, t) r i dr t~,,I <] l l ,  b~ 1 + lxp + ' 
o 

x ei~. 

So, applying Theorem 6.4, easily it  draws 

lu,,l<const ![/,]l.:t(1 + l x P +  t,)-~ 

and,  es t imat ing in the same way all the therms  of u given by  (7.7), the proof is 

complete.  

9. - Generalized Huyghens principle. Proof of theorem 1.2. 

Consider now the c~se tha t  the initial disturbances are localized in a ball B(0, @) 
of radius @ and center  O. 

Then, ~ecording to what  has been advanced in Section 1.3, we will show tha t  
when n =- 3 there  is a t ime ins tan t  t l =  c-l([xl + 5) af te r  which u m t h o u g h  not  van-  
ishing--decays exponentially in time. F u r t h e r  we will prove  tha t  this results does 
not subsist when n = 2 or n ~ 1. 

A) Case n----3. I~roof of Theorem 1.2. 

As it  is well known,  when the initial d is turbance is localized in the ball B(0, ~) 
for any  x e/~s such t ha t  x r B(0, 9) it  results:  

(9.1) r?,(~, r) = o for a . y  r r [IxJ - e, I~1 + 5] .  

Fur the r  for large r the funct ion r]~(x, r), while its support  expands,  decays being 
a t  most  of the order  of 1It (see e.g. [24], p. 109). Consequently,  for t >  Ixl + @ one 
has 

[~]+Q 

(9.2) Ur t) =fE(r,  t) r],(x, r) d r ,  x e .~" 
I~I-Q 
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and by  Theorem 1.1 easily one c~n see tha t  us, is always such tha t  

(9.3) tur, l < const, t -~ t > Ix l § 

Bu t  a t  the later  ins tants  such t h a t  

t > t , =  (IxI + e)/e> lxf + 

one has r <  Ix] -~ ~ < ct and therefore,  if we put  a~ = b2e~/s, by  Theorem 6.3 easily 

it  draws 
I~i+Q 

const  - - ~  
(9.4) lu1,1< ~ exp ( e t - - r )  ~ d r < c o n s t e x p [ - - ~ ( 1 - - t l / t ) 2 t ] .  

lxI-Q 

Applying this formula to all the  te rms uq which appear  in the representa t ion (7.7) 

of u, easily (1.12) follows. 

]~E~A~K 9.1. - As the proof of Theorem 1.2 shows, the main pa r t  of the signal 
appears as a diffusione process in the t ime-interval  [ ( I x l -  ~)/c, (Ixl + ~)/c] related 

to the  speed c of the lowest order  waves. 

B) Case n = 2 or n = 1. 

Consider now the case n = 2 where, it is well known~ the effect of the initial 

disturbances appear  in x ~ B(0, ~o) a t  the ins tant  to = Ix] -- ~ and is observed there  

a t  any  later  instant .  So one has 

t 

(9.5) =iF(r,  t) r],(x, r) dr ,  x 
Ixl-e 

and [ I x [ -  ~, t] is---for any  t - - a  neighbourhood of the point  of max imum r = et 
of the funct ion E~ approximat ing  F(r ,  t) when t is large. Consequently in this case 
there is not t ime-instant  tl such that the estimate (1.12) holds. Analogous resul t  holds 

when n = 1. 
In  two dimensions it  is possible to prove,  b y  means of the various est imates 

above stated,  tha t  the ra te  of decay with t ime t is of order 1It, like the classic case. 

10. - Analysis of  singular perturbations. 

In  this Section we will show the application of theorems above s ta ted to the 

analysis of singular per turba t ions  for the  one-dimensionM Cauchy problem ~1 and 
the signaling problem ]t  ~. The generalizat ion to the three-dimensional  and bi-di- 
mensionM cases is s trMght:forward.  In  what  follows, u~ and v, denote  the  solutions 
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of ~1 and  5/~ re la ted  to L1, while % and vo are  the  solutions of the  l imit  p roblems 
which one deduces f r o m  ~ and  ~f' pu t t ing  fo rma l ly  e = 0 in L~. 

On this  subject  we recal l  t h a t  the  presen t  b o u n d a r y  layer  problems fall  within a 
class of abs t r ac t ly  defined problems for which J .  L. LIO~S demons t r a t ed  the  con- 
vergence  of % to  uo in the  sense of a sui table weak topology for a finite in te rva l  of 
t ime  [21]. 

