Duality in Manifelds ().

FriepricE W. BAUER (Frankfurt a. M., West Germany)

P. 8. Alexandroff in memoriam

Summary. — For the purpose of presenting general Alexander-duality-theorems (§ 7), strong-
shape-homology E, and cohomology E* with coefficients in an arbitrary specirum E turns

out to be the appropriate implement. Therefore the main properties of E, and E* are (analo-
gously to those of ordinary (co-) homology with coefficients in E) developed (§§ 3-5). In order
to be able Lo perform the necessary constructions, strong-shape-theory and in particular two
different kinds of smash-products in this shape-category are ireated (§§ 1,2, appendiz). All
previously known Alexander-duality theorems appear as special cases of the main theorems
of this paper (§ 8).

0. — Introduction.

The objective of this paper iz to establish a proof of the following Alexander-
Pontrjagin duality theorem (theorem 7.4.).

Let M" be a compact manifold which ig F-orientable for a ¢ W-ring-spectrum .
Then for any §-module spectrum & and any pair (X, 4), 4 c X ¢ M, we have an
isomorphism which is natural with respect to inclusions

1) Fu: 8(X, A) ~v Ev2(Mr— A, Mn— X), pelZ.

Here &» denotes shape homology with compact support (§ 3) while &* is Cech
cohomology (§ 3) with coefficients in a OW-spectrum & = {E,}. If we restrict our-
selves to compact pairs (X, 4), then we have an isomorphism (theorem 7.3.)

(2) Vur &p(X, A) s E-9(M»— A, M»— X), peZ

for any spectrum & = {E,} (being still an F-module spectrum) and Cech-shape-
cohomology (§ 5).

These theorems are proved in § 7 by arguments which are based on a construc-
tion laid down in § 9. It turns out that all difficulties arise already in the case
M7 = 8* (theorem 7.1.). The step from M"= §* to an arbitrary manifold is treated
in complete analogy to the classical case (cf. [1] or [14]). What one needs are Mayer-
Vietoris sequences for (co)homology. These questions are settled in § 3 and § 5.

{*) Entrata in Redazione il 30 dicembre 1082.
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In order to extend (1) from compact to arbitrary spaces we need lemmsa 5.2.
which goes back to K. SrtNikov (who discovered the tautness of ordinary Cech
cohomology with coefficients in an abelian group [2], [15]).

His proof does not extend to our cage. Our proof is due to J. DUGUNDII and
depends on propositions Al, A2 in the appendix. Here, the coefficient spectrum &
being a CW-spectrum turns oub to be erucial for the validity of Sitnikov’s lemma.

All existing duality theorems of the Alexander-Pontrjagin type are special cases
of (1) or (2). This is explained in § 8 where we also indicate that, at least for compact
spaces, (2) can be. considered as a first step towards general S-duality (theorem 8.2.).

Strong shape homology &,(X) displays some interesting properties which are
explained in § 4: For a special kind of coefficient spectra & one has &,(X) a §,( IS(x)|),
where |S( )| denotes the shape singular complex (cf. [8]). This applies in particular
to Eilenberg-MacLane spectra K(G) for finitely generated groups. As a consequence
we have a universal coefficient theorem for these homology groups.

The basic ideas of strong shape theory are recollected and congiderably extended
in § 1 where, in particular, we need a second kind of smash product XA Y for topo-
logical spaces. In proposition 1.4. the question under what conditions XA Y and
XAY are equivalent in the shape category J is sebtled.

The second section is devoted to the problem of finding smash products for
mappings in the shape category.

The investigations of § 1 are extended in the appendix by presenting the explicit
construction of a shape mapping (proposition A3) together with all the necessary
machinery. Moreover we repeat the proof, that every inclusion ¢: 4 ¢ B (4 compact)
of metric spaces becomes a cofibration in ¥ (proposition A9, A10). All this together
malkes the present ‘paper independent of earlier papers on strong shape theory ([3], [51).

Finally § 6 is devoted to slant products, preparing the statements and the proof
of the main theorems in § 7.

The reader is assumed to be familiar with classical (co-)homology theory with
coefficients in a spectrum &. This material can be found for example in [1].

1. — Shape constructions.

In order to keep this paper independent of [b] and because we want to present
some additional material, it seems to be necessary to include a section on shape
theory. The kind of shape theory we are using is called strong shape theory. Our
policy will be to give access to a definition of the gtrong shape category % in this
section, referring to a more detailed discussion of some concepts used for that pur-
pose (like 2-homotopies, 2-categories and 2-functors) in the appendix (10.2).

Before we are able to give the definition of JC let us make some preliminary
remarks:

1) Let X be any category of based spaces and continuous, base-point preserv-
ing maps. We have the concept of a homotopy between two mappings H: fo~ f;:
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X — Y. This is a mapping H: X xI,— Y, where I,=[0,#], n =0, 1,2, ... such
that Hiy= f,, Hi, = f1, (%) = (2, {).

Composition of homotopies is obvions: Let H': X xI,,— Y be a mapping such
that Hi,= H'i,, then we have a ¢ = H'oH: X xI,,,—~ Y defined by G|I,= H,
@|in, n + m] = H'. We abbreviate I, by I and introduce the following two relations:

11) Let F: X %I, Y be any and G: X XI — Y 3 stationary homotepy (i.e.
one which is independent of ¢) such that GoF (resp. Fo@) is defined, then we set
GoF = F (resp. FoG = F). We will denote G by 1, f(x) = G(z, ).

12) Let F: X XI —Y be any homotopy and let ¢ = F-1: X xI - Y be de-
fined by G{(wz,t) = F{x, 1 —1), then we require that F-loF = 1, (with f = F4,).
A homotopy of the form F: X xI —Y will be called elementary. So we can
eagily deduce from our definition:

1.1, LemMaA. — Every homotopy o e X(fo, f.), f.€ (X, Y) allows a unique re-
duced decomposition

W =8y .00 &

where ¢; is an elementary homotopy and (analogously as in group theory) &z 1
and &5 ¢,

REMARK., — 1) We have to define homotopies this way because the ordinary
concept of a homotopy does not turn J(X, Y) into a category: Composition is
neither associative nor does there exist an identity. o

2) In addition we need the concept of a homotopy between homotopies (s 2-homo-
topy): (ef. § 10.2)).
Let wy, w,: X XI,—Y be two homotopies between the same maps f,, fo: X — Y.
Then we consider classes of mappings &£ = [4]

A XxI,xI,—=Y
such that

Ay t,4) = oz, ), i=0,m

Az, 1, 8) = f:(), i=0,n

with an equivalence relation, which is thoroughly discussed and defined in the
appendix. We call & = [4] elementary whenever we have m = 1.

As already mentioned, the kind of shape theory which we are now going to define
is strong shape theory. This has to be distinguished from weak shape theory which
is readily treated in [7]. Although it can be proved that at least for compact metric
spaces, two spaces X and Y are of the same (weak) shape if and only if they are
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homotopy equivalent in the strong shape category, strong shape theory provides a
much richer structure. All questions of algebraie topology require the concept of a
strong rather than that of a weak shape unless one is willingly to work with pro-
objects (like pro-groups instead of groups). The difference between these construc-
tions can from the structural point of view be compared with the difference between
Cech homology and Steenrod-Sitnikov homology (the first is generally not exact,
while the second one is always exact). Alternatively one may compare the Spanier-
Whitehead category with Boardman’s category: The first being obtained by per-
forming a stabilization process at a hometopy category, while Boardman’s category
iz the stabilized version of a topological category with continuous mappings (rather
than their homotopy classes) as morphisms. The price which one has to pay for
the advantages of strong shape theory is, like in the other examples, a higher degree
of complexity.

Meanwhile there appeared various other approaches to the homotopy category (X),
which appearantly lead to the same result for compact metric spaces (cf. e.g. J. Dy-
DAK, J. SEGAL, F. W. CATHEY). Because we use individual mappings, 1-homotopies
and then 3-homotopy classes of 2-homotopies, this is a « 3-stage-strong shape category ».
One could extend this to 4-, 5- and finally some kind of cc-stage shape construc-
tion. However for compact metric spaces, the 3-stage approach turng out to be
sufficient.

We are now ready to define our shape category ¥ depending on a full subeate-
gory ¥ of Top (resp. Top,) of good spaces (which in our example will be the category
of ANEsg).

Let Y e X be any object, then we define T, to be the following 2-category:

1) The objects are mappings ¢ € Top, (¥, P), Pc 7.

2) The l-merphisms (v, w): g, —> ¢, are pairs where g,: Y — P, is an object
of 95 and r: P, — P, a continuous mapping, while w: rg;~ g, is a fixed homotopy.

3) A 2-morphism (v, &): (ry, wy) = (5, 05): g1 — go is a pair, where
VPO,
is a homotopy and

& wyovg, ™ wy

a homotopy between homotopies. More precisely we have to work with homotopy
classes [£] of 2-homotopies (all between the same 1-homotopies) instead of individual
1-homotopies. By an abuse of notation however we will continue to write & instead
of [£] (ef. § 10.2.2) for more details).

We are not going to present all different kinds of compositions in Jy rendering
it into a 2-category. Moreover one could define more involved (n-)ecategories Ty
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by taking into account higher (n-)homotopies (vather than only 1- and 2-homotopies).
However we are not going to pursue this aspect further.

From now on we require that all spaces are k-spaces and that consequently all
other operations (which possibly do not automatically produce %-spaces, like the
A-product) are, if necessary followed by the functor %, which turns every space
into a k-space.

Let X, Y e X be fixed spaces, then we define a category $zATy. Let to this
end geF,,, be such that it allows a decomposition g == s(eNé), ¢: X >Q €T,
¢:Y >Q'eT, s:QN\Q'— P e, then an object of F;AFy is defined to be a fixed
decomposition ¢ = s(¢/\¢'). A 1-morphism between two such objects consists of a
diagram

XAY

e ey 2

, tAL .
AL = 0, A\Q;

(1)
81 82
P, -~ P,
r

together with given homotopies w: te,~ ¢;, w': t'e; =~ €, 8: rs;~ s, (tAt). In a next
step we complete the definition of 1-morphisms by declaring all morphisms of the
form (1) with r = identity and 6 = 1 as invertible (i.e. we form the corresponding
quotient category, cf. [6]). The 2-morphisms are defined analogously.

We have a natural 2-functor o: T, AF, — §,,, which forgets the given decom-
positions of certain g: XAY — P, resp. for the 1- and 2-morphisms. The defini-
tion of a 2-functor is recorded in the appendix.

All this can be easily extended to a finite number of factors, obtaining categories

= 7Ry

and 2-functors o«: JI—9, , . . Forn =1, we define « to be the identity 1: X — X.

We denote IT by X,A...AX, and consequently ; by X. The category J has
these A-products of spaces as objects. The morphism [f] € (XA AXn, YA A Yo
are clagsses of 2-functors

fr 8y N APy = T ALAT,
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satisfying the following conditions:
a) (s(\e?): ANY,—PeT) = f(s(he): AX,—P.
b) Let p be a 1-morphism of the form (1), then f(,u) has the same »: P, — P,.

¢) Let p' be a 2-morphism with »: 7, r,, then f ) has the same »: 7,27,
as first component.

For the formulation of the next condition for f, recall that according to the
definition of a general 2-functor (cf. 10.2.3), definition of a 2-functor 3 a) we have
for any two 1-morphisms, which can be composed (i.e. for which uyou, exists) a
connecting 2-morphism

# = (7, B): Fapts) = Flpaa) Fl1ts)

We require:

d) The first component m: r,7,~ #,7; in » is the identity.

Here v, is of conrse the mapping # in (1) now for y,.

The last condition turns out to be very convenient although it is not explicitely
used in this paper. For the sake of brevity we write it down only for the case
m = n = 1. The general formulation can be easily provided.

Let

Y

T2

¥y

be a 2-morphism (v, &): (ry, ) —> (7a, wy) with £ = a, then we have

e) fiv, & = (v, 62(ff(a)(7'16;1))) where &, stems from‘ f(si, 1) = (5%, ).

Two such functors J, /' are equivalent whenever one has af = af', oz T A..A
ATy > Ty A ax, Peing the previously defined natural transformation. By an abuse
of notatlon we will always write f instead of [71.



FrIEDRICH W. BAUER: Duality in manifolds 247

In particular for m = n = 1 (i.e. in case of topological spaces) conditions a) - d)
reduce to:

a) g: Y >Pe? = fg): X - P;

b) (r, w): g1 — gy = (7, ) = (7, ;) for suitable w,;

¢) (v, &) {1y, wy) = (s, @y) = f(v, §) = (v, &) for a suitable 2-homotopy &;
d) in the connecting morphism

%= (m, f): f(72;w2 7’1,601)) f727w2?719w1

one has m = 1.

Moreover, since « becomes the identity, two 2-functors are equivalent whenever
they are equal.

It should be kept in mind that the products X, A...AX, are not related to spaces.
So the objects of J are particular 2-categories, some of them can be represented
by topological spaces (namely those of the form ¢,).

An example of a shape morphism of a space into a A-product is furnished by
the previously described

@€ (XA AXny, XA AKX,

which we denote by the same letter «. However we have to observe that « as a
shape morphism points into the reverse direction, compared to o as @ 2-functor.

We will very soon (see proposition 1.4.) study under what additional assump-
tions o becomes an equivalence in . ‘

The extension of the category X by introducing these new objects is the price
one has to pay for the existence of arbitrary smash products fA1,: XAZ —YAZ
where f: X > Y is a given shape morphism. This will be treated in the next section.

Let fe X(X, Y) be a continuous mapping, then we have a shape morphism
h(f) e K(X, Y) which is defined by

hig) = of

and similar for the 1- and 2-morphisms.
This furnishes & functor h: X — X (see [5]).

