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Summary. — The paper deals with a rigorous analysis of the « wave hierarchie » related fo the
operator L, quoted in the title. Whatever the number n = 1, 2, 3 of space dimensions may
be, the fundamental solutions E, are constructed. These distributions are tempered positive
Radon measures associalted with positive value functions which have numerous basic proper-
ties. So the Cauchy problem Z, (n = 1,2, 3) with quite arbitrary data is explicitly solved.
As another example, also the solution of the signaling problem S is established. Then, various
basic aspects of the wave behavior such as diffusion, asymptotic properties, maximum prin-
ciples and the generalized Huyghens principle are evaluated. Moreover, singular perturbation
problems as ¢ — 0, with estimates of the remainder terms uniformly valid for all t >0, are
discussed too.

0. —- Introduction.
Let L, be the strictly-hyperbolic operator
(0.1) L, = 0,0} — el 4.) + 8 — ca 4,

where n = 1, 2, 3 is the number of space dimensions, # € R»,  is the time and 4, is
the Laplace operator in R~ Further e, ¢}, ¢, are three positive constants, with
< ¢} as it results in many usual physical systems..

We propose a rigorous analysis of various basic aspects of wave propagation in
dissipative media characterized by L,. For this we will discuss the general behavior
of the solutions of some boundary-value problems related to (0.1), such as the ini-
tial-value problem £, in all the three cases » = 1,2,3 and the one-dimensional
half-space problem 2.

Typical examples of physical phenomena related to L, can be found in dynamic
of relaxing gases[1...4], in magnetohydrodynamics [1, 10], in hereditary elec-
tromagnetism [11, 127 and in isotropic viscoelasticity, where L, describes the motiong
of the standard linear solid [5...9]. In all these models ¢ is a « small parameter »
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indicative of the digsipative cause (e.g. a relaxation time or an absorption coefficient),
while ¢, and ¢, are characteristic speeds depending on the material properties of
the medinm.

There is an extensive literature on the operator L, (see the references in [1...9]
and [13...18]). The main concern has been the study of one-dimensional problems
with very particular boundary data. But, even in these cases, some of the re-
sults—at different levels of mathematical rigor—are often incomplete in two re-
spects. The solutions computed by means of series expansions or integral represen-
tations lead to very untractable expressions. Many formal approximations are not
rigorous, as estimates of the remainder terms are missing.

In [16] we succeeded in constructing the fundamental solution ¥, of the oper-
ator L, in terms of a C® rapidly decreasing and positive-value function F({r,?)
(r = |z|) which has other basic properties.

In this paper, extending such analysis, at first we prove that also the funda-
mental solutions E, of L, for n = 1,2 are expressible by means of the only F.
Oonsequently, for any » the distributions E, are tempered positive Radon measures
agsociated with positive-value functions (Sect. 3). Then, on the basis of these ex-
plicit formulae for E,, the distribution and the classic solutions of problems £,
(n =1, 2, 3) are established for quite arbitrary data (Sect. 4). As another example
algo the problem ## is explicitly solved (Sect. 5). .

Successively, to obtain a rigorous and sufficiently exhaustive evaluation of the
various wave phenomena connected to L, (see Bect. 1), a gualitative analysis of
the solutions of &, and # is given. This survey concerns with various basic aspedts
of wave behaviour such as maximum prineciples {Sect. 7), diffusion of waves, asymp-
totic properties as ¢ or |#] —co (Sect. 8) and generalized Huyghens principle (Sect. 9).
Moreover, singular perturbation problems as & — 0, with pointwise estimates of the
remainder uniformly valid for all #>0, are also examined (Sect. 10).

On this subject it is worth noting that when 0<i< T (T'< o) ‘and the initial
data are elémerits’ of Sobolev spaces, well-known theorems of modern methods in
partial differential equations [23] imply a priori integral estimates. The transi-
tion to pointwise estimates can be obtained by means of the Sobolevinequalities [24].
But unfortunately these results hold for hyperbolic operators only in the slab
0<t< T, while we are interested also in the cage T' = co. In order to achieve uniform
estimates for all t> 0, we shall prove that the solutions of &, and # have the same
asymptotic properties of the solution of the (Jauchy problem (with suitable datum)
for the heat equation (see Sect. 1).

Lastly we observe that the explicit construction of E, permits us to solve also
the general Cauchy problem with data prefixed on a hypersurface in ai-space. This
explicit solution, together with maximum principles, is of primary importance to
analyse also wnilateral problems for the equation we deal with; such application,
for n = 1, has been discussed in [29].

In the next section we state the problem and the main results.
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I. - Wave hierarchies. Statement of the main results.

The operator L, is a typical noticeable example of the situation when waves
of different orders and with different speeds ¢, ¢;,, appear in the same problem
(Wave hierarchies). According to the celebrated qualitative analysis of Whitham
on linear and non-linear waves [1, 2], to obtain a rigorous and exhaustive picture
of the wave motion, the following questions must be examined.

a)

To analyse the roles of the «highest order waves» (with speed ¢;) and the
«lowest order waves » (with speed ¢;), so to establish which set of waves is
the most important and will be really observed.

Generally, the speed at which the main signal travels differs from the speed
¢, of the wave-front. Indeed, the dissipation often determines a diffusion
of waves which is connected with the characteristic speed ¢, of the lowest
order operator and represents, at large ¢, the main part of the disturbance.

When singular perturbation problems related to L, for ¢ — 0 are discussed,
attention must be paid to the boundary or inierior layers which can appear
in dependence of the various boundary-value problems which one deals
with. Further, when ¢ — 0, a singularity at { = co might be too. In fact
the lowest order operator 0i— c;4,, which one deduces from L, putting
formally ¢ = 0, is typical of undamped motions, while L, generally represents
damped wave motions,

These various wave phenomena can be rigorously evaluated only if cne establishes
also the time-intervals when each of them prevails. Moreover the remainder terms
of the approximations proposed must be estimated.

Some of the main results of our analysis can be outlined briefly as follows.

1.1,

Classic solution of 2, and mazimum principles.

Referring to the half-space

(1.1)

Yt = {(,1): xe R", t > 0},

by means of an appropriate linear substitution on w», the classic forward Cauchy
problem £, can be given the form

Liw = 20,0 — Au -+ (0, — d)u=f, (»,1)e¥™

Biu(w, 0) = ffx), (3=10,1,2), wxeck"

with ¢* = ¢j/ej<< 1. Therefore in what follows we will refer to 22, where ¢;=1and
Cop== € < 1.
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If the source term f(x, t) and the initial data f,(x) are sufficiently smooth, £,
has a unique regular solution (Sect. 4) which—in all the three cases n =1, 2, 3—is
given by '

i 14
(L4) = e[rBlr, O]uo, 1) &7 + (0 + 280 [, O e, ) dr +
Q 0 %
+ (682 — s, - ) f F(r, ) fol@, 1) dr - .

]

In (1.4) f«(w, ») are the classic mean values of the data defined by (2.4a, b, ¢) ac-
cording to the number n of space dimensions (Sect. 2) and u, is the Duhamel’s in-
tegral related to the inhomogeneous case (see (4.6)). Further, the kernel F is a
positive value O®-function which is given by (3.2) and has numerous basic prop-
erties (see Theorems 3.2 and 6.1 and 6.3).

On the basis of these properties, at first one deduces some maximum principles
(Theorems 7.1 and 7.2) which permit us to estimate # in terms of the data. Some
consequences of these theorems are (Sect. 7):

A)If >0, £,>0 (1=0,1,2) (and 4.f,>0 only when # = 2, 3), everywhere
in ¥%* one has

(1.5) wz, £)>0, (0,1 YT,

B) In the homogeneous case (f = 0), referring to the mean values fi(x, ) with
r [0, t], everywhere in Y% (n =1,2,3) it results

(1.6) | <sup |9,(rfo)| + ¢t i g=tsup Jrf, (0<r<i).

i=1 *

0) In the inhomogeneous case, Theorem 7.2 provides explicit bounds for the
estimate of remainder terms in iterative approximation methods.

