Complex Interpolation and Geometry of Banach Spaces ().

MarIo Miivax (Illinois, U.S.A))

Summary. ~ The eoincidence of the real and complex methods of interpolation is investigated.
Positive results are established under the presence of geometrical properties which are ex-
pressed in terms of wvector valued Fourier transforms. The results are applied to complew
interpolation of H® spaces and to the study of geometrical properties of Banach spaces.

1. - Introduction.

The theory of interpolation spaces plays an important role in classical harmonic
analysis. It also has important applications to PDE’s, Approximation Theory, and
many other areas of analysis including applications to the study of the geometry
of Banach spaces.

The most important methods of interpolation that have been developed are
the so called real and complex methods of interpolation. A brief synopsis is given
in § 2 below.

These methods are rather different in character and produce, in general, different
results. The real method allows one to derive «strong type» results from weak
end point estimates, it also allows one to interpolate the very general classes of
spaces (not necessarily Banach spaces) that do appear in real life. Moreover, it has
the good quality of being easier to determine than ity complex counterpart. The
complex method is a rather powerful tool to deal with analytic families of operators
(you can interpolate both the spaces and the operators!) and gives sharp norm
estimates.

In this paper we are concerned with the relationship between the two methods.
Following ideas of PEETRE [18], we have shown elsewhere (cf. [16], [17]) that in
many ingtances the real method can be used successfully to determine the complex
method.

The key to these results are certain geometrical properties of the spaces eon-
necting many of the familiar scales of interpolation spaces. These properties are
better expressed for interpolation purposes in terms of vector valued Fourier trans-
formg. However, these transforms encode basic geometrical properties as we shall
soon show.

(*) Entrata in Redazione il 16 maggio 1983.
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In retrospect it is interesting to point out that one of the first applications of
the interpolation theorem of Marcel Riesz was his unified and simplified proof of
the Hausdorff-Young-Tichmarsh estimates for the Fourier transforms f — I

Here we take vector valued versions of these classical theorems as definitions
and proceed to derive a manifold of interesting applications.

The plan of the paper is as follows: in § 2 we give a brief presentation of the
needed background on interpolation theory, in § 3 we introduce several notions
of Fourier type and study its stability under interpolation, in § 4 we complete work
by A.P. CALDERON, A. TORCHINSKY [5] and R. MaAcias [14] on interpolation of H?
spaces on homogeneous spaces, in § 5 we show that Fourier type spaces have norms
satistying Clarkson’s inequalities, in § 6 we discuss p-Rademacher type and the
Fourier type of Banach lattices.

There are no difficult proofs in the paper. Some of the results derived (as those
in § 4) give solutions to open problems and it seems difficult to imagine an easier
solution than the one given here in view of the technical complications that already
appear in the classical R» situation (see [10]). The applications in § 5 and § 6 provide
a framework from which many classical and new results on the geometry of Banach
spaces ean be obtained without effort.

Acknowledgements. ~ 1 wish to thank M. OWIKEL, S. JANSON, S. KAIJSER, P.
N1Legon and J. PEETRE for their valuable comments on the first version of this article.

2. ~ Interpolation methods.

In this section I shall review some of the basic definitions and results of the real
and complex methods of interpolation. The interested reader is referred to [3] for a

detailed aceount.
A Banach couple 4 = (4,, 4,) is a couple of Banach spaces 4, 4, embedded

in a suitable topological Hausdorff space V.

2.1. The real method.

Let A be a Banach couple, 0 < <1, 1<p< oo, then let

_ dt
Won(d) = {u: (0, 00) — Ay Ay 0u(t) € I (Ao, flt—t) #0u(t) € I? (Al, 7)}

| ]w,, = max {JEu(t)] o, ars 1E70u(8) ]| sy, aern} -

The interpolation spaces Zﬂ,ﬂ are defined by

Ze’, = {w ed,+ A Jue Wy, 8.t 2= J.u(t)%l5 (convergence in 4, -+ Al)}
v



Mario MiiMAN: Complex interpolation and geometry, efe. 319

with

fols,, = int{ juln,,: o =fu<t) 2.

This is the description of the real methods of LioNs-PEETRE [13]. A similar
definition can be obtained by discretization (i.e., replacing f by 3 in an appropriate
way).