At  first  we observe  t h a t  the  subcharaeter is t ies  of I.~ are  x-t-ct = const;  so, when 

c ~ < 1 i t  is reasonable  to conceive of % as a l imi t  of the  exac t  solution as e -+ 0. On 

the  con t ra ry ,  when c ~ > 1 the  subeharacter is t ics  th rough  the  point  (x, t) lie outside 
the  domain  of dependence of %. The speed of the  d is turbances  associated with the  

subcharaeter is t ics  is grea ter  t h a n  t h a t  of the  character is t ics  of I_~. I n  this case one 

canno t  expec t  uo as the  l imit  of the  exac t  solution % [26]. This s t range  behav ior  
is connected with  the  fac t  t h a t  the  condit ion c2> 1 is not  reasonable  f rom the  
phys ica l  po in t  of view. 

Thus,  for  example ,  in viscoelas t ic i ty  one has  d =  e2o/V~= g(oo)/g(O), where 
g(0) and  g(ee) are,  respect ively,  the  de te rmina t ions  for t = 0 and  t = c~ of the  

decreasing re laxa t ion  funct ion  g(t). I n  t h e r m o c h e m i s t r y  c~ is the  ]rozen sound speed 
and  co is the  e~uilibrium sound speed; well-known results  of t h e r m o d y n a m i c  s tabi l i ty  
show t h a t  co<  c~ [4]. 

10.1. Signaling problem. Interior layer. 

The signaling p rob lem ~ f - - d e f i n e d  b y  (4.1)-(5.2)-(5.3)--has the  solution v~ given 

b y  (5.6). ~ow,  when ~b(i)(0) va 0, there  is a real  d iscont inui ty  in the  funct ion v~ and  
in its der ivat ives  along the  character is t ic  curve  x = t i in fac t  v~ is ident ical ly zero 
for  x >  t. On the  c o n t r a r y  

vo(x, t) = n ( t -  x / o ) r  x/e) 

has  a discont inui ty  on the  subcharacter is t ic  x = ct; such a discont inui ty  is not  

p e r m i t t e d  to v~ (when e > 0). Consequently,  the l imit  solution uo cannot  be an  

un i fo rmly  val id app rox ima t ion  and  an interior layer on the  par t icu lar  subcharac-  
te r i s t ie  ~ = x -- ct = 0 appears .  

The ]ormal computa t ion  of a s y m p t o t i c  series can be done b y  means  of the 

match ing  a s y m p t o t i c  expansions  (see [25], [26]). Bu t  a r igorous analysis  and an  
exac t  es t imate  of this singular behavior  can be only given b y  a careful  examina t ion  

of the  solution (5.6), The question is solved b y  means  a t heo rem such as Theo- 
r e m  1.1. I f  

/ ~ '=c~b2,  iI~II=supIr o < ~ < t - x ,  

on the basis of what  was i l lustrated a t  Section 8, it draws the following un i fo rmly  
vMid app rox i m a t i on  to v~. 
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TltE01~t~ 10.1. - Zet  qb(T) be bounded in  [0, c~[ and let 0 < e < x. Then,  for any  

x e2~ § and  t > x ,  one has 
t-~lo 

where the remainder term v~ satisfies the estimate un i formly  in  t ) w  

(10.2) Iv l < eonst/l ii( /x? 

with the constant depending only on c. 

I~E3%_Al~K 10.1. - This theorem shows r igorously tha t  the interior layer equation, 

according to what  foreseen by  W~ICEA~ [1-2], is the he~t  equat ion 

u z = fllurr with T = x, :g = t - -  x/c 

where the diffusion coefficient fil is given by  e/4fl ~. The essentially diffusive character  
of the phenomenon,  when x > s > 0, is revealed. The max imum disturbance,  for 

every  positive e/x < 1, t ravels  with the speed e of the lowest order waves and diffuses 

with a characterist ic  diffusion width defined by  x -- ct = {B/a) %/-~, where B is a 
prefixed constant .  The inter ior  layer  t iekness here  is an order of magni tude  larger 
t han  in the  initial  bounda ry  layer.  

10.2. _Periodic init ial  data. Singulari ty  a t  t = oo. 

Consider now the prob]em ~ with ] = 0 and 

(10.3) ]~(x) = A~ cos o~ix, (i = 0, 1, 2) (A~ eons t ) .  