These estimates generally imply rigorous evaluations of w for all ¢ between 0
and a prefixed 7T < co. Thus, for example, one can prove that the first signal—when
0 <i<e—appears as a «small » precursor wave propagating obviously with the faster
speed of wave-front (see Sect. 8). Moreover, in this time-interval [0, £] one can
estimate % with a degree of accuracy however prefixed (Sect. 8).

1.2. Diffusion of waves and asymptotic behavior.

When ¢ is large compared with &, i.e. € Je, oof, the analysis of the wave
behavior is obviously & more difficult question. However, very useful theorems
for this analysis can be inferred frem the basic Theorem 6.3 oxn the asymptotic
properties of the kernel F. This theorem proves that when t/e > 1 the main part
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of ¥ coincides with the fundamental solution of the classic heat equation
(1.7) Uy == ———— EUyy ,

where the space variable |y| = |[r — ¢t| is connected with the boundary of the forward
characteristic cone
(1.8) A= {(t,): t>0, |<et}, (veRr)

related to the lowest order operator ¢ — ¢’4,. Consequently, if one puts [2(1 —
— ¢*)]"1=b% and

(1.9a) Py r) = 0,(rfs) + 0+ ef)
(1.95) 1P| = sup ¥z, )|, (#€ Ry 0<r<i)

@7

considering the function u, given by

+-eo

b 2
(1.10) Un(®y 1) = Vn:gtfeXp [—%t (r— Gt)z] Pz, r)dr,

—

the following theorem can be stated (Sect. 8).

THEOREM 1.1. — If the data {,(x) are such that the function ¥(z, r) is bounded for
z e R* and r€[0,1t] then, as t > ¢, the solution u of P, (with f = 0), in all the three
cases n == 1,2, 3, is approvimated by the solution u, of the heat equation (1.7) defined
by (1.10). This approximation is unifwmlgj valid in x € B* and is given by

(1.11) | — 5] < const | ¥ V—i—, zeBR t>¢,

where the constant depends only on c.

Therefore, according to what foreseen by WHITHAM [1, 2], these results imply
rigorously the following basic conclusions.

For small values of ¢ (i.e. 0<t<se) a small precursor wave which propagates with
the faster speed of wave-front appears. But, when t is large compared with & [0 < & < 1),
the main signal is related to the speed ¢ of the lowest order waves and propagates into
the medium as a diffusion process.

Theorem 1.1, besides proving and evaluating diffusion at large ¢, achieves ob-
viously the asymptotic analysis of # by means of well-known properties of the
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comparison function u, given by (1.10). Clearly this analysis can be improved further
on when the data are specified. Some typical cases are discussed in Section 8.2.
S0 e.g. the solution of 2, with periodic initial data and f = 0, unlike the classic
case, vanishes as ¢ ->oo uniformly in x. Referring to singular perturbation prob-
Iems, this proves the singularity of the perturbation as ¢ — co.

1.3. Generalized Huyghens principle.

As L, characterizes dissipative media, when n = 3 the « Huyghens principle in
the strong form » does not hold, owing to the diffusion of waves above stated. How-
ever we will show that, also for the dissipative media we deal with, a substantial dif-
ference exists between the case n = 3 and the other cases n = 1, n = 2. In fact,
when n = 3, there is a time-instant ¢, after which the effect of initial localized distur-
bances—though not vanishing—decays exponentially in time. This result does not
subsist when #n =2 or # =1 (see Sect. 9).

Suppose that initially the disturbance is localized in a ball B(0, p) of radius o
and center 0. Then, if one puts & = ¢~'([#| + o), one has

THEOREM 1.2. — When xz € R* and the initial data are of compact support, for all
t>t, and wniformly in x & B(0, o) the solution w of P (with f = 0) satisfies the fol-
lowing estimate o ' '

(1.12) |u(z, )] < const. exp [ «*(1 — £,/t)2], @ekRS, t>1,.

1.4. Singular perturbation problems.

The results above stated imply also a correct analysis of singular perturbations
which appear as.¢ — 0. To show the possibility of various singularities which the
perturbation . as ¢ —0 can exhibit, two one-dimensional problems are discussed
(Sect. 10). The former concerns with the signaling problem where an interior layer
appears near to the subcharacteristic |z| = ¢t related to the speed ¢< 1. A the-
orem like Theorem 1.1 provides an approximation uniformly valid for all >0 and
> ¢ (see Theorem 10.1). The latter deals with the problem £, defined by periodic
initial disturbances (Sect. 10.2). In this case, as & — 0, the perturbation shows two
singularities: one at t = 0, where &iuy(x, 0) = f,(x), and another at { = co where
ill)rgfu, = 0 (see Example 8.1). Theorem 10.2 provides an approximation of # uni-
formly valid for all £>0 and z e R.

Referring, as an example, to the viscoelastic case (Sect. 10.3), Theorem 10.2
implies for ¢ — 0 an uniform representation such as

(1.13) % = exp [— byet]uy(x, ¢f) -+ exp [— tle]a(w, ) + eo

where #, is the pure elastic wave which one hag when ¢ = 0 and is aggociated with the



PagqUuALE RENNO: On a wave theory for the operator, ele. 361

lowest speed ¢. Further, 2(z, t) is another pure wave related to the speed of the wave-
front and fthe remainder ¢ is uniformly bounded for all t>0 and x & R.
Consequently the evolution of viscoelastic waves induced by periodie initial
disturbance is characterized, when ¢ — 0, by the rapidly damped signal exp [— ¢/e]2
related to the fast-time /¢ and by the main signal represented by slowly damped
oscillating wave exp [— byetlu, associated with the slow-time ef. Further the for-
mula (1.13) enables us to evaluate also the times of validity of elastic or viscous
behavior.  In fact ' o '

1) When ¢ € [0, ], there is a quasi-elastic behavior described by the pure wave u,
with speed ¢, in front of which there is a damped precursor propagating
at the faster speed of the wave-front.

2) When tele e 1], the main signal related to the elastic wave u, with
speed ¢ prevails.

3) When ¢ > &1, there is a viscous behavior with rapidly damped signal.

REMARK 1.1. — Clearly, the rigorous approximations proposed can be iterated
as one wants. Then the remainder term is the solution of the inhoemogeneous case;
8o Theorem 7.2 gives explicit bounds for this solution (see e.g. the proof of Theo-
rem 10.2).

2. — Notations.

Let 4 c E» be an open set; 2'(4) is the set of all distributions on 4, while &
is the subspace of 2’ consisting of all distributions with" bounded supports. The
value of a functional B e 2’ at a function y of the space Cy(A4) will be denoted by
Ey] or by (B, 5. The symbol &(R*) will denote the class of rapidly decreasing
functions and &'(R") the totality of tempered distributions on Re In connection
with &, denote by &7(R") the space of functions y € O(R") such that for any 5 > 0
there exists a B,> 0 fulfilling the inequality

(2.1) (1 + ) ID*p(@)| <n  for |o]> By, lal<in,
with m, k positive integers. The norm | | in &7 is
(2.2) [l = [Z sup (1 + [2[°)*1D*p(@)|, ypedy.

Referring to the D’Alembertian 83— A, with the fastest speed, we will denote
by A, the forward characteristic cone

(2.3) Ay={(ze R 1): 10, lo|<t}, (n=1,2,3)

and by 04, the boundary of A,.
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Lastly, the classical mean values f,, f of the data f,(x), f(»,1) of the problem £,
are defined as follows, according to the number n of space dimensions.

a) Case n = 3:
(2.4a) filw, ) = 4m‘2fff Flz, r;t) f fy, t) ds, .
le—yl=r !u—-azl==r

In this case the domain of dependence of f x, r) is the sphere of radius » about
the point (z;, @z, ¥5).

b) Case n = 2:

futa ‘m* ff Ve — gy f?i—yﬁ

ly—zl<r

fla, 73 27"' ff \/rz |w-—y{2 W

ly—al<r

(2.4b)

Here the domain of dependence of f(v,#) consists of the whole circular dise of
radius » about the point (xy, #,).