Ag in [3], [5] we have for each &€ K (X, Y¥), ¥ € T the assignment #'( (Hle (X, T)
defined by

R =f) 1:Y->Y).
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One has ([5] 2.3.a), 2.4.):

1.2. PROPOSITION. — @) For each fe J(X, Y), YT we have
Wh(f)y = 1.
b) For each fe X(X, ¥), Ye & we have a natural homotopy in X
k' (f) ~f.

Here homotopies in J are defined in complete analogy to the concept of a
homotopy in X by using shape morphisms H: X xI —Y in K.

In what follows, we will in most cases surpress the functor # in our notation,
writing 7€ J(X, ¥) for a continuous f (instead of h(f) € X(X, ¥)).

As a congequence of 1.2. we have the following important:

1.3. COROLLARY. — To any feX(X,Y), Ye & there exists a continuous fe
€ ¥(X, Y) such that r(f) =~ f (cf. [5], corollary 2.5.).

At this point we have to specify our category X. Here we are confronted with
the following difficulty: For general spaces we would like to confine ourselves to
metrizable (shortly: metric) spaces, while the good spaces are supposed to be ANE
spaces. Recall that an ANE space P is defined by the property that a continnous
mapping f: 4 — P of a closed subspace 4 of a metric space admits an extension
I U — P for a suitable open neighbourhood U of A. Any OW-space is an ANE [10],
but not metric. Since the spaces E, appearing in our spectra § = {¥,} are sometimes
CW-spaces (and therefore « good »), we are obliged to find a category which contains
metric and ANE spaces as well. Hence we take for X the full subcategory of Top,
congisting of ) all metric spaces, b) all ANEs and ¢) all finite A-products of spaces
in @) or in b). The category T c JC turns out to be a full subeategory of X (containing
all ANR spaces as well as all OW-spaces).

We have

1.4. PROPOSITION. — The transformation «: XAY — XA Y for spaces X, Y be-
comes an equivalence in J, whenever one of the following conditions is fulfilled:

a) X and Y are compact (from now on, we will by an abuge of notation
simply write « compact » whenever we mean « compact and metrizable »);

b) X (or Y) is a compact ANE, the other arbitrary in X
¢) X and Y are ANE spaces (e.g. CW-spaces).

The proof is prepared by the following

1.5. LEMMA. — Let 9: XAY - Pcd be any continuous map, X compact and
suppose Y be embedded in a metric space M as a closed subset. Then there exists
an extensions g': XAU —> P of g over XAUDXAY where U is open in M. In
other words we have ¢t = g with ¢: XAY c XA U, the inclusion,
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ProoOF. — We give a proof for the Xx-product and the unbased case. The asser-
tion for based X, Y and the A-product then follows immediately. Since Y ¢ M is
metric and P an ANE, we find an extension f: ¥V — P of g over an open V, X x Y C
cVcXxM. Howeverto each (z, y) € X X Y thereare opensets U, (#)>x, W_ (y)3y

.Y

with U, ,x W, cV. Because X is supposed to be compact, finitely many U, = U,..,
cover X and we finally come down with a W,=nNW_  such that Xx W, c V.
The desired neighourhood U is

r=yw,.

YEF
As a corollary we can deduce the well-known fact (cf. [7] for ANR spaces):

1.6. COROLLARY. — Let P e T be fixed and X € X compact. Then the function
space P¥ is contained in .

Proor. ~ We must prove that given a metric space M and a closed subspace Y,
we can extend any continuouns f: ¥ — P over an open neighbourhood U of ¥ in M.
This can be deduced from 1.5. by going over to ¢ = f': X x ¥ — P, the adjoint of f.

ProOF OF 1.4. — Ad a) We embed X, Y in two different copies of a Hilbert cube @,
hence XAY cQAQ ~ Q. By applying 1.5. twice, we obtain for any continuous
g: XAY — P e open neighbourhoods (rel. @) U = U(X), V= V(¥) as well as
an extension g': UAV — P of g. Since U,V are ANRs (cf. [6], p. 96) we have
furnished a factorization g = g'(a;A\ay), a;: X C U, a,: Y C V as required. So a funec-
tor B: Ty, — T, AT, can be defined on the objects by choosing a fixed decomposi-
tion B(g) = s(e/\e’) (for example by setting s = ¢/, ¢ = a,, ¢'= a,). Now let (r, w):
g1+ . be given, then lemma A6 ensures the existence of a diagram

XAY
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with commutative upper triangles and a homotopy y: syt AL = sy(taAty), such that
y(eAe') = w. Observe that for ¢ =1, 2, a: si(e;/6) =~ 8,(t;\t;)(eA€') is an isomor-
phism by definition. This enables us to define f(r, w) on the 1-morphisms by (2).
On the 2-morphisms we proceed similarly.

This completes the construction of a functor § having the property that of =
== identity. On the other hand this implies that S« is equivalent to the identity.
This complets the proof of a).

Ad b) Let g: XAY — P e § be continuous, then we have the adjoint g'=7: ¥ —
— P¥e ¥ (because of 1.6.). Thus we have established a factorization g = e(1A¥),
where ¢: X — P*e ¥ denotes the evaluation map. The construction of a functor
ig in this case immediate.

Ad ¢) This is trivial because any g¢: XAY — P e & factors over the identity
1AL XAY - XAY.

REMARK. — Proposition 1.4.5) makes sure that we can talk about suspensions
SIAX ~ 8YAX as well as about cones OX = (I, I)AX ~ (I, 1})AX for any
X € }& without being obliged to distinguish between these two kinds of products.

2. - Smash products of morphisms.

We start with the definition of fAl,e B(XAZ, YAZ) for given fe X(X, Y),
X, Y metric and Z compact metric: Let ge J,,, be fixed, g: YAZ — P e ¢, then
we have the adjoint ¢': ¥ — P”. Recall that according to corollary 1.6. P7 is an
object of § and so we define ([3], § 4):

(1) ‘ (FAL,)(9) = Hg))': ZAZ —P.

We are now establishing fA1, for F -spaces Z. By this we mean spaces Z = U Z,,
Z, a compact CW-complex, such that every compact K c Z is contained in some Z,.
Without loss of generality we assume that Z,c Z,,, for any n. Let g: YAZ —
— P e § be continuous, i,: Z,C Z,, the inclusion and g, = g|Y AZ,, then we have
the commutative diagram:

O Gn+1
(2) 1y == P

Pln PZn+1

T
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which under f is transformed into a homotopy commutative triangle
(3) flg) = 7,1gps0) -

This yields a homotopy commutative diagram

X Z’ﬂ -
A (ANZ,)(g.)
(4) 1A%, / p
f Z 1 n41
XA Zn (FAZ i) (Gnsa)

Now we form the telescope space Z =Y Z,xI|~, where Z,x{1}c Z,xI is
n=1

identified with Z,x {0} c Z,,,xI. Because of our assumption we have continuous
mappings p: Z — Z (the projection) and s: Z — Z (which ean be easily constructed
inductively by a cofiber argnment). These two mappings are homotopy inverses
to each other.

Diagram (4) provides us with a mapping ¢: XAZ — P so that we can define

(TAL)g) = e(1 As8) .

This establishes a (f/\lz) eR(XNZ, ¥ AZ) as can be easily checked. Moreover
we have for two shape morphisms

heR(X,Y), ReR(X,Y) HiAli= FAL)FAL).

REMARK. — The assumption that all Z, are (W-spaces is introduced for con-
venience and can be weakened. We give the following examples of such F -sets:

1) Every open subset of some n-sphere 8o,
2) Every (W-space Z, all whose n-skeletons for all » are compact.

3) In particular all Eilenberg-MacLane spaces E(&, n) for finitely generated
abelian group G.

In addition to smash produets of this kind we must deal with smash products
of shape morphisms feJ(4, BAC) with a F-set Z, resulting in a jAl, e K(4AZ,
BA(CAZ)). _ )

Observe that (BAC)AZ is not defined!. The construction of fA1,is accomplished
in coraplete analogy to the previous case: One defines fA1, for compaet Z (in this
case we do not need any assumption on a CW structure) then one goes over to fA1z
for a F -set Z and proceed as in the former case.
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As an application we will encounter mappings f: S#+1 - E;AX for compact
Xc8hand Z =Y = 8»— X. Letting u: 2* XA Y —> S*+-1 De the «duality map »
which stems from u{z, ¥) = (@ — ¥)/|r — y|, we obtain a shape map

v, (s SRNZEY s By N\ QL o Suti-1

?l l

Z’p-}—t—l—k Y En+k_+l-.1

whose existence will be crucial for the duality theorems.

We can construct A-products 1Af: EAX —EAY for fixed feX(X, Y) and
any B eX in the following way:

Let s(eAe’) be a given decomposition of a g: FAY — P e X hence an object
of §,A7,, then we set

(IAf(stene)) = s(enf(e)) -

On the 1- and 2-morphisms we proceed gimilarly. Observe that a morphism of
the form § 1(1) with r = identity, é = 1 is tranformed into a morphism of the
same kind, so that 1Af is well-defined on the quotient categories.

We summarize:

2.1. PROPOSITION. — There exists a smagh-product 1Af: BAX — EAY for any
spaces B, X, Y€ X and for any fe K(X, ¥). This smash-product is functorial in
X, Y.

1) X5 Y 5 Z = 1A@FH = CAHEARD-
2) 1E7\—1X: lenz-

Moreover for compact metric F we have a homotopy commutative diagram:

. IAf
EAX-—/\LE/\Y

T

BAX —> ENY
/\f/\l/\

where o stems from 1.4.

PrOOF. ~ Only (8) needs proof: Let a;A\ay= a: EAY —> Q1 \Qy, Q.c T be given,
then we have a map

N: @Gy —> (Ql/\Q2)EE )
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Lo
e
w

such that

—_— 14
Nas = a4,

which is defined by #(g.) = (e - (a,(e), qg)). Let &: EAQF — @ be the evaluation
map, then we conclude:

@) = e(1Af(a)) = e(1AJ(5a) ~ (1Agf(ag) = a:Aflas) -
This provides us easily with the required homotopy.

REMARE. — 1) All the results concerning A- and A-products could also be estab-
lished for the X-products instead of the A-product. We could in particular define
an object X x ¥ and the related maps. This case of free spaces and maps will be
used in § 4.

2) Let Z be a retract of a F -set Z’, then one is still able to define fA1, by
AL = (AL (1LeAG)

where i: Zc Z’, r: Z' — Z denote the inclusion resp. the retraction.

3. — The homology funector.

A spectrum & = {H,, n €Z, o,: 2B, — B, ,} is a collection of based spaces (which
are agsumed to be either metric of lying in §) together with continunous mappings
On: 2B, — H,.;. Observe that according to proposition 1.4.5) we do not have to
distingnish between §*AE, and S'AE,. By an abuse of notation we will denote
the iteration of o,:

Ik

=
[of
2il, —3 X, e > 2By > By,

also by o.

Moreover by an abuse of notation we call a spectrum & = {#,} such that all
H.,e T, a CW spectrum. In particular, every spectrum with the property that all Z,
are OW complexes is a CW spectrum.

We prefer this notation in order to be in accordance with the general usage.

Let A, BeX be two based spaces, then we write [4, B] instead of X,(4, B).
This extends to more general objects like 4, A A, resp. B,AB,.

We are defining (reduced) homology groups for based compact metric spaces
X = (X, w,)

enl

(1) #(X) = lim [§, B NX]

with eoefficients in a spectrum &,
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The bonding maps in the direct system are defined as usual:
(g, EJ\— X — [Qrtrtr, ZE;,-_/Y X — [t -Ek+17\- X].

Our results in § 1, § 2 guarantee that everything (like suspensions for spaces
and mappings) is well-defined. The group strusture in [§~, B,AX] is induced by
the comultiplication

x: Qrik 5 §ntk\/ Qutk

in the following way (similar to that in ordinary topology): Let f,, f,e [S™+*, B, AX]
be given morphismg and s(epe') e Ek/\ © any object, then we define

(h+ F(s(eA€) = @ (fu(stene)) Vn(stene))) x ,

with ¢,: PVP — P being the ordinary folding map for the space in ¢ into which
s(eNe') is mapping. For the 1- and 2-morphisms, one proceeds analogously.

More generally we have for any object X;A...AX,€X the concept of homotopy
groups

(XA AX) = [87, oA AX]

with natural group structure defined in the same way as in the previous case.
Let Com,C X be the full subeategory of X consisting of based compact metric
spaces and h(Com,) = Com, the full subcategory of X determined by compact me-
tric spaces. We explained in § 2 (proposition 2.1.) how to define for a fe Com,(X, Y)
the smash product 1Af: B,AX — EAY. As a regult we obtain induced maps
84(f) = F*: 84(X) — 8§4(Y), turning &,: Com,— ARH? into a functor.
For arbitrary spaces X = (X, z,) € X we define &, with compact supports:

(2) 8,(X) = lm §,(K), KcX compact, ncZ

~§1
cx
resp. for morphismsg, induced by continuous fe J(X, Y).

REMARKS. — 1) Actually we have defined a functor &,: & — Ab% which coincides
on Com, with &,h. We do not define &.(f) for an arbitrary feX(X, ¥), because
for compact K c X, in general f|K does not factorize over a compact K'c Y. Aec-
cording to our convention not to write down the functor k explicitely, we do not
distingnish between &,k and &, in our notation. The fact that 8, on Com, allows
an extension over Com, is needed in order to ensure that one has §.(X) & 84(Y)
for any based compacta (X, 2), (¥, 4,) being equivalent in Comy;, (cf. 3.2.) (resp.
for the unreduced case).
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2) One could try to define (1) by using the A-product instead of the A-product.
However this does not necessarily lead to a functor because we do not know how
to define induced maps unless we agree to impose restrictive conditions upon the
spectrum 6.
~ We are now going to verify the Eilenberg-Steenrod axioms for the reduced theory
§. (with the exception of the dimensgion axiom).