:By Example  8.1 one has un i formly  in x 

lira u~(x, t) = 0 ,  x e R ,  
t---~ r 

while %@, t) does not  admi t  l imit as t - >  oo. F u r th e r  ~u0(x, 0):/: ]2(x), so in this 
case the per tu rba t ion  for e--> 0 is singular a t  t = 0 and t = oo. 

The explicit  formula (8.3) for the comparison funct ion u~ related to this case, 

together  with the est imate (1.11), give us a rigorous asymptot ic  representa t ion as 
(eft) -+ O. But  this approximat ion  does not  account  the singulari ty a t  t = 0. This 
question can be solved easily by  means of theorems previously stated.  For  this let 

1 - -  c ~ 
b,: = ~ ~o~ (k =- 0, 1) , 270 = e~eoo 2 -  e2b~ 

go = �89 dl  + (bo +  o)io 
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a n d  le t  exp  [ - - t /eJz(x ,  t) a boundary-layer /unction with  z g iven  b y  

(10.4) z(x, t) = �89 + tgo(y)] dy .  
$ - - t  

F u r t h e r ,  le t  

(10.5)  Uo(X, ct) = ct]l(x, ct) + ~[ct]~ ct ) ] .  

Refe r r i ng  to  these  no ta t ions  we will p rove  t h a t  

TttEO~E~ 10.2. - _Let u~ be the solution o/the problem 2~ de/ined by / = 0 and by 
the initial conditions (10.3). As s -+ 0 u~ for all t>~O and x ~ R, is approximated by 

(10.6) u~ = exp  [--  bost] 3t[ct]o(x, ct)] -~- exp  [-- b~st][ct]l(x , ct)] ~- 

-~ exp  [-- t/e]z(x, t) + er~ , 

with the remainder term r~ uni/ormly bounded by a constant depending only on c. 

P~ooF.  - The  p roof  is a consequence  of T h e o r e m  7.2. I n  fact~ the  r e m a i n d e r  
t e r m  r~ is t he  solut ion of a p r o b l e m  ~1 wi th  in i t ia l  da t a  van i sh ing  and  a source  t e r m  

f = 1' -~- 1" wi th  

f ~ -  - -  s-'  L,(exp [--  t/s/z) 

]"---- - -  s -1 l.l[exp [-- bost] ~(Ct]o) + exp [-- b~st](ct]~)]. 

:~ow, r e f e r r i ng  to  the  func t i on  / ,  def ined b y  (7.10) and  observ ing  t h a t  b~---- o~(1 - -  
--e~)/2, i t  is e a s y  to  v e r i f y  t h a t  

I/ ,(x, ~, t)I ~<const ( e e x p  [-- eb(t - -  v)] ~ e -~ exp  [-- (t - -  ~)/s][1 + (t - -  v) ~- (t - -  v)2]}, 

where  b ---- min  (b0, b~). So, b y  T h e o r e m  7.2 (see (7.11)) one  has  

Ir~l = l u l l < c o n s t ,  ( x , t )  e Y~ 

with  the  cons t an t  depend ing  on ly  on c. 

RE~AI~K 10.2. -- Unl ike  the  m e t h o d  e x p o u n d e d  in [1~], this  analys is  can  be done  
in the  genera l  ease t h a t  /~(x) are  given b y  the i r  Fou r i e r  series. 

2 4  - A n n a l i  d i  M a l e m a t t c a  
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10.3. A n  example .  The  viscoelastic case. 

As an example~ consider the application of Theorem 10.2 to the viscoelastic case 
where the equation (1.2) characterizes the motions of the s tandard  l inear  solid whose 
m e m o r y  funct ion g(t) is 

g(t) = g(oo)  ~- [g(0) -- g(oo)] exp [-- t/e] , 

with e a re laxat ion t ime and g(oo) < g(0). In  this case the two characterist ic  speeds 

Co and cl are 

2 _  e - l g ( O )  ~ (c~ < all) c ~ -  , c o = ( I g ( c ~ )  , 

and ~ is the mass density.  Obviously the case e = 0 corresponds to the elnstic waves 

propagat ing with the speed so. 
To deal with a simple case, we will refer  to problem ~ with periodic initial data,  

assuming tha t  co~ = Wl = COo. Then by  (10.6) one h~s 

(10.7) q~ = exp [-- boet]c~o(x, cot) ~- exp [-- t /e]z(x,  c~t) Jr- er~ 

where ~o(X, Col) is the pure elastic wave defined by  (10.5) and associated with the 
speed co, while z is the wave represented by  (10.4) and related to the faster  speed c~. 

