
Complex Interpolation and Geometry of Banach Spaces (*). 

MA~IO MrL~A~ ~ (Illinois, U.S.A.) 

S u m m a r y .  - The eoincidenee o/ the real a,nd complex methods o/ interpolation is investigated. 
Positive results are established under the presence of geometrical properties which are ex- 
pressed in terms o] vector valued ~ourier trans/orms. The results are applied to complex 
interpolation o] H ~ spaces and to the study o] geometrical properties o] Banach spaces. 

1.  - I n t r o d u c t i o n .  

The theory of interpolation spaces plays an important role in classical harmonic 
analysis. I t  also has important applications to PDE's, Approximation Theory, and 
many other areas of analysis including applications to the study of the geometry 
of Banach spaces. 

The most important methods of interpolation that  have been developed are 
the so called real and complex methods of interpolation. A brief synopsis is given 
in w 2 below. 

These methods are rather different in character and produce, in general, different 
results. The real method allows one to derive ~ strong type ~) results from weak 
end point estimates, it also allows one to interpolate the very general classes of 
spaces (not necessarily Banach spaces) that  do appear in real life. Moreover, it has 
the good quality of being easier to determine than its complex counterpart. The 
complex method is a rather powerful tool to deal with analytic families of operators 
(you can interpolate both the spaces and the operators!) and gives sharp norm 
estimates. 

In this paper we are concerned with the relationship between the two methods. 
Following ideas of Pv, ET~E [18], we have shown elsewhere (cf. [16], [17]) that  in 
many instances the real method can be used successfully to determine the complex 
method. 

The key to these results are certain geometrical properties of the spaces con- 
necting many of the familiar scales of interpolation spaces. These properties are 
better expressed for interpolation pmlposes in terms of vector valued Fourier trans- 
forms. However, these transforms encode basic geometrical properties as we shall 
soon show. 

(*) Entrat~ in Redazione il 16 maggio 1983. 
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In retrospect it is interesting to point out that  one of the first applications of 
the interpolation theorem of _~Iareel l~iesz was his unified and simplified proof of 
the Hausdorff-Young-Tichmarsh estimates for the Fourier transforms ] ~ ] .  

Here we take vector valued versions of these classical theorems as definitions 
and proceed to derive a manifold of interesting applications. 

The plan of the paper is as follows: in w 2 we give a brief presentation of the 
needed background on interpolation theory, in w 3 we introduce several notions 
of Fourier type and study its stability under interpolation, in w 4 we complete work 
by A. P. CALIml~6I% A. To, trotSKY [5] and 1~. 5fiCliS [14] on interpolation of H~ 
spaces on homogeneous spaces, in w 5 we show that  Fourier type spaces have norms 
satisfying Clarkson's inequalities, in w 6 we discuss p-l~ademacher type and the 
l%urier type of ]3anach lattices. 

There are no difficult proofs in the paper. Some of the results derived (as those 
in w 4) give solutions to open problems and it seems difficult to imagine an easier 
solution than the one given here in view of the technical complications that  already 
appear in the classical R ~ situation (see [10]). The applications in w 5 and w 6 provide 
a framework from which many classical and new results on the geometry of Banach 
spaces can be obtained without effort. 

Acknowledgements. - I wish to thank M. CWlK~L, S. JA~SO~, S. KAI5SEI~, P. 
N~SSO~ and J. PEETI~.E for their valuable comments on the first version of this article. 

2. - I n t e r p o l a t i o n  m e t h o d s .  

In this section I shall review some of the basic definitions and results of the real 
and complex methods of interpolation. The interested reader is referred to [3] for a 

detailed account. 
A_ Banach couple ~ = (Ao, A1) is a couple of ]3anaeh spaces A0, A1, embedded 

in a suitable topological ttausdorff space V. 

2.1. The real method. 
Let X be a Banach couple, 0 < 0 < 1, l < p <  cx~, then let 

Wo,dA) = { u :  (0, oo)-+AoV~A~/t-~ t~-~ 

with, 

= {11 t-~ I]s~(~o, ~*l*), Nt~-~ �9 

The interpolation spaces X0, , are defined by 
co 

Xo,,={x~Ao+Al: 3u~Wo,,s.t.x=fu(t)d--t t (convergence 

0 

in Ao q- A1)} 
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with 
co 

0 

This is the description of the real methods of LIo~s-PEEm~E [13]. A similar 
definition can be obtained by discretization (i.e., replacing f by  ~ in an appropriate 
way). 

