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Summary. - For the purpose o] present~g ge~eral Alexander-duality.theorems (w 7), strong- 

shape.homology ~ ,  and cohomoZogy E* with coefficients in an arbitrary spectrum E turns 

out to be the appropriate implement. There]ore the main properties of E ,  and ~ are (analo- 
gously to those o/ordinary (co-) homology with eoe]]ieients i~ E) developed (w167 3-5). In  order 
to be able to per]otto the necessary constructions, strong-shape.theory and in particular two 
di]ferent lcinds o] smash-products in this shape-category are treated (w167 1,2, appendix). All 
previously known Alexander-duality theorems appear as specia~ cases o] the main theorems 
o] this paper (w 8). 

O. - I n t r o d u c t i o n .  

The objective of this paper  is to establish a proof of the following Alexander- 
Pont r jag in  dual i ty  theorem ( theorem 7.4.). 

Le t  M" be a compact  manifold which is ~--orientable for a CW-ring-speetrum 5 .  
Then for any  Y-module spect rum ~ and an y  pair  (X, A),  A c X c M ' ,  we have an  
isomorphism which is natm'al  with respect  to inclusions 

(1) p~: gAX, A) ~ ~-~(~,,--A, M~--X), 9eZ.  

Here  ~ denotes shape homology with compact  support  (w 3) while ~* is ~ech 
cohomology (w 5) with coefficients in a CW-speetrum ~ = {E~}. I f  we restr ic t  our- 

selves to compact  pairs (X, A)~ then  we have an isomorphism (theorem 7.3.) 

(2) y~: ~ ( X , A ) ~ - ~ ( M ~ - - A , M . - - X ) ,  p e Z  

for any  spec t rum 8 = {E~} (being still an ~--module spectrum) and  Cech-shape- 
cohomology (w 5). 

These theorems are proved in w 7 by  arguments  which are based on a construc- 
t ion laid down in w 9. I t  turns  out  t ha t  all difficulties arise a l ready in the ease 
M ~ = S ~ ( theorem 7.1.). The step f rom M ~ = S ~ to an  a r b i t r a r y  manifold is t rea ted  
in complete analogy to the classical ease (cf. [1] or [14]). W h a t  one needs are Mayer- 
Vietoris sequences for (co)homology. These questions are settled in w 3 and w 5. 

(*) Entrat~ in Redazione il 30 dicembre 1982. 
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In order to extend (1) from compact to arbitrary spaces we need lemma 5.2. 
which goes back to K. SImNIKov (who discovered the tautness of ordinary ~ech 
cohomology with coefficients in an abelia.n group [2], [15]). 

Itis proof does not extend to our case. Our proof is due to J. DVGUNDJI and 
depends on propositions A:I, A2 in the appendix. Here, the coefficient spectrum 
being a CW-spectrum turns out to be crucial for the validity of Sitnikov's lemma. 

All existing duality theorems of the Alexander-~ontrjagin type are special eases 
of (1) or (2). This is explained in w 8 where we also indicate that, at least for compact 
spaces, (2) can be  considered as a first step towards general E-duality (theorem 8.2.). 

Strong shape homology ~(X)  displays some interesting properties which are 
explained in w 4: For a special kind of coefficient spectra 8 one has 8,(X) ~ 8~(IS(X) [), 
where IS( )[ denotes the shape singular complex (cf. [3]). This applies in particular 
to Eilenberg-MacLane spectra K(G) for finitely generated groups. As a consequence 
we have a universal coefficient theorem for these homology groups. 

The basic ideas of strong shape theory are recollected and considerably extended 
in w 1 where, in particular, we need a second kind of smash product XA :Y for topo- 
logical spaces. In proposition 1A. the question under what conditions XA IT and 
XA :Y are equivalent in the shape category J5 is settled. 

The second section is devoted to the problem of finding smash products for 
mappings in the shape category. 

The investigations of w 1 ~re extended in the appendix by  presenting the explicit 
construction of a shape mapping (proposition A3) together with all the necessary 
machinery. Moreover we repeat the proof, that every inclusion i: A c B (A compact) 
of metric spaces becomes a cofibration in J5 (proposition A9, A10). All this together 
makes the present paper independent of earlier papers on strong shape theory ([3], [5]). 

Finally w 6 is devoted to slant products, preparing the statements and the proof 
of the main theorems in w 7. 

The reader is assumed to be familiar with classical (co-)homology theory with 
coefficients in a spectrum 8. This material can be found for example in [1]. 

1. - Shape construct ions .  

In order to keep this paper independent of [5] and because we want to present 
some additional material, it seems to be necessary to include a section on shape 
theory. The kind of shape theory we are using is called strong shape theory. Our 
policy will be to give access to a definition of the strong shape category J5 in this 
section, referring to a more detailed discussion of some concepts used for that  pur- 
pose (like 2-homotopies, 2-categories and 2-fnnctors) in the appendix (10.2). 

Before we are able to give the definition of J~ let us make some preliminary 
remarks: 

1) Let J5 be any category of based spaces and continuous, base-point preserv- 
ing maps. We have the concept of a homotopy between two mappings H:/o_~/1:  
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X - *  17. This is ~ mapping H :  X• 17, where I~=- [0 ,  n], n ~ 0~ 1,2,  ... such 

t ha t  Hio = ]o, Hi~ ~-- f~, i~(x) : (x, t). 
Composition of homotopies is obvious: Le t  H ' :  X •  I 7 be a mapping such 

tha t  Hi~-~ H'io, then  we have a G ~- H 'oH:  X•247 17 defined by  G l i b =  H, 
G[[n, n -~ m] = H'.  We abbreviate  I~ by  I and introduce the following two relations: 

11) [Let F :  X •  Y be any  and G: X X I  --~ Y a s ta t ionary  homotopy  (i.e. 
one which is independent  of t) such tha t  Go~  (resp. FoG) is defined, then  we set 
GoF  ---= F (resp. FoG = F) .  We will denote  G by  :b, ](x) --= G(x, t). 

12) Le t  F :  X •  be an y  homotopy  and let  G = /~ -~ :  X •  be de- 
fined by  G(x, t) = F(x ,  1 -- t), then  we require tha t  F - l o F  = ls (with f =/~io).  

A homotopy  of the fo rm F :  X •  17 will be called elementary. So we can 
easily deduce f rom our definition: 

1.1. Lnlv~i .  - E v e r y  homotopy  co e J~(]o,/~), ]~e JS(X, Y) allows a unique re- 
duced decomposit ion 

where s~ is an e lementa ry  homotopy  and (analogously as in group theory) s~V: 1 
and  s ~  s -~ i - - 1 "  

I~E)[A~K. - 1) ~u have to define homotopies this way because the ordinarY 
concept  of a homotopy  does not  t u rn  :~(X, Y) into a category:  Composition is 
nei ther  associative nor  does there  exist an identi ty.  

2) In  addit ion we need the concept of a homotopy between homotopies (a 2-homo- 
topy ) :  (cf. w 10.2)), 

L e t  ~0, col: X •  --~ 17 be two homotopies  between the same maps ]o,/~: X - >  17. 
Then we consider classes of mappings $ = [A] 

A: X • 2 1 5  Y 

such tha t  

A(x ,  t, i) = o d x ,  t) , 

A(x,  i, s) -= f d x ) ,  

i : O , m  

i = O , n  

with an equivalence relation, which is thoroughly  discussed and defined in the 
appendix.  We call ~ = [A] elementary whenever  we have m = 1. 

As a l ready mentioned,  the kind of shape theory  which we are now going to define 
is strong shape theory. This has to be distinguished f rom weak shape theory which 
is readily t rea ted  in [7]. Although it can be proved tha t  at  least for compact  metric 

spaces, two spaces X and Y are of the same (weak) shape if and only if they  are 
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homotopy equivalent in the strong shape category, strong shape theory provides a 
much richer structure. All questions of ~lgebr~ic topology require the concept of a 
strong rather than that  of ~ weak shape unless one is willingly to work with pro- 
objects (like pro-groups instead of groups). The difference between these construc- 
tions can from the structural point of view be compared with the difference between 
Oeeh homology ~nd Steenrod-Sitnikov homology (the first is generally not exact, 
while the second one is always exact). Alternatively one may compare the Spanier- 
Whitehead category with Board man's c~tegory: The first being obtained by per- 
forming g stabilization process at a homotopy category, while Boardm~n's category 
is the stabilized version of a topological category with continuous mappings (rather 
than their homotopy classeS) as morphisms. The price which one has to pay for 
the ~dvanta.ges of strong shape theory is~ like in the other examples, ~ higher degree 
of complexity. 

Mea.nwhile there appeared wzious other approa.ches to the homotopy category (Y~)~ 
which appear~ntly le~d to the same result for compact metric spaces (cf. e .g . J .  DY- 
DAX, J. SEGAL~ :F. W. CATtIEY). Because we use individual m~ppings. 1-homotopies 
and then 3-homotopy classes of 2-homotopies, this is a << 3-stage-strong shape category ,>. 
One could extend this to ~-, 5- and finally some kind of co-stage shape construc- 
tion. However for compact metric spaces, the 3-stage approach trams oat to be 

sufficient. 
We are now ready to define our shape category ~ depending on a full subcate- 

gory ff of Top (resp. Tap0) of good spaces (which in our example will be the category 

of ANEs). 
Let Y e ~ be ~ny object, then we define fir to be the following 2-category: 

1) The objects are mappings g ~ Topo (Y, -P)~ P e ft. 

2) The 1-morphisms (r,~o): g~-)-g~ are p~irs where g~: IZ-~2~ is an object 
of fir and r: P ~  P~ a continuous mapping, while co: r g ~  g~ is ~ fixed homotopy. 