¢) Case n = 1:

2ty 24
(240 Mo =3 [t aus Hovrin =2 (10 a

3. — Fundamental solutions of the operators L . Distribution solutions.

The operator L, is strictly hyperbolic as it verifies the Garding’s condition; then
there exists one and only one fundamental solution with support contained in the
half-space Y% (n = 1,2, 3). The importance of explicit fundamental solutions of
given operators is well known. In [16] we have constructed the fundamental solu-
tion of the operator L,; to achieve explicit formulae also when » =1 and »n = 2,
at first we briefly refer to some results stated in [16]. Let |z| = r be and

(1—e*) ot 2_1—{—02_ _AMt—7)
55 TR V=g =Ty

P
(3.1)

E=20eVr{l—r) e, o= Vii—yiet.
If I, is the modified Bessel function of first kind, let
(3.2)  F(r,t) = et exp [— v* + B*rll(w) +
1

+ |exp [yvell4nvIy(év) + EL(€0)11o(w V1 — %) dv] .
0
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Then, if we refer e.g. to the space & (R") of rapidly decreasing function y, the
fundamental solution (&, y> of the operator L;, is a distribution associated with
the function

(3.3) Buo, ) = g A — o) Fja) 1)

where H(f) is the Heaveside function. In fact, if we consider the following distribu-
tion-valued function

14
(3.4) [0, 00) 3 t — B[] = f B, t)ri(r, 1) dr € &' (RY)
o
where #%(r,t) is the spherical mean of y over the sphere with center 0 and radius r

in the hyperplane { = const, it can be shown [16]:

THEOREM 3.1. — For any real 1> 0, let EY be the distribution defined by (3.4).
Then, the functional

(3.5) By, 1> =[BOI, 18, g e S (BY

is a tempered positive Radon measure which represents the only fundamental solution
of the operator L, with support contained in YF.

These results are consequences of various properties of the function F given
by (3.2) and defined in

(3.6) R={t,recR:1>0,0<r<t}.

According to [16] one has

THEOREM 3.2. — The kernel F(r,1) has the following basic properties:

(3.7a) Frt)eC*(Q2) and LF=0 in 2
(3.7b) Flr,)>0, (r,t)ed
%
(3.7¢) fF(r, f)dr<ct, 130
0
(3.7d) F(t,t) = e~texp [— A%tfe], F(0,t) = e texp[— k*1].

Furthermore, if %, denotes the Laplace transform and s is the parameter of
the transformation, it must be also remarked that
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THEOREM 3.3. — In the half-plane Re (s) > — ¢*[¢ the Laplace integral L, H(t—
— ) F(r, t) converges absolutely and one has:

(3.8) PH(— ) F(r, 1) = RIS ‘/6(:: 7:21)/ T P, s .

Now we ave going to prove that this analysis can be applied to obtain also yIA
and ¥#,. For this, let

(3.9) Fl(?, 3] :fF(z’ 1) de , —Fz(y, 1) :f F(% ] de
p v Ver— 2
(3.10) By = %H(t — ) Fu(l), 1), By= z—l—nﬂ(t~ j2]) Fy(Ja], 1) .

If we consider the following functionals associated with B, (k = 1, 2)

(3.11) e, 1) = [@ 3t ) But, ) dy, g e S

one has

THEOREM 3.4. — In the cases n =1 and n = 2, like when n = 3, the functionals
{Bn, x> defined by (3.11) are tempered positive distributions of order zero. Furthermore
B, x> ts the only fundamental solution of the operator L, with support contained
in Y,

PRrOOF. —~ By means of Fourier and Laplace’s operators, it is possible to verify
that B, and H, are formally defined by the symbolic relations

(3.124) LBy = By(x,5) = (20)F(|7), 5) , reR

(3.120) L Ey= By(», s) = [2n(es + ) Ky(|z|o), ek

where F(r, s) is the Laplace transform defined in (3.8), K, is the modified Bessel
function of second kind and ¢ = [s%(es -+ 1)/(es + ¢2)Tt.

Now, being the inverse transform of F constructed (see (3.8)), B, and E, can
be computed too. In fact, on the basis of Theorem 3.2 and applying the Fubini-
Tonelli theorem, in the half-plane Re (s) > 0 one has

P By(r, 1) = } f exp [— st Fy(r, 4) @t = } f Ple, s) @z = (20 F(r, s) .

r
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Ag for E,, we obgerve that

©

ZiEy(r, t) = (2m) fexp [—st] dt F( f\/ K,y(ra)

\/z — 7.2 Pra 1"2 275(68 + )’

r

The functions F.(r,?), achieved by means of this heuristic formal analysis, are
C™(2) positive value functions (see (3.9)-(3.7b)) both expressible in terms of the
kernel F' which satisfies (3.7¢). Therefore the distribution valued functions

[0, 00) € ¢ Byl = ly, O Bulyy ) Ay, g€ SRS
BE

are of class C® and bounded for all {>0. Consequently the distributions induced
(3.11) are positive tempered Radon measures.

Furthermore, according to the results of [16] related to the case = = 3, it is
eagy to prove that

(3.13) LiE]=0, 0c9 (R,

where ¢ is the Dirac measure in R*: At last, as supp E,= A, (k =1,2), the
uniqueness of the fundamental solution in the class of distributions with support
in 7{;“ is a consequence of well known theorems of the theory of distributions.

ReMARK 3.1. — Obviously, the construction of K, and F, can be achieved also
by means of the classical Hadamard’s method of descent.

Finally, if the symbol @& denotes the convolution in R#+ of two distribu-
tions € &'(R*'), by Theorems 3.1-3.4 it follows:

THEOREM 3.5. — Let | € 9'(RB™) be a distribution with support in Y. Then the
functional w;= E, ®f (n = 1,2, 3) is the unique distribution solution of the equation
L, = f with support in Y"'. Moreover, if f € &' (R™+1), then u,e &' (R*1) (n = 1,2, 3).

PrOOF. — As
(3.14)  suppfcY*™, supp By= dd,, supp Er= A, (k=1,2)
the convolution F, ®f exists and is a distribution solution of (1.2). Moreover,
as consequence of (3.14), supp %,;C Y. “* and this condition characterizes the unigue-

ness. At last, when f € §'(R*), u, is the convolution of two tempered distributions,
one of which has bounded support; consequently also #, is a tempered distribution.
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4. ~ The forward Cauchy problem. Classic solutions.
For fanetions u(x, t), with # € B* (n = 1, 2, 3), we use the differentiation symbols
Dy=129,, D= (Dy,..,D,)=(021,...,08,), (n=12,3),

where D is the gradient vector with respect to the space variables. By means of
the Schwartz notations we have

(4.1) gL, = P,(Dy, D) = D} + &' D:— D*Dy— ¢’ D*
and we can write the problem (1.2)-(1.3) in the form

(4.2) eP,(Dy, D)t =1, >0, zeR* (n=1,2,3)

(4.3) D«W(ﬂ% 0) = fi(x), (t=10,1,2).

As P, is an hyperbolie operator with constant coefficients, the classic initial value
problem £, as it is well known, is a typical well-posed problem. Obviously, by a
solntion of #, we shall mean a function which in Y’j_“ is of class €3 and satisfies
(4.2), while in I—’:'_“ is of class C? and verifies (4.3) (as ¢ — OF).

Of course, the foregoing construction of the E,’s enables us to determine the
solution of &, for general data f and f, and in all the three cases n =1, 2, 3 of the
space dimensions. In fact, when the data are sufficiently regular functions, on the
basis of the properties of E, (Sect. 3), the convolutions of the E,’s with the data
exist and are smooth functions. Consequently, referring to the polynomial P,(D,, D)
arranged in (4.1) according to powers of D, by means of well known techniques
(see e.g. [24]), one easily verifies that the solution # of problem £, is given by the
formula (z € RB*):

(4.4)  w=cH,xfy+ (eDo-+ 1) B fi+ (eDy— eD*+ Do) B % fo+ En @1

where the symbol % denotes the convolution with respect to the space variables #
for fixed i.