Let & be any spectrum, then we have:

3.1. THEOREM. ~ On the category Com, the homology &, fulfills the following
axioms:

1) For f,, fie Com, (X, Y) and f,~f, we have

8xlfo) = 8ulfy) -

ll

Moreover we have for f,, f,e Com, (X, Y), ,~}, in Com,

8«(f) -

I

&lfo)

2) Let (4, a,) c (X, 2,) be any inclusion, (X U CA4, *) the pointed space, where
C ... denotes the unreduced cone with top vertex *, then the following sequence
is exact:

(3) 8.(4) 2 B (X) I3 (X U 04),

where i: Ac X, j: X c XU CA are inclusions.

3) There exists a natural isomorphism:
(4) Ont 864(X) ~ §,0(2X),
where X denotes the reduced suspension.

REMARK. — 1) For the sake of completeness we will present an independent
proof of theorem 3.1. although the proof of the corresponding result in [1] could
be immediately translated to our case.

2) In Com,= k(Com,) c X every inclusion is a cofibration (see proposition A9
in the appendix). Consequently we have in E’o—mﬁ a homotopy equivalence between
the pair (X, 4) and (X/A4,*) whenever A is contractible in Com,.

This has some important implications:

3.2, PROPOSITION. — a) For any (X, #,) = X € Com,, we have a homotopy equiva-
lence in Com, between 1) the pairs

(5) (EX, 2y I) = (ZX, #)

16 ~ Annali di Malematica
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where £ denotes unreduced suspension and 2) the pairs
(6) (XA, %)~ {X U CA4, (4)

for any inclusions (4, a,) C (X, #,) in Com, where it finally does not matter whether
we use the reduced or the unreduced cone.

3.3. COROLLARY. — Assertion 2) in theorem 2.1. is equivalent to the contention:
2’) the sequence

8(d) =5 By(X) 7> Bu(X/A)

iy exact, where p: (X, x,) X/A4,*) denotes the projection.
The preof is well- known.

PROOF OF THEOREM 3.1. — Ad 1) For f,~f, in Com, we have due to the shape
constructions in §§ 1, 2

for = fus: [87%, ByAX] — [87F, BN Y]

this proves the second contention. The first follows as a special case (f,= h(f,) for
j.€ Com, (X, Y)).

Ad 2) We have ji~ 0in Com,and therefore ji~— 0 in Com, (omitting the func-
tor h from our notation). This implies jufy = 0.

Let on the other hand & e §,(X) be such that i,& = 0. Without loss of generality
we may assume that there is given a fe Kon(87+, B, AX), f€ & having the property

(LAfF =
Thus we find a shape mapping
fo (Dt §rtk) — (B A(X U 04), By AX) .
On the other hand we have an extension of f over O8rtk= Drtiti
Fr: (e, %) > (BACX, %)

which agrees with ' on 8. Setting

Sn+k+1 Dn+k+1 U Dn+k+1

Dn+7c+1 a) Dn+k+1 — Sn+k
+ —
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we see that we can glue both shape mappings together, obtaining in this way a

F: (841, %) — (B A (OX U CA), %) .
However we have in Com, an equivalence
(CA U O0X, %)= (XA, =)
and congequently a morphism in J:
g: (8t 6y s (B AZA, %) .
We denote the stable class of § by # and claim that 4.9 = £ Dore precisely:
) (AN G~ 2F .

PROOF. — Let XX = 0FX U ("X, X = ("X N C" X, where (*X are two copies
of the reduced cone over X and consider the inclusion ¢: 04U CX c CTX U CX,
where 0X = (~X, CAc CtX. We conclude on one hand that by construction

(1A F~ AAZi)§

while on the other hand (1/Aq)F extends f: (8% %) — (B,AX, *) over X8~ into
EANCTX U CX) = B, AX.

This readily proves (7) and completes the verification of the exactuess of (3).

Ad 3) The proof runs entirely as in the classical case. This completes the proof
of theorem 3.1.

Up to this moment we were concerned with reduced homology. However it
is well-known how to go over to nnreduced homology which will be denoted by the
same letter. As a consequence we can deduce from theorem 3.1. and proposition A9
the following:

3.4. THBEOREM. — On the category Com? of compact metric pairs there exists a
homology theory &, which fulfills the Eilenberg-Steenrod axioms (with the exception
of the dimension axiem) with a strong excision:

6.(X, A) & 8 (XA, *).
For a polyhedral pair (X, 4) € Com? one has

6.(X, 4) ~ E,(X, A).

Because all inclusions in Comn are cofibration in Comy,, we can derive from 3.2, a
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general Mayer-Vietoris sequence (without any restrictions concerning « excisive coup-
les »):

3.5. THEOREM. ~ Let (X, 4), (X, B) e Com? be any two pairs which are contained
in some (Z, 0) € Coms?, then the following sequence is exact:

> 8(XN Y, ANB) S 8.(X, A)® &.(Y, B) -5
(8) - _
> 6 (XU Y, AUB) -4 & _(XNY, ANB)— ...

The homomorphisms «, f, 4 are defined as usual (ef. [16]).

4. — ¢, as simplicial homology.

In order to investigate &, more closely, we recall the construction of the shape
singular complex S(X) of a topological space X, which is formed in complete analogy
to the ordinary singular complex 8(X) by taking all singular simplexes 7: A» — X
in X. Analogously we define S(XAY).

In [3] (theorem 4.7.) we dealt with the problem of finding a homotopy equiva-
lence between [S(XAY)| and |S(X)|A|S(Y)|- The proof recorded there, contained a
gap in so far, as we worked with the X-product ingtead of the A-product. Here
we are going to prove:}

4.1. THEOREM. — Let X, Y be spaces, X a compactum, 7,(X) = 0, and Y shape
simply connected (i.e. %,(Y) = 0,4 = 0,1). Moreover we assume that either: a) ¥
is compact metric or b) Y is a CW-complex such that all n-skeletons are compact.

Then we have a homotopy equivalence

1) ISX)IAIS(Y)| = ISXAT)].

Proor. ~ We start with case a) and as in [3] with the X-product: There exists a
mapping

(2) ¢*: I8(X)| % [8(Y)] - IS(X x T)|
in §,, the eategory of Kan complexes, which is defined by
P*(d" ") = ("X 1")d
(d: A» — A»x A", the diagonal map). There is a corresponding map

(3) ™ S(XAS(Y) - S(XANTY).
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The - resp. the A-products &x T(FAT) are readily defined in view of the results
in § 2. The homotopy inverse of ¢* is as in [3] furnished by the map

YY) = (27" Pe7") . TPES(XAY)

where p,, p, are the projections. The fact that for the geometric realization one has

™ llpl=1, |pllg*|=1

is elementary and can be proved as in [3] (proof of theorem 4.7.).

We form ¢ = |p"[: [S(X)|AIS(Y)| - [S(XAY)|; this map is well defined and
we are going to prove that ¢ is a weak homotopy equivalence. Because Y is sup-
posed to be shape simply connected, |S(Y)|, |[S(X)|A|S(Y)| are simply connected.
Moreover, we can prove:

1) If X, ¥ are compact metric based spaces, Y shape simply connected, then
XAY is shape simply connected.

Proor. — Let g;Ag.: XAY — PAQ be an object in Tynr (which category is
isomorphic to §,AF, because of proposition 1.4.).

We can assume without loss of generality that @ is a compact polyhedron and
that g, is an inclusion. Therefore @ can be assumed to be connected (because Y
cannot have more than one component).

This allows us to go over to a OW space with trivial 0-skeleton (consisting solely
of the basepoint). Now let G': (8§, *) — (XA Y, *) be a shape loop.

We claim that ! is homotopic to zero (in X). To this end we evaluate G (g1 gs)
and observe that this loop is (naturally) homotopic to a simplicial loop (p, ¥4,
yt: (84, %) = (Q, q,) for fixed p € P. Because Q°= q, the 1-skeleton of P does not
contribute to the 1-gskeleton of PAQ.

We are going to construct a §': (8%, *) — (Y, 4,) such that G~ PAFY, using
the results in the appendix (proposition A3): Let i,Ad: PAQ — P'AQ’ be an in-
clusion, and y'2: (8%, *) — (@', ¢,) be the corresponding loop, i.e. (g Ag.) ~ (p', »'Y).

We have a homotopy between (i,(p), ') and (p', y?), which is determined by a
singular 2-cell 52: I xI = D?— P'AQ’. This n? is homotopic (rel. boundary) to
either a 2-cell of the form (p,, 72), v2: IXI — @', p,e P’ or to a 2-cell (a, ft) with
w': I — P, f1: T —@Q'. The latter case means that 4,7 = 3’1, while in the first case
we obtain & homotopy between ¢! and y* in @'. Applying this to §,c &, (cf. pro-
position AB) yields a loop 7 such that '~ (A, £2e K((8°, %), (X, #,)). Because
7(Y) = 0 we have a 6%: (D? %) — (¥, yo) with §2|bd D*= ' (D?*= I xI). This in
turn implies G'~ 0 because we have ({A5?)[bd.D? = . This completes the proof
of 1).

As a corollary we have

2) |S(XAY)| is simply connected,
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Proor. — Since |[S(XAY)| is a OW-space, we have

a{|S(XAY)| ~ #(XAY)  for all 4

which implies the assertion.

3) Let fe:ﬁ(A, B) be any shape map for shape simply connected 4, B such
that H,(f) becomes an isomorphism for all n, then 7,(f) is an isomorphism for all n.
Here H,(X) is defined as H.(]S(X)]).
This Whitehead theorem in shape theory is proved in the same way as in
ordinary topology (using now the functor § instead of 8). Compare [4] theorem 1.3.
The homology H, which was introduced in [3], turns out to be exact. Moreover
we have for each compact pair (4, B) (with 7,(4) = 7(B) = 0, cf. [3], lemma 7.3,
where in fact this assumption is needed) an isomorphism

A4, B) ~ H(AB, %).

Now we can complete the proof that ¢ is a weak homotopy equivalence by
showing that H.(¢p) is an isomorphism. Observe that

Ev(?”) = H.(p)

because ¢ maps a OW-space into a OW-space.
Thus this isomorphism will be established by an easy exactness argument using
the following facts:

4) H(SEAY)) ~ H(XAY) ~ Hy (XX Y, XAY);

5) Hi(I8(X)|AIB(Y) ~ Ha(I8(X)| < [S(D)], IS@)|AIS(T)]);
6) H.(¢*) is an isomorphism;

) Hy(iSX)|VIS(Y))) ~ HuX) @ Hu(Y) ~ HHXVY).

N
(

The last isomorphism in 7) is & consequence of the axioms. Now we can establish
the isomorphism

H 8| x [S(X), ISX)|VIS(X)]) ~Ho(X XY, XVY)

induced by ¢*, which follows from 4)- 7).

This assures us that ¢ is a weak and therefore also a strong homotopy equivalence
establishing the agserticn a) in the theorem.

In order to prove b) we claim that every singular simplex Gre S(XAY) for a
OW-space Y with compact m-skeletons factors over XA Y, up to a natural homo-
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topy. This follows immediately by applying the simplicial approximation process
{which can be performed in a canonical way). So the map

e: [SXDIAS(Y)] — [S(XATY)]

has a homotopy inverse because every XAY, is compact and a) applies.
This completes the proof of the theorem.
As an application we can formulate the following assertion:

4.2. THEOREM. — Let & = {E,.} be a OW-spectrum, such that every m-skeleton
of every H, is compact and ¥, is simply connected for sufficiently large .
Then one has for any compact metric X with 7 (X) = 0

84(X) ~ 8, (IS(X)]) .
Proor. -~ We have

~ lim [+, [S(EAS)[] ~
E

~ lim [874, B/ S(X)(] ~
.

~ &,(18(X)]) .

4.3. COROLLARY. — Let G be a finitely generated abelian group, then one hasg
an isomeorphism

K(G)«(X) ~ H (|8(X)]; &) .

In particular there exists a natural universal cocefficient sequence

(4) 0> KGWX)®E > K(G)(X) > K(Z), %G >0,

Proor. — The Eilenberg-MacLane spaces K (G, n) fulfill the requirements of the-
orem 4.2. The existence of (4) follows from homological algebra.

5. — Cohomology.

It is well known how to define a cohomology theory based on a coefficient spec-
trum &:
Let (X, ;) € & be any space, then we set

(1) &(X) = lim [Z+X, B, ],

%
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where the brackets are to be understood in X. The induced maps are also well-
defined. It follows immediately from [5] theorem 2.4. or from corollary 1.3. that
&(X) is isomorphic to §*(X) (where all maps and homotopies are now continunous) .
whenever & is a CW-gpectrum.

The proof of the following theorem is routine and therefore omitted (ef. [1] for
the classical model):

5.1. THEOREM. — The cohomology funetor &*: & — A% fulfills the following
conditions:
1) ”o:?lz> g="(}0) = g*(?l)
2) Let i: Ac X be any inclusion, then the sequence
(X U 04) 55 Br(x) S §4)
is exact.

3) There exists a natural equivalence
0: §(X) & §nH(ZX) .

REMARK. - The first remark in § 3 following (2) carries over to the cage of &*.
In case & is a CW-gpectrum we have the following assertion which is originally
due to K. SiTNTEOV [14]:

5.2. LEMMA. — Let (X, 4) be any pair of spaces such that A ¢ X ¢ M, M being a
compact manifold, then we have for any CW-spectrum & an isomorphism:

§'(X, 4) ~ lim &(T, V)

YO,V}
where (U, V)2 (X, 4) is a (rel. to M) open pair.

Proor. - We prove the lemma for the absolute case and deduce the relative case
from the exact cohomology sequence by naturality. Here, we have again, as in the
case of homology turned over from reduced to unreduced cohomology. This is a
classical process, which is well-known and does not deserve further mentioning.