3) A 2-morphism (v, ~): (r~, ~)~_ (r~, o9~): g ~ g ~  is ~ pair, where 

is a homotopy and 

homotopy between homotopies. More precisely we have to work with homotopy 
classes [~] of 2-homotopies (all between the same 1-homotopies) instead of individual 
1-homotopies. By an abuse of notation however we will continue to w~-ite $ instead 

of [~] (cf. w 10.2.2) for more details). 
We are not going to present all different kinds of compositions in fir rendering 

it into a 2-category. Moreover one could define more involved (n-)categories ~y 
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by  taking into account  higher (n-)homotopies (rather  than  only 1- and 2-homotopies). 
However  we are not  going to pursue this aspect fur ther .  

F r o m  now on we require  tha t  all spaces are k-spaces a.nd tha.t consequently all 
other  operations (which possibly do not  automa.tieally produce k-spaces, like the 
A-product)  are, if necessary followed by  the functor  k, which turns  eve ry  space 
into a k-space. 

Le t  X, Y ~ 3~ be fixed spaces, then  we define a category ffxACr. Let  to this 
end geffXAr be such tha t  it  allows a decomposition g-~  s(eAe'), e: X - - > Q e f f ,  

i _). e': IY->Q'e if, s: QAQ P e if, then  an object  of ~'x~ffr is defined to be a fixed 
decomposit ion g = s(eAd). A 1-morphism between two such objects consists of a 
d iagram 

(1) 

X A Y  

Q1AQI - Q2AQ'2 

81 

P ~" P2 

82 

together  with given homotopies ~:  tel e2, t e l ~  e2, ~: r s i _  s~ (tAt'). In  a next  
step we complete the definition of 1-morphisms by  declaring a~ll morphisms of the 
form (1) with r = ident i ty  and (3 = 1 as invert ible (i.e. we form the corresponding 
quotient  category,  cf. [6]). The 2-morphisms a.re defined analogously. 

We have a na tura l  2-functor ~: ffx-Affr---> ffxfr which forgets the given decom- 
positions of cer ta in  g: X A Y - - > t ) ,  resp. for the 1- and 2-morphisms. The defini- 
t ion of a 2-fnnctor  is recorded in the appendix.  

All this can be easily extended to a finite number  of factors,  obtaining categories 

and 2-funetors g: H--> ffziA ..Ax." For  n = 1, we define a to be the ident i ty  1: X --~ X. 
We d e n o t e / / b y  X 1 A . . . A X n  and consequently fix by  X. The category ~ has 

these A-products  of spaces as objects. The morphism []] e ~ (X~A. . .AX. ,  Y1A...A Y~) 
are classes of 2-funetors 
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satisfying the following conditions: 

a) (s(AeC')): A :Y, --> t '  e r ~ ](s(Ae"'): AX, -> .P. 

b) Le t  # be a l -morph i sm of the form (1), then  ](ff) has the same r: P1--> P2. 

e) Let  # '  be ~ 2-morphism with v: r ~ r ~ ,  then  /(#') has the same v: r~_~r~ 

as first component .  

For  the formulat ion of the next  condition for /, recM1 tha t  according to the 
definition of a generM 2-functor (cf. 10.2.3), definition of a 2-functor 3 a) we have 
for any  two 1-morphisms~ which can be composed (i.e. for which tt2o/~ exists) a 

connect ing 2-morphism 

We require :  

d) The first component  z :  r~r~ ~_ r~r~ in ~ is the ident i ty .  

Here  r~ is of course the mapping r in (1) now for /~. 
The last  condition turns  out  to be v e ry  convenient  Mthough it is not  explicitely 

used in this paper. For  the sake of b rev i ty  we write it  down only for the case 

m ~ n ~-- 1. The general  formulat ion e~n be easily provided. 

Le t  

Y 

be a 2-morphism (v, $): (rl, (o~) -* (r~, ~ )  with $ = $ a, then  we have 

6) i(v, = ( , ,  w h e r e  s t e m s  f r o m  1(8% 1) = (8', 

Two such functors  /, ]' are equivMent whenever one has ~] ~]', ~: ~ A..,A 
~ffx~-> fix, A.. Az~ being the previously defined n~tm'al t ransformat ion.  :By an abuse 
of nota t ion  we will Mw~ys write ] instead of []]. 
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In  par t icular  for m = n ~- 1 (i.e. in case of topological spaces) conditions a) - d) 
reduce to : 

a) g: Y - >  P e ~ => ](g): X ~ P; 

b) (r, o J): g~g2==> ](r,(9)-~ (r, ~o~) for suitable w~; 

c) (v, $): (r~, co~) -~ (r2, co2) => ](v, ~) = (v, ~) for a suitable 2-homotopy ~ ;  

d) in the connectil~g morphism 

= 

o n e  has ~ ~ i. 

5~oreover, since ~ becomes the identi ty,  two 2-fnnctors are equiva.Ient whenever 
they  are eqnM. 

I t  should be kept  in mind tha t  the products  X ~ A . . . A X .  are not  re la ted to spaces. 
So the objects of J5 are par t icular  2-categories, some of them can be represented 
by  topological spaces (namely those of the form ffz). 

An example of a shape morphism of a space into a ~ - p r o d u c t  is furnished b y  
the previously described 

e 55(X~A...AX~, X ~ A . . . A X . ) ,  

which we d e n o t e  by  the same let ter  r However  we have to observe tha t  r as a 
shape morphism points into the reverse direction, compared to c~ as a 2-]unctor. 

We will ve ry  soon (see proposit ion ].4.) s tudy under  what  additional assump- 
tions ~ becomes an equivalence in 35. 

The extension of the category ~ by  introducing these new objects is the price 
one has to pay  for the existence of a rb i t r a ry  smash products  ] ~ ] z :  X ~ Z  -+ ~ Z  
where ]: X --> ~ is a given shape morphism. This will be t rea ted  in the next  section. 

Le t  ] e 35(X, Y) be a continuous mapping, then  we have a shape morphism 
h(/) ~ K(X,  Y) which is defined b y  

h(h (g )  = g/ 

and  similar for the 1- and 2-morphisms. 
This furnishes a fnnctor  h: 55 - ~  (see [5]). 

'As in [3], [5] we have for each ] e ~ ( X ,  Y), Y e  '$ the  assignment  h'(]) e 35(X, I 7) 
defined by  

h'(7) = i (Z)  (Z: Z~--~:F). 
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one has ([5] 2.3.a), 2.4.): 

1.2. PnoPosI~IO~. - a) For  each / e 5 5 ( X ,  ]/), Y e  ~ we have  

h'h(/) = / .  

b) For  each /e55(X, Y), Ye ~ we have  a na tu ra l  h o m o t o p y  in 

__ ].  

Here  homotopies  in J% are defined ill complete  analogy to the concept  of a 
h o m o t o p y  in 55 b y  using shape morph i sms  /7: X• in ~ .  

I n  what  follows, we will in mos t  cases surpress the functor  h in our nota t ion,  
wri t ing / e  55(X, Y) for a continuous / ( instead of h(/)e 55(X, Y)). 

As a consequence of 1.2. we have  the  following i m p o r t a n t :  

1.3. COn0LLAtCY. - To a n y  / e 5 5 ( X ,  Y), Y e ff there  exists  a continuous / e  
e 55(x, y) such that h(/) ] (cf. [5], corollary 2.5.). 

At this  point  we have  to specify our ca tegory  55. He re  we are  confronted with  
the following difficulty: For  general  spaces we would like to confine ourselves to 

metr izable  (shortly:  metric)  spaces, while the good spaces are supposed to be A N E  

spaces. Recall  t h a t  an  A:NE space .P is defined b y  the p r o p e r t y  t ha t  a. continuous 
mapp ing  /:  A -+ P of a closed subspaee A of 3. metr ic  space admi ts  an extension 
F :  U -+ P for a suitable open ne ighbourhoo4 U of A. Any  CW-space is an AlOE [10], 

bu t  not  metr ic .  Since the spaces E~ appear ing  in our spectra  8 ---- (Ek} are somet imes 
CW-spaces (and therefore  ~ good )>), we are obliged to find a ca tegory  which contains 

metr ic  and  A N E  spaces as well. Hence  we take  for 55 the  full subca tegory  of Topo 

consisting of a) all metr ic  spaces, b) all AI~-Es and  c) all finite A-products  of spaces 
in a) or ill b). The ca tegory  ff c 55 trams out to be a full subca tegory  of 55 (containing 

all AI~R spaces as well as all CW-spaces). 

We  have 

1.4[. P~oPosITIOd-. - The t r ans fo rma t ion  g: XAY-+XAY for spaces X, Y be- 
comes an equivalence in 55, whenever  one of the following conditions is fulfilled: 

a) X and Y are compac t  (from now on, we will b y  an  abuse of nota t ion  

s imply  write (~ compac t  ~> whenever  we mean  <( compact  and metrizable ~>); 

b) X (or Y) is a compac t  ANE,  the other  a r b i t r a r y  in Jd; 

o) X and I 7 are  A N E  spaces (e.g. CW-spaces). 

The proof  is p repared  by  the  following 

1.5. LENA. - Let g: XA Y-~ iP e ~ be any continuous map, X compact and 

suppose Y be embedded  in a met r ic  space M as a closed, subset.  Then there  exists 
an extensions g ' : X A U - - > _ P  of g over  X A U n X A Y  where U is open in M. In 

other  words we have  g'i = g with i: XAYcXA U, the inclusion. 
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PRoof .  - ~u give a proof  for the •  and  the unbased  case. The asser- 

t ion for based  X,  :g and  the  A-product  then  follows immedia te ly .  Since I7 c M is 
met r ic  and  _P an  A57E, we find an  extension ]: V --> P of g over  an  open V, X • IT c 

c V c X • M. However  to each (x, y) s X • I7 there  are open sets U~,,(x) ~ x, W ( y )  ~ y 

with U~,y• W , c  V. ]~ecanse X is supposed to be  compact ,  finitely m a n y  U~---- U~,,v 

coyer  X and  we finally come down ~dth a W,---- n W~,.v such t ha t  X x W~c V. 
The desired neigbourhood U is 

g =  Uw,. 
y ~Y 

As a corol lary we can deduce the  well-known fact  (cf. [7] for A~l% spaces): 

1.6. COrOLLArY. - :Let ~P E ff be fixed and  X e ~ compact .  Then the  funct ion 
space y x  is conta ined  in ft. 

P~ooF. - We mus t  p rove  thg t  given a met r ic  space M and  a closed subspace :Y, 
we can ex tend  a n y  continuous ]: ~ -~ p x  over  an open neighbom-hood U of ~Y in M. 