However, we now want to prove that, in all the three cases for #, these convolu-
tions are expressible in a more concrete form in terms of the only kernel F(r, ) given
by (3.2) and of the classical mean values f,, f of the data f,, f defined by (2.4a, b, ¢),
according to the number n.

In fact we will prove that when the data are smooth functions the convolutions
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E,%f, and E, ®f are given by the integrals
13
{4.5) B, #%f: = u;=|rF(r, t)?i(my r) dr

o
T

(4.6) B,®f=u =fdrfrlf’(1", 0w, r; t — 7) dr

and consequently we will obtain:

THEOREM 4.1. — Let @ € R* and t>0. If the source term f(z,1) € C3(¥%™) and the
initial data f,(x) € C+*(R*) (¢ = 0, 1, 2), then the initial-value problem &, has a unique
solution u € C* (Y71 which—whatever the number n = 1, 2, 3 may be—admits the same
following representation

(4.7) = wt euy, + (1 + ed)a, + (83— edn+ ),
with w, and u, given by (4.5)-(4.6).

PRrOOF. — Af first, let us consider the case when the initial data f; are vanishing,
If we put flo,t) =0 in

(4.8) Y= {(t,»): 1< 0,z € R},

by Theorem 3.5 the convolution E, ®f is the only distribution solution of (4.2)
vanishing in ¥”** and in addition is a C*-function, as f is of class C3(Y%™). Con-
sequently X, ®f is also a classic solution of (4.2) and is given by

(4.9) B, ®f =[Bule, ) #f@, t— 1) dz,  (#>0).

Now, when n = 3, by (3.8) easily one has

(4.10) By(a, ) % (@, ) = [rB(, 0)f(@, ;) ar,

o
where f(z, r;-) is the spherical mean of f(z,) defined in (2.4a). Thus, the formnlae
{4.9)-(4.10) imply (4.6) when n = 3.
As for n = 2, by (3.10), and (3.9), with standard computations it draws

27 T z

1
(4.11)  Hpxf = deff(%-@cos@,wg—-gsenﬂ;-)gd@ Fin,odr _
(1] 0 o

APt — 0* -

=frF<r, @, ;) dr,

28 ~ Adnnali di Malematica
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with f(@, #;-) defined in (2.4b). By (4.9)-(4.11) also for » = 2 one deduces (4.6). At
last, when » = 1, by (3.10),-(3.9), one obtains (4.6) again, with f defined according
to (2.4¢).

By (4.6), in any case, it iy easy to verify that

Diuw,0) =0, (1=0,1,2), zeRr.

Analogously, when f = 0 and f,# 0, as the initial data f/(«)e C*+*(R") then the
convolutions #, % f; are the smooth functions given by (4.5) (see (4.10)-(4.11) with f,
in the place of f). Thus, the foregoing statements prove that the formula (4.7)
defines a classic solution of the problem &£, for » = 1,2, 3. The nniqueness in the
class of sufficently regular solutions is a consequence of well-known theorems on
hyperbolic equations with constant coefficients. Thus the proof is complete.

ReEMARK 4.1. — It is interesting to remark that in (4.7) the unique element which
differentiates the three cases for n is the function w(z, r) = #f,(w, r) which represents
the solution of the standard problem associated with the n-dimensional I’ Alembertian

(4.12) 020 — Ay =0
(4.13) w(x, 0) =0, dw, 0)=f(z).

Analogous remark holds for the convolution H, ® J related to the inhomogeneous
case. Congsequently the basic properties of F, together with the well-known behav-
iour of w = f,, will enable us to make in the next Section a wide analysis of the
solution of £, for any n.

5. — The one-dimensional half-space problem.

The kernels F and F, which define the fundamental solutions analysed previously
allow us to obtain also explicit solution of other boundary-value problems related
to L,. As an example, we will consider the onedimensional half-space or signaling
problem # defined by

(5.1) - Lwe=0,. zeR >0
(5.2) olv(w, 0) =0, wxeR*, (i=0,1,2)

(5.3) v(0,1) = D), »z,t)—0 asa-+oc0 (t>0).

By means of an inversion formula of Laplace transforms such as (3.8), we can
see that the kernel %, which characterizes the explicit solution of problema 5# is
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(see [27])
(5.4) B, = exp [— Ax/e]0(t — &) + H(t — ) Fo(x, 1), xR’
where 4§ is the Dirac measure in R and P, is the 0°(Q) function given by

(5.5) Fo(@,1) = (0, + ) F(w, 1), (0<z<i).

Censequently one can prove that

THEOREM 5.1. — When the datum @(t) € C3(R") and is such that ®P(0) = 0 for
t=0,1,2, then the problem H# has a unique regular solution given by

.«

{5.6) v(x, 1) = H(t — x)[exp [— A22/c| Dt — o) —}—fﬁ’o(w, )Pt — 1) dr].

A qualitative analysis of this solution will be dealt with sucecessively (Sections 7
and 10.1), after establishing other properties of the kernels F, F,, and F, (Sect. 6).
Now we observe only that applying the Laplace transform to (5.4)-(5.5), by means
of Theorem 3.3, one deduces the symbolic relation (see (3.8))

(5.7) L H(t — 0)Fy(w, 1) = Fy(z, s) = exp [— wo] — exp [— xs — 12z/e],

where the Laplace integral ¥, converges absolutely also when Re (s) = 0. Con-
sequently, one can state rigorously that

©

(3.8) f By, 1) dt = Py, 0) = 1 — exp [— Awfe] .

x

6. — Basic properties of the fundamental solutions.

Now we deal with some basic properties of the kernels F, F,, ¥, defined above.
We begin by proving that o

THEOREM 6.1. — The C°(L) positive value functions F and F, are such that every-
where in Q one has:
{6.1a) 0< 0, F <P, 0B,e0,+1F,>0
(6.1b) Fy=(e0,+ ) F>0, (0,4 1)F>0
(6.1¢) (03— e02 -+ (1 — ¢2)3,]F,>0 .
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Proor. - These inequalities are substantially consequences of the properties
and recurrence formulae of the modified Bessel functions which appear in the defini-
tions (3.2)-(3.9) of ¥ and F,. So, letting

(6.2) é:v%@kqﬁ+k%[()+§prﬂH& vaw)mL

0

one has

(6.3) 0.F =—0,6, Gt =F(1)

hence

(6.4) 0. =f3t1i’(z, t)yde + F(t,t) =G>0, (rt)el.

Further, by (6.2) easily it draws
(6.5) (e0;+ 1) 0 Fy=¢G,+ G >0

and, being F>G (see (3. 2)-(6.2)), by (6.4)-(6.5) we obtain (6.1a). Now, referring
to the kernel F, which solves the problem 2 and is defined by (5.5), we observe
that by means of integrations by parts one has

(6.6) Fy= A2z(e2fw)t exp[— y*t + K3r] [AzéIl(w) + 2¢tw exp[n]1,(£) +

I(0 V1 —v?) 17)
22V1—

+ Zzézfexp (0] [20 4 (t — @)v2] I (&v) dv]

0

which demonstrates F,>0 everywhere in £. Then, as
(0, +1)F=(1—e)F +F,>0,

also (6.16) is proved. As for (6.1¢), the foregoing relations and standard computa-
tions enable us to obtain finally

(6.7) [e05—eli+ (1 — )0, )P, = *F — c20,F, -+
1

+ exp [— y*t + k*r]|v exp [ot) (0 VI—0?)[dguly(Ev) + ELo(Ev)] dv,

L]

which implies (6.1¢) being F> 9, F, (see (6.1a)).
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REMARK 6.1. — As it will be shown later (Sect. 7), being F = — 0, F,, the opera-
tor which in (4.7) is applied to u, is expressible in terms of

(6.8) R = (0} — 02+ 3)F, >0, (r,t)el,

which is a positive value function everywhere in Q, as it is obvious by (6.7). Further,
by the definition (6.8) of R and by (6.7) one has

(6.94) R(t, 1) = 2 F(,1)
(6.95)  R(0,1t) == k2 exp [— y2][(1 + 24%e?) I, (A%t]e) + 22421, (A[e)] <
<& Y1 4 tfe) exp [— k2¢] .