B y  (10.7) the conclusions advance4  in Section 1.~ obviously follow. 

11. - Appendix: proof  o f  theorem 6.3. 

Consider the  funct ion F(r ,  t) which is defined in ~2 and  put  tie = 3, r = tz 
(z e [0, 1]). According to (3.1), if 

one has o~ : rw,  ~ = rp ,  ~l = "cq. Sett ing 

(11.1) g(z ,  T, v) = ~ exp [-- [2 ~ ~- c~ - -  z) - -  q v 2 ] v ] I o ( v w ~ / i ~ - ' ~ ) [ 4 f f v l o ( ~ p v )  -~  

+ p/1(rpv)] 

the  funct ion e-~, which depends only on z~ T, is 

1 

(11.2) e~(Z, T) = exp [-- k2~ " --  C~(1 -- Z)T]Io('CW) ~ - fg ( z ,  T, V) d r .  
0 

:Further let  Q - {(z, v) e [0, 1] ~} be. 
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Prel iminarly we observe tha t  by  the well-known relation (y real positive) 

(11.3) Is(y)  <exp  (y),  (y~>0) 

one has, for all v ~ 0  and  (z,v)e@ 

(11.4) g(z, v, v ) • e x p  [-- ~h(z, v)], 

with 

(11.5) h(z, v) = ( o V l - - z  -- ~v%/z) 2 -F (~/2)[%/1 - - z  -- %/(1 -~ z)(1 --v2)] ~ . 

This function h plays a basic role in our analysis. Firs t  of all we observe tha t  

I~E~A~K 11.1. - The funct ion h, given by (11.5) and defined in Q, has an absolute 
min imum at  zo = o, Vo ~ [2c/(1 @ e)]l~ where vanishes. 

5{oreover it  can be shown tha t  

L : ~ A  11.1. - For all (z~ v ) ~  Q it results 

(11.6) h> (c2/4)(z -- zo)2; h ~  (c~214)(v -- %)2. 

P~ooF. - In  [16] we have already proved (11.6)1. As for (11.6)3 we observe 
tha t  if 

H i =  ( o v ' ~ - z  - av~/~) 2 , Ha= (a~/e)[~/~--~-V(l+~)(1--v~)]~ 

we have 

a) for (z, v) e [0, eJ x [0, %] or  (z, v) e [e, 1] x [re, 1] 

H~(z ,  v ) > H ~ ( Z o ,  v) = e2~(v - Vo)~; 

b) for (z, v) e [0, e] • [%, 1] or (z~ v) e [c, 1] X [0, re] 

H~(z, v ) ~  H~(Zo, v) = (;~ ~/2)(1 § o ) ( V i - - v ~ - -  V i - ~ v ~ ) ~  . 

~ow, being ] V ~ - - V ' ~ l > ( v o / 2 ) ] V - - V o  [ and (1 + o)v]-~ 2c, it  follows also 

tZ~(z,  v)  >>. ( e )~ /~ ) ( v  - re) ~ . 

Therefore for all (z~ v )e  Q the inequMity (11.6)~ holds. 
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By (11.4) and Lemma  Ii.I one deduces: 

L ~ A  11.2. - For  any  real positive constant ao such that [Vo--ao, Vo+ ao] is 
enclosed in  [0, 1], ]or all v>~O and  z ~ [0, 1] the ]ollowing estimate holds 

(11.7) 
vo+ao 

o < eF(z, r) - fg(z ,  r, v) dv<k~(1 -~ 7:) exp [-- e22a~v/4] 
Vo--rt o 

where the constant Is2 depends only on c. 