2.2. The complex method (cf. CALDERON [4]).

Let A be a Banach couple, 0 < 0 < 1, then let & 6(Z) be the space of functions
f: 0<Rez<l — A,+ A,, such that f(z) is analytic on 0 << Rez<C1, continuous
and bounded on 4, 4, and f(j - i) is a continuous function with respect to
4;,7=0,1, neR. Let

) 7@ = 1&?21‘ {176 + in) “Lm(Aj)}
and define A, = {we d,+ 4,: If € Fy(4) s.t. () = a},

lo]z,= inf {|f]g,@: /(6) = «} .

It is important to remark that in (1) we can replace the L*(4;) spaces by any
IP(4,), 1<p;<oo,j = 1,00 and still obtain the same interpolation spaces. This
was explicitly pointed out by PEEIRE [18].

2.3. Interpolation of vector valued I? spaces.

Let 1<P = (p,, P1) < o0, and given a Banach couple 4, form the Banach couple
12(A) = (I*(4,), I”(A4,)), of vector valued L» spaces on a measure space (X, p).

The next result summarizes the basic results on interpolation of vector valued
L» gpaces. \

(2.3.1) TEEOREM. — Let 1<p,7 p; <00, 0 <0 <1, 1<qg< o0, 1/py= (1 — 0)/p, +
+ 0/py, w = min {g, p,}, s = max {g, p,}, then
(i) Lr(dy,,) € (L7(A))g,,5 (L(A))y,, C L7(4y,,)
(i) (Z7(4)),= L*(d,).
ProOF. ~ (i) By the « power theorem » (cf. [3], page 68) for any Banach couple B

we have (B, )= (B), , where r = q/p,, n = 0p,/p,. Moreover, it is well known
and easy to see that

K(t,f, [IP(A)F) ~[ K (t, 1@), 5°) du(a) .

20 ~ Annali di Malematica
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Therefore,
. e 1r v — r 1/r
iz~ [ @ g}~ { ferme o, 2 auof 1"
[ 0 X

Consequently, if ¢>p,, by Minkowski’s inequality

[F1tEzcan.. < @)z,

thus by the power theorem

1G5, < 7@ Z 1 =

= [ Zee, ) -

The norm estimates have to be reversed when ¢ < p,.
(ii) See [3].

(2.3.2) REMARK. — The second part of (2.3.1) is proved in CALDERON [4] with
extra restrictions on 4,, 4,. It is also easy to give a proof of the first half using
the metheds of Lions-PEETRE [13], and the definitions given in this section.

2.4. Real vs complex.

The real and complex methods give in general very different results. However,
under the presence of additional geometrical properties of the spaces involved, they
do coincide.

The relationship between the real and complex method that we shall exploit
here depends on the behaviour of vector valued Fourier transforms. The original
idea goes back once again to LIONS-PEETRE [13] and is developed in PEETRE [18].

(2.4.1) DEFINITION. — A Banach space X is said to be of weak R-Fourier type p,
1<p<?2, if the vector valued Fourier transform

F1(€) = |exp [@£]f(2) dt

R

defines a bounded ocperator,

Q

: IP(X) = IP(X),
PERTRE [18] derives the following

(2.4.2) THEOREM. — Let 4 = (4,, 4,) be a Banach couple with weak R-Fourier

‘ type p = (p07p1)7 then

- - 1 1—6 @

Ag,CA — = —.
e o Po Do +p1
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In [16], [17] we have shown that (2.4.2) can be converted in a rather powerful
tool when used in conjunction with the beautiful proof of Sagher’s conjecture by
T. WOLFF [23]:

(2.4.3) THEOREM. — Let 4, ¢ = 0, ..., 3 be Banach spaces continuously embedded
in a suitable large Hausdorff topological vector space. Let 0 << <1, 0 = 4,

7= (1 — u)6 - u, then

(1) If A, = (4,, 4,);,, 4y = (4,, 4,), ,, then 4, = (4., 4,), ,, 4,= (4, 4,), .-

#,e?

(i) If A, = (4,, As)a, Ay= (4;, A3)u, then A, = (4o, A;)o, A= (4, 45)y.