Let {f,} be} contained in ]_iga &(U) for Xc Uc M an copen sef, then we set
ipely =€ &(X) (i;: Xc U Deing the inclusion). Observe that [ is independent
of the choice of U. This furnishes a homomorphism

y: lm &4T) - E(X) .

Let on the other hand f: 2*X — B, , be continuous, then proposition Al as-
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sures that {f} = y{{;} for suitable {{;} €lim &"(U). Therefore y is an epimorphism.
On the other hand proposition A2 confirms that the kernel of y is trivial. Thus p
is an isomorphism.

5.3. PROPOSITION. — Let & be an arbitrary spectrum and let (X, A), (¥, B) be
pairs of open subsets of a compact manifold M* Then there exists an exact Mayer-
Vietoris sequence

2) .~ X, AH)PT(Y,B) X UY, AUB) LE(XNY, AnB) £ ..
with the usual homomorphism o*, 8%, 4* (see [1], [16]).

Proor. — We claim that any triple (X; 4, B), X ¢ M = M* with open (rel. to X)
A, B iy excigive (rel. to &*). This means that the inclusion : (B, 4 N\ B) c (X, 4)
induces an isomorphism

§%(X,4) ~ §%(B,ANB).

We assume without loss of generality that 4, B @ and X 2 4, B, because
in the remaining cases the agsertion turns out to be trivial.

To this end let fe (X" (BU C(4 N B), B,,,) be a shape morphism, g: B, , —
— B,,,.€ F be continuous and j: Z(BU (BN 4)) c Z(X U CA) the inclusion. M is
compact, hence X c M a normal space. This implies the existence of an Urysohn
function ¢: X — I such that ¢|X — 4 =0, |X — B=1. This provides us with
an extension f of f(g): 2(BU C(A4 N B))—E,, up to homotopy over Z7(X U C4)
in the following way: We are obliged to define f' only on the points of the cone 04,
50 let 1) y € 270(X — B) c 27CA be mapped into the basepoint >{<EE,'hu and 2) a
point

Y=ty tr,...,t) €XZ(BUCANB)), yeB
be mapped into
') = Ho)y', max (p(y'), t0), by, ..oy ) € B,

For ¢ close to X — B and {,<<1, we have max (@) 1) = @(y') and for y'e
€ X — A we have max (p(y'), %) = t,: The function max (sp(y"), t), 0<s<1 provides
us with a homotopy f'oj~ f(g), which is of course bagepoint preserving (the base
point being as usual the vertex of the cone).

The Urysohn function ¢ and consequently the extension process is independent
of g, hence we can apply the results of the appendix to the effect, that there exists
an extension f' of f, up to homotopy (rather than an extension of the individual
f(g)). This assures us that the inclusion 4 induces an epimorphism

i*: §%(X, A) - 8*(B, AN B).
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The fact that ¢* is also a monomorphism iz established similarly by applying
the same procedure to a homotopy E: fj ~ 0, where now fe X(Z(X U 04), E,.,)
is a shape mapping.

After having established this, proposition 5.3. follows by standard arguments
(see [17).

REMARKS. — 1) The preof of lemma 3.2. is substantially based on the assumption
that & is supposed to be a CW-spectrum (we use the fact that all spaces F, in §
are ANEs).

2) The groups &6%(X) which are defined in (1) are (even for CW-spectra §) not
isomorphic to the spectrum-cohomology introduced in [1]. Only for CW-spectra
we have an isomorphism between these two concepts of a cohomology if one of the
two conditions hold: 1) & is an £-spectrum or alternatively 2) X is a compact CW-
space.

Thig is due to the fact that, unlike F. ApAMs in {17, we do not work in the Board-
man-category $H. However every CW-spectrum & turns out to be in B equivalent
to a suitable Q-spectrum &'

For this reason we must, in comparing our results with another duality theo-
rem in § 8 3), require that & is an Q-CW-spectrum. In § 8 3) we are dealing with a
duality theorem, where thig difference at the end, surpisingly drops out.

6. — Products.

In order to establish the definition of a slant product ./. we use the definition
of a ringspectrum F and of a F-module spectrum &: To this end we refer to [1]
where these concepts are readily defined. In practice we need simply mappings

(1) Y= Usrt EZKFr‘%Er.;_l

fulfilling the ordinary compatibility conditions (involving the mapping o: E, — E,
resp. for F). Details can be found in [1].

In order to avoid difficulties with the smash product we will always assume
that & is a CW-gspectrum and therefore according to 1.4. AR, = FAP,.

Let X be a F -space in & (cf. § 2) and Y compact metric, then we define a slant
product

[+ FHYNX)R E(Y) — &»o(X)
by formally repeating the construction of a slant product in classical topology:
Take
= {[f]}el_i_gl [YALEX, By ] = Fr(EXANY)
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and

n = {[§)} € lim K (§7+, BATY)

then we can assume that f is in fact a continuous mapping because JF is supposed
to be a CW-gpectrum.
We define

(2) ‘ [ln = {e}e El EIL(ZTX’ B_pyr)

with » = k -+ p - I as the composition

2k+p+lX — 27X

JI

SpripZEY IAL, BIRY NS X AT ENF i Brrsr= Bopr -

Observe that  is well defined because AL and 1 AT exist according to our results
in § 2, in particular proposition 2.1.

Whenever & is-a CW-gpectrum, we can find a map [¢] € [2"X, H,_,,,] such that
h{e) =~ 7.

This definition is completely analogous to the ordinary definition of the slant
product. Therefore this product is homomorphic and natural in the usual sense,
as long as it is defined. We will use this slant product for X being an open subset
of a compact manifold M». Since M» allows an embedding into a euclidean space
of sufficiently high dimension, X is a retract of a F -set. (cf. § 2, final remark 2)).

We need a definition of F-orientability of a manifold M», which is identical
with the concept of F-orientability given in any modern textbcok on topology (see
e.g. [17):

An element u e Fo(Mrx M», M»x M»— A) (4 = diagonal in BMrx Hn) is an
F-orientation whenever for any- point z e M» the element

€ FroxMr, o X Mr— {wXz}) ~
Fn(Mr, Mr— {2}) ~
o(Rr, B (0))
(87, %)

%?

[« 7%

C;}

is a generator of F*(8», %) as a m.{JF)-module. Here
i, (2 XM o x M»— {wxa}) ¢ (Mrx Mn, M»x M»— 4)

is of course the inclusion. Since this concept ig sufficiently treated in the literature,
we do not have to go into the details.
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The duality theorem deals primarily with an n-dimensional compact manifold
M= and a pair (¥, B) such that Y, B are compact, ¥ ¢ M». We have an inclusion:

i: (M —B)XY,(M—Y)xY U (M — BxB) =

= (M — B, M — Y)x(Y,B)c (MxM, Mx M — A)

where we wrote M for Mn.
Assume that M» is F-orientable with orientation class u, then we have for each
F-module spectrum & a mapping

v() =ixul: §(¥,B) > &M —B, M—Y), -e&(¥Y,B) and pek.

Because of the related properties of the slant product (cf.[1], [9], [16]) this
mapping is a homomorphism and natural for inclusions (¥’, B') c (Y, B).

By an abuse of notation we will during the proof of theorem 7.1. also write
(@) = f for the individual maps (rather than for the stable classes {7}, {f}).

More precisely: Set

Ly(X) = Z¢(M»U O(M»— X))

then for given §: 87— E,A X+ and suitable representative of i*u denoted by an
abuse of notation by

wk: X¥ASH MO O(Mr— X)) > F, .,

we obtain a
Pulf) = J: LX) > Bu_pys

where we deal with an (unbased) space X = (X, #) and set »r =p + k . The
map f has the form

,; = M(szuk)(gALk(X))
with the map
i EL—KEn_-Hc - En,)_k+l = En—p+r .

As usual, the basepoint of IL,(X) iz the vertex of the cone C(...).

REMARK. - In theorem 7.1. and § 8 4) we will have to deal with M»= 8». Every
spectrum &= {F,} is a §-module spectrum, § = {87}, because we have the obvious
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mappings

Ek/\Sq —_ 'Ekfl‘q .

Furthermore 8» is obviously S-orientable. This enables us to work in this case
with any spectrum &.

For a OW-spectrum & we can do a little more: According to lemma 5.2. we have
for any X c 8» (not necessarily compact)

&m2(8n, 8 — X) ~v §2((8", 87— X) ~v
~ lim §-»(8, §»— K))
—_—

ECX

and by definition

&,(X) =1lim §,(K), K compact.

ECX

Therefore we have in this case a homomorphism
(4) P.: &,(X) — &2(8n, §r— X)

for any X c 8». More generally let (X, ¥) be any pair A c X c M», M» a compact
F-orientable manifold with orientation class u, then we argue similarly, obtaining a

(5) 5.1 §,(X, A) > &v»(Mr— A, Mr— X).

On the mapping level we can of course also define y () for any g: Drtil
— B N\XH, vlF) = f: CL(X) — By _y.,. We will use this in § 9 but only for finite
polyhedra X, M»= 8" and a CW-spectrum §&. The definition is analogous to the
previous one:

V,,(g) = /’L(ElKuk)(g/\lzr(x)) .

We make the simple observation that y,_ (on the mapping level as well as on the
level of stable homotopy eclasses) is natural with respect to mappings of spectra
@: & —> &', where of course ¢ = {p,: B, B,} is a family of continuous mappings
rendering the squares

2B, LN 2K,

o o
(pn+1 14

Y™

commutative.
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Finally we must settle the following problem:

Let M»= 8» X c 8 be a compact space, 873 K;D K,;D... a decreasing sequence
of compact polyhedra with

NK,=X,

In the applications we will assume that K, is the union of finitely many n-dimen-
sional convex disks in §* (a so-called disk space, cf. § 9).
We denote the inclusions by '

iﬂ—-l: ch Km-l
resp.
imt X C K, .
They induce mappings like

im' : LT(Km—l) ‘%LT(K’M) *

m—1"

Now suppose that geJ(87+, B,AX*) (§ a OW-spectrum) and a f& K(L(X), Bn_p.)
are fixed maps such that for each m one has a natural homotopy

Wt Yl (LA G) = fru = fim

(i.e. we require w,|L(K,_i) = wnu_y)-
Then we can prove:

6.1. LEMMA, — We have

y{@) =1}
Proor. — We can enlarge each K, to a K,> K, such that 1) the inclugion is a
homotopy equivalence, 2) K,, is open in §» such that L,(K,) is compact polyhedron
and 3) N K,,= X. All this implies that

L(X) = U L(K,)
LK) c LK) c...

where all L,.(Ki) are compact. Due to the definition of

8o+ LX) —25 BN (X AL(X))
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in § 2 we form A1 at first for compact polyhedral spaces L,;c L,(X),
LicL,c.., VUL;=LJ(X)

and apply a cofiber argument, which provides us with a homotopy equivalence

between L,(X) and the telescope L (X) = Y L;xI/~ (cf. § 2). In our present case

we put L,= L,(K,). =t
There are homotopies

Vi P (LAGH)F) = yul ) LK)

where 75 X+ c K denotes the inclugion, such that v,,]L,= v,-
These homotopies together with the given homotopies w, yield the required
homotopy

w: y,(g) =Tf.

7. — Duality theorems.

In this section we prove the main duality theorems (7.1.-7.4.). This will be
aceomplished by an excessive use of Mayer-Vietoris arguments and by using the
results of § 9.

We begin with duality theorems for spheres 8 resp. for euclidean spaces Rn:

7.1. THEOREM. — Let & = {H,} be any spectrum (ef. § 3) then we have for any
compact based X = (X, #,), X ¢ 8 a, with respect to inclusions natural isomorphism

(1) Yu: (X, @) &~ 88" — {m}, 87— X)

pta=mnp qek

PROOF. — We know that &(4, B) is isomorphic to &(4 U OB, *) where as usual
the upper vertex of the cone serves as the basepoint. Therefore (1) reduces to the
isomorphism

2) Vot Bol(X, @) ~ Bi(RPU O(R— {c})) ,

where y has already been defined in § 6.
We congsider the unbaged case and deal consequently with unreduced homology,
proving for a X c R* the isomorphism

(3) Yui &(X) &~ &(RU C(R"— X)) .
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The isomorphism (2) follows from (3) by well-known classical arguments. Thus
we are only obliged to verify (3). This is accomplished by using the results of § 9.

Let X =nU,, U;2U,>... be the intersection of a descending sequence of disk
spaces (cf. § 9) and

j: Z(ROU OR— X)) — By

a shape mapping. We set 7(X) = Z"(R*U C(R"— X)).
Let o;: X U; be the inclusion and j: E ., ~> B . . €T be any continuous
map, then we have the induced map

“?f: (v, ‘>En—p+r
and
L= hE): T(U) > B,

The results of § 9 provide us with a g,= w(f)): 8P - E AU, p +1l=mn 7
and we set

(4) FliAe:) = g .

In view of A7, A8 in the appendix, propositions 9.2., 9.5. assure us that (4)
establishes in fact a § e J(8e+%, B,AX'). Moreover 9.2.-9.5. guarantee that:

1) One has y, {7} = {f}, thus p, is surjective.

2) v, is injective (which is an immediate consequence of lemma 9.4.).

This completes the proof of Theorem 7.1.
In case & is a CW-speetrum, we can rephrase theorem 7.1, for arbitrary (not
necessarily compact) X:

7.2. THEOREM. — Assume & = {,} being a CW-spectrum, then we have for any
based X = (X, x,), X c 8" a, with respeet to inclusions, natural isomorphism

Tut 6p( X, @) A 8e(8n — {a,}, 87— X)

p+qg=mn p,q€k.