To complemente the Theorem 6.1, setting

(6.10a) ha(t) = f exp [— 2] Iy(A%7fe) dr
{6.100) ha(t) = e 1hy(t) + Ra(t)

we prove now the following theorem

THEOREM 6.2. — The 0°(82) positive value functions F and R defined by (3.2) and
(6.8) are such that

2

(6.11) f F(r,t) dr = e ha(d) J' R(r, 1) dr = 1 — exp [— k%]

o
4

(6.12) (1 -+ £3,) j Fir, 1) dr = hy(t)

0

where for hy and h, the following estimates hold
{6.13) I<hiti<et, O<h(t)<ect, (¢>0).

Proor. — The formulae (6.11) can be verified by means of Theorem 3.3. In fact

i @

L Fr, 1) ar = f Pr, s) dr = s~[(s5 -+ 1)(ss - )T,

0

hence, as it follows by known Laplace integrals (see [19], pag. 239), one has (6.11),
and as consequence (6.12). Likewise one obtains (6.11),. Further one can see easily
that k; and &, are increasing functions such that ky(0) = 1, ,(co) = ¢~* and hy(0) = 0,
hy(o0) = ec~; consequently also (6.13) are proved,
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In order to evaluate the integrals of convolution %, such as (4.5), consider now
the asymptotic behaviour of the kernels I', Fy, R as t->oco. For this, let d =
= dy(g/t)t be, where d, is an arbitrary real positive constant such that d,< min (e,
1 —¢). Then, if e<t and observing that in (4.5) it is 0<r<?, one has

Q= {rel(o—dt, (¢ + d)l}c[0,1].

Further, let F, be the fundamental solution of the heat equation (1.7) where
[y = |r— ct|; i.e.

b exp [— bi(r — ct)?/st]

(6.14) Byr, 1) = T , (b= (422

Then, the following basic theorem can be proved. -

THEOREM 6.3. — Let (r,1) € 2 and 0 < &<t Then, for any r € Qy, it results
(8.150) F(r, 1) = (L + ) En+ 0

where the remainder terms g;, g't', satisfy the estimates

- o lr-—«oﬂ)s‘ﬁ
(6.15b) . el < k.,(l.—l— e 3

(6.15¢) loo| < Fo €xp [— Bi(t/e)?]

with &y, B constants dej)éndmg only on c.

ProoF. — See Appendix.

REMARK 6.2. — The estimates of Theorem 6.3 hold also for the kernel F,, R,
eF,+ F. In fact, by means of the method of proof of Theorem 6.3; one can verifies
that for re @, and 0 < e<<t it ig

(6.164) Fo=ol + o) Ert o, B=(1+o)B+t e

(6.160) (@ DF =1+ o) B+ o

where the remainder terms satisfy estimates such as (6.158, ¢).
Let now

(6.17) ’ W= BV I, d=d4.

As another consequence of the method of proof of Theorem 6.3, one can deduces
also an estimate uniformly valid for any ¢>0 and re[0,¢]. In fact
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THEOREM 6.4. — For all >0 and r e {0, 1], F verifies the following inequality
(6.18) eF(ryt) < ky exp [— ogt/e] + ky(tfe) exp [— oi(r — ot)?[et] ,
where oy and o, are the constants defined in (6.17).-

ProoF. ~ See Appendix.

REMARK 6.3. — -When {> ¢ and in a neighbourhood of the boundary of the for-
ward cone /,, the kernels F, F, and R are therefore approximated by means of the
fundamental solution #, of the heat equationv (1.9).

7. — Maximum principles.
At first we consider the Cauchy problem #, (n =1, 2,3). Let h, and h, be the

tunctions defined in (6.10a, b) and let f,(z, ) the mean values of the data f:{z) given
by (2.4a, b, ¢) according to the number n. We put

- 2 -
(7.1) (&, t) = inf 3,(rfy) + > h; inf (rf), O<r<t
T i=1
(1.2) wH(a, 1) = sup )+ Z h; sup (rf.) , 0<r<t

=1
where h;(f) are ﬁositive value and bounded functions. (see (6.13)).

THEOREM T7.1. — Whatever the number n = 1,2,3 of space dimensions may be,
_ the solution of the problem @, (with f = 0) satisfiés the followmg marimum ;pmwzple

(7.3) ur <uld, f)<ut, weRr, 150.

Proor. — The proof is a consequence of Theorems 6.1 and 62 ‘Consider the
representation (4.7) of 4 and observe that, being the source term f vanishing, one has

(7.4) . U = _€Ql/f2-i— (l + ﬁai)u‘fl + W
where u, are defined by (4.5) and
Uy = (607 — edp 4 Ty, .

As F > 0 everywhere in 2, by (6.11), it is

by int (7";2) <&y, <hy SUP (T;z) y (0<r<t).

r T
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Further

£

(7.5) (1 + 6d)u; = eF (1, Dytfi(w, 1) + | rulw, r)(1 + £8,) F(r, 1) dr

0

hence, applying (6.15) and (6.12), it draws
hy 1nf (rh) <(1 + £8,)uy, <hy sup( rf),  (O<r<t).

As for wy, being F = — ¢, F,, by means of standard computations and integrat-
ing by parts (see (3.7d)), it results

(7.6) e = exp [— Ktfo(e) + [R(r, )2, (e, ] dr

where R is the positive value function given by (6.8). Observe now that
fﬂ(m) = [ar(/rfo(w7 7‘)]r=0
and that (6.11), holds. Consequently also for u#, one has

inf 8,(rf)) <uz<sup 8,(rfo), (0<r<i)

and the proof is complete.

In view of other applications, we observe explicitly that from (7.4)-(7.5)-(7.6)
it is evident that when f = 0 u can be expressed (see (3.7d)) also as follows (» € R,
t>0)

(1.7) = eu,, + exp [— Atfe]tfy(o, 1) +frf1w, 1 ed)E(r, 1) dr +

+exp[—k2t]fo +er, ) 3,[o(ary )] dir

with R given by (6.8).
Obviously various consequences can be obtained from Theorem 7.1, as show
the following examples.

ExAMPLE 7.1. — By (7.2)-(6.13), for # € R» and ¢>0 immediately it follows

(1.8) ul<sup [e )] + ot 3ot swp rf, 0<r<d).

ExAMPLE 7.2. - When all the data have a same constant sign, also the solution %
has constant sign. More precisely, if
a) f;(x)=>0 (1 =10,1,2) when n =1

z € Rn
b) fi@)>0 (4=10,1,2) and A4,f,>0 when # =2,3
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(7.9) wlz, ) >0, xeB" 1>0,

which gives also a very simple minimum principle when f,(x) = 0.
In the inhomogeneous case the formula (7.9) holds too when, in addition, f(x, ) >0
in Y.

ExamrrLe 7.3. — For n =1 and f{2)>0 (i =0, 1, 2) easily one has

z+t

inf fo(@) <u<sUD (@) + (26 f [hy)  ehi)] dy -

ot

Furthermore, these results can be used also to state comparison thecrems and
to obtain appropriate approximations of 4 with the determination of an explicit
bound for the error. It suffices to apply well known methods of the theory on
maximum principles (see e.g. [30]).