This can be deduced f r o m  1.5. b y  going over  to g ---- ] ' :  X • Y -~ P,  the  adjoint  of ]. 

P~ooF oF 1;4. - Ad  a) We embed  X, !7 in two different copies of a t t i l be r t  cube Q~ 

hence X A  I7 c QAQ ~ Q. By  app ly ing  1.5. twice, we obta in  for a n y  continuous 

g: X A Y - > P s f f  open neighbourhoods (tel. Q) U-= U(X), V - - - V ( Y )  as well as 
an e x t e n s i o n  g ' :  U A V - ~ 2  of g. Since U, V a.re A ~ B s  (cf. [6], p. 96) we have  

furnished a faetor izat ion g ---- g'(a~Aa2), a~: X c U, a2: :Y c V as required.  So a func- 

to t  fl: if• ffxAffs can be defined oll the  objects b y  choosing a fixed decomposi-  
e t =  t ion fl(g) = s(eAe') (for example  by  set t ing s = g', e -~ a~, as). Now let (r,(o): 

gl ~ g2 be given, then  l e m m a  A6 ensures the  existence of g d iagram 

(2) 

XA Y 

Q~AQ; Q~AQ', 

81 

I92 

82 

.P 
I" 
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with commuta t ive  upper triangles and a homotopy  y: s~(t~At~) ~ s~(t~At~), such tha t  
! ! 

y(vAr = (o. Observe tha t  for i = 17 2, a: s~(e~Ae~) ~ s~(t~At~)(eAe ) is an isomor- 
phism by  definition. This enables us to define fl(r, ~) on the l -morphisms by  (2). 
On the 2-morphisms we proceed similarly. 

This completes the construction of a functor  fl having the p roper ty  tha t  ~# = 
= identi ty.  On  the other  hand  this implies tha t  fl~ is equivalent  to the identi ty.  
This complets the proof of a). 

Ad b) Let  g: X A ~  ~ P e ff be continuous~ then  we have the adjoint  g ' =  r: Y 
- + 2 x E  ff (because of 1.6.). Thus we have established a factorizat ion g = c(1Ar), 
where e: X ~ 2 x e  $ denotes the evaluat ion map. The construct ion of a functor  fl 
is in this case immediate.  

Ad c) This is tr ivial  because any  g: X A : g - + P e ~  factors over the ident i ty  

IAl: XAY-+XA~.  

I%E~A~K. - Proposit ion 1.4. b) makes sure tha t  we can talk about  suspensions 
Sl /~X ~ S+SX as wen as about  cones CX = (Z, {1})AX ~ (Z, {1})~X for any  
X ~ E without  being obliged to distinguish between these two kinds of products .  

2, - Smash products of morphisms. 

We s ta r t  with the definition of ] A I ~ e - ~ ( X A Z ,  Y A Z ) f o r  given ] e - ~ ( X ,  Y), 
X ,  Y metric  and Z compact  metr ic :  Let  g~  ffr^z be fixed, g: X A Z - + ~ E  if, then  
we have the  adjoint  g': Y - +  pz. Recall tha t  according to corollary 1.6. pz  is an 
object  of ~ and so we define ([3], w 4): 

(1) (]Alz)(g) = ](g') ' :  X A Z  --> .P . 

We are now establishing ]Aa z for F,-spgces Z. :By this we mean spaces Z = W Z~, 
Z .  a compact  CW-complex, such tha t  eve ry  compact  K c Z is contained in some Z~. 
Wi thout  loss of general i ty  we assume tha t  Z~c Z~+I for any  n. Le t  g: ! /A Z  -+ 

-->P ~ ff be c0ntinuous~ i~: Z~c Z,~+I the inclusion and gn= g]~YAZ~, then  we have 
the  commuta t ive  diagram: 

Y 

(2)  r .  = P~" 

rn 
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which under ] is t ransformed into a homotopy commuCative triangle 

( 3 )  " ' . rJ(g,+l) 

This yields a homotopy commutative diagram 

XAZ~ 

(4) 1Ai~ t ~ ~ _ . ~ . ~ . ~ .  ~ P 

~ /  (/ A Z~+~)(g,,+,) 
XAZ,~+I 

r 

:Now we form the telescope space Z-----~Z~xI/--. ,  where Z, ,•  x I  is 
n = l  

identified with Z~ X {0} c Z,+~ X I. Because of our assumption we ha~e continuous 
mappings ~: ~ -~ Z (the projection) and s: Z -> Z (which can be easily constructed 
inductively by a cofiber argument).  These two mappings are homotopy inverses 
to each other. 

Diagram (4) provides us with a mapping e: X A Z - > P  so that  we can define 

(]Alz)(g) = e(l~As). 

This establishes a ( ]A: lz)e~(XAZ,  YAZ) as can be easily checked. Moreover 
we have for two shape morphisrns 

f~e :~(X, lr),  /~e J~(lr, y ')  (]~]~)Alz: (],AI~)(]~AX~). 

I~E~IA~K. - The assumption that  all Z~ are CW-spaces is introduced for con- 
venience and can be weakened. We give the following examples of such i~o-Sets: 

1) Every open subset of some n-sphere S'. 

2) Every CW-space Z, all whose n-skeletons for all n are compact. 

3) In  particular all Eilenberg-l~facLane spaces K(G, n) for finitely generated 
abelian group G. 

In  addition to smash products of this kind we must  deal with smash products 
of shape morphisms ] ~-~(A, B~C) with a Fo-set Z, resulting in a ] h l z e - ~ ( A A Z ,  

Observe that  (B~C)A Z is not defined!. The construction oi ]A 1~ is accomplished 
in complete analogy to the previous case: One defines/A1 z for compact Z (in this 
case we do not need any assumption on a CW structure) then one goes over to ]Al~ 
for a Eo-Set Z and proceed as in the former case. 
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As an application we will encounter  mappings ]: S~+~-~E~X for compact  
X c S ~ and  Z = I ~ = S ~ -  X.  Let t ing  u: 27~XA Iz -~ S~+ ~-~ be the ~ dual i ty  map ~) 
which stems f rom u(x, y) = ( x - - y ) / I x -  Yt, we obtain a shape map 

Z'~+~+~ ~ /~+~+~_t 

whose existence will be crucial for the dual i ty theorems.  
We can const ruct  ~ -p roduc t s  1A--l: E ~ X - > E - ~ Y  for fixed ]E~(X,  I ~) and  

a ny  E E J% in the  following way:  
Le t  s(eAe') be a given decomposit ion of a g: E A : Y - ~ / ) e J 5  hence an object  

of ~ A ~ r ,  t hen  we set 

( 1 A ] ) ( s ( e A d ) )  = s(eA](e ' ) ) .  

On the 1- and 2-morphisms we proceed similarly. Observe tha t  a morphism of 
the form w 1(1) with r =  identi ty,  ~ = 1 is t r anformed  into a morphism of the 

same kind, so tha t  1A] is well-defined on the quotient  categories. 

We summarize:  

2.1. P~o~osITIo~. - There exists a smash-product  l A ] : / ~ A X - ~ E ~ Y  for any  
spaces E~ X, ~ ~ J~ and for any  ] e ~ ( X ,  Y). This smash-product  is functorial  in 

X, Y: 

1) x ~ r ~ z ~ 1~(~]) = ( ~ ) ( 1 ~ ] ) .  

2) l sA1 z =  l ~ z .  

Moreover for compact  metric ~ we have n homotopy  commuta t ive  diagram: 

(5) 

where g stems f rom 1.4. 

1 A 

N A X  --- ~, > NA  I7 
/A1  

Y R o o P . -  Only (5)needs  proof:  Le t  a l A n , :  a: ~EA:F "->Q1AQ~,Q~ ~ be given, 

t hen  we have a map 

U: Q~-+ (Q1AQ ~)~  ~ 
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such tha t  

which is defined by V(q:)= (e-->(~,(e),q~)). :Let ~: .EAQ~-->Q be the evaluation 
map, then  we conclude: 

This provides us easily with the required homotopy.  

REY_~B~. - 1) All the results concerning A- and A-products could also be estab- 
lished for the •  instead of the A-product .  We could in par t icular  define 
s n  object X X Y and the  related maps. This case of free spaces and maps will be 

used in w 4. 

2) Le t  Z be a r e t r ac t  of a ~ - s e t  Z% then  one is still able to define ]A1 z b y  

jR1 z = ( l rAr)( ]Alz , ) ( lzAi)  

where i: Z c Z% r: Z ' - +  Z denote the inclusion resp. the retract ion.  

3. - The  h o m o l o g y  functor .  

A spect rum g ~-- {E~, n e Z, ~ :  XE~ -~ E~+I} is a collection of based spaces (which 
are assumed to be ei ther  metr ic  of lying in r together  with continuous msppings 
~ :  XE~-~ E~+I. Observe tha t  according to proposit ion 1.4. b) we do not  have to 
distinguish between S ~ A ~  and S1AE, .  ]By an abuse of nota t ion we will denote 
the i te ra t ion of ~ :  

XkE~ x~-'~. Xk_IE~+I --> ... --> XE,+k_I -> ~ + ~  

also by  a. 
Moreover by  an abuse of nota t ion we call a spectrum g = {E~} such tha t  Ml 

E, ~ if, a CW spectrum. In  part icular ,  eve ry  spectrum with the p roper ty  tha t  Mi E ,  
are  CW complexes is a CW spectrum. 