ProoF. — This follows immediately with the definition of §, ((4), § 6), from
lemms 5.2. and theorem 7.1,



FrmpriceE W. BAUER: Duality in manifolds

[\
-3
F_—l

Let M = M~ be a compact n-dimensional manifold, which is F-orientable with
orientation class % and let § be any F-module spectrum (cf. § 6). Recall that F ig
always supposed to be CW-gpectrum.

We have again a pair of theorems:

7.3. THEOREM. — For any compact pair (X, 4), Ac X c M», we have a, with
respect to inclusions of pairs, natural isomorphism '

V' gp(XyA)Ngq(M"_A: Mr—X), p+g=mn, pqek.

Proor. — We verify 7.3. in the following three steps:

1) M»= R~ (although R* is not compact), 4 = @.

This has already been accormplished in the proof of 7.1.
2) M» arbitrary, 4 = @.

3) M= arbitrary, A not necessarily empty.

Cage k) follows from case k — 1) by classical Mayer-Vietoris arguments (ef. [1],

[16]).

7.4. THEOREM. — Let & be a CW-spectrum, then we have for any pair (X, 4),
AcXc M a with respect to inclusions of pairs, natural isomorphism

Fut 8,(X, A) ~ 8 M — A, M"—X), p+q=mn,p,qeZ.

Proo¥F. — This assertion follows from 7.2. in the same way as 7.3. was deduced
from 7.1.

REMARK. — The crucial point in the proofs of all these theorems is embodied
in proposition 9.2. where we construct an inverse g to y_in the case X = disk space
(i.e. for a finite polyhedron).

On the level of stable homotopy classes, this could be accomplished by a simple
Mayer-Vietoris argument (inductively, with respect to the number of cells in X).
We need however an assignment y on the mapping level rather than for the whole
classes. Here Mayer-Vietoris arguments do not suffice because it may very well
happen, that the suspension level (I depending on the given 7) increases indefinitely
with increasing number of cells.

It is worth mentioning that our (co-) homologies depend functorially on the
coefficient spectrum in the usual, expected way. Consequently the isomorphisms
Vur 7, are natural with respect to coefficient spectra. Details are immediate and left
to the reader.

17 = Annali @i Matematica
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8. — Applications.

Theorems 7.1. - 7.4. imply as special cages all different kinds of duality theorems
for compact manifolds which are hitherte known.

1) The Steenrod-Sitnikov duality theorems.

Let X c 8 be any (not necessarily compact) space, then there exigts a (with
respect to inclusions) natural isomorphism

1) Hy(X) ~ HY(S"— X), p+qg=n—1,p,¢eN.

Here H] stands for reduced Steenrod-Sitnikov homology (cf. [2], [3], [14]) while I+
denotes reduced CUech cohomology. Theorem 7.7. [3] establishes for a shape connected
compactum X an isomorphism between H5(X) and H,(|S(X)|). Therefore 4.3. implies
that HS and K(Z),(X) are isomorphic. On the other hand one has in this case an
isomorphism between K(Z)*(Y) and ﬁ*(Y) (Y paracompact ecf. [13]). Since H
and K(Z); are both defined with compact support for non-compact spaces, we deduce
(1) as a special case of 7.2. by a standard exactness argument (setting § = K(Z)).
However K. SiTnixoV hag a duality theorem of this kind for any abelian coefficient

group G:

(2) HYX; 6) ~ HY(8"— X; G,

P, ¢ as above. Since we have again ([13]):

K@ () ~ 2 5 6),
we come to the corclusion that

K(@),() ~ Hy( 5 &)

for any abelian group & and all subspaces of a 87. This and corollary 4.3. imply
in particular that H admits a universal coefficient theorem for a finitely generated
abelian group G.

Since (1) or (2) imply all previous versions of duality theorems for ordinary
(co-)homology (for example for compact §*— X), all these theorems are recognized
as implications of theorem 7.2.

The discovery of (2) in the early fifties represented a remarkable progress in
this field.

We are not going to discuss the historical details (like Steenrod’s duality theorem
as an immediate predecessor of (2)) as well as the numerous geometrical applica-
tions of this theorem and refer to [2].
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2) The duality theorem of D. 8. Kahn, J. Kaminker and C. Schochet.

In [12] these authors establish a duality theorem for an arbitrary spectrum &
and compact subsets X c §». According to our remark at the end of § 5 we will
assume that § is an L-spectrum.

They discover an isomorphism
(3) 56,(X) ~ ("~ X), p+g=n—1,
where 5§, is a reduced homology functor, which they call « Steenrod homology with
coefficient spectrum &». Concerning the details, we refer to [12]. For & being an
-OW-spectrum their *§* is our &*.

Although we are treating the relations between °8, and 8, (resp. *64 and &*) in a
subsequent paper in more detail (cf. remark at the end of § 8 2)), we include here:

8.1. PROPOSITION. — For 0Q-CW-spectra & and compact X c 87, we have an iso-
morphism

58u(X) A (X)) .
Proor. — We deduce from theorem 7.1. and (3) the isomorphisms:

8,(X) av Ev2(8— {mo}, 8" — X) ~v
~ §2(87— {wo}, 8r— X) ~
~ Br1(80— X) ~ 78, (X) .

The functor h: Jo — J in § 1 induces a natural transformation ¢: *&* — &* (for
arbitrary £-spectra §). This allows us to recognize *€,(X) in the following way:
Take all shape mappings

g: 8> BAXTE

which are transformed under y, into a f which lies in the image of the functor k.
Proceed analogously with the homotopies. Then the group ®6,(X) is generated by
all stable homotopy classes of these particular mappings.

As for the class of spectra which are admitted in this paper (see § 3) the duality
theorem (3) appears therefore as a special case of theorem 7.1.

REMARK. — The relations between ¢ (X) and EW(X) for arbitrary spectra &, in
particular the existence of a natural isomorphism between both kinds of homology
for £2-CW-spectra has meanwhile been thoroughly treatedin the article « Under what
conditions are shape homology &, and Steenrod homology . isomorphic?» (Shape
theory and geometric topology, Proceedings, Dubrovnik 1981, Lecture Notes in
Mathematics Vol. 870, pp. 186-214).
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3) G. W. Whitehead’s duality theorem with coefficients in a spectrum.

This theorem is formulated in [1], p. 259 (theorem 10.6.). Here a manifold M»
is allowed which is not necessarily compact and which may have a boundary
bd M»= @. Let & be any CW-F-module spectrum and suppose M» being F-orient-
able, then one has the isomorphism:

(4) D: %8, (M»— L, M»— K) ~ &2(K, L)

where (K, L) is a compact pair, K c M» such that K "bd M=c L.

The homology 8, in [1] (not identical with *8, in the preceding case 2)) is defined
by:
(5) Sgp(X1 Y) = Sp(X/7 Y’)
for any CW-pair (X', Y'), weakly homotopy equivalent to (X, ¥). The existence
of such a pair is well-known, moreover (5) does not depend on the particular choice
of such a pair.

We come to the definition of Cech cohomology (in the sense of F. ADAMS): Let
(K, L) be any compact pair, K c M», then we define

%

(6) (K, I) ~ lim "6(T, V)

where (U, V) D (K, L) is an open pair, U c M and *8” denotes singular cohomology,
defined in the same way as singular homology in (5). It turns out that this kind
of cohomology does not depend on the particular manifold M=

Let M be a compact manifold without boundary. We claim that for a compact
pair (K, L) one has

§,(M"— L, M"— K) ~ "6,(M*— L, M"— K) .

This follows from the following observations:

1) M»— L and M»— K are as open subspaces of the ANR M~ (cf. [7]) also
ANRs. Hence we have

Eu(Mr— L) ~ &(M»— L) ~ 56, (M — L)

resp. for K.

2) &, and “§, are exact, hence one can deduce:
8(Mr»— L, M»— K) ~ *6,(M*— L, M"— K)

by using the exact homology sequences.
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We claim for the same compact pair (K, L) the existence of an isomorphism:
(8) (K, L) ~ §(K, L) .

To this end we embed M» in a euclidean space RY and find open pairs (U, V) >
O (K, L). The same argument which worked in the case of homology ensures that
for pairs (U, V) having the homotopy type of a finite polyhedral pair we have (cf.
remark at the end of § 5):

& (U, V)  §°(U, V).

So we have (because for compact (K, L) these pairs are cofinal in the family
of all open pairs (U, V)2 (K, L)):

? ~ H ? ~ lim % ~
8(K, L) ~ lim 82(0, V) ~ lim %62(T, V) ~
~ 8K, L)

by applying lemma 5.2,

Theorem 7.4. ensures that

§(Mr— L, M"— E) ~ &(K, L) .

»
Therefore (7), (8) implies that (4) is a corollary of theorem 7.4.

REMARK. - 1) Unlike the situation in 2) we do not have to assume that § is a
f-spectrum, because in formulating (4) the original difference between the coho-
mology concepts (in [1], resp. in § 5) finally disappears.

4) 8-Duality.

We are unable to develop a general §-duality for arbitrary subspaces of an
n-sphere 8» using our kind of shape theory. However theorem 7.1, can be refor-
mulated in such a way that it becomes a kind of first step towards S-duality.

Let P be the category whose objects are pairs (X,A...AX:, m), where X, is a
based subspace of some S and m eZ. The morphisms are defined by

Hm Jop (2t XiA e A X, Z(TaA A T))
q
Here X(X,AX,) is of course defined by (8'AX)AX, and it is immediate that this
is naturally isomorphic to X, A(8'AX,).
An object (X, m) where X is a space is called regular. We write simply X instead
of (X, 0), abbreviate (X, m) by L and P(X,Y) by {X,Y}. An object L = (X, m) is
called compact whenever X is compact,
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Hence P is the shape analogue of the ordinary S-category (cf.[6], [9]).
As nsual we adopt the equivalence (X, n) = (ZX, n — 1). There exist a smash
product

(4, m)A(B, n) = (AAB, m +n)

where 4 and B are not necessarily regular (observe that the smagh-product is as-
sociative). In particular we have a suspension

(X, n) = (XASY n) = (X, n) A8 0) .
Every object (X, m) admits a desuspension
X, m) = (X, m~1),

hence P is a stable category.
To any X = (X, #,), X ¢ 8* we set

D,X = (8"— {}) U 0(8"— X),

with the top vertex of C... as bagepoint.
Theorem 7.1. allows the following reformulation:

8.2. THEOREM. — Let X C S" be eompam, W1th basepomt p+qg=mn, p,ge
and Z = (Z,0) P regular. . Then there exists an isomorphism

{87, X\Z} ~ (2D, X, Z}

which is natural in Z (with respect to all morphisms in P) and in X with respect to
inclusions.

Proor. — We must translate the assertion into the language of (co-)homology
with coefficients in a suspension-spectrum & = {X'Z}:

§,(X) = {8, X\Z}
WY) = {Z~Y, Z}.

Now 8.2. follows from 7.1.

9. — The construction of p.

This section has a totally auxiliary character: it is devoted to the construction
of some kind of inverse to y,. Before we give details let us introduce the following
conventions:
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Let XcRr reN, peZ, g =n—p be given, then we set
L(X) = Z"(R"U O(R"— X)) .

The basepoint is the top vertex of the unreduced cone. Take two mappings
fri L(X) = Bopry fst L(X) — E,,, and suppose #<s, then we obtain a unique rep-
resentative f,: L(X) = XL (X) - B,,,, ;= Xsro*f,, in the stable class {f,}. By
an abuse of notation we will write Xs—f, for f,.

‘We agree to introduce a more general concept of a homotopy by defining

whenever f,~ f,. The same convention will be adopted for mappings

g 8+t B ANXT, g Retm > B ANXT.

Observe that f,~ f, implies {f,} = {f.} but not conversely. For r = s we have
fr—~ 1, in the new senge if and only if f,~f, in the ordinary sense. Hence there
is no danger of confusion. However this general homotopy is not necessarily transitive.

We have to deal with the function spaces:

F(L,(X), En—p+'r) == Fl = Fl(X)
F(8r+s, BAXT) = Fy= Fy(X),

both equipped with the constant maps as basepoints.

All kinds of function spaces F(4, B) = B* are equipped with the k-topology.
This can be achieved by eventually applying the functor k: Toep — k-spaces (cf. [6],
Ch. 2). y

In this section we arve working with so-called disk-spaces X = |JB;, whete
B;cR» is a convex, closed n-dimensional digk. =1

We need these disk spaces for the approximation of arbifrary compact spaces
A c B*. This enables us to impose some restrictions on the special character of
these disks B,;: Take 1/k nets T, I,cT,c...keN in R* and consider all closed
2/k balls around these z,€ T,. The set of all these balls is denoted by D,. A disk
space

i
x=UBs

=1

is now supposed to be the union of disks B, which are finite intersections of disks
in a fixed D;.

The main goal of this section is the construction of a continuous based mapping

(1) p = px: Fy(X) - Fo(X)
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which exhibits certain naturality properties. The crucial point is the construction
of a universal functions s = a(r, p) (for fixed p also denoted by «(r) which depends
only on 7, p and not upon the given disk space X or the spectrum &). Our «(r, p)
has the form

(2) s=alnp)=n—p+r.

The required naturality properties of y are:

ypl) Let i: X c ¥ be an inclusion of disk spaces then there exists for each
fe Fy(X) a homotopy

(3) W= W: i#Wx(f) = V)Yi#(f)

which continuously (with respect to the topology in F,(X)’) depends upon f, where
it = F,(i%), i*: L(Y) c L,(X), i, = F,(i) are the induced mappings.

Let furthermore X > ¥ -5 Z be two inclusions of disk spaces, then there ex-
ists a homotopy between homotopies (cf. § 1), continuously depending upon f

(4) &t wym™ wioj#wi .
w2) For any fe F,(X) there exists a homotopy
(3) ve=vi yuy(f) = f

which depends continuously (with respect to the topology in F,(X)’) upon f. This
homotopy is natural with respect to the inclusions of disk spaces in the sense that
for the homotopies involved one has

(6) (vi#f)_l(i#vf) = Vu(w,-) .