The picture of the sitnation is:

[y

0 8 7

r

A, 4, A, A

@

And its importance in our method is that it allows to deal with each «end point »
space separately and therefore use (2.4.2) to the advantage.
A detailed study of (2.4.3) has been given in [11].

3. — Fourier type.

It will be important to extend the definition of Fourier type to a more general
setting.

Let G be a locally compact abelian group with character group G, provided with
normalized Haar measures y and j respectively. Given a Banach space X, we define
the Fourier transform & on ILY(G, X) by

(FNE =[e0it) quw, Eeb.

(3.1) DEFINITION. — A Banach space X is said to be of G-Fourier, type p, 1<p<2
if the operator F can be extended to define a bounded contraction,

5: 1?6, X) - 17 (G, X),

oA

1

We shall say that X is of weak G-Fourier type p, 1<p<2, if § can be extended
to a bounded operator

5: I*(G, X) - L*(G, X), +%= 1.

|
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A Banach space X is said to be of (resp. weak) Fourier type p, 1<p<2, if it is
of (resp. weak) G-Fourier type p for all locally compact abelian groups.

It is clear that every Banach space X is of Fourier type 1 and every Hilbert
space is of Fourier type 2. Interpolation theory provides methods to obtain Banach
spaces of Fourier type p, 1 < p << 2.

(3.2) THEOREM. ~ Let A = (4,, 4,) be a Banach couple of G-Fourier type p,
and p, respectively, let 0 <6 <1, and 1/p,= (1 — 0)/p, + 0/p,, then
(i) 4,,, is of weak G-Fourier type p,.
(i) 4, is of G-Fourier type p,.
(iii) Similar statements hold if we replace « G-Fourier type » by « (resp. weak)
Fourier type» in the assumptions and the conclusions

ProoF. — By hypothesis

[ Ze(de) > Iy
Y 4y - 194y

Therefore, using the real and complex methods, with p'= (p,, p;), We get

() F: (I2(A))y,0, > (T2 (A)) 5,0,
(il) F: (Ir(d)), — (I*'(4)),

using (2.3.1) we get

[ I
T I

o.ws) = LPo(A,0,)
o) — Lvo(d,)

as desired.

(3.3) REMARK. — The above result is due to PEETRE [18] in the case of weak
R-Fourier type. Peetre’s result has the additional restriction that one of the spaces
(4, A4;) should be reflexive which is not really needed here.

The following duality theorem holds:

(3.4) THEOREM. ~ Let X be a Banach space with the Radon-Nikodym property
(cf. [61), then

(i) if X is of (resp. weak) G-Fourier type p, 1 << p<2, then X* is of (resp.
weak) G-Fourier type p;

(i) if X is of (resp. weak) Fourier type p, 1 < p<2, then X* ig of (resp. weak)
Fourier type p.
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Proor. — By hypothesis,
F: In(G, X) - L7 (G, X)

5o that by duality, and using the fact that X hag the Radon-Nikodym property,
we get

F: ILo(G, X*) — L7 (G, X*)

(ii) follows by observing that G =¢.

(3.5) EXAMPLES.
(3.5.1). L7 is of Fourier type min {p, p'} (cf. PEETRE [18]), 1<p<oco.

(3.5.2). Let 2 be a minimally smooth domain of R* (cf. [1]). Let W*%(Q) deunote
the usual Sobolev spaces

WHQ) = {f: D*f € I’(Q), |o} <}

with its usual norm, then W*Q) is of Fourier type min {p, p'}, 1<p<oco. This
follows, using W(Q) = [WHQ), Wi(D)],, 1 —6/2 = 1/p, 1 < p<2 (cf. [17]) and du-
ality to deal with the case 2 < p < oo.

(3.5.3). The ¢,(H) spaces are the spaces of compact operators on a Hilbert
space H, normed with |4|,= [tr (4*4)7'2]V?, 1 <p < oo, and the usual | |, norm.
These are non commutative versions of L? spaces and share many of the properties
of their commutative counterparts. In particular their interpolation theory and
duality theory is well understood (cf. [9], [19]).

It follows that we can compute the Fourier type of ¢,(H) to be min {p, p'}.