2.2. The eom/01ex method (eL CALDE~6N [4]). 

Let  .~ be a Banach couple, 0 < 0 < 1, then  let  ~-o(Z) be the space of functions 
]: 0~< l~ez< l  - -~Ao+ A~, such tha t  ](z) is analyt ic  on 0 <  R e z <  1, continuous 
and bounded on Ao + A1, and ]( j -~- i~)  is a continuous function with respect to 
Aj, j ~ - - 0 , 1 ,  ~]eR.  Let  

(1) lls<ii~-o<~, = m a x  {t1i(i -i- iv)tl~<:<~,,>} 
,/=0,1 

and define ~0 = (XZAo§ AI: 3 / ~  ~-0(_~) s.t. /(0) = x}, 

llxll~o = inf  {11it1~o<5,: i (o) = x } .  

I t  is impor tan t  to remark  tha t  in (1) we can replace the Z~(A~) spaces by  any  
_L~J(Aj), l < / 0 s < ~  , j = 1, co and  still obtain the same interpolation spaces. This 
was explicitly pointed out by  PEEmRE [18]. 

2.3. Interppolation o] vector valued Z �9 spaces. 

:Let 1 < ~  = (/00,/01) < 0% and given a Banach couple A, form the Banach couple 
LT(~) = (L~'(Ao), Z~'(A1)), of vector valued Z ~ sp~ces on a measm'e space (X, 2:,/z). 

The next  result  summarizes the basic results on interpolation of vector valued 
Z~ spaces. 

(2.3.1) TS:EOREX. - Let  1</0or  P l <  0% 0 < 0 < 1, l < q <  0% 1//00 = (1 -- 0)//0o + 
+ 0//01, u = rain {q, Pc}, s -~ max {q, Pc}, then  

(i) L~"(Ao,,)c_ (L~(~))o,~; (.L~(2))o,, C L~,(Ao,~) 

(if) (~(ff))o = L'~(ffo). 

P~ooF. - (i) By  the (( power theorem >> (cf. [3], page 68) for any  Banach couple 
we have (B0,q)~~ (B~)~,~, where r = q/Pc, ?7 -~ 0/0o//01. Moreover, it  is well known 
and easy to see t ha t  

~(t, I, [~(])];) ~fK(t, l(x), _~;) d~(x). 
x 

2 0  - A n n a U  di Malemat ica 
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Therefore~ 

]lI(~,~,)o,o~ [t- 'K(t,  f, [L (A)] )  ~ t - 'K( t ,  ](x), 
0 0 X 

Consequently,  if q>~po, by  Minkowski's inequal i ty  

thus by  the power theorem 

~ 9 6  _ . 

= II/tlL,,oc.~o,,) 

The norm est imates have to be reversed when q ~ Po. 

(ii) See [3]. 

(2.3.2) REMARK. - The second pa r t  of (2.3.1) is proved in CaLDER6~ [4] with 
ext ra  restrictions on Ao, A~. I t  is also easy to give a proof of the first half  using 
the methods of LIONS-PEE~nE [13], and the definitions given in this section. 

2.4. Real vs complex. 

The real and complex methods give in general  v e ry  different results. However,  
under  the presence of addit ional geometrical  propert ies  of the spaces involved, they  

do coincide. 
The relat ionship between the real  and  complex method  tha t  we shall exploit  

here  depends on the  behaviour  of vector  valued Fourier  t ransforms.  The original 
idea goes back once again to L I O N S - P E E ~  [13] and is developed in PEv ,~E [18]. 