Notice that ify, = y,i,.
Now we can prove:

9.1. LEMMA. — There exists for s =1l=n—p +r, any CW-spectrum & and
for all disk spaces X consisting of one single disk X = B a continuous

y: Fy(X) — Fo(X)
which fulfils 1) (for inclusions ¢: X c Y, Y also a n-disk) and »2).
ProoF. - We construct homotopy equivalences

hoy = hqt 8+ — L(X)
hay = hy: By — BN\ X
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in the following way: Since we can agsume all disk spaces lying in a large ball
K c R, we have a deformation retraction of L.(X) onto 8* = bd K ¢ L,(X). We
denote by h, the inclusion S*+rc L,(X).

Let b € B = X be a fixed point, then we have a well defined homotopy equiva-
lence H,~ B,AS8°c BE,AB* which stems from the inclusion 8°= {%, b} c B*. This
gives the required #,.

For any inclusion ¢: X ¢ Y (¥ = B’ again a disk) we have

(M) % By = Py
but (because the two points b € B and b’ B'= Y might be different) a homotopy
(8) (ANT7) hyz =~ hoy

which is well-defined by the straight line, connecting b and &'
For any fe F (X) we set

Y(f) = hafhy .
This assignment is obviously continuous and respects basepoints:
p(0) =0y, 0,€ Fy(X),
the constant maps. — We deduce from (7) and (8) for an inclusion ¢: Xc Y

i,ﬂﬂx(?{) = (1A h;xfhlxz hoyfhix
Yy (f) = by fi* hiy = oy fhix

This provides us with a well-defined homotopy w;, which depends solely on the
connecting line between b and b’ but not on the individual f. Therefore o, depends
continnously on f.

Let X %> Y -5 Z be two inclusions of convex n-disks, Z= B'3b’, then the
required homotopy between homotopies is induced by the triangie A(b, b’,b")c B
is an elementary way. The properties of & in ¢l) fodow immediately.

In order to verify y2) we recall the definition of y, for compact polyhedra X:

vlg) = P AW gA LX) 5
g: 8t > B AXF, wh XYALYX) > Fops

IZx -En_p+r/\Fn+lc - E(n_p)+n+k+r .

Since u* stems from an F-orientation (& is supposed to be an F-module spec-
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trum; later on, we will have to assume that n - %>2|p|, ¢f. proof of proposition 9.3),
we have homotopy commutativity in the following diagram (with g = v(f)):

Lk+r+n(X)

” AL ) - o Bomininer
LX) ae Eupir NL(X) (D)t e
hoA1

AL
7 A
. *
Sn—H/\Lk(X) g En—p+r/\X /\Lk(X

) “
1 /\N /
En_p-‘r’?‘/\F1l+k

This homotopy depends upon A,.
So the proof of lemma 9.1. is complete.

Lemma 9.1. serves as a basis for an inductive process. Let to this end X =
N—1

= AUB, A =JB,, B= By be given and note that D = A N B consists of less
than N disks. =
‘We will congtruct

Y= Yx: F(L,(X), En—p_—i—f) %F(Sp%sy B AXT)
such that 1), 2) hold, by assuming that we have already

vy: F(LAY), Bo_pyr) — F(87, BAYT)

for Y=A,B and D and all reN, peZ with s =n—p 4

Incidentally we call a decomposition X = A'U B’ of disk spaces (in D,.) ad-
missible whenever 4’ and B’ are built up of disks lying in the same D,,.

Let Z.(4), L.(B)c L.(A N B) be the obvious inclusions, then we have the fol-
lowing identities resp. homotopy equivalences:

L,(X) = L.(4) N L.(B)

Lr-l(D) = Lr-l(A) 1% Lr—l(B)
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While the first two relations are immediate, the third one follows by a simple
cofiber argument. As a consequence we have mappings
d: L,_,(4A N B) - L,(X)
iq: Lo 1(4) — L(X) .
Because i,~ 0, we have for any /e F(X) a homotopy H,: fi,~ 0 and because
w(fi,) =~ 0 a mapping
Gy Drvs > B AAT

with s = a{r — 1, p— 1) =n — p + r such that
G, |81 = G, bd Drte= y(fi,) .

In the same way we obtain a &, Let g,: Dc A, g,: Dc B be the inclusions,
then we have

* . ® .
do,=1,, do,= i,

and consequently, due to our inductive hypothesis, homotopies

) { v(fis) = y(ek(fd)) = AA0D) p(fd) .
U w(fis) = p(0h(fd)) =~ (LA 0B y(fd) .

4
Y

Hence G,, G, and the connecting homotopies in (9) can be pasted together
yielding a map

p(i): B> BA(A U B = BAXY.

Observe that this construction works for any spectrum &.
We are now going to verify the different properties of y:

1) The assignment ¢ is continuous and basepoint preserving.

Proor. ~ The mappings G, (vesp. &,) originate from the homotopies 7,~ 0
(resp. 7,7~ 0) which are independent of f. Hence G, G, depend continuously upon f.
The connecting homotopies (9) stem from ¢l1) by induction. They are therefore
continuounsly depending on fi, and fi,, hence on f itgelf. ~ Let f = 0,€ Fy(X), then

G,, G; and the connecting homotopies are trivial. Therefore u(f) is the constant
map.

2) Let i: X ¢ XY be an inclusion of disk spaces, then wl1) holds.
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ProoOF. — We are proving this in two steps

2.1.) Let X = AU B = A'U B’ be two admissible decompogsitions of X into
diskspaces (consisting of less than N disks) then the two resulting construction u(f),
y'(f) differ by a homotopy which continnously depends upon f.

Proor. — We start with the case 4 = A', B'> B. Let j,: B c B’ be the inclusion,
then G (1Aj}) and G, are according to the inductive hypothesis (applied to each
«point » of the paths G (1Aj5) and ¢, separately) homotopic. Let p: AN BcC
cA N B = D' be the inclugion, then by the same assumption, we have various
homotopies

s w(fi) =~ (LA p(fd)

nat w(fi) ~ (LA w(id)

Lot LADp(d) = (LA AAP) p(fd) = (LAQL) w(fd)
g;: D'cd, d: L,_, (D) - L{X)

and a homotopy between homotopies

5A: CAW.A = 77; H
resp. for B:
Lt (AA@p w(fd) = (1 Agz) p(fd")
75t p(fig) = (1A Q:)"I)(fd)
Mt P(fip) = (LA ) p(fd)
£t CpMp =17y,
0, D'CB'.
As a result we can combine all these homotopies obtaining a homotopy between
w(f) (which stems from &,, 7,, 5, and G,) and v'(f) (which stems from @,, 1,, 7,
and G,).

The general assertion 2.1) follows easily by considering successively series of
decompositions of the kind

N—1 =1
X=LJ.Z?,IKJ_BlvzLJ.B,'L)(_B].V_]_L}_Blv)=...=LJ_B,,kJB]y
i=1 i=1 i

which gives access to any admissible decomposition X = A'U B'.

2.2) Let i: X c Y be any inclusion (X and Y disk spaces of the form described
at the beginning of this section) then there exist admissible decompositions X =
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=AUB,Y=A"UB such that A c A', Bc B’. This is clear due to the general
restrictions which we imposed on the nature of disk spaces.

Now we are ready to establish a proof of 2) in its general form: In the same way
as in 21) we find « pointwise » homotopies between paths G, G, resp. ¢, and G,..

Since D'= A'N B> AN B = D, we can proceed as before.

Tet X ¥-5%2Z X=AUB, Y=A'UB and Z=A"UB", AcA'cA’, Bc
c B'c B” be given inclusions and admissible decompositions, then the existence of a
homotopy between homotopies as required in yl) follows because between the
constituencies @,, G, G, (vesp. for B) one has by induction these homotopies
between homotopies which can be composed to the required &.

The continuity with respect to f of the homotopy w, as well as the homotopy
between homotopies follows as in 1) because all intermediate steps in the construc-
tion are continuous by induction.

3) There exists a homotopy between homotopies
(10) viyuy(f) = f
which depends continuously on f and which behaves naturally in the sense of y2).

PrOOF. — Observe that the agsignment 'yu: Fy(X) — F(X), :now for v =k +
-+ p -+ 1 and suitably chogen k is continuous and basepoint preserving. We have
the homotopy H,:fi,~ 0 (whose yp-image is G,) and by induction a homotopy
v.w(fis) =~ fi, which continuously depends on f. For the corresponding paths in
the function spaces we have therefore

Hy~yp,pH,=y,04.

We obtain f by glueing together H, and H,, while ¢,, G, and the connecting
homotopies (9) give us y(f). This establishes (10). The continuity of » follows again
from the continuous dependence of all steps involved. Observe that a change of
the decomposition results in a change of » by the same homotopy which we dis-
covered in 2.1).

Let i: X ¢ Y be an admigsible inclusion, then we are congidering the sequence
of homotopies:

#
iyl —t> iff

E llvi#f
Yulyp(f) -7;;_7 v it f

which is commutative because we have this by induction for each «point» in H,,
H, resp. H,, H, and because we can assume that for » as well as for @, we can
take the same decompositions AUB =X, Y=A'UB,Ac4d’',BcB
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We summarize:

9.2. PROPOSITION. — Let s = a(r, p) be the function (2), then there exists a con-
tinuous function wy: F,(X) — Fo(X) satisfying ¢l1), v2).
We need to know something more about the assignment y:

9.3. ProrosiTION. — For any g€ F,(X) there exists a homotopy
(11) & 2Py, g~g
which continuously depends upon g.

Proor. - We will verify a slightly different assertion which obviously implies
(11): There exists a homotopy

(11" £yt 2PYp, g g

which continunously depends upon ¢g. — Here 27 for p < 0 is interpreted as desus-
pension: Xrf means the existence of a mapping /' together with a well-defined
homotopy

2rfi e~ f,

In order to prove (11'), we again proceed inductively: Let X = B be a disk
space, constisting of a single disk, then we have a homotopy commutative diagram

Dtk Yo+l Lntkg o I E AXT En+k+l/\X+
Sp+l/\Sn+k
hy
IAR
N Bpprnn
: 1
SrtA Ly (X) - B NXTAL(X) E Ay

where k,, b, stem from the proof of lemma 9.1. Without loss of generality we can
assume from the beginning that

n+ k>2|p|.
The assertion

Prug=9g
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(which is evidently stronger than (11') for p>0) follows in the same way as 2) in
lemma 9.1. Moreover we can obviously desuspend yy,g at least |p| times by as-
sumption.

Now we assume that (11’) has already been proved for spaces X consisting of
less than N disks. We proceed as in the proof of 9.2.: Let g¢: §#t'— E,AXT be
continuous, then there are mappings

€, 811 = (0, §rtt G BACLX U C_A) = SENA* — By A
0_gemrr — ¢_gent 2, BA(C_X U €, B) = SE,\BY - By, AB*

where the —-notation is nsed to distinguish between two different copies of the
agsociated cones. As a result we obtain Xg by glueing together G, and G,. By
the inductive hypothesis we have (for each point in the paths &,, &, and therefore
by continuity)

2y Gy~ G, 2y, G~ Gy
and finally
Zriyy,g=2g.

But since we have yy, X = 9y, = Lyy, (the first identity follows immediately
from the definition of y,, the second from the continuity of ) we conclude

1" Zrypy,g~2g.

For p>0, the suspension level of X*yy,g is evidently higher than that of Xy,
so that (11") follows. However for p < 0 we also conclude with

Yyug: 87te—> B N\XT

that

s=n—p-r
and

r=k+p+1
hence

s=n-+-k-+1.

Since 1>0 and n 4 k>2|p| we have again that the suspension level of Zryy,g
is still higher than that of Xy, so that (11") implies (11'). This completes the proof
of (11') and thereby of (11).
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Now we are ready to settle the main problem of this section, namely the detec-
tion of an inverse to

(12) Vu: -gp(X) — SQ(LO(X)) y PtHg=mn,

X c 8" compact, § a CW-spectrum.
Let X=nNnK,, K,2 K,>... be a decreasing of disk spaces with inclusions

it Ky C K,y A XC Ky

We have i,: L(K,) C L/(X), ih: Fy(X) — Fy(K,), nsi Fo(X) — Fo(K ).
To any continuous f € J(L,(X), Bp_pir) We set

fn==imf € R(LKp), Bupye) 804 gn= y(fn) .
According to ¢l1) we have homotopies
(13) Lt it G == G -

Propogitions A3, A7 in the appendix guarantee that we have obtained a
g = v(f) e K(8"**", B AX+) (with «(r) = «(r,p) for fixed p) by defining
Glon) = G .

Furthermore 1), y2) ensures that lemma 6.1. can be applied to the effect that

7} = vupift = {1} .

This settles the surjectivity of y,.
We come to the injectivity: Let to this end g e X(8»Y, B,AX™) be a fixed mor-
phism, then we deduce from 9.3. the existence of a homotopy

emt 2V ppug(in) = Glin) -
In other words we have a map

‘Hm: Sp-l—oc(r)“l—t ><I — Ea(r)ﬂ/\K;
for sufficiently large ¢ such that H,, |8 x {0} (H,|8 x {1}) are suspensions of yy,g(in)
(resp. of Glin)); the corresponding suspension levels (which can be easily written
down explicitely) are independent of m.

By applying vy, to (13) and because of y1) we have homotopies

r .

grs it S 56 0) = 2 gy ().
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On the other hand the homotopy (11) is continuous, thus we have for each
t € I a homotopy between C:,,(t) and a sufficiently high suspension of {,(¢). Reinter-
preting this situation furnishes a homotopy between 4, ™H,, , and H,, hence
altogether a homotopy H € K(8*+"* %1, B, AXT) such that H|§"x {0} (H|S"x
% {1}) are suspensions of yy,7 (resp. of 7).