We prefer  this nota t ion in order to be in accordance with the general  usage. 
Le t  A, B e J5 be two based spaces, then  we write [A, B] instead of J~(A~ B). 

This extends  to more general  objects like A1AA2 resp. B1ABp. 
We are defining (reduced) homology groups for based compact  metr ic  spaces 

.~ = (x, xo) 

(1) ~ ( x )  = ~ [s~+~, E.A--Xl 
k 

with coefficients in a spec t rum g. 
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The bonding maps in the direct system are defined as usuM: 

[S "+~, E S X ]  ~ [S~+~+% 2E,,-~X] ---> [~+~+', E~+~A--X]. 

Our results in w 1, w 2 guarantee that  everything (like suspensions for spaces 
and mappings) is well-defined. The group strusture in [S,,+k, E ~ X ]  is induced by 
the eomultiplication 

in the following way (similar to that  in ordinary topology): Let/~, f ~  [S ~+~, E~:-~X] 
be given morphisms and s(e/\e')e ff~,,A'$z any object, then we define 

(], q- ],)(s(eAe')) = ~,(],(s(eAe'))V],(s(eAe')))u, 

with ~p: ~V~ --> P being the ordinary folding map for the space in ~ into which 
s(eAe') is mapping. Nor the 1- and 2-morphisms, one proceeds analogously. 

More generally we have for any object XzA...AX~:e 35 the concept of homotopy 
grou~s 

~(X,A. . .AX, )  = [~'~, X~A...AXk] 

with natural group structure defined in the same way as in the previous cuse. 
Let CornoC 35 be the full subcategory of 35 consisting of based compact metric 

spaces and h(Corno) -~ Como the full subcategory of 35 determined by compact me- 
tric spaces. We explained in w 2 (proposition 2.1.)how to define for a ]~ Corno(X , Y) 
the smash product 1~] : /~ :~X--~ET~Y.  As ~ result we obtain induced maps 
~,([) : ]*: ~,(X) - ~ , ( Y ) ,  turning 6,: Como---> Ar z into a iunctor. 

For arbitrary spuces X---- (X, x0)e 55 we define ~, with compact supports: 

(2) ~ (x )  = ~ ~(K),  
J~CX 

K c X  compact, n eZ  

resp. for morphisms, induced by continuous f e 35(X, ~7). 

R ~ s .  - 1) Actually we have defined a functo~ ~,: 35 --> Ab z which coincides 
on Como with ~,h. We do not define &.d/) for an arbitrary ]E-~(X, ~), because 
for compact K c X, in general ]tK does not factorize over a compact K ' c  Y. Ac- 
cording to our convention not to write down the functor h explieitely, we do not 
distinguish between ~,h and ~, in our notation. The fact that  ~,  on Como allows 
an extension over Corno is needed in order to ensure that  one has ~,(X) ~, ~,(:Y) 
for any based compacta (X, Xo), (Y: Y0) being equivalent in Corr~oh (cf. 3.2.) (resp. 
for the unreduced case). 
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m 

2) One could t r y  to define (1) by  using the A-product  instead of the A-product.  
However  this does not  necessari ly lead to a functor  because we do not  know hew 
to define induced maps unless we agree to impose restr ict ive conditions upon the 
spec t rum ~. 

We are now going to ver i fy  the Ei lenberg-Steenrod axioms for the reduced theory  
~. (with the except ion of the dimension axiom). 

I~et ~ be a n y  spectrum, then  we have:  

3.1. T ~ o ~ v . ~ .  - On the category Come the  homology ~. fulfills the following 

axioms : 

1) l%r / o , / l e  Come(X,  Y) and /o~ /1  we have  

~,(/0) = ~,(/i) �9 

 oreover we have for ]o, Come (X, Y), ]o in Co,,,~ 

= �9 

2) Le t  (A, ao) c (X, Xo) be an y  inclusion, (X W CA, *) the pointed space, where 
C ... denotes the  unreduced cone with top ve r t ex  *, t hen  the  following sequence 
is exact :  

(3) ~,(A) A_~ -~,(X) -~ -g,(X w ~A) , 

where i: A c X,  j: X c X W CA are  inclusions. 

3) There exists a na tura l  isomorphism: 

(~) ~.: ~ ( x )  ~ ~ + l ( Z x ) ,  

where 2: denotes the  reduced suspension. 

Ir -- 1) For  the sake of completeness we will present  an independent  
proof of theorem 3.]. a l though the  proof of the corresponding result  in [1] could 
be immedia te ly  t rans la ted  to our case. 

2) In  Corn o = h(Como) c 35 eve ry  inclusion is a cofibration (see proposit ion A9 
in the appendix).  Consequently we have in Com~o a homotopy  equivalence between 
the  pair  ( X , A )  and (X/A, *) whenever  A is contract ible  in Come. 

This has some impor t an t  implications:  

3.2. PRoPosI~IO~. - a) For  an y  (X, Xo) = X ~ Come, we have a homotopy  equiva- 
lence in Come between 1) the  pairs 

(5) (~_,X, xo • I) ~-" (ZX,  , )  

1 6  - A n n a l t  di  Matemat tca  
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where ~ denotes unreduced suspension and 2) the pairs 

(6) (X/A~ ,)  ~ (X u CA, ca)  

for any  inclusions (A, ao) c (X, Xo) in Como where it finally does not  mat te r  whether  
we use the reduced or the unreduced cone. 

3 .3 .  COROLLARY. - A s s e r t i o n  2) in theorem 2.1. is equivalent  to the contention:  

2') the  sequence 

is exact ,  where p :  (X, xo) --~ (X/A, *) denotes the  projection.  
The proof is well-known. 

l ~ o o r  oF ~m~o~E~r 3.1. - Ad i )  ~or  ]o ~ ]1 in Como we have due to the shape 

constructions in w167 1, 2 

]o, = ]~,: [8 "+~, E~A~X] ~ [8"+b E ~ I z ]  

this proves the second contention.  The first follows as a special case (]~ = h(]d for 

]~ e Como (X, Y)). 
Ad 2) We have j i ~  0 in  Comoandtherefore jingO in Como (omitting the rune- 

to t  h f rom our notat ion).  This implies j , i ,  = O. 
Let  on the other  hand ~ ~ 8~(X) be such tha t  i ,~  = 0. Wi thou t  loss of general i ty  

we may  ~ssume tha t  there  is given a ] ~ ~h(S ~+~,/~kA--X), ] e $ having the p rope r ty  

(1Aj)]  ~ 0 .  

Thus we find ~ shape mapping 

]': (D,~+~+ 1, ~+~) -~ ( ~ ( x  u cA), E , ~ x ) .  

On the  other h~nd we have an extension of ] over CS '~+k = D ~+k+l 

]": (D~+~+ ~, *) ~ ( E ~ C X ,  *) 

which agrees with ]' on S ~+~. Set t ing 

S ~+~+1 = D $  +~+1 u 1 )  ~+~+1 , 

9~+~+1 n / ) l + k + l =  ~+~ 
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we see t ha t  we can glue bo th  shape mappings  together ,  obta ining in this way  a 

_~: (s~+~+~, -':-) -~ ( E S ( c x  u CA), , ) .  

However  we hnve in Corn  o sn  equivalence 

(CA u CX, , )  ~_ (ZA,  . )  

and consequent ly  a m orph i s m  in JL: 

y: (S ~+~+~, *) --.'- (E~A2A ,  *) . 

We denote the  stable class of y by  ~] and  claim tha t  i , ~  - -  ~. ~iore precisely:  

(7) ( l ~ ) y  ~ z ] .  

PROOF. -- Le t  X X  ~ C+.X U C - X , / X  -~ C+X n C - X ,  where C ~ X  ~re two copies 

of the  reduced cone over  X and  consider the  inclusion q: CA kd CX c C+X w C - X ,  

where C X  = C - X ,  CA c C+X. We conclude on one hand  tha t  b y  construct ion 

( 1 A q ) F _  ~ (1AZi)~ 

while on the  other  h~nd (1Aq)F extends  ]: (S "+~, *) --> (/~k~X, *) over  Z S  "+k into 

This readi ly  proves  (7) and  completes the verification of the  exactness  of (3). 
A d  3) The proof  runs  ent i re ly  as in the  classical e~se. This completes  the  proof 

of t heo rem 3.1. 
Up to this m o m e n t  we were concerned with reduced homology.  However  it  

is wel l-known how to go over  to unreduced  homology  which will be denoted b y  the  

same let ter .  As a consequence we can deduce f rom theorem 3.1. ~nd proposi t ion A9 

the  following: 

3A. Tn-EonE~. - On the  ca tegory  Corn 2 of compac t  met r ic  pairs  there  exists a 

homology theo ry  ~,  which fulfills the  Ei lenberg-Steenrod axioms (with the exception 

of the  dimension axiom) with  a s t rong excision: 

-~dx, 4) ~ -G(X/A, *). 

For  a po lyhedra l  pair  (X, A ) e  Corn ~" one has  

~ ( x ,  4) ~ ~ (x ,  A). 

Because all inclusions in Corn are cofibration in Corno~ we can derive f rom 3.2. a 
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general Mayer-Vietoris sequence (without any  restrictions concerning <( excisive coup- 
les )>): 

3.5. T ~ E O ~ .  - Le t  (X, A), (X, B) e Corn ~ be any  two pairs which are contained 
in some (Z, C) ~ Corn ~, then  the following sequence is exact:  

(8) 
... -~ ~ . (x  n y,  A n B) - ~  ~.(X, A) |  g . (G  B) ~-~ 

... -~ ~.(X u ]~, A u B) ~ g._~(X n ]G A n B) --~ ... 

The homomorphisms r fl, d are defined as usuul (cf. [16]). 