Consider now the cage with f 0 and f,=0 (¢ = 0,1, 2). Then the solution
(4.7) of &, reduces it self to the term #, defined by (4.6). So, if we put

(7.10) fol@, t, v) = sup rf(z, r; t—1), @R 0<T<t
(R4

from the properties of F it draws:

THEOREM 7.2. — For x € R* (n =1, 2, 3) and t > 0, the solution u, of the problem
P, with initial date vanishing satisfies the following estimate

(7.11) | <ot f @, 1, 0) de, (0,f)e X"

where f, is given by (7.10).

Proor. — Referring to the definition (4.6) of u,, it suffices to observe that # > 0
and the inequality (3.7¢) holds; then

B, 2ty 75 1= ) dr <oyt ),

o

hence obviously one deduces (7.11).

Finally consider the solution v of the signaling problem 5 (Sect. 5). The proper-
ties (6.1b) and (5.8) of the kernel F, enable us to prove the following maximum
prineiple for v.
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THEOREM 7.3. — If for all 1> 0 the datum D(t) has a constani sign, also v has the
constamt sign of . Furthermore, in any case, 1t results

(7.12) [o(z, )] <sup |D(z)|, t>2>0.
Ot~

Proor, - The first part of Theorem is evident on the basis of (5.6)-(6.15). As
for (7.12) we observe that, being F,>0, by (5.8) one has '

[v|<sup | D] [exp [— Aém/s] —};fFﬂ(m, ) dr] : sﬁp |D].

8. — General behaviour of the solutions of 2.

Now we deal with a qualitative analysis of the solution % of £, (n =1, 2, 3)
for all ¢>0.

At first we observe that the kernel F(r,t) depends on # = |z, {, ¢ by means of
the ratios r/s and t/e (with r<?) and that the modified Bessel functions which appear
in the definition (3.2) of F are series of power of (r/e)(f — r)/e and (¢2— r2)/e2. Con-
sequently, when tfe<<1 (hence also #/e<C1), there is not problem; well known
properties of the Bessel functions enable us to estimate F with a degree of accuracy
however prefixed, particularly near to the wave-front # = ¢ and near » = 0.

As an example, let us consider the case f,=f,=10, f=0 and let (see (6.9D))

1) - hy(t) = R(0, f)<ce(1 L t/e) exp [~ k3t].

As |E(r, ) — R(0, t)] < const (f/e), when f, is a smooth function and ¢/e < 1, by (7.7)
one deduces
u=u;+ 0(*e?), (fe<<1),
with '
ty == exp [~ E*t]fo(x) -+ ho(t) tfo(x, i) .

Therefore, being h, of the order of exp [— ¢/¢], the first signal appears as exponentially
damped small precursor wave propagating with the speed of the wave-front.

8.1. Diffusion of waves. Proof of Theorem 1.1.

“'On the contrary, when i/¢>> 1, the analysis is more difficult. Obvicusly the
agymptotic properties of 4 depend on the behavior of the data f,(x). For example,
constant data can imply that # — oo as ¢ —oo; in fact the problem &, with
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fo=Ff=Ff=0 and f,= 4, (const) admits the unbounded solution

u = Azet — A,e%(1 — exp [— tfe]) .

Theorem 6.3 on the asymptotic behavior of the kernel F is basic for this analysis.
By means of this theorem one deduces that « and the solution u, of the Cauchy
problem related to heat equation (1.7) with datum ¥ (see (1.9a)) have the same
agymptotic properties. Therefore, referring to the Section 1.2, we prove now The-
orem 1.1. ' ' ‘

Proor orF THEOREM 1.1. ~ By (7.7) and (6.16a,b) one deduces

2

" = f Bilry 1) P (@, ) dr -+ g,

0

where ¥ is defined by (1.9a) and F, is the fundamental solution of (1.7) given by
(6.14). Further, let us consider the estimates (6.15b, ¢) and Remark 6.2; being ¥ a
bounded function by hypothesis, one has easily

o] < congt ]|!P|{(e/§)* .

Lastly, by definitions (1.10) and (6.14) of u, and F, it is obvious that
.[uh—fEh(r, ) ¥ (2, r).dr| < const exp [— Adtfe]
o .

hence (1.11) follows. -

REMARK B.1. — Obviously the hypothesis of Theorem 1.1 that ¥ is a bounded
function can be attenuated. In fact in any case, when t/e > 1, u; represents the
main part of «.

REMARK 8.2. — Let us observe that, by means of well-known properties of the
comparison function u, and with appropriate hypotheses on ¥, for all ¢> 0 by
(1.11) one has

lim w(x, ) = lim ¥(z, of) = 3,(rf,) -+ ¢,

&0 e~>0

which is the classic solution of the problem deduced from £, setting formally ¢ = 0.

Therefore, to draw a conbhl'sidn, one can assemble all the times in two intervals
such as [0, ¢] and Je, oof, 50 the results foreseen by Whitham and advanced in
Sect. 1.2 are rigorously proved and evaluated.
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8.2. Asymptotic properties.

Theorem 7.1, besides proving and evaluating diffusion at large t/e, can be applied
also to obtain the asymptotic behavior of #. Clearly, this analysis ean be improved
when the data are specified. For this we deal with some examples.

ExAmprE 8.1, — Problem P, with periodic inttial data.

If fi(») = 4,sen w,;x one has

(8.2) rf.(my ) = (4;/w,) sen (w;z) sen (w;7), (¢=0,1,2)

and these functions verify the hypothesis of Theorem 1.1. Consequently, being
(see [19], p. 158)

b b
2/02
—— | exp|—
\/:'catf p[ &t

]eos (0,0) dv = exp [— Awiet], (A= (4b¥)1)

by (1.10)-(1.94) one obtaing

83) = (30T e 05D [~ Bpet] + 3 et (e, of) exp [— Fabet]

t=1

Therefore, unlike the classic case, when the initial disturbances are periodic and
§ = 0, the gsolution of &, vanishes as ¢ — co uniformly in x.

REMARK 8.3. — For periodic initial data, the asymptotic formula (8.3) exhibits
the slow-time e which accounts the singularity of the perturbation as & — 0 and
t —oco (see Sect. 10.2).

ExXAMPLE 8.2. — Problem P, with initial data {,(x) € S (R).

When the initial data are suitable vanishing as |#| = oo, it must needs apply
directly Theorem 6.4 for asymptotic estimates. So, in the case we deal with, when
f = 0 one obtains

@) € FB) = u e FP(TL) .
In fact, we will prove that

THEOREM 8.1. — Let foe FLUR?) be and fy, f,€ FSYR). Then, for large t and uni-
formly in %€ R, the solution of P, (with f = 0) satisfies the following asymptotic
estimate

const. ¢

&4 M EaTEY

(Ifollse + [Fuloa =+ [faloz)

with the constant depending only on e.
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ProOOF. — Being f,c 7(R% (m = 0,1), one has

2 il ms
[Tfi(w, \ ze R,
At lill[;lfr
Further
ff = dar2[1 + 2)w)? £ 272+ ([o)2—r2) 2]t <dar(1 + [zt + #2)
ly—zl=r
hence

f rF(rt
]ufi! < “fiﬁmzfﬁl‘?_"{‘fv%:l_)‘;z‘ dr y re R?.

So, applying Theorem 6.4, easily it draws

by | < const [fe|met(1 4 [wf2 4 22)-1

and, estimating in the same way all the therms of « given by (7.7), the proof is
complete.

9. — Generalized Huyghens principle. Proof of theorem 1.2.

Congsider now the case that the initial disturbances are localized in a ball B(0, g)
of radius ¢ and center 0.