(2.4.1) DEFINITION. - A Banach  space X is said to be of weak R-Four ie r  type  p, 

l < p < 2 ~  if the vector  valued ~ourier  t r ans form 

~1($) =fexp [it~]/(t) dt 
R 

defines a bounded operator~ 

1 1 1.  ~-: L%~) ~ L"(X), ~ + p, 

1)EEriE [18] derives the following 

(2.4.2) T m ~ o ~ .  - Le t  A = (Ao, A1) be a Banach  couple with we~k R-:Fom'ier 

t ype  ~ = (Po, Pl), then  
1 1 ~ 0  0 

-~o,~o- c ~ o ,  - -  - -  4- - - .  
P0 Po P~ 
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In  [16], [17] we have shown tha t  (2.4.2) can be conver ted  in a ra the r  powerful  
tool when used in conjunct ion with the beaut iful  proof of Sagher's conjecture b y  

T. WOLI~F [23]: 

(2.4.3) Tn-E0nEmL - I~et A~, i ---- 0, ..., 3 be Banaeh  spaces continuously embedded 

in a suitable large t Iausdorff  topological vector  space. Le t  0 < 0 < ~ < 1, 0 ---- )~, 

= (1 -- #)0 ~- #, t hen  

(i) I f  A t =  (Ao, A2);.,~ , A.2 = (Az, As)s,q, then  A 1 = (Ao, A3)o.~, A~ = (Ao, As),,~. 

(if) I f  A~---- (Ao, A2h, A2-= (A~, As)~, then  A~---- (Ao, As)s, A2 = (Ao, As),. 

The picture  of the  s i tuat ion is: 

0 0 ~ 1 
I I I I 

Ao A~ A 2 A s 

And its impor tance  in our method  is tha t  it  allows to deal with each << end point  ~) 
space separately and therefore  use (2.4.2) to the  advantage.  

A detailed s tudy  of (2.4.3) has been given in [11]. 

3 .  - F o u r i e r  t y p e .  

I t  will be impor tan t  to ex tend  the definition of Four ier  type  to a more general 

setting. 
Le t  G be a locally compact  abelian group with charac ter  group r provided with 

normalized t I aa r  measures/~ and fi respectively.  Given a Banach  space X, we define 
the  Four ie r  t r ans fo rm 9- on El(G, X)  by  

(y/)(~) --f~(t)/(t) d~(t), ~e~. 

(3.1) DEFII~ITIO~. -- • ]~anach space X is said to be of G-Fourier,  type  p, 1 < p  < 2  
if the operator  ~ can be ex tended  to define a bounded contraction,  

1 1 1 y: L~(G, X) -~ L~'(~, X), ~ + p-7 = �9 

We shall say tha t  X is of weak G-Fourier type  2, 1 < p < 2 ,  if 9= can be extended 
to a bounded operator  

1 1 1 Y: L'(G, X)  -~ L~'(~, X)  , ~ § p--; = . 
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A. Banach space X is said to be of (resp. weak) Fourier  type/o,  1 < 2 < 2  , if it is 
of (resp. weak) G-Fourier type  p for all locally compact ~belian groups. 

I t  is clear tha t  every Banach space X is oi Fourier  type 1 and every Hilbert  
space is of Fourier type  2. Interpolat ion theory provides methods to obtain Banach 
spaces of Fourier  type  p, 1 < 1o < 2. 

(3.2) Ttmonw~. - Le t  ~ =- (Ao, A~) be a Bausch  couple of G-Fourier type Po 
and p~ respectively, let 0 < 0 < 1, and 1/1o 0 ----- (1 -- O)/po -}- O/p~, then 

(i) ~0,~, is of weak G-Fourier type  P0. 

(if) -~0 is oi G-Fourier type 1%. 

(iii) Similar s tatements hold if we replace ~( G-Fourier type  ~> by ~ (resp. weak) 
Fourier type  ~) in the assumptions and the conclusions 

P~OOF. - By  hypothesis  

[ L~~ -~ L~;(Ao) 
/ L~,(At) -+ Z~:(AI) . 

Therefore, using the real and complex methods,  with ~ ' =  (lOgo, p~), we get 

(i) ~:  (~(X))0,~o-* (~'(~))0,oo; 
(ii) 2~: (Js~CX))o --> (JS~'(X))o 

using (2.3.]) we get 

z~.(Xo) -+ z~;(ffo) 

as desired. 