4. - ~,  as simplieial homology. 

In  order to investigate 6. more closely~ we recall the construction of the sha~e 
singular complex S(X) of a topological space X, which is formed in complete analogy 
to the ordinary singular complex S(X) by  taking all singular simplexes #*: Am _~ X 
in J~. Analogously we define S(XA X). 

In  [3] (theorem 4.7.) we dealt with the problem of finding a homotopy equiva- 
lence between [S(XA :Y) I and IS(X)IA IS(X) I- The proof recorded there,  contained a 
gap in so far, as we worked with the x-produc t  instead of the A-product.  Here 
we are going to prove: i 

4.1. T~:EORE~. - Let  X, Y be spaces, X a compactum, #o(X) = 0~ and :Y shape 
simply connected (i.e. #~([Y) = 0~ i ~ 0, 1). ~oreover  we assume tha t  either: a) :Y 
is compact metric or b) I7 is a CW-complex such tha t  all n-skeletons are compact. 

Then we have a homotopy equivalence 

(1) I,S(X)IA IS(X)I ~ IS(XA X)l. 

~ o o F .  - We s tar t  with case a) and as in [3] with the x-product :  There exists a 
mapping 

(2) g-h I g(x)l x ig(x)j ---> 1,9(.x X Y)I 

in 8~, the category of Kan  complexes, which is defined by  

g' ( r  = (~"x ~")# 

(d: Am--> f l 'xA% the diagonal map). There is a corresponding map 

(s) g": g(X)As ---> S(XA tf) .  
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The X- resp. the A-products 5 • {(SA f) are readily defined in view of the results 
in w 2. The homotopy inverse of ~z is as in [3] furnished by the map 

where Px, Pr are the projections. The fact  tha t  for the geometric realization one has 

is e lementary and can be proved as in [3] (proof of theorem 4.7.). 

We form 9 =  [9^1: IS(X)IAIS(Y)I-~ ]~(XA:Y)I; this map is well defined and 
we are going to prove tha t  9 is a weak homotopy equivalence. Because :Y is sup- 
posed to be shape simply connected, IS(Y)I , [S(X)IAI~(y)] are simply connected_. 
5foreover, we can prove: 

1) I f  X, Y are compact  metric based spaces, :Y shape simply connected, then  
XA Y is shape simply connected. 

PgooF. - Le t  glAg~: XAY-->-PAQ be an object in ffXAr (which category is 
isomorphic to fl'z~ff r because of proposition 1.4.). 

We can assume without  loss of generality tha t  Q is a compact polyhedron and 
tha t  g~ is an inclusion. Therefore Q can be assumed to be connected (because 17 
cannot  have more than  one  component). 

This allows us to go over to a CW space with trivial 0-skeleton (consisting solely 
of the basepoint). Wow let 51: (S ~, *) -> (XA Y, *) be a shape loop. 

We claim tha t  51 is homotopic to zero (in ~ ) .  To this end we evaluate 8~(giAg2) 
and observe tha t  this loop is (naturally) homotopic to a simplicia.1 loop (p, yl), 
Yl: ( S~, *) -+ (Q, q0) for fixed p ~ P. :Because QO = qo the 1-skeleton of P does not  
contribute to the 1-skeleton of .P/\Q. 

We are going to construct  a ~ :  (S~, *) -+(Y, Yo) such tha t  5~_~~ using 
the results in the appendix (proposition A3): Let i~Ai~: PAQ->P'AQ'  be an in- 
clusion, and y'~: (S ~, *) -+ (Q', qo) be the corresponding loop, i.e. 5~(g~Ag2) ~_ (p', y'~). 

We have a homotopy between (i~(p), y~) and  (p', y,1), which is determined by a 
singular 2-cell ~ 2 : I x I = D 2 - - > P ' A Q ' .  This ~2 is homotopic (rel. boundary) to 
either a 2-cell of the form (p~, z2), ~:  I x I  ->Q', p~eP'  or to a 2-cell (~, fi~) with 
~1: I -+P', fl~: I --~Qq The lat ter  case means that i2y~-- - y'z, while in the first case 
we obtain a homotopy between y~ and 7'~ in Q'. Applying this to r ~r (cf. pro- 
position A5) yields a loop :~1 such tha t  8~_~~  , ~~ *), (X, xo)). :Because 
~ (Y)  = 0 we have a ~ :  (D ~, *) -~ (Y, Yo) with 6~IbdD~= ~ (D~= I •  This in 
tu rn  implies 5 1 ~  0 because we have (~~ 8 ~. This completes the proof 
of 1). 

As a corollary we have 

2) ]S(XAY)[ is simply connected. 
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P~oo~. - Since IS(XAig)I is a CW-space, we have 

~,(IS(XA~)I ~ , ( X A ] 0  for aa i 

which implies the assertion. 

3) Let ] e ~ ( A ,  B) be any shape map for shape simply connected A, B such 
that/7~(y) becomes an isomorphism for all n~ then JT.(]) is an isomorphism for all n. 
Here / t , (X)  is defined as H,(IS(X)I). 

This Whitehead theorem in shape theory is proved in the same way as in 
ordinary topology (using now the functor S instead of S). Compare [4] theorem 1.3. 

The homology/7, which was introduced in [3], turns out to be exact. 3Ioreover 
we have for each compact pair (A, B) (with ~o(A) = ~7o(B) = 0, of. [3], lemma 7.3., 
where in fact this assumption is needed) an isomorphism 

~ , ( A ,  B) ~ !7,(A/B, , )  . 

Now we can complete the proof that ~ is a weak homotopy equivalence by 
showing that /7,(~) is an isomorphism. Observe that 

because ~ maps a CW-space into a CW-space. 
Thus this isomorphism will be established by an easy exactness argument using 

the following facts: 

4) H,(IS(XA r)l)  ~ R , (XA ]~/ ~ ~q,(X x Y, X A ~ ) ;  

5) H,(IS(X)]A[Z(~)) ~ ~,( i~(X)] • [Z(]0], I~(N)[AIS(]:)I); 

6) /i,(~0 z) is an isomorphism; 

7) H,(IS(X)IV[S(Y)I ) ~ H,(X)  |  ~ / I * ( X V ] 0 .  

The last isomorphism in 7) is a consequence of the axioms. Now we can establish 
the isomorphism 

H,(IS(x)I x f~(IT)T, I~(X)lvl~(Y)I) + ~ , ( x x  Y, x v ~ )  

induced by ~v x, which follows from 4)- 7). 
This assures us that  ~ is a weak and therefore also a strong homotopy equivMence 

establishing the assertion a) in the theorem. 
In order to prove b) we claim that every Mngular simplex ~'~eS(XAY) for a 

CW-space ~ with compact m-skeletons factors over XA Y~ up to a natural homo- 
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topy.  This follows immedia t e ly  b y  ~pplying the simplieial approx imat ion  process 
(which can be pe r fo rmed  in a canonical way).  So the  m a p  

has a h o m o t o p y  inverse because every  XA :g~ is compac t  and  a) applies. 

This completes the  proof  of the  theorem.  
As an  appl icat ion we can formula te  the following asser t ion:  

4.2. Tm~om~[.  - Le t  ~ = {E~} be a CW-spect rum,  such t h a t  every  m-skeleton 

of eve ry  E .  is compac t  and  E~ is s imply  connected for sufficiently large n. 

Then one has for a n y  compac t  met r ic  X with  f f 0 ( X ) =  0 

PROOF. - We have  

k 

lira [S~+ ~, I ~ ( ~ s ) ] ]  

tim [.,9~+~, E~A IN(x)I] 

~~ i). 

4.3. COROLLARY. -- Le t  G be a finitely genera ted  abel ian group, then  one has 

an i somorph ism 

K(G) , (X)  ~ H, ( IS (X)  I; ~ ) .  

I n  par t icular  there  exists a n~tural  universal  coefficient sequence 

--> ~ K(G)~(X) -+ K(Z)~_~ , G ~ 0 .  (4) 0 K(G)~(X) @ G -~ 

PROOF. - The Ei lenberg-3IacLane spaces K(G~ n) fulfill the requi rements  of the- 

orem 4.2. The existence of (4) follows f rom homological algebra.  

5.  - C o h o m o l o g y .  

I t  is well known how to define a cohomology theory based on a coefficient spec- 

t r u m  g: 

Le t  (X, x0)~ ~ be a n y  space, then  we set 

(1) - ~ ( x )  - '~i~ [2, ,x ,  E~+~], 
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where the brackets are to be understood in ~ .  The induced maps are also well- 
defined. I t  follows immediate ly  f rom [5] theorem 2.4. or f rom corollary 1.3. tha t  
8~(X) is isomorphic to g~(X) (where all maps and homotopies are now c o n t i n u o u s )  
whenever  8 is a CW-spectrnm. 

The proof of the following theorem is rout ine and therefore  omit ted (el. [1] for 
the classical model):  

5.1. T } ~ o ~ [ .  - The eohomology functor  8*: J~--~ Ab z fulfills the following 
conditions: 

2) Le t  i: A c X be any  inclusion, then the sequence 

is exact.  

3) There exists a na tura l  equivalence 

I~E)~AUK. - The first r emark  in w 3 following (2) carries over to the case of ~*. 

In  case ~ is a CW-spectrum we have the following assertion which is originally 
due to K. ST~IXOV [14]: 

5.2. L E N A .  - Le t  (X, A) be any  pair of spaces such tha t  A c X c M, M being a 
compact  manifold, then we have for any  CW-speetrum ~ an isomorphism: 

g"(X, A) ,~ l im g'(U, V) 
)U,V) 

where (U, V)~  (X, A) is a (rel. to M) open pair.  

PROOF. - We prove the lemma for the absolute case and deduce the relat ive case 
f rom the exact  cohomo]ogy sequence by  natura l i ty .  }tore, we have again, as in the 
case of homology tu rned  over f rom reduced to unreduced cohomology. This is a 
classical process, which is well-known and does not  deserve fur ther  mentioning. 