(3.5.4). The example (3.5.3) can be generalized in geveral directions. A theory
of integration has been developed in gage spaces which allows the study of very
general non commutative L7 spaces including the ones described above. In particular
these spaces share the same interpolation properties as the L7 spaces and we can
compute their Fourier type as above (see [19] and (5.6.2) below).

4. — Applications to interpolation of H?” spaces.

In this section I shall outline the Fourier type technique as it applies to inter-
polation of H? spaces.

I shall deal with H? spaces based on Homogeneous spaces (i.e., groups equipped
with an appropriate family of dilations, for example R»). The reader is referred
to [8] for a full treatment. The main result obtained is an extension of results of
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CALDERON and TorRCHINSKY [5] and MAcIas [14] concerning complex interpolation
of these spaces.

(4.1) THEOREM. — Let X,= HY@), and let X, be either L*(G) or BMO (@),
then (X,, X;)y= L"(@), 1/p,==1—0, where ¢ is an homogeneous space.

Proor. — The idea of the proof (of. [16], [17]) is to reduce everything to the real
method where the results can be easily obtained using atomic decompositions. It
follows (cf. [8]) that

(4.2) (Xoy Xi)g,o= L(py, (), 1<g<oo.

(The FEFFERMAN-RIVIERE-SAGHER [7] arguments can be used almost verbatim
here.) '

Now using (4.2) and (2.4.2) we get L™= (HY, L%, C(H, L*),, with 1/p,=
=1 - 6/2. Moreover, since H'c L', we also have (H?, L?),C L.

Finally we interpolate (L*, X,),= L™, 1 < p < o, using the usual arguments if
X,= L* or the Fefferman-Stein proof if X; = BMO. Summarizing we have:

(43) (Hly LZ)O = L7s ?

(4.4) (L7, Xy)o= L7, , 1<p<oo.

We can now use (2.4.3) to glue these end point results and prove (HY, X,), = L%,
1/p-=1—6. Consider first the case 0 <O <i. Let 1 <p <2 be fixed and let
A=2[p'y u =1— p/2, then according to (4.3) and (4.4) we have (H*, L?),= L,
(I#, X,),= L*. Therefore, by (2.4.3)

’ 1 — o ——;L‘u__

and the computation gives

(4.3’ 1-0:%, 1<p<2.

The case } < 6 < 1 which corresponds to 2 < p < oo is obtained similarly.
Using the reiteration theorem (cf. [3]) we can state
(4.6) COROLLARY. ~ Let X, be either L®(G) or BMO (&), then

() (HP(G)’ X1)e = L7(G), 1{py= (1 —0)/p, 1<p < 003

() (H™(@), H™(@)), = L&), 1[py= (1 —0)[po+ 0/p1, 1<po7~ p1< c0.
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(4.7) REMARK. — The argument given above is rather general and applies to
many concrete scales of spaces as it was shown by the author elsewhere {cf. [16], [17]).

5. — Clarkson’s inequalities for Fourier type spaces.

The idea of using the Fourier transform to obtain the classical Clarkson’s ine-
qualities for I? spaces originates in the work of Wirnrams and WeLLs [22]. Their
method fits in our general framework of interpolation spaces where it produces a
far reaching generalization.

In this section we study the vector valued Fourier transform with respect to
the group G,= {0, 1} with addition modulo 2, with its counting measure and Gy =
= {¢o, 91}, Where g,=1, and ¢,(j) = (— 1)), j = 0,1, provided with } times its
counting measure. ' R

Let X be a Banach space, and consider L?(G,, X), (G, X), 1 <p<2. Asimple
computation shows that

(5.1) THEOREM. — X is of Gy-Fourier type p, 1<p<2, if and only if Vo, ye X
(5.2) (3o —ylz + 1o+ yl5)” <(lalz + lyiz)".
Duality gives

(5.3) THEOREM. — If X is of G-Fourier type p, 1 <p<2, and satisfies the Radon-
Nykodim property, then Vz, y € X*

(B.4) (o — gl + ¥z + yiz)" <(lol + ly13)"" .
(5.5) REMARK. — Using the inversion formulae for the Fourier transform, we
see that the inequalities (5.2) and (5.4) have to be reversed when p>2.