(3.3) I~E~A~K. - The above result  is due to P~,ETRv, [18] in the case oi weak 
R-Fourier type. Peetre 's result has the additional restriction tha t  one of the spaces 
(Ao, A1) should be reflexive which is not  really needed here. 

The following dual i ty  theorem holds: 

(3.4) T~EO~E~. - Let  X be a Banach space with the ~Radon-~ikodym proper ty  
(a. [6]), thou 

(i) if X is of (resp. weak) G-Fourier type  p, l < p < 2 ,  then  X* is of (resp. 
weak) G-Fourier type  2 ;  

(if) if X is of (resp. weak) Fourier type/~, 1 < p<2~ then X* is of (resp. weak) 
Fourier  type  2. 
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l~ooF .  - By  hypothesis,  

5:  Z~(~, x)  -> Z;(@, x)  

so tha t  by  duality,  and using the fact  tha t  X has the R.adon-Nikodym property,  
we get 

~: L~(r X*) ~ L~'(G, X*) 

(if) follows by observing tha t  G = G. 

(3.5) E X A ~ E S .  

(3.5.1). :~ is of Fourier type rain {p,p') (cf. P E ~ T ~  [lS]), l < p < ~ .  

(3.5.2). Le t  Y2 be a minimally smooth domMn of R '~ (cf. [1]). Let  W~(/2) denote 
the usual Sobolev spaces 

with its usual norm~ then  W~(/2) is of Fourier  type  min (p,p '} ,  l ~ < p 4 ~ .  This 
follows, using W~( .Q) :  [W~(I)), W~(~9)]0, 1 -  0/2 : lip, 1 < p<<.2 (cf. [17]) and du- 
a l i ty  to deal with the case 2 < p ~ ~ .  

(3.5.3). The e~(H) spaces are the spaces of compact operators on a Hilbert  
space H, normed with ]]A]]~ : [tr (A*A)v/2] l/r, 1 </9 < c~, and the usual 1] 1[~ norm. 
These are non commutat ive  versions of JL~ sp~ces and share many  of the properties 
of their  commutat ive  counterparts.  In  particular their  interpolation theory and 
dual i ty  theory  is well understood (ef. [9], [19]). 

I t  follows tha t  we can compute the Fourier  type of %(H) to be rain {p, p'}. 

(3.5A). The example (3.5.3) can be generMized in several directions. A theory 
of integration has been developed in gage spaces which allows the s tudy of very  
general non commutat ive ~' spaces including the ones described above. In  particular 
these spaces share the same interpolation properties as the Z~ spaces and we can 
compute their  Fourier  type  as above (see [19J and (5.6.2) below). 

4. - Appl icat ions  to interpolat ion  o f  H ~ spaces.  

In  this section I shall outline the Fourier  type technique as it  applies to inter- 
polation of H~ spaces. 

I shall deal with H~ spaces based on Homogeneous spaces (i.e., groups equipped 
with an appropriate family of dilations, for example R~). The reader is referred 
to [8] for a full t rea tment .  The mMn result  obtained is an extension of results of 
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CA~D~.~6~ and ToP~cI~NSKu [5] and ~[.~cn~s [i4] concerning complex interpolat ion 

of these spaces. 

(4.1) T ~ I ~ o ~ .  - I~et Xo = H~(G), and let  X~ be ei ther  L~(G) or BMO (G), 

then  (X0, X~)o = L~~ 1/Po = 1 -  0, where G is an homogeneous space. 

P~oos .  - The idea of the proof (cf. [16]~ [17]) is to reduce every th ing  to the real 
method  where the results can be easily obtained using atomic decompositions. I t  

follows (cf. [8]) t ha t  

(4.2) (Xo, X1)0. ~ = L(po, q)(~),  1 < q <  oc .  

(The ~V, FFI~R)iA~'-RIV~RE-SAGm~R [7] ~rguments  can be used almost verba t im 

here.) 
2~ow using (4.2) and (2.4.2) we get J5 ~-= (H~,L2)o,~c_ (H~,J52)o , with 1/Po= 
1 -- 0/2. Moreover,  since H ~ c L  1, we also have (H ~, Z~)0_c L ~. 
Final ly  we interpolate  (.L ~, X~) o -= L ~, ! < p < co, using the usual arguments  if 

X~---- L ~ or the Fefferman-Stein proof if X~ = BMO. Summarizing we have:  

1 1--0 0 

1 1 - - 0  
(4.4) ( z 5  x~) o =  z~o , po p ' l < p < o o .  