Le t  {~v} be contained in lira g~(U) for X c  U c  M an open set, then  we set - - - N  

i v . ~ v ~ - f e g ~ ( X )  (iv: X c  U being the inclusion). Observe tha t  ~ is independent  
of the choice of U. This furnishes a homomorphism 

: lira g"(U) -> g-(X) . 

Le t  on the other  hand  ]: XkX--> E~+1~ be continuous, then  proposit ion A1 as- 
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sures tha t  {]} = ~v(r for suitable {~v} ~ lira ~ (U) .  Therefore  ~ is an epimorphism. 
On the  other  hand  proposit ion _s confirms tha t  the kernel  of ~v is trivial.  Thus ~v 
is an isomorphism. 

5.3. :PROPOSITION. - -  Let  ~ be an a rb i t r a ry  spectrum and let  (X, A), (Y, B) be 

pairs ol open subsets of a compact  manifold M ~. Then there  exists an exact  lgayer- 
u  sequence 

(2) ... <-- g-(X, A) �9 g,~(I:, B) ~ -  ~'~(X w !:, A U B) <-- g'~-~(X n I:, A (3 B) ~ ... 

with the  usual homomorphism ~*, fl*, A* (see [1], [16]). 

PnooF.  - We claim tha t  any  triple (X; A, B), X c M = M ~ with open (tel. to X) 
A, B is excisive (rel. to ~*). This means tha t  the inclusion i: (B~ A (~ B ) c  (X, A) 
induces an i somorphism 

~*(X, A) ~ ~*(B, A :h B ) .  

We assume without  loss of general i ty  that A, B ~= 0 and X r  A, B, because 
in the remaining cases the assert ion trains out to be trivial.  

To this end let / e  J~(X'(B u C(A (~ B), E.+,)  be a shape morphism,  g: J~+ , ->  
-> E~'+, e ff be continuous ~nd j :  X~(B U C(B n A)) c X~(X L) CA) the  inclusion. M is 
compact ,  hence X c M a normM space. This implies the existence of an Urysohn  
funct ion ~0: X - + I  such tha t  ~ I X - - A  = 0, ~ I X - - B  = 1. This provides us with 
an extension ]' of ](g): Z~(B W C(A n B)) --> E~'+, up to homotopy  over X'(X U CA) 
in the following way:  We are obliged to define ]~ only on the points of the cone CA, 
so let  1) y e X ' C ( X - - B ) c Z ' C A  be mapped into the basepoint  . e E~'+, and 2) a 
point  

y =  (y',to, tl, . . . ,4) e X ' ( B U  C(A(~B)) ,  y ' e B  

be mapped into 

/ ' ( y )  = ] ( g ) ( y ' ,  m a x  ( v ( y ' ) ,  to), . . . ,  . 

For  y'  close to X - -  B and  to< 1, we have m ax  (~(y'), to) = 9(y') and for y'E 

s X --  A we have max  (qJ(y:), to) = to: The funct ion max  (s~(y'), to), 0 • s < 1 provides 
us with a homotopy ]'oj~](g)~ which is of course basepoint preserving (the base 
point being as usual the vertex of the cone). 

The Urysohn  funct ion ~ and consequently the extension process is independent  
of g~ hence we can apply the results of the appendix to the effect, tha t  there  exists 
an extension ]' of ], up to homotopy  (rather  than  an extension of the individual 
](g)). This assures us tha t  the  inclusion i induces an epimorphism 

i*: ~*(X, A) -+-~*(B, A (~ B) .  
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The fact  tha t  i* is Mso a monomorphism is established similarly by  applying 
the same procedure to a homotopy  E : / j  _~ 0, where now / E ~(X~(X W CA), E~+~) 
is a shape mapping. 

After having established this, proposit ion 5.3. follows by  s tandard  arguments  

(see [1]). 

RIP,ARKS. - 1) The proof of lemma 5.2. is substantial ly based on the assumption 

tha t  8 is supposed to be a CW-spectrum (we use the fact  tha t  M1 spaces /~  in 8 
are ANEs).  

2) The groups g*(X) which are defined in (1) are (even for CW-spectra g) not  
isomorphic to the spectrum, cohomolog~ introduced in [1]. Only for CW-spectra 
we have an isomorphism between these two concepts of a cohomology if one of the 
two conditions hold: 1) ~ is ~n D-spec~rllm or a l ternat ively  2) X is a~ compact  CW- 
space. 

This is due to the fact  tha t ,  unlike F. ADA~S in [1], we do not  work in the  Board-  
man-ca tegory  3~. However  eve ry  CW-spectrnm g tu rns  out  to be in :g equivalent  
to a suitable D-spectrum g'. 

~'or this reason we must,  in comparing our results with another  dnMity theo- 
rem in w 8 3), require tha t  ~ is an D-CW-spectrnm.  In  w 8 3) we are dealing with a 
dual i ty theorem, where this difference at  the end, sm'pisingly drops out. 

6 .  - P r o d u c t s .  

In  order to establish the definition of a slant product  ./. we use the definition 
of a r ingspect rum 5 r and of a 5r-module spectrum 8: To this end we refer  to [1] 
where these concepts are readily defined. In  pract ice we need simply mappings 

(1) 

fulfilling the ordinary  compatibi l i ty conditions (involvii~g the mapping o: N,~-~ E~+I 
resp. for ~-). Details can be found in [1]. 

In  order to avoid difficulties with the smash product  we will Mways assume 
tha t  2 is ~ CW-speetrum and therefore according to 1.4. / ~ A F ~ =  F~AF,.. 

Le t  X be a/~-space in ~ (of. w 2) and :g compact  metric,  then  we define a slant 

product  

/: ~ - - (YAx)~  gAY) -+ g,,-~(x) 

by  formally repeat ing the construct ion of a slant product  in classical topology:  
Take 

= {d]} e ~  [r/\2,~x, F~+~] = ~,,(xA r )  
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azld 

-----= { [~]}  e l im  ~,(S~+% E,A  I 0 ,  
.___>. 

then  we can assume t h a t  [ is in fac t  a cont inuous mapp ing  because 5 r is supposed 

to be  a CW-spec t rum.  
We define 

(2) ~/~1 ----= {e} ~ lira 3~h(Z'~X, E~_~,~) 

~ i t h  r - -  /~ @ p @ I as the  composi t ion 

Zk+~+zX --- E " X  

If 

Observe t ha t  ~ is well defined because ~A1 and 1A] exist  according to our results 
in w 2, in par t icu lar  proposi t ion 2.] .  

Whenever  ~ is a CW-speet rum,  we can find a map  [e] e [Z~X, E~_r+~ ] such t ha t  
h(e) ~ ~. 

This definition is complete]y anMogous to the o rd inary  definition of the slant  

product .  Therefore  this p roduc t  is homomorph ic  and  na tu ra l  in the  usual  sense, 

as long as it  is defined. We will use this s lant  p roduc t  for X being an  open subset  
of a compac t  manifold  M '~. Since ~1/'~ alIows an embedding  into a euclidean space 

of sufficiently high dimension,  X is a r e t rac t  of a /~-set .  (el. w 2, final r e m a r k  2)). 

We need a definition of 5~--orientability of a manifold  M ", which is identical  
with the concept  of 9--orientabil i ty given in a n y  modern  t ex tbook  on topology (see 

e.g. [11): 
An e lement  ua~'~(3s215 (A = d i a g o n a l  in 3 I " x M " )  is an  

s  whenever  for a n y  point  x ~ M ~ the  e lement  

~-,,(R,,, R , , -  {o}) 

,~, 5r,,(S,,, , )  

is a genera tor  of ~ * ( $ 5  *) as a n , ( s  He re  

L (~ x_~,,, ~, x.~• {x x~,}) c (x,, x_~,,, _,tLo x _s• ,J) 

is of course the inclusion. Since this ooncept is sufficiently t rea ted  in the l i teratm'% 
we do not  have  to go into the details. 
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The dual i ty  theorem deals pr imar i ly  with an n-dimensional compact  manifold 

M '~ and a pair (Y, B) such tha t  ~/, B are compact ,  Y a M ~. We have an inclusion: 

i :  ( ( M  - -  B )  x I7, ( ~  - -  ~ )  x r u (~'g - -  B x B )  = 

= ( M -  B, ~I/-- Y ) x ( Y ,  B) c ( M x M ,  ~ ' g x M - -  A) 

where we wrote  M for M". 
Assume tha t  M" is ~-or ientable  with orientat ion class u~ then  we have for each 

~-module  spectrum ~ a mapping 

?J.) = i .  u/.: -~(Y,B) - ~  .... ~(M-- B, M - -  Iz), . ~g~(Y,B) and p e Z .  

:Because of the related propert ies  of the slant product  (cf. [1], [9]~ [16]) this 
mapping is a homomorphism and nurtural for inclusions (](', B ' ) c  (Y, B). 

By  an abuse of nota t ion we will during the  proof of theorem 7.1. also write 
y~(y) = ] for the individual  maps (rather  t han  for the stable classes {~}, {]}). 

More precisely:  Set 

L~(X) = Z~(M ~ V C(_n~'-- X)) 

then  for given 05: S~+~-+ E t ~ X  + and suitable representa t ive  of i*u denoted b y  an 
abuse of nota t ion by  

u~: X+AX~(iff-u C ( M . -  X)) ~ 2'.§ 

we obtain a 

where we deal with an (unbased) space X --= (X, 0) and set r - -  p ~- k -~ 1. The 

map ] has the fo rm 

.i = ~ ( E , ~ ) ( ~ A ~ ( X ) )  

with the map 

#: ~zAE~§ -+ E~§ = E~_~+~. 

As usual, the basepoint  of /go(X) is the ve r tex  of the cone C(...). 