Then, according to what has been advanced in Section 1.3, we will show that
when n =3 there is a time ingtant t,= ¢(|o| + o) after which u—though not van-

ishing—decays exponentially in time. Further we will prove that this results does
not subsist when n =2 or n = 1,

A) Case n = 3. Proof of Theorem 1.2,

Ag it is well known, when the initial disturbance is localized in the ball B(0, )
for any @ € R® such that o ¢ B(0, g) it results:

(9.1) rfy(@,r) =0 for any r¢ [lz] — o, 2] + o] -

Further for large r the function #f,(x, ), while its support expands, decays being

at most of the order of 1/r (see e.g. [24], p. 109). Consequently, for ¢> |z| + ¢ one
has

lel+g
(9.2) %y, (@, 1) -—fl’ (ryt)rfi(aw, ) dr, ze RS

le]—e
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and by Theorem 1.1 easily one can see that u, is always such that
(9.3) {u,‘[<con§t. ™, i>lel+oe.
But at the later instants such that

t>t= (lo] + o) /o> |o| + ¢

one has r< |z| 4 ¢ < ¢t and therefore, if we put a?= b2¢?/s, by Theorem 6.3 easily

it draws
lei+a

t 2
(9.4) s, | < 9&%— f exp [—Z—t (et — 7)2] dr<econst exp [— a2(1 —t,/8)%¢] .

lal—g

Applying this formula to all the terms #, which appear in the representation (7.7)
of u, easily (1.12) follows.

REMARK 9.1. — Ag the proof of Theorem 1.2 shows, the main part of the signal
appears as & diffusione process in the time-interval [(jz| — o)/c, (|z| + o)/c] related
to the speed ¢ of the lowest order waves.

B) Case n =2 or n = 1.

Oonsider now the case n == 2 where, it is well known, the effect of the initial
disturbances appear in z ¢ B(0, g) at the instant #,= |¢| — ¢ and is observed there
at any later ingtant. So one has

(9.5) sy, = f Fir, t)rf(w, r) dr, weR?

lzl—e

and [[z] — g, t] is—for any ¢—a neighbourhood of the point of maximom ¢ = ¢t
of the function ¥, approximating F(r,t) when ¢ is large. Consequently in this case
there is not time-instant t, such that the estimate (1.12) holds. Analogous result holds
when n = 1.

In two dimensions it is possible to prove, by means of the various estimates
above stated, that the rate of decay with time ¢ is of order 1/, like the classic case.

10. — Analysis of singular perturbations.

In this Section we will show the application of theorems above stated to the
analysis of singular perturbations for the one-dimensional Cauchy problem #, and
the signaling problem 2. The generalization to the three-dimensional and bi-di-
mensional cases is straight-forward. In what follows, #, and v, denote the solutions
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of Z, and ## related to L,, while u, and v, are the solutions of the limit problems
which one deduces from #; and # putting formally ¢ = 0 in L,.

On this subject we recall that the present boundary layer problems fall within a
clags of abstractly defined problems for which J. L. LioNs demonstrated the con-
vergence of «, to u, in the sense of a snitable weak topology for a finite interval of
time [21].

At first we observe that the subcharacteristics of L, are #4-¢t = const; so, when
¢*< 1 it is reasonable to conceive of u, as a limit of the exact solution ag ¢ — 0. On
the contrary, when ¢®> 1 the subcharacteristics through the point (z, ¢) lie outside
the demain of dependence of w,. The speed of the disturbances associated with the
subcharacteristics is greater than that of the characteristics of L,. In this case one
cannot expect u, as the limit of the exaet solution u, [26]. This strange behavior
is connected with the fact that the condition e¢2> 1 is not reasonable from the
physical point of view.

Thus, for example, in viscoelasticity one has ¢ = ¢}/c = g(c0)/g(0), where
g(0) and g(co) are, respectively, the determinations for ¢ =0 and ¢ = co of the
decreasing relaxation function g(f). In thermochemistry ¢, is the frozen sound speed
and ¢, is the equilibrium sound speed; well-known results of thermodynamic stability
show that ¢,< ¢, [4].

10.1. Signaling problem. Interior layer.

The signaling problem #—defined by (4.1)-(5.2)-(5.3)—has the solution v, given
by (5.6). Now, when @%(0) 5= 0, there is a real discontinuity in the function v, and
in its derivatives along the characteristic curve & = ¢; in fact v, is identieally zero
for # > ¢ On the contrary

Vo(y ) = H(t — x/0) D(t — x/c)

has a discontinuity on the subcharacteristic # = ¢f; such a discontinuity is not
permitted to v, (when &> 0). Consequently, the limit solution w, cannot be an
uniformly valid approximation and an inierior layer on the particular subcharac-
teristic { = o — ¢t = 0 appears.

The formal computation of asymptotic series can be done by means of the
matching asymptotic expansions (see [25], [26]). But a rigorous analysis and an
exact estimate of this singular behavior can be only given by a careful examination
of the solution (5.6). The question is solved by means a theorem such as Theo-
rem 1.1, If

pr=cb*, @] =sup|D(r)], O<r<i—u,

on the basis of what was illustrated at Section 8, it draws the following uniformly
valid approximation to v,.
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THEOREM 10.1. — Let D(1) be bounded in [0, oo and let 0 < e << ®. Then, for any
we RY and t>x, one has

t—zxfc

(10.1) V{2, t) = \73% exp [—ﬂ:gz

]Qﬁ(t———%——u)du + v

where the remainder ferm v, satisfies the estimate uniformly in t>x
(10.2) [v,] < const |D](efx)?
with the constant depending only on e.

REMARK 10.1. ~ This theorem shows rigorously that the inferior layer equation,
according to what foreseen by WaHITHAM [1-2], is the heat equation

Up=Prthy, With T =10, Y =1~ z/c

where the diffusion coefficient f, is given by ¢/48%. The essentially diffusive character
of the phenomenon, when « > ¢ > 0, is revealed. The maximum disturbance, for
every positive ¢/z << 1, travels with the speed ¢ of the lowest order waves and diffuses
with a characteristic diffusion width defined by # — ¢f = (B/a)Ve», where B is a
prefixed constant. The interior layer tickness here is an order of magnitude larger
than in the initial boundary layer.

10.2. Periodic initial data. Singularity at ¢ = co.

Consider now the problem £, with f = 0 and
(10.3) fix) = A, cosw;x, {(i==10,1,2) (4, const).
By Example 8.1 one has uniformly in

lim u(2,7) =0, wzeck,

>
while w,(x, t) does not admit limit as ¢ — co. Further o;7uy(x, 0) 3= fy(), so in this
case the perturbation for ¢ -» 0 is singular at ¢ = 0 and ¢ = co.

The explicit formula (8.3) for the comparison funetion u, related to this case,
together with the estimate (1.11), give us a rigorous asymptotic representation as
(¢/t)y = 0. But this approximation does not account the singularity at ¢ = 0. This
question can be solved easily by means of theorems previously stated. For this let

1 — ¢?

bk: B

w, (k=0,1), 2y,=cwj—e’b;

go= %fa— &fs+ (bo + va)fo
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and let exp [— t/e]#(x, t) a boundary-layer function with z given by

2+t

(10.4) e, 1) = 3[[ebafoly) + to)) dy -

=3

Further, let
(10.5) to(, o) = etf(@, ct) + Oufetfo(x, of)] .
Referring to these notations we will prove that

THEOREM 10.2. — Let u, be the solution of the problem Z, defined by f = 0 and by
the initial conditions (10.3). As ¢ — 0 u,, for all t>0 and x € B, is approximated by

(10.6) 5, = exp [— boet] dletfu(a, )] + exp [— byetl[otfy(a, et)] +
+ exp [— tfelz(@, 1) + erq,

with the remainder term v, uniformly bounded by a constant depending only on c.

PrOOF. — The proof is a congequence of Theorem 7.2. In fact, the remainder
term 7, is the solution of a problem £, with initial data vanishing and a source term

f=1-+f" with
f'= — e 1L, (exp [— t/e]2)
f'= — g L;[exp [— byst] 8t(0tf0) + exp [~ b13t](ctf1)] .

Now, referring to the function f. defined by (7.10) and observing that b, = wi(1 —
— ¢%)/2, it is easy to verify that

lf«(@, 7, t)| <const {eexp [— eb(t — )] + e~ exp [— (t — 7)[e][1l + (¢ — 7) -+ (¢ — 7)1},
where b = min (b, b;). So, by Theorem 7.2 (see (7.11)) one has

Iry] = |w;]<const, (x,1) e Y3
with the constant depending only on e.