In the particular case X = L7 (5.2) gives

(3.2) (3w —yl2 + %

vy < (el ), 1<p<2,

and (5.4) gives

(5.4)' (3lo—y 2 Jylp)®, 1<p<2

24 Slo + i) < (o]

that is the classical Clarkson’s inequalities (cf. [1]).

From our point of view, however, these inequalities are consequences of the
Gy-Fourier type property and can be obtained using the appropriate interpolation
theorems. We present a few examples to illustrate this point,



326 MARIO MILMAN: Compler interpolation and geometry, ete.

(5.6) EXAMPLES.

(5.6.1). Consider the ¢, spaces described briefly in (3.5.3). It is well known that
these spaces have the expected interpolation properties (see [9], [19] for instance).
Moreover, it is known (cf. [9]) that (¢,)* = ¢,, 1/p -+ 1/p'=1. Therefore we can
apply (5.1), (5.3), (5.5) to obtain the Clarkson’s inequalities for these spaces.

A rather involved direct proof of these inegualities is given in [15].

(8.6.2). We can do better considering the more general non commutative £?
spaces described in (3.5.4). It follows from [19] that (L%, L), = L%, 1/p,=
= (1 — 8)/po+ 8/p,: The Fourier type techniques of § 4 can be used to compute
the complex method. It follows that we can derive Clarkson’s inequalities for these
spaces.

(5.6.3.) Similar comments adply to the H” spaces considered in § 4.

(5.6.4). The inequalities of (5.1) apply to the Sobolev spaces Wi(2), 1<p<2.
Note, however, that the inequalities of (5.3) de not apply in this ecase since the
dual spaces fall out of the scale: (Wi)*= W=

Similar inequalities can be obtained congidering larger cyclic groups. Let &, =
= {1, ..., n} under addition modulo , then a Banach space X is of G,-Fourier
type p, 1<p<2 if and only if, Vo, ..., z,€ X,

(s < (g1

6. — Rademacher type and interpolation.

2mjk

An interesting situation occurs when we consider the Cantor group G,= @ {0, 1}.

B=1
This group is generated by e¢,= (0,...,1,0,..), j =1, ..., n, addition modulo 2 co-
ordinate-wise. The character group Gn~{y {1,...,n} - {—1,1}, such that for

0= 3 a0, a6 0,1, vio) = [T G077}

i=1 J=1
Use the counting measure on &, and 1/27 times the counting measure on G,:

It follows from the definitions (cf. [22]) that

(6.1) LEMMA. - A Banach space X is of G,-Fourier type p, 1<p<2, if and

only if Yoy, ..., z,€ X,
»'\1/p’ n ] 1/p
)" < (3 1eut2)
X =1

1
(6.2) ( > o
YE@n
In terms of the Rademacher functions g,(t) = sign (sin 27xt), ¢ € [0, 1], the ine-
quality (6.2) takes a more familiar form. In fact for each y € G, there exists o unique

2 i),
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interval I, of length 2" such that @,(t) = ¢(j), 1<j<mn, tel, it follows that

1

r

1 (3 . 2’ n D
o > > i) :f 2 @ity dt
4" yegy ||i=1 x =t x

0

and congequently

(6.2) THEOREM. — If a Banach space X is of @, Fourier type p, 1<p <2, then

Yo, ., 2,6 X
?’ 1/p' n‘ p
)" < (3 1niz)
X

j=1

0

In view of KAHANE’S theorem (cf. [12]) (6.2) implies that if X is of G,-Fourier
type p, 1<p<2, Yne N then X is of Rademacher type p, 1 < p<2 (cf. [2)).

Applications to concrete scales of spaces provide a number of important gimpli-
fieations on known results.

Consider the following examples

i @;(t) 2,

j=1

(6.4) EXAMPLES.

(6.4.1). The first non trivial examples are the ¢, spaces. The Rademacher type
of these spaces was obtained by ToMCZAK-JAEGERMANN using entirely different and
involved methods in [21].

(6.4.2). H” W2, £” spaces can be treated as examples where the theory applies.

Our final application deals with Banach lattices with specified convexity and
concavity.