We can now use (2.4.3) to glue these end point  results and prove (H 1, XI) o = L ~'~, 
1/p-----1--0.  Consider first the case 0 < 0 < � 8 9  Le t  1 < p < 2  be fixed and let  
),-= 2/p', # = - 1 -  p/2, then  according to (4.3) and (4.4) we h~ve (H~, Z2)~ = - Z  ~, 

(Lv, X~),----L ~. Therefore,  by  (2.4.3) 

a.nd the computa t ion  gives 

1 
(4 .5 ) '  1 - 0 = ~, 1 < p < 2 .  

The case �89 < 0 < 1 which corresponds to 2 < p < oo is obtained similarly. 

Using the rei terat ion theorem (cf. [3]) we can state 

(4.6) CO~O~,~ARu - Le t  X1 be ei ther  L~(G) or BMO (G), then  

(i) ( H ~ ( ~ ) ,  x l )  o = Z~.(G),  ~/Po = (1 - -  O)/p, l < p  < co; 

(if) (H'~'(G), H'~I(G))o --= L~'o(G), 1/p o = (1 -- 0)/po -)  0/pl, 142o=/: p l <  c~. 



)IAnIO M~5~_AN: Complex interpolation and geometry, etc. 325 

(4.7) RE3[A~K. - The argument  given above is ra ther  general and applies to 
m a n y  concrete scales of spaces as it was shown by the author  elsewhere (el. [16], [17]). 

5. - Clarkson's inequalities for Fourier type spaces. 

The idea of using the Fom'ier t ransform to obtain the classical Clarkson's ine- 
qualities for L~ spaces originates in the work of W~LIA~S and WELLS [22]. Their 
method fits in our general f ramework of interpolation spaces where it produces a 
far reaching generMization. 

In  this section we s tudy the vector valued Fom'ier t ransform with respect to 
the group Go= {0, 1} with addition modulo 2, with its counting measure and Go = 
= {%, ~},  where ~o = 1, and ~( j )  = (-- 1) ~, j = 0, 1, provided with �89 times its 
counting measure. 

Let  X be a Banach space, and consider Z~(Go, X), Z~'(0o, X), 1 ~ p  <2.  A simple 
computat ion shows tha t  

(5.1) Tm~ogE~. - X is of Go-Fourier type p, i<p<2,  if and only if Vx, y e X  

(5.2) 

Dual i ty  gives 

(5.3) Tm~o~:~.  - I f  X is of Go-Fourier type p, 1 < p < 2 ,  and satisfies the l~adon- 
Nykodim property,  then  Vx, y e X* 

(5.4) (�89 i l x -  yg'. + �89 []x T ~ . /  ~tllx][~. + y i ~ . :  �9 

(5.5) R~ARK.  - Using the inversion formulae for the Fourier transform, we 
see tha t  the inequalities (5.2) and (5.4) have to be reversed when p>2. 

In  the part icular  case X = Z ~ (5.2) gives 

(5.2)' (~llx--yi[~'--~-�89 ~< (ilx][,-1-I]yi]~) I/" , 1 < p < 2  

and (5.4) gives 

(5.4)' (�89 [ i x -  yl!g: + �89 ]Ix + . , .  ~1,., x .  sEJ,,z <(JI ][~,+ [[yU,) 1/~ 1 < p < 2  

t ha t  is the classical Clarkson's inequalities (of. [1]). 
~'rom our point of view, however, these inequalities are consequences of the 

Go-Fourier type proper ty  and can be obtained using the appropriate interpolation 
theorems. We present a few examples to il lustrate this point. 
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(5.6) ExAzwP~S. 

(5.6.1). Consider the % spaces described briefly in (3.5.3). I t  is well known tha t  
these spaces have the expected interpolation properties (see [9]; [19] for instance). 
Moreover, it is known (cf. [9]) tha t  (%)*---- %., l ip -~ 1 /p '=  1. Therefore we can 
~pply (5.1), (5.3), (5.5) to obtain the Clarkson's inequalities for these spaces. 