I~3~AnX. - In  theorem 7.1. and w 8 4) we will have to deal with M" =--- S ' .  E v e r y  
spectrum 8 = {E~} is a S-module spectrum, g = {S~}, because we have the obvious 
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mappings 

E~A8 ~ - - > / ~ .  

F u r t h e r m o r e  S" is obviously 8-orientable. This enables us to work in this case 
with any  spec t rum ~. 

For  a CW-spectrum ~ we can do a !ittle more:  According to lemma 5.2. we have 
for any  X c S" (not necessarily compact) 

and by  definition 

~.-~(s ~, 8 ~ -  x )  ~ ~.-~((8 ~, 8 ~ -  x) 
l im 8~-~(8 ~, S ' - -  K))  

~ ( X )  = lim ~ ( K ) ,  K c o m p a c t .  
KCX 

Therefore  we have in this case ~ homomorphism 

(4) p~: g~(x) -~ ~-~(S ~, ~ -  2:) 

for any  X c S". More generally let  (X, ~)  be any  pair  A c X c M' ,  M ~ a compact  
~--orientable manifold with or ientat ion class u~ then  we argue similarly, obtaining 

(5) ~ :  ~ ( X ,  A) --~ 8 " - r ( M ' - -  A,  M ~ -  X ) .  

On the mapping level we can of course also define ~,(ff) for any  ~: D~+Z+l_+ 

--> JEt~X +, ~,(~) = ]: CI~(X) --~ E~_~+~. We will use this in w 9 bu t  only for finite 
polyhe4ra  X,  M ' =  S ~ and a CW-spectrum 8. The definition is analogous to the 
previous one: 

m 

t,(.5) = ff(EzAu~)(~Al~,(x)). 

We make the simple observat ion tha t  y .  (on the mapping level as well as on the  
level of stable homotopy  classes) is na tura l  with respect  to mappings of spectra 
~: 8--> 8', where of course ~ = { ~ :  E~--~ E'.} is a family  of continuous mappings 
render ing  the  squares 

commutat ive .  
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Fina.lly we must  settle the following problem: 

Let  M" = S ' ,  X c S" be a compact  space, S ~  K1o K~o ... a decreasing sequence 
of compact  polyhedra  with 

n K ~ = X .  

In  the applications we will assume tha t  K~. is the union of finitely m an y  n-dimen- 
sional convex disks in S ~ (a so-called disk spae% el. w 9). 

We denote  the inclusions by  

i ~ �9 K c K~ 

resp. 

i~ : X c K ~ .  

They  induce mappings like 

P *  �9 L (K~ 1) --> L,,(K~) m - - 1  �9 - -  �9 

J 

1Vow suppose tha t  y e ~ ( S  ~+z, E~AX § (g ~ CW-spectrum) and  ~ ] e G(JG(X), J~,_~+,) 
are fixed m~ps such tha t  for each m one has a na tura l  homotopy  

~o,,~: y , , ( ( l~ i+)~)  = t~__"L-' li~* 

(i.e. we require w,.]L~(K,~_l)= co~_1). 
Then  we can prove:  

6.1. LEN:~A. - We have 

= { i } .  

P~ooP. - We can enlarge each K~,~ to a / ~ , ~ 3 / d .  such tha t  1) the inclusion is 
homotopy  equivalence, 2) /~,~ is open in 2 *~ such tha t  L~(/~,,) is compact  polyhedron 
and 3) ( ~ / ~ =  X. All this implies tha t  

L,(//:I) c :~ , ( /~)  c . . .  

where all L , . (~)  are compact.  Due to the definition of 
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in w 2 we form yA1 at  first for compact  polyhedral  spaces ~5,c L~(X), 

L~c -Gc ..., u L~ = L~(X) 

and apply a cofiber argumeJ~t , which provides us with a homotopy  equivalence 
c o  

between LdX) and the  telescope L~(X'--~ = ~ Z~• (el. w 2). In  our present  case 

we pu t  L~ = L~(/~). ~ 
There are homotopies 

where ~+: X + c ] ~  + denotes the inclusion, such tha t  ~+~IL,~= v~. 
These homotopies together  with the given homotopies eJ,~ yield the required 

homotopy  

7.  - D u a l i t y  t h e o r e m s .  

In  this section we prove  the  main duality theorems (7.1.- 7A.). This will be 
accomplished by  an excessive use of 5'[ayer-Vietoris arguments  and by  using the 

results of w 9. 
We begin with dual i ty  theorems for spheres S ~' resp. for euclidean spaces R": 

7.1. Tm~ogv,~. - Le t  g = {/~} be any  spect rum (cf. w 3) then  we have for any  
compact  based X = (X, Xo), X c S" a, with respect  to inclusions na tura l  isomorphism 

(i) 

PgooF.  - We know tha t  ~q(A, B) is isomorphic to -~(A U CB, *) where as usual 
the upper  ve r tex  of the cone serves as the basepoint.  Therefore (1) reduces to the 

isomorphism 

(2) 

where y~ has a l ready been defined in w 6. 
We consider the unbased case and deal consequent ly  with unreduccd homology, 

proving for a X c / ~ '  the isomorphism 

(3) r,: ~ ( x )  ~ go(~,, u c (R, , -  x ) ) .  
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The isomorphism (2) follows from (3) by  we]l-known classical arguments.  Thus 
we are only obliged to verify (3). This is accomplished by using the results of w 9. 

Le t  X = (~ U~, U~o U2o ... be the intersection of a descending sequence of disk 
spaces (cf. w 9) and 

]: _r.(R- w c ( ~ , , -  x ) )  -+ E._~+. 

a shape mapping. We set T(X) -~ X~'(R ~ w C(R"--X)) .  
Let  ~ :  X c U~ be the inclusion and j :  E.+~+~-~ E',+v+~e F 

map, then  we have the induced map 
be ~ny continuous 

and  

$ -  . ~ Y  , L= (~,/)0): T ( u , )  ~ ~+o+~ 

The results of w 9 provide us with ~ g~----- ~(]~): S~+~-+.E~AU~, p ~- 1 = n -k ~" 
and we set 

(4) Y(jA~,) = g , .  

In  view of A7, A8 in the appendix, propositions 9 .2 ,  9.5. assure us tha t  (4) 
establishes in fact a ~e~(Sg+% IE~X+).  Moreover 9.2.-9.5. guarantee tha t :  

1) One has r~{y} = {]}, thus y~ is surjective. 

2) ~ is injeetive (which is an immediate  consequence of lemma 9.4.). 

This completes the proof of Theorem 7.1. 
In  case 6 is ~ CW-spectrum, we c~n rephrase theorem 7.1. for arbi t rary  (not 

necessarily compact) X:  

7.2. T~OlCE~. - Assume g = {Ek} being a CW-spectrum, then  we have for any  
based X = (X, xo), X r S" a, with respect to inclusions, natura l  isomorphism 

~.. ~ (x ,  Xo) ~ ~q(s.- {x0}, s - -  x)  

~o -t- q ---- n, p, q e Z .  

t'~OOF. - This follows immediately with the definition of ~ ((4), w 6), f rom 
lemma 5.2. and theorem 7.1. 
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Let  M = M ~ be a compac t  n-dimensionM manifold,  which is ~--orientable with 

or ienta t ion class u and  let  8 be  a n y  ~--module spec t rum (cf. w 6). I%ecMl t h a t  ~- is 
a lways  supposed to be  CW-spect rum.  

We  have  again  a pa i r  of t heo rems :  

7.3. T ~ E o n ~ .  - For  a n y  compac t  pair  (X, A), A c X c M', we have  a, with 
respect  to inclusions of pairs ,  na tu ra l  i somorphism 

~,,,: ~ ( X ,  A) ~ ~q(M"-- A, M"--  X ) ,  p + q = n, p, q e 2;. 

P~OOF. - We ve r i fy  7.3. in the  following three  steps:  

1) M ~ = R" (al though R ~ is not  compact) ,  A = 0. 

This has a l ready been accomplished in the  proof  of 7.1. 

2) M" a rb i t r a ry ,  A = 0. 

3) M ~' a rb i t r a ry ,  A not  necessari ly  emp ty .  

Case l~) follows f rom case k -  1) by  classical Mayer-Vietoris  a rguments  (el. [1], 

7.4. TH~ORE~. - Le t  8 be a CW-spectrum, t hen  we have  for a n y  pa i r  (X, A), 
A c X c M ' ,  a with respect  to inclusions of pairs ,  na tu ra l  i somorphism 

~%,: 8~,(X, A) ~ ~;q(M " -  A, M"--  X ) ,  P -b q = n,  p ,  q ~ Z .  

P~ooF. - This asser t ion follows f rom 7.2. in the  same way  as 7.3. was deduced 
f rom 7.1. 

RE~ARK. -- The crucial  point  in the  proofs of all these theorems  is embodied 
in proposi t ion 9.2. where we const ruct  an  inverse  ~ to y~ in the  case X = disk space 
(i.e. for a finite polyhedron) .  

On the  level of s table h o m o t o p y  classes, this could be accomplished b y  ~ simple 

Mayer-Vietoris  a r g u m e n t  (inductively, with respec t  to the  number  of cells in X).  

~re  need however  an  ass ignment  ~ on the mapping level r a the r  t han  for the whole 
classes. Here  Mayer-Vietoris  a rguments  do not  suffice because it m a y  ve ry  well 

happen,  t ha t  the suspension level (1 depending on the  given r) increases indefinitely 
with increasing n u m b e r  of cells. 

i t  is wor th  ment ioning  t ha t  our (co-) homologies depend functoriMly on the 
coefficient spec t rum in the usual,  expected  way.  Consequently the  i somorphisms 

~%, ~ are na tu ra l  with respect  to coefficient spectra.  Details are immedia te  and  left  
to the  reader .  

17 - Annali di Matematica 
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8 .  - A p p l i c a t i o n s .  