P~oov.  - Applying (11.3) to the finite t e rm  of (11.2), one has 

(11.8) exp [(c~z --  7~)r] /o(vw)<exp [-- T,(z)] < e x p  [-- ~ ]  

where 

(11.9) %' = e ~ +  ; t~-  ~J~- + ;~* > (c14) ~.~ ao~, 

is the absolute min imum of the funct ion ~(z) = c~(l -- z) + ~ - -  )~2 V / ~  - -  z ~. Besides, 

also the te rms 
,vo--a o 1 

( f  § 
0 vo+ao 

satisfies (11.7) according to (11.4) and (11.6)~. 
These results suggest, on the basis of the classical Laplace's method,  t ha t  the  

asympto t ic  behaviour  of /~, when ~ > 1, depends on a suitable neighbourhood of 
(%, v0). To determine a rigorous es t imate  of the  remainder  t e rm  we must  consider 

(11.10) O(r) = Oo r~ , X(r) = Xo~ ~ 

where 0o and Zo are two a rb i t r a ry  reM positive constant  such tha t  0o< rain (zo, 

1 -- Zo) ~nd Zo< min (vo, 1 -- Vo). So, 

Q0 - ((z, v) e [Zo- 0, Zo + 0] • [Vo- z, Vo + z]} c O 

and consequent ly  the asympto t ic  expansion of Bessel lunctions can be applied for 
all r > 1 and  (z, v) ~= Q0. I t  is well known th a t  for y real,  large and  positive [20] 

one has 

e y 
(11.11) I . ( y )  - -  YM--:~y (1 -F- ro), (y > 1) 
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with Iro(y) l < const y-~. 
> 1 and (z, v) ~ Qo, one obtains 

Therefore applying this formula to the function g when 

(11.12) g(z, v, v) ---- #(z, ~) exp [-- vh(z~ v)](1 4- rl) 

with 

4qv 4- P 
(11 .13)  ~(Z, v) = 2~Vpvw ( i  - -  v~)~ 

and [r~[ < const ~-~, the constant  depending only on e, 0o, go. 

IJE~gA 11.3. - For all v > 1 and (z, v) ~Qo, it results 

(T > l ,  (z, v) sQo) 

gives 

(11.16) 

with 

(11.15) Ir~l < k~(Iv - -  %I + tz - -  ~ol) ~ 

where lc, is a constant depending only o~ c. 

P~ooF. - Evaluate  h by  T a y l o f s  formula observing that  h,~(zo, v o ) =  0. This 

h = a 2 ( v - - v o ) 2 +  b~(z- -zo)2+ h,  

1 
h ,  = 3Q.[(z - -  zo) ~ + (v --  Vo) ~] (~ )h (z , ,  v , )  

where (z , ,  v ,)  eQo; hence easily one deduces ]h , l<cons t  ( lz--  zo] + Iv -- Vo[) ~ with 
the  constant  depending only on 0, 0o and go: Moreover, choosing suitably 0o and Zo 
according (11.10) one has 

(11.17) vlh,  ] < c o n s t  (0o 4- Zo)3< I. 

Consequently 

(11.18) Iexp [-- Th,] -- l [<v ]h , ]  exp [TIh, H<evlh ,  l<cons t  T ( I z -  Zo] + Iv -- Vo])" . 

Thus (11.14)-(11.15) are consequences of (11.16)-(11.17) and the proof is complete, 

with a~- ~ 0(1 + e), b 2 =  (4~) ~1 and the remainder term r~ such that 

(11.14) exp [-- Th(z, v)] = (1 4- r~) exp [-- a~(v -- vo)2~ -- b2(z -- c)~v], 
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P~OOF OF T H E O m ~  6.3. - R e f e r r i n g  to  (11.13), b y  means  of Tay lo r ' s  f o rmu la  

one h~s 

[~(z,v)-#(zo, vo)l<const(iV-Vo[ + ]Z-Zo[), (z,v) mQo 

with  #(Zo, Vo) = #o = ab/(~te). Therefore  L e m m a s  11.2 and  11.3 wi th  fo rmulae  (11.12)- 

(1:1.14) a nd  (11.15) give 
Yo+g 

eF  = xteab exp [--  b' v(z - -  c)~3 f exp [ - -  a 2 r(v - -  %) ' ]  (1 ~- rs) -~ r , ,  

vo--g 

with  the  r e m a i n d e r  t e r m s  rs~ r4~ such t h a t  

lr~I<con~tD:-~-+-~:(lv vol + IZ-Zol)q,  l r~ l<cons texpE-  = =~:1 - -  ~ o Z  ' 

At  this point ,  b y  means  of s t a n d a r d  compu ta t i ons ,  t he  p roof  is complete .  

Rv,~_A~K 11.2. - The p roof  of T h e o r e m  6.4 is an  obvious  consequence  of fo rmulae  

(11.8) and  (11.6)~. 
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