The suspension degrees depend only on I but not on m or X. As a result we
can deduce

9.4. LemMaA, — For any gei(é”’“, E,AX*) we have in ¥ a homotopy

(14) Py g .

This completes the proof of the assertion that y, in (12) is injective, because it
ensures that yp is stably an inverse to y,.
Moreover we have established:

9.5. LEMMA. — Let 1: &§ - & be a F-module-homomorphism of spectra, then
we have induced continuous mappings F,(1) for the related function spaces (for
fixed X) turning Fy(X)= F{(X; ) into a functor from the category of CW-F-
module spectra into the category of based topological spaces. The agsignment
y = y, (for fixed X!) reveals itseif in this situation as a natural tranformation of
functors.

Proor. — The assertion follows immediately from the construction of .

10. - Appendix.

In this appendix we are 1) proving propositions Al and A2 2) recollecting the
necessary material on 2-hemotopies, 2-categories and 2-functors in order to be able
3) to perform the explicit construction of a shape mapping fe K(X, ¥) (resp. fe
€ X(8, XAZ)) and 4) we provide proofs of proposition A9, A10, which ensure that
every inclusion of compact metric spaces is a ecfibration in JC and that this property
of the inclusion i: A c B is equivalent to the fact that 4 xI U B X0 is, in X, a strong
deformation retract of BxI. The last fact is not needed in this paper but well-
known within the framework of ordinary homotopy theory ([6], 4.1.7. a), p. 155).

10.1. Proofs of propositions Al, A2,

The proof of the following proposition is due to J. DUGUNDJL. It represents the
essential part of the proof of lemma 5.2. («Sitnikov’s lemma »):

Al PROPOSITION. — Let M be any metric space, X ¢ M be any subspace and Y

18 = Adnnali di Malemalica
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an ANE (cf. §1); let /: X — ¥ be continuocuns, then there exists a ¢~ f which ex-
tends over a neighbourhood U2 X in M.

Proor. — COongider the subspace = X x0U M x[0,1]c M xI and identify
X x0 with X. Because X xX0c@ is a closed subget, there exists an extension
F: W — Y of f over a neighbourhcod W of X x0 c@. We find an open set Vc M xTI
such that W =V N @ and for each # € X a neighbourhod U_ ¢f » in M such that
U, x[0,¢]c V for suitable {,> 0. Assume that {U} is a locally finite family of
open sets and define U = U U, . Because M is paracompact we find a real valued
continuous function ¢: U — R with ¢(u) > 0 for all w € U and g(u)<sup {¢,luec U }.
In W we have the gpace X'== {(», ¢(x)|r € X)} homeomorphic to X. The mapping
P(x, 1) = F(x, @(x)t) provides us with a homotopy ¢: f~F|X'=g¢: X - Y. How-
ever F|{(u, p(u))|uc U} =¢': U~ Y is the desired extension (up to homotopy)
of g over U.

This completes the proof of Al.

To accomplich a proof of lemma 5.2. we need a second assertion which easily
follows from Al:

A2 ProPoSITION. — Let M be a metric space such that the cone CM > 0X is
again metrizable (which is true for example if M is a compact manifold), let U be a
neighbourheod of X ¢ M and let F': U — Y be continuous, such that FIX = f~0.
Then we find a neighbourhood V of X in M, Vc U such that F|V =0.

ProOF. — We have a map ¢: OX — Y reflecting the fact that f~ 0. This to-
gether with ¥ provides us with a map v: Ux0U 0X — Y. We have D= UxX
X0U 0X c OM and con therefore apply Al to the effect that we obtain an ex-
tension A: WY of a ¢~y over an open neighbourhood V of X in M such
that OV cW. Take vxe X and find a neighbourhood V_ of # in M such that
CV,c W. This V, exists becaunse the unit interval is compact. Now V = U V_ has
the desired property. This completes the proof of proposition A2.

10.2. Miscellancous results concerning the consiruciion of a strong shape category.

A shape mapping fe J(X, Y) is a 2-functor f: , — T, having special properties.
The explicit construction of such 2 map is rather involved unless ene provides a
manageable subcategory & l',c ¥, having the property that every suitable functor
T: 9, — T, admits » natural extension to such a f.

In order to settle this (independently of [5] in particular § 4) we take advantage
to say a little more about homotopies between homotopies (so-called 2-homotopies)
about 2-categories and finally to make precise what we nnderstand by a 2-funetor.
Although these concepts are treated by many different authors in different ways
(e.g. Cu. EHRESMANK, J. BENABOU ete.) it turng out to be more convenient to give
the necessary definitions explicitely:
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10.2.1. 2-Homotopies. — A 2-homotopy between two I1-homotopies &: wy™ w,,
is an equivalence clags of mappings A: X xI,XI,— Y having the properties

A(wyt1, 0) = wo(@, 1)

t,el,
A(.’L‘, t, m) = wm(my ()
A, 0,1,) == f4(x)

t.el,,.
A, 1, 1) = fo(®)

Here, by an abuse of notation, we write w,, w,, for suitable representatives of
the corresponding classes @g, @i fo= fn.

The equivalence relation between these mapping A is generated by the following
relations:

1) We define B~ A, B: XxI, ;xI,—>Y whenever A|X x[n—1,n]lxI, is

2-stationary (i.e. A(x, by, t,) = fu(#), n — 1<t <n, e l,) and A|X XTI, ,xI,,= B.

This condition allows us to define 2-homotopies between 1-homotopies of even-
tually different lengths.

Now let 8: X xI,xI,—Y resp. T: X xI,x1,,— Y be two mappings such that
BIX XTI X1, VXX[Ek+1alxl,, O0<k<n
is 2-gtationary (rvesp. 7' ... is 2-stationary) while
S Xx[k—1,k+ 11x1,

{resp. T...) maps as indicated in fig. 1 (vesp. fig. 2).
Then we set S~1: w~w (I~1: w~w) where we denote by 1 as usual the
identical 2-homotopy represented by

B XxI,xI,-~Y, I,=1[0,0].

Given a homotopy w == ¢; ... g, With elementary or stationary e,, then 2-homo-
topies of the kind 7' allow us to go over to an equivalent and simultaneously 2-homo-
topic o' == s; s,'c {again of length %) without non-stationary parts of the kind
&= &3}

In a next step we can apply homotopies of the kind 8§ to the effect that all pos-
sible stationary homotopies ¢, somewhere in the middle or at the end are transported
to the first place. Finally, the given w is transformed into a homotopy w” = s'i e::
of length k such that e; = ... = ¢, are stationary and that ¢, ... ¢, forms a reduced
word in the sense of lemma 1.1.

This allows us to compose two 2-homotopies &: we™~ w,, {: w,~ w, With w,=
= & ... &, ©;= & ... & being equivalent: According to the just given argument
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we find a 2-homotopy m: w,~ w; which is a product of 2-homotopies of the form &
and T’ so that one ig enabled to define (omo&: wy~ w, (with o-product defined in
an obvious way).

The equivalence 1) finally allows us to drop the assumption that o, and e, are
given by words of equal length &, becanse this can be enforced by starting with
sufficiently many stationary homotopies.

Finally we define, analogously to the case of 1-homotopies

3) (4: X xI, ><Im—% Y)~1 whenever A is stationary in the third variable and
4) for any 4: X XI,XI,—Y

AoAd-t~1

with A-Ya, t;, 1) = A(w, 3, m — t,).

So a 2-homotopy is an equivalence class of mappings A: X xI,xI,—> Y with
an equivalence relation which is defined by 1) - 4).

By an abuse of notation we will, analogous to the case of 1-homotopies not
distinguish between the class £ and a representing map which we also denote by &.

The proof of the following facts are omitted:

«) K(f, 1) (f, f'e R(X, Y) fixed) is a category having classes of 2-homotopies
as morphisms such that a homotopy

vify~f (u: f'=f1) operates as a functor

Ve Rlf 1) = Rolfr 1) (s J(F 1) = Rl 1) -
Moreover for v,: fa~ 1., v,: fy~ [ one has
(v;vl)* - vive resp. for .
B) Any ac IR(X’, X) (resp. be X(Y, ¥')) induces a functor
a*: JX, Y) = (X', ¥) (resp. by: (X, ¥) - K(X, ¥)).

y) Let w:fy~f, be any homotopy, w: XxI,—Y, o': XxI,—~ Y a second
homotopy such that o'|X x[0,1] behaves like w (after a linear contraction of I,
onto I) and where «'|X x[1,n] is stationary. Then -there exists an elementary
2-homotopy (i.e. one with m —1) &: o~ w'.

Since we are doing 3-stage strong shape theory, we are not dealing with these
individual 2-homotopies itself but with (3-)homotopy classes of 2-homotopies: Two
mappings Ay, 4;: X XI,XI,— Y (representing 2-homotopies &, &,) are defined to
belong to the same homotopy class (4,~ A,) whenever there exists a continuous
family 4,, 0<t<1 of mappings, all representing 2-h0m0t0piés &, between the same
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1-homotopies &;: wo= w;: So we start with 2-homotopies as defined above, being
equivalence classes of mappings A4, B, 8, T, and allow these mappings to vary
within its 3-homotopy classes.

One could of course define a concept of a 3-homotopy (in complete analogy to
that of a 2-homotopy by using mappings X xI,XI,xX,->Y satisfying certain
conditions on the boundary) and call 4, 3-homotopic to A4, (4o~ A;) whenever
there exists such a 3-homotopy between A4,, 4,. However, since we are only in-
terested in the related 3-homotopy classes rather than in the 3-homotopies itself,
we can avoid this concept.

10.2.2. 2-Categories and 2-functors. — The only 2-categories which appear in this
paper are 1) categories of topological spaces with homotopies as 2-morphisms and 2)
the categories J, resp. ¥, A...AT, (cf. §1).

They have the following properties which in turn can be used as a definition of
an abstract 2-category X: We assume JU to be a category such that all K(X, Y),
X, YeOb X are again categories (whose morphisms are called 2-morphisms). All
feR(X', X) (g (Y, ¥')) induce functors f*: X(X, ¥) — KX, ¥) (resp. g:: (X, Y)
- X(X, X)), in such a way that 1) (f,7)*=7,7: ((§,0)+ = ¢,+9,.) Wwhenever the
compositions are defined; 2) the identities 1, induce identity functors and 3) the
diagrams

KX, v) -2 x(x, 7))

f*l lf*

X, YY) —> X', ¥')

Ix

are all commutative. Moreover we have that all 2 morphisms (coming from 1- or
2-homotopies) are always isomorphisms.

In [5] we did not explicitely require 3) in the definition of a 2-category because
we were able to get along with the weaker concept.

Unlike the sitmation with 2-categories we need abstract 2-funciors (they are
defining our shape morphisms).

So we include the explicit definition:

Let X, £ be two 2-categories, then a 2-functor T': & — L is

1) an assignment 7: Ob X — Ob £ (X — I(X));
2) for fixed X, Y e X an assignment X(X, ¥) — £(T(X), T(Y));

3) for fixed f,, f,€ X(X, ¥) an assignment

KX, X)(fsy fo) = Folfs, fo) = LL(X), T(Y))(Thh, Tts) = UTh, Tt
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such that the following conditions hold:
a) We assume

TAy) =1, forall Xed.
b) Moreover for f,e X(X, Y), foe X(Y, Z) there is given a 2-morphism
w: T(fofs) — T(f) T(f1) »

satisfying the following compatibility conditions:
Let f,e X be morphisms, ¢ =1, 2, 3, such that f,(f,f;) (hence also (f,f,)fs) ave
defined, then we have a commutative diagram

T((fifo)fs) ———> T(fafa) T(f2)
w WT(fa)

T TUfafs) sy L0 TG T

with the corresponding 2-morphisms w.

¢) For fixed X, ¥ the assignment 2) iz an ordinary functor, such that for
feX(X', X), ge X(Y, Y') the 2-morphisms o in @) induce natural transformations
o’y w, fitting into the diagrams

KX, Y) — L(T(X), T(Y)) XX, Y) — {(T(X), T(Y))

lf* Tf"‘l g*i Tg*l

XX, Y) — YT(X"), T(Y)) (X, ¥Y')— L(T(X), T(Y"))
In other words: For a we (X, Y){f,,7.) we have

(I1)* T() o = o’ T(f¥(er))

(T9)x T(@)w, = ng(.%(“)) .

REMARKS. — 1) in the applications the 2-morphisms of the category I, (cf. § 1)
are of the form (v, &) where £ is a 2-homotopy up fo homoiopy in the gense mentioned
at the end of 10.2.1. (i.e. two 2-homotopies &, & are homotopic whenever there
exists a continuous family £, of 2-homotopies, all between the same, fixed 1-homo-
topies).

2) We have repeated the definiticn of a 2-functor in full detail, because in [5],
p. 28 1° we required 7: X — £ to be an ordinary functor rather than a functor up
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to 2-morphisms (which is the kind of definition needed for the purpose of strong
shape theory). For a category which is ordered (like for example &, in [5], p. 20)
we can always achieve strict functoriality (because we can confine ourselves to the
definition of T(f) for indecomposable morphisms).

In the general case however the usage of the stronger notion of a 2-functor
(requiring that all 2-morphisms in a) are identities) is not adequate for strong shape
theory and leads into trouble.

3) The present definition of a strong shape category could be refined by work-
ing with 3-, 4-, ..., n-categories and functors instead of 2-categories and 2-functors.
In general this leads to a different kind of strong shape theory. However there is
some evidence that for compact metric spaces the n-shape categories, n>3, are all
equivalent.

4) In the applications all 2-morphisms are always isomorphisms, so we do
not have to take care about the direction of the w’s in a).