REMARK 10.2. — Unlike the method exponnded in [14], this analysis can be done
in the general case that f,(x) are given by their Fourier series.

24 ~ Annali di Malemalica
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10.3. An example. The viscoelastic case.

As an example, consider the application of Theorem 10.2 to the viscoelastic case
where the equation (1.2) characterizes the motions of the standard linear solid whose
memory function g(f) is

g{t) = g(oo) + [g(0) — g(co)] exp [— t/e] ,

with ¢ a relaxation time and g(oo) << ¢(0). In this case the two characteristic speeds
¢, and ¢, are

2 2 ~—1

a= 9—19(0) s Gg=0 'g(o0), ((3(2,< 03)

and o is the mass density. Obviously the case ¢ = 0 corresponds to the elastic waves
propagating with the speed c,.

To deal with a simple case, we will refer to problem £, with periodic initial data,
agsuming that w,= w,= w,. Then by (10.6) one has

(10.7) w, = exp [— byet]uy(x, ¢ 1) 4 exp [— t/e]2(x, o1t) - €ry

where ,(x, ¢,t) is the pure elastic wave defined by (10.5) and associated with the
speed ¢y, while z is the wave represented by (10.4) and related to the faster speed ¢;:
By (10.7) the coneclusions advanced in Section 1.4 obviously follow.

11. - Appendix: proof of theorem 6.3.

Consider the funetion F(r,¢) which is defined in £ and put tfe=1,vr=1%
(¢ €[0,1]). According to (3.1), if

w=2V1I—2g, p=2iVe(l—z), ¢=11-—2)2,
one has w = tw, & = p, 1 = 1¢q. Setting

(A1) g(z, 7, 0) = Texp [— [A2+ (1 — 2) — qv*]T] L (7w V1 =v*)[4gvI(Tpv) -+
+ pLi(zpv)]

the function e, which depends only on g, 7, is

(11.2) eF(e, ) = exp [— A2t — (1 — 2) 7] Lo(tw) + f 9(z, 7, v) dv.

0

Further let @ = {(2, v) € [0, 1]2} be.
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Preliminarly we observe that by the well-known relation (y real positive)

(11.3) L.(y)<exp (), (y>0)
one hag, for all 7>0 and (2, v)e@
(11.4) g(z; 7, ¥) <exp[— Th(zy )],

with

(11.5) kg, v) = (6V1I—z — wVz): + 22)[VI—z —V(1 + )T —03)]*.
This function h plays a basic role in our analysis. First of all we obgserve that
REMARK 11.1. — The function &, given by (11.5) and defined in ¢, has an absolute
minimum at 2, = ¢, v,=[2¢/(1 + ¢)]}, where vanishes.
Moreover it can be shown that
LEMMA 11.1. — For all (z,v) €Q it results

(11.6) b (f4)(e — 2)%; > (ei2/4) (o — v)*.

PROOF. ~ In [16] we have already proved (11.6),. As for (11.6), we observe
that if

H = (evVI—z—IvVz)2, H,=22)[V1—2z—+v({1+2)(1—0%]

we have

a) for (z,0) €[0,¢|X[0,0,] or (2, 0)€[e, 11X [v,, 1]

Hy(z, v) > Hi(#, v) = €A*(v — 05)%;

b) for (2, v) [0, e} X{v,,1] or (2, 9)€[e, 11X [0, v,]

Hy(z, v) > Hy(2y, v) = (A%/2)(1 + o)(V1I— 02— V1 —03)2.

Now, being ]\/1 —02 —/1 —v3]> (wo/2) |0 — ] and (1 -+ ¢)v} = 2¢, it follows also
Hz(zy ’0) = (02*2/4)(” - 00)2 .

Therefore for all (2, v) €@ the inequality (11.6), holds.
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By (11.4) and Lemma 11.1 one deduces:

Lemma 11.2. — For any real positive constant a, such that [v,— a,, v+ a,] is
enclosed in [0,1], for all v>0 and z€[0,1] the following estimaie holds

votag
(11.7) 0<:aF@,7)—fg@,n1ﬂdv<kﬂl—#z)exp[—ol%ﬁrﬂ]

V=g
where the constant ky depends only on c.

ProOF. —~ Applying (11.3) to the finite term of (11.2), one has

(11.8) exp [(e22 — p?) 1] L (vw) <exp [— Ta(?)]<exp [— 7og]
where
(11.9) ai= -+ Nt A > (of4) Nal,

is the absolute minimum of the function w(e) = ¢*(1 — 2) 4 A*— A24/1—z% Besides,
also the terms

(f +f)g<z,r,v)dv
[} vatag

satisfies (11.7) according to (11.4) and (11.6),.

These resulis suggest, on the basis of the classical Laplace’s method, that the
asymptotic behaviour of ¥, when 7 >1, depends on a suitable neighbourhood of
(%9, ;). To determine a rigorous estimate of the remainder term we must consider

(11.10) 6(r) = 7,  %(r) = g7

where 6, and y, are two arbitrary real positive constant such that ,< min (2,
1 —2,) and y,<<min (v, 1 —v,). So,

Qo= {(z’ v) € [2o— 0, 2 -+ 0] X [v0— 2, 0o+ X]}CQ

and congequently the asymptotic expansion of Bessel functions can be applied for
all 7>1 and (2, v)€Q,. It is well known that for y real, large and positive [20]
one has

eﬂ
 Vamy

(11.11) I.(y) A +r), (¥>1)
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with lr(y)| < const y~*. Therefore applying this formula to the function g when
7>1 and (2, v) €Q,, one obtains

(11.12) (2, v, T) = (2, v) ©xp [— Thiz, v)]J(1 + 1), (77 >1, (3,v)€ Qo)

with

dqv + p

(11.13 2, 0) = o
( ) e ) 27V pow (1 — v?)}

and [r,| < const v71, the constant depeﬂding only on o, Oy, %

LeMMA 11.3. — For all ©>1 and (2, v) €@, it resulis
(11.14) exp [— 7h(z, v)] = (1 -+ ry) exp [— (v — vy)?1 — b2(2 — ¢)*7] ,
with a?= ¢(1 4 ¢), b2 = (442)~* and the remainder term ry such that
(11.15) lra| < Ea([o — wo| + & — 20)?
where &, is a constant depending only on c.

ProOF. — Evaluate % by Taylor’s formula observing that h..(z, v) = 0. This
gives ’ ' )

(11.16) h = (v — ,)° + b2 — 2)* +
with

o= g0 — 20) - (07— 00) 2P h(e, 04)

where (2%, v4) €Qo; hence easily one deduces |k <const (¢ — 2| + [v — ,|)® with
the constant depending only on ¢, §, and y,: Moreover, choosing suitably 6, and x,
according (11.10) one has

(1117 7|he| < const (0, -+ #0)2<< 1.

Congequently

(11.18)  lexp [— vhy] — 1|<7|hs| exp [v[hs|]<er|hs| <const o(Je — 20| + [0 — vo])® .

Thus (11.14)-(11.15) are consequences of (11.16)-(11.17) and the proof is complete,
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Proor oF THEOREM 6.3. — Referring to (11.13), by means of Taylor’s formula
one has

(2, ©) — plzo, v5)] < const ([v—vo| + g —2]), (2, 0) €Q

with u(2, vo) = po = ab/(mwc). Therefore Lemmas 11.2 and 11.3 with formulae (11.12)-
(11.14) and (11.15) give

oty
eF = L oxp[—bree — o)) f exp[— @ (v — 1)) (L - 75) -+ 4,

vo— X
with the remainder terms r;, r,, such that
Irs] < const [v71 - 7([v — v + |2 — 2])%],  |re| < constexp [— g 7] .
At this point, by means of standard computations, the proof is complete.

REMARK 11.2. - The proof of Theorem 6.4 iz an obvious consequence of formulae
(11.8) and (11.6),.
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