A deep result of PistER [20] shows that a Banach lattice X is p convex and p’
concave, 1 < p < 2, if and only if X is of the form X = (X,, H),, with X, a Banach
space, H a Hilbert space and 1/p =1 — 6/2.

It follows that a Banach lattice X that is p convex and p’ concave is of Fourier
type p. In particular X is of Rademacher type p according to our previous results.

(6.5) CONJECTURE. ~ Is the converse true? More generally we would like to
characterize those Banach spaces X with Fourier type p. A natural conjecture
would be: X is of Fourier type p if and only if there exist X, Banach space, H
Hilbert space such that X = (X, H),, 1/p =1 — 6/2.

REFERENCES

[1]1 R. Apams, Sobolev Spaces, Academic Press, New York, 1975.
{2] B. Brauzamy, Espaces d’Interpolation Réels: Topologie et Géométrie, Lecture Notes in
Math., 666, Springer, Berlin, 1978.



328 MARrIO MITMAN: Comples interpolation and geometry, efc.

[3]1 J. BerG - J. LorstrOM, Inferpolation Spaces. An Introduction, Springer, Berlin, 1976.
[4] A. P. CALDERON, Intermediate spaces and Interpolation: the complex method, Studia Math.,
24 (1964), pp. 113-190.
[5] A. P. CALDERON - A. TORCHINSKY, Parabolic mamimal functions associated with a distribu-
tion II, Advances in Math., 24 (1977), pp. 101-171.
[6] J. DiesteL - J. UHL, Vector measures, Math. Surveys No. 15, Amer. Math. Soc., Provi-
denee, 1977.
[7] C. FerreErMAN - N. M. RivikrE - Y. SAGHER, Interpolation between H? spaces: the real
method, Trans. Amer, Math. Boc., 191 (1974), pp. 75-81.
[8] G. B. Forranp - E. M. StriN, Hardy spaces on homogeneous growps, Mathematical Notes
No. 28, Princeton University Press, Princeton, 1982.
[9] I. C. GorBERG - M. G. KREIN, Inlroduction to the theory of linear non-self adjoint operators
in Hilbert space, Moscow, 1965.
[10] S. Jaxsow - P. JowEs, Inferpolation between H? spaces: The complex method, J. Functional
Anal., 48 (1982), pp. 58-80. ,
[1171 8. Jawson - P, NirssoN - J. PEETRE, Notes on Wolff's note on interpolation spaces, Tech-
nical report, Lund, 1983.
[12] J. P. KAHANE, Series de Fourier absolument convergentes, Springer, Berlin, 1970.
[13] J. L. Lioxs - J. PEETRE, Sur une classe d'Espaces &' Interpolation, Inst. Hautes Etudes
Sei. Publ. Math., 19 (1964), pp. 5-68.
[14] R. Macias, Interpolation theorems on generalized Hardy spaces, Ph. D. Dissertation,
Washington University, St. Louis, 1974, ‘
[15] Ch. McCarTHY, ¢,, Israel J. Math., 3 (1967), pp. 249-271.
[16] M. Miryan, Interpolation of some concrete scales of spaces, Technical report, Lund, 1982,
[17] M. MinmaN, Fourier type and complex interpolation, Proc. Amer. Math. Soc., 89 (1983},
Pp. 246-248.
[18] J. PrrTRE, Sur lo transformation de Fourier des functions a valeurs vectorielles, Rend,
Sem. Mat. Univ. Padova, 42 (1969), pp. 15-26. . :
[19] J. PERTRE - G. SPARR, Inferpolation and non-commutative integration, Ann. Mat, Pura
Appl., 104 (1975), pp. 187-207.
[20] G. Pisier, Some applications of the complex interpolation method to Banach lattices,
Journal D’Analyse Math., 35 (1979), pp. 264-280.
[21] N, ToMCzZAK-JAEGERMANN, The moduli of smoothness and convexity and the Rademacher
averages of trace classes 8,(1<p < oo), Studia Math., 50 (1974), pp. 163-182.
[22] L. R. Witriams - J. H. WrLLs, L? inequalities, J. Math. Anal. Appl, 64 (1978),
pp. 518-529.
[25] T. WoLrr, A note on interpolation spaces, Lecture Notes in Math., 908, Springer, Bexlin,
1982, pp. 199-204,