10.2.3. Eaplicit construction of shape morphisms. — Let ¥ be any metric space
then we establish a subcategory F,c &, in the following way. It is well-known
that every metric space Y can be embedded in an ANR M as a closed subspace
(see [8], 5.2., p. 21).

The objects of 5‘; are inclugions ¢: ¥ ¢ {(c M), where ( denctes an open neigh-
bourhood (hence an ANR). The l-morphisms are of the form (»,1): 4, — i, where
iy: Y C Oy, r: Cyc O, are inclusions. The 2-morphisms are identities.

‘We have the folldwing assertion:

A3 PropostTION. — Let T: §,— &, (X € X arbitrary) be an ordinary funector,
having the following properties:

T1) ge¥,, g: Y- P = T(g): X - P;

T2) (r,1): gy~ g = T{r,1) = (v, w) for suitable w. Then there exists a fe
e X(X, Y) such that f|T, = T.

The main tool for proving this is embedied in the following

A4 LpnmA. - Let w: bya,~ bya,, a,€F v be given then there exists a diagram
Y
/ / wL a\ ay
i \ .
b,

21
41 ¥y
by
P

1 ¢,
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Lo
©
(14

ac Ty, (r,1) e Fy(a, a,) with commutative triangles and a homotopy
W' by by

such that

PrOOF. — Assume that o is an elementary homotopy (see § 1), then we find an
extension F of w: ¥XI — P over a OxI, CcY open in M.

This follows because Y X I is a closed subset of the ANR M xI. By eventually
shrinking this €, we can assume that ¢ c C;n 0,. As a result we obtain w': OX
%I - P such that o = o'(a xX1) (here the homotopy is considered as a continuous
mapping!).

W'hy= b, ® = by7,.

This completes the proof A4 for elementary homotopies. The general case follows
similarly. ,
As an immediate consequence we conclude:

@) Let g: Y — P € & be continuous and g = b,a, = b,a, any two factorizations
with a,€ §y, then there exists a diagram (1) and a homotopy ' (which is not neces-
sarily the identity).

B) Let o": byri== b,r, be a second elementary homotopy fitting into (1), then
there exists a further factorization a = pe/, ¢’c F, and a homotopy class of 2-homo-
topies [£]: @'p~ w'p such that &' is the identity.

This follows by the same argument as o), after having replaced ¥ xI by ¥ XIX
XxIUCOx0XxIVU Ox1xIcMxIxI. The second and the third summand enter,
to make sure that & is really a 2-homotopy (i.e. stationary in the third variable s
for t =0,1, cf. § 1). :

There is of course an analogous assertion available for higher homotopies.

PrOOF OF A3. — Let T: §,— &, be any functor such that 7'1), 72) holds.
Then we define f: §,— §, on the objects:

Let g € T, be any object. We choose a fixed decomposition g = ba, a € (s‘;’, (which
exigts without being uniquely determined) and define

fg) = gT(a).

Let (r, w): g, — ¢, be any morphisms in ¥, (assuming for the moment that w
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is elementary), g, = 10, g, = bya,, then we apply lemma A4 to the diagram

Yy
/ o / \ L)
C, 0,
b, by
? 0
r

which enables us to make a choice of a homotopy u: rbye;~b,0, in

Y
&y l a g
/ ¢ \
(2) " “ % &
b, b,
P =
.

a€ Py, (¢;,1) € Ty(a, a;), such that pa = . Now we can apply the functor T to
the upper triangles to the effect that we obtain a (in general non-elementary!)
homotopy

o' 7‘?(91) = 1b, T'(a;) = rby0, T(a) =~ by0, T(a) = by T(a,) = f(gz) .

This w' has the following explicit form:

' = (byys)ouT(a)o(b,y,)
where we set

T, 1) = (65, 9;) -

For non-elementary homotopies we proceed analogously.
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Ag a result we define

fir, w) = (r, ') .

Observe that according to f), with a different choice of g in (2) we would end
up with a new (r, ") which is connected to the given one by & 2-morphism (1, &)
in ¢,. Our definition of @’ can be arranged such that the relations 11), 12) in § 1
for homotopies are respected.

In particular we define f(1,,1): f(g) = f(g) by (15, 1). All this can be used to
establish § on the 1-morphisms as a 2-functor.

We still have to construet f(v, &) = (v, &) for a 2-morphism (v, &): (ry, w,) &
& (13, y) In Ty

In a first step this will be accomplished for elementary 2-homotopies &:

We transform the identity 2-morphism into the identity.

Let (v, &) 5= (1, 1) be given. To w;: robya, == bya, we have the chosen homotopies
Uit b6 ™ bycy, fitting into the diagram

Y
4y ald e
o O(i) \ e
(3) C, e ~a' 0,
by bs
P =
7

i=1,2 y,a’ = w,;. There exists a commoen refinement of the a?, i.e. a diagram

ali) al®

C’fl)é‘%/ w\‘\

)

s I’ﬁ\
¢

(@9, 1) e T.(@, a), & T,. Now we apply A4 to YxI,xIU Ox0xIU Cx{n}x
xIc MXI,xI (for the same reason as in §)) obtaining an elementary 2-homotopy

Nt ppd®Peov(byo dVe) =~ pdVe
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where d = ¢a’, a'c T, (¢, 1) € §,(a’, &) are suitably chosen, such that a'= £. Here

& i3 a 2-homotopy
£: y00(b1ay) = pya®@op(bia;) = (U d®eop(by0ydVe)) 0’ =2 0, = pyaV = u,dVea’ .
This enables us to define the required &' by
§'=nla’).
It can be easily checked that & iz a 2-homotopy
& w;ovf(blal) ~ w;

where we set f(r;, ;) = (7, ;). This can be done for each (», &) separately in such a
way that f(v, &)t = J(»~1, £7). For non-elementary homotopies we establish & by
compoging the elementary factors. Moreover ) ensures that the homotopy class
of & is independent of the choices involved. This can be easily verified.

In the present case f is automatically becoming functorial, because every morphism
can be represented as a composition of indecomposable ones (which was not true
in the case of 1-morphisms!).

This completes the construction of f which is easily recognized as a 2-functor,
fulfilling the requirements on a strong shape morphism. The missing details are
immediate and, as well as the fact that f|F, = T left to the reader.

Let Y be a compact metric space, then we have a still simpler category ,c T,
available ([8], § 4):

Take any embedding of Y into a Hilbert cube . Then we have a sequence of
compact ANRs C,, 0,0 C,2..., such that N C,= 7. The objects of F, are again
the inclusions 4,: ¥ ¢ €, and the 2-morphisms are of the form (+7: C,C C,, 1), m>n.
Every morphism appears in a unique way as the product of indecomposable ones.
Therefore it is sometimes easier to describe a specific functor T': §,— &,:

As a corollary to A3 we have:

A5 PROPOSITION. — Assertion A3 holds for compacta with & 1', replacing ﬂ‘z.

REMARKS. — 1) Proposition A5 has already been discussed in [5], § 4 although
the present proof is independent of [5].

2) Assume in A3 that X = Y and that 7' is the identity onto F,.C F,, then
the constructed f is easily seen to be also the identity.

3) For a Y € § (which is not necessarily metric) we can use instead of ﬂ’;: the
category consisting of the single object 1: Z — Z with the identity morphism solely.
The proof of proposition 1.4. requires:
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A6 LEMMA. — Assume X, Y being compact metric spaces and consider the fol-
lowing diagram

XANY

7
ei\éy e\ €y

Q:AQ; Q:\Q;

P, ‘ = P,

Q., Q:, P, T, together with a homotopy w: rs,(e;/ ;) = 8y(€2/\€2).

Then there exist mappings eAe': XAY - QAQ", Q,Q €T, t; \t;: QAQ' — Q. \Q:
such that (t,Af;)(eAe’) = e;Ne; (1 =1,2) as well as a homotopy &: rs(lhiAf) =
~ s,(t,Ats) which satisfies

dene') = w .

PRroOOF. — The proof follows the pattern of the preof of A4: We find immediately
mappings &: XAY =@ e 4, {;: § — Q,AQ; such that ;6 = ¢, \¢; and a homotopy o'
fitting into the corresponding diagram. However the compactness of X and Y
guarantees that we can require € to be of the form é=e A¢’, where ¢: XcQ, ¢ : Y@’
are compact ANR neighbourhoods of X resp. Y in some Hilbert cube (cf. 1.5.).
By eventually taking finer approximations @, @’ of X resp. ¥, we obtain mappings
f,= t;At;. The final homotopy d is now immediately established.

Let X be metric and Z be either an ANE or a metric space, then we are trying
to develop a subcategory 9'c $,AF, such that again an assertion like A3 ensures
the existence of a map f € K(8, XAZ) whenever a special kind of functor T: §'— 7,
(for a given space 8) is given. This has to be settled for the proof of theorem 7.1.

In what follows, we mean by #4(7,) either the category which we have just
congtructed or S‘;({J’;) whenever X (or Z) is compact metric.

The objeets of §' are decompositions of continuons mappings of the form iAa,
i€ Tg, aeﬂ"Z’ while the morphisms are of the form defined in § 1 (1) with s,
8, == identity » = r Ar, and all the homctopies being trivial. By an abuse of nota-
tion we will simply write (r;Ary, 1): (3,AaQ) —> (f.A@,) for such a morphism.
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A7 ProposiTION. — Let Sed be any space. A funetor I': §' — F, with the
properties

T1) (ihNa)e¥, i: XcCya:Zc U= T(i\a): 8= CAT;
T2) (nArs, 1) e 5”(_(121/\%), (iz/\az))_:> T(r; N1y, 1) == (1, /\Fs, @) for suitable w de-
termines a fe Jo(S, XAZ) such that f|§' = T.

PRrROOF. — One immediately recognize that we have merely to apply lemma A4
to each factor in the A-product separately, in order to get an assertion which allows
us to argue as in the proof of A3.

In order to find a specific functor 7 with properties 71), T 2), the following
assertion will be helpful:

A8 PROPOSITION. — Let 7': ' — &, be an asgignment with the following prop-
erties:

a) For fixed ¢¢ ¥ ;, T'( )= T@EA ) behaves functorially.
b) For fixed ae T,, T'( ) = T( Aa) behaves functorially.
¢) T fulfills 71) and T 2) in proposition AT.

Then T is a functor.

ProOF. — Bach morphism (r;Ars, 1): A0 —> i,A0, in §' allows a decomposition
(741/\"‘27 1) = (1/\?27 1)("'1/\17 1)

with suitable identities 1. From this observation A8 follows easily.

10.3. Cofibrations in the sirong shape category.

In order to keep this paper independent of other articles on shape theory and
because we want to present an application of A3 we will ineclude proofs of the fol-
lowing assertions A9, Al10:

A9 PROPOSITION. — Let i: A ¢ B be an inclusion of metric spaces and 4 compact.
Then (i) is a cofibration in X.

PROOF. — Let d: AX0 ~ A c B be the inclusion, then 4 xI U, B with the iden-
tification topology is homeomorphic to AxIU Bx0 (equipped with the topology
of a subspace of BxI). By a well-known argument the assertion is equivalent to
the existence of a mapping e K(BxI, AXIU Bx0) having the property that
gk = 1, where k: A XIU BX0c BxI denotes the inclusion.
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We embed B in an ANR M, hence we have

AXIUBX0cBxIcMXI.
Let j: AxIU Bx0c C be an object of F.,.,.,, then we find a (rel. M) open
W2 B and an open U D A, such that Wx0U U xIc 0 and that both are maximal
with this property (i.e. W = (M x0) N C). Moreover since A is compact we find a
decreasing sequence U,> U,D..., having the property that every U is contained
in some U, and therefore in a U,, with maximal index ¢ = 4(C). All spaces are
metrie, hence normal, therefore we find to each € a continuous ¢,: B — I such that
@4 =1, ¢,|B— BN U,,=0 (¢, should only depend on the index i(C)). Now
we set

o(j)(by 1) = (b7 %(b)t) ’

which is a continuous function

3(4): BXI - Wx0U Uy, xIcC.

Let (r: Cyc Cyy 1) be a morphism in 9, ,,,.,, then we define g(r,1) = (r, »)
in the following way:

o =1..4C,) = i(C,)
w(b, t,8) = (b7 (1— S)t(ljol(b) + 8<p02(b)t) e(,

for #(C,) = i(0,) + 1 and as the composition of such homotopies for i(Cy) = i(C;) + n.

This yields a functor |9, ,,,«,= I fulfilling 71), T 2) in A3. So we obtain a
e R(BxI, AxIU Bx0). Since wehave g(g)|4d xI U Bx0 = gforany g€ T, ;0,50
resp. for the 1- and 2-morphisms according to remark 2) (following Ab), we conclude

that

gh(k) = gk = 1.

Although the following assertion is not explicitely needed in the present paper,
we include it, because it has its well-known counterpart in ordinary homotopy theory:

A10 PrOPOSITION. — Let i: A c B be an inclusion of compact metric spaces, then
AXIU Bx0 is a strong deformation retract of BxI in J. More precisely: There
exists a F e X(BxIxI, BxI) such that F|BxIx0=Fkj, F|BxIx1l=1,
Fl(AxIU Bx0)xI=p (= projection).

PrOOF. — The proof is analogous to that of A9: Set X = BXIX0U Bx0XIU
UAXIXIUBXIXx1cBxIxI, then by glueing together the prescribed shape
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mappings on the specific subspaces (which is easily seen to be possible) we get a
GeR(X,BxI). Now set B'= Bx0xI, A'=Ax0xIUBX0X0UBx0x1 and
apply A9 to the inclusion i': A'c B’, then we obtain a retraction B € K(B xI xI, X)
because X = A'XIU B’ x0. Hence we can form

F=GR,

which hag the required properties.
This completes the proof of A10.
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