A ra ther  involved direct proof of these inequalities is given in [15]. 

(5.6.2). We can do bet ter  considering the more general non commutat ive  s 
spaces described in (3.5.4). I t  follows from [19] tha t  (s s s 1/Po_-= 
-~ (1 -- O)/po -~ O/p~, The :Fourier type  techniques of w 4 e~n be used to compute  
the complex method.  I t  follows tha t  we can derive Cla.rkson's inequalities for these 
spaces. 

(5.6.3.) Similar comments  adply to the  H ~ spaces considered in w 4. 

(5.6A). The inequa.lities of (5.1) apply  to the SoboIev spaces W_~(Y2), l<~p<2. 
:~ote, however,  tha~ the inequalities of (5.3) do not ~pply in this case since the 
dual spaces fall out of the scale: (W~)*~- W~; ~. 

Similar inequalities can be obtained considering larger cyclic groups. Let  G~ 
= {1, ...~ n} under addition modulo n, then a ]3anach space X is of G~-:Fourier 
type  p, l ~ < p < 2  if and only if, Vx~, . . . ~ x ~ X ,  

6. - R a d e m a c h e r  type and interpolat ion .  

An interesting situation occurs when we consider the Cantor group G, = Q {0, 1}. 
k = l  

This group is generated by  ej = (0, ~ 1, 0, ...), j = 1, ..., n, addition modulo 2 co- 
ordinate-wise. The character  group r ~ {y: {1,... ,  n} -+ {-- 1, 1}, such tha t  for 

- fl  } g = ~ a~ej, a, ~ {0, 1}, y(g) = [y(j)]~ 

Use the counting measure on G~ and 1/2" t imes the counting measm'e on ~ .  
I t  follows f rom the definitions (el. [22]) tha t  

(6.1) LEPTA. - A Bunach space X is of G~-Fourier type  p, 1 < p < 2 ,  if and 
only if Vxl, ..., x, e X, 

(6.2) 

In  terms of the Rademacher  functions ~ ( t )  ~ sign (sin 2~zt), t c [0, 1], the ine- 
cluality (6.2) takes a more familiar form. In fact  for each y ~ r  there exists a unique 
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interval  I~ of length 2" such tha t  ~ j ( t ) =  y(j), l < j < n ,  t ~ I v ,  it  follows tha t  
1 

0 

and consequently 

(6.2) Tm~ORE~I. - I f  a Banach space X is of G. Fourier  type p, 1 < i o < 2  ~ then 
Vxi~ ... ~ Xn E X 

1 

0 

In  view of KAEA~E'S theorem (cf. [12]) (6.2) implies tha t  if X is of G~-Fourier 
type p, l < p < 2 ,  Y n r  then X is of Rademacher  type p, l < p 4 2  (of. [2j). 

Applications to concrete scales of spaces provide a number  of impor tant  simpli- 
fications on known results. 

Consider the following examples 

(6.4) EXAMPLES. 

(6.4.1). The first non trivial examples are the % spaces. The Rademacher  type  
of these spaces was obtained by  TO)ICZAK-JAEGEE~IA~N using entirely different and 
involved methods in [21]. 

(6A.2). H ~, W~, ~ spaces can be t reated as examples where the theory applies. 
Our final application deals with Banach lattices with specified convexity and 

concavi ty .  
A deep result of P lsmE [20] shows tha t  a Banach latt ice X is p convex and p '  

concave, 1 < p  < 2, if and  only if X is of the form X = (27o, H)o, with X.  a Banach 
space, H a Hilbert  space and  l i p - =  1 -  0/2. 

I t  follows tha t  a Banach lattice X tha t  is P convex and P' concave is of Fourier  
type P. In  part icular  X is of l~ademacher type 2 according to our previous results. 

(6.5) CO~JECTUnE. - IS the converse true? More genera41y we would like to 
characterize those Banach spaces X with Fom~ier type  p. A natura l  eonjectm-e 
would be: X is of Fourier type 2 if and only if there exist Xo Banach space, H 
Hilbert  space such tha t  X = (Xo, H)o, 1/2 = 1 -- 0/2. 
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