Theorems 7.1. - 7.4. imply as special cases all different kinds of dual i ty  theorems 
for compact m~nifolds which are hi therto known. 

l) The Steenrod-Sitnikov duality theorems. 

:Let X c S" be any  (not necessarily compact) space, then there exists a (with 
respect to inclusions) naturM isomorphism 

(1) H~(X) ~ ~[~(S n -  X ) ,  p -~- q = n - -  1, p, q e N .  

Here H i stands for reduced Steenrod-Sitnikov homology (cf. [2], [3], [14]) whi le / t*  
denotes reduced Cech eohomology. Theorem 7.7. [3] establishes for a shape connected 
eompactum X ~n isomorphism between H~(X) and H~(IS(X) I). Therefore 4.3. implies 
tha t  H~ and K(Z)~(X) are isomorphic. On the other hand one hus in this case an 
isomorphism between K(Z)*(:Y) ~nd H*(X) ( I  z paracompact  cf. [13]). Since H~. 
and K(Z).  are both defined with compact support for non-compact spaces, we deduce 
(1) as a special ease of 7.2. by  u s tandard  exactness ~rgument (setting g----K(Z)). 
However K. SIT~IKov has a dual i ty  theorem of this kind for any abelian coefficient 
group G: 

(2) ~ ( x ;  r ~ ~ o ( ~ -  x ;  o) ,  

p, q gs above. Since we have ugMn ([13]): 

K(G)* ( ) ~ ~*( ; G), 

we come to the conclusion tha t  

for any  abelian group G and all subspaces of a S' .  This and corollary 4.3. imply 
in particular tha t  H s admits a universal coefficient theorem for a finitely generated ~p 

abelian group G. 
Since (1) or (2) imply all previous versions oi duali ty theorems for ordinary 

(co-)homology (for example for compact S~-- X), all these theorems are recognized 
as implications of theorem 7.2. 

The discovery of (2) in the early fifties represented a remarkable progress in 
this field. 

We are not  going to discuss the historical details (like Steenrod's duali ty theorem 
us an immediate predecessor of (2)) as well as the numerous geometrical applica- 
tions of this theorem and refer to [2]. 
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2) The duality theorem of D. S. Kahn, J. Kaminker and C. Sehoehet. 

In  [12] these authors establish a duali ty theorem for an arbi t rary  spectrum 8 
~nd compact subsets X c S~'. According to our remark  at  the end of w 5 we will 
assume tha t  g is an ~-spectrnm. 

They discover an isomorphism 

(3) ~8~(X).~8~(8 ~ ' - X ) ,  p + q - - - - n - 1 ,  

where ~8, is a reduced homology functor,  which they  call (~ Steenrod homology with 
coefficient spectrum ~ )). Concerning the details, we refer to [12]. For g being an 
~2-CW-spectrum their  '~* is our ~*. 

Although we are t reat ing the relations between ~ ,  ~nd g,  (resp. ~8, and ~*) in a 
subsequent paper in more detail (el. r emark  at  the end of w 8 2))~ we include here: 

8.1. PnoPosI~IO~. - l%r ~-CW-spectra g and compact 2;7 c S~, we have an iso- 
morphism 

~ , ( X )  ~ ~,(X) . 

Plr - We deduce f rom theorem 7.1. and (3) the isomorphisms: 

8~-~-~(S ~ -  X) ~ ~8(X) .  

The functor h: J5 - ,  ~ in w 1 induces a n~tural  t ransformat ion ~: sS*-+ ~* (for 
~rbi trary /2-spectra 8). This Mlows us to recognize z~,(X) in the following way:  
Take all shape mappings 

~: S,+~ -+ E S X  § 

which are t ransformed under  Y~ into a ] which lies in the image of the iunetor  h. 
Proceed analogously with the homotopies. Then the group ~8,(X) is generated by 
M] stable h0motopy classes of these particular mappings. 

As for the class of spectra which are admi t ted  in this paper (see w 3) the duali ty 
theorem (3) appears therefore as ~ special case of theorem 7.1. 

I~E~_~:. - The relations between zS~(X) and g~(X) for a rb i t ra ry  spectra 8, in 
particular the existence of a natura l  isomorphism between both kinds of homology 
for ~-CW-spectra has meanwhile been thoroughly t reated in the article ~ Under ~zhat 
conditions are shape homology ~, and Steenrod homology ~ ,  isomorphic? ~) (Shape 
theory  and geometric topology, Proceedings, Dubrovnik  1981, Lecture ~otes  in 
Mathematics u 870~ pp. 186-214). 



F~IEDRICIt W. BAU~: Duality in mani/olds 

3) G. W. Whitehead's duality theorem with eoeNicients in a spectrum. 

This theorem is formulated in [1], p. 259 (theorem 10.6.). Here a manifold M" 
is allowed which is not necessarily compact and which may have a boundary 
bd M ' #  0. Let ~ be any CW-~--module spectrum and suppose M" being ~--orient- 
able, then one has the isomorphism: 

(4) D: s~(M"--  L, M n -  K) ~, g"-~(K, L) 

where (K, Z) is a compact pair, K c Mn such that  K n bd Mnc Z. 
The homology s~ in [1] (not identical with sS, in the preceding case 2)) is defined 

by: 

(5) %(x ,  ~) = ao(x', ]5') 

for any CW-pair (X', Y'), weakly homotopy equivalent to (X, Y). The existence 
of such a pair is well-known, moreover (5) does not depend on the particular choice 
of such a pair. 

We come to the definition of Cech cohomologTf (in the sense of F. ADAMS): Let 
(K, Z) be any compact pair, K c M', then we define 

(6) ~(K, L) ~ lima,s(U, V) 
.-__>. 

where (U, V) ~ (K, L) is an open pair, U c M" and ~ denotes singular cohomology, 
defined in the same way as singallar homology in (5). I t  turns out that  this kind 
of cohomology does not depend on the particular n~nifold M". 

Let M ~ be a compact manifold without boundary. We claim that  for a compact 
pair (K, ~) one has 

~(M"-- L, M"-- K) ~ q;~(M ~'- .L, M"-- K).  

This follows from the following observations: 

1) M ~ -  Z and M n - - K  are as open subspaces of the A:NI~ Mn (cf. [7]) also 
ANI~s. Hence we have 

~,(Mn-- L) ~ ~,(Mn-- Z) ~ ~ , ( M . - -  .L) 

resp. for K. 

2) ~. and z6. are exact, hence one can deduce: 

~,(M ~ -  L, Mn-- K) ~ s~,(M"-- Z, M ~ -  K) 

by using the exact homology sequences. 
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We claim for the same compact pair (K, L) the existence of an isomorphism: 

(s) ~,(K, L) ~ ~(K, L). 

To this end we embed M" in a euclidean space R ~ and find open pairs (U, V) n 
n (K, L). The same argument which worked in the case of homology ensures that  
for pairs (U, V) having the homotopy type of a finite polyhedral pair we have (cf. 
remark at the end of w 5): 

So we have (because for compact (K, L) these pairs are cofinal in the family 
of all open pairs (U, V)n (K, L)): 

8~'(K, L) ,~ lim g~(U, V) ~ lira ~g~(U, V) 
--->. 

g~(K, L) 

by applying lemm~ 5.2. 

Theorem 7.4. ensures that  

g~(M'-- L, M'-- K) ~ 8~-~(K, L) .  

Therefore (7), (8) implies that (4) is a corollary of-theorem 7.4. 

I~E)IA~X. - 1) Unlike the situation in 2) we do not have to assume that  g is a 
D-spectrum, because in formulating (4) the original difference between the coho- 
mology concepts (in [1], resp. in w 5) finally disappears. 

4) E-Duality. 

We are unable to develop a general S-duality for arbitrary subspaces of an 
n-sphere S " using our kind of shape theory. However theorem 7.1. can be refor- 
mulated in such a way that  it becomes a kind of first step towards S-duality. 

Let P be the category whose objects are pairs (X1A...AX~:, m), where Xs is a 
based subspace of some S ~' and m e Z .  The morphisms are defined by 

li_+m J~(X~+~(X,A ...AXe), Z~+~(2"~X...A 2"0). 
q 

Here X(I~AX~) is of course defined by (S1AX~)~X~ and it is immediate that this 
is naturally isomorphic to X~(S~AX2). 

An object (X, m) where X is a space is called regular. We write simply Z instead 
of (X, 0), abbreviate (X, m) by 3C and P(~C, ~J) by {X, ~J}. An object 3C = (X, m) is 
called compact whenever X is compact. 
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Hence P is the shape an Mogne of the ordinary  S-category (el. [6], [9]). 

As usual we adopt  the equivalence (X, n) = ( X X ,  n - -  1). There  exist  a smash 
product  

(A, m ) A ( B ,  n) = ( A A B ,  m + n) 

where A and B are not  necessarily regular (observe tha t  the smash-product  is as- 
sociative). In  par t icular  we have ~ suspension 

X(x ,  n) = (XA%% n) = (Y, n)A(S% 0). 

E v e r y  object (X, m) a d m i t s  ~ desuspension 

X-~(X ,  m) = (X ,  m - -  1) ,  

hence P is a stable category. 

To ~ny X -= (X ,  x0), X c ~" we set 

D . x  = ( s . -  {~o}) w c ( s . -  x ) ,  

with the top ve r t ex  of C.. .  as basepoint.  
Theorem 7.1. allows the following reformulat ion:  

8.2. TEEORE~. - Le t  X c S '~ be compact ,  with basepoint,  p + q = n, p ,  q e Z 

and Z =- (Z, 0) ~ P .regular. �9149 there  exists an isomorphism . . . . . .  

(s~, x-~z} ~ ( z -~9 .x ,  z}  , 

which is na tura l  in Z (with respect  to all morPhisms in P) and jn X w i th  respect t:o 
inclusions. 

I~OOF. - We must  t rans la te  the assertion into the language of (co-)homology 
with coefficients in a suspension-spectrum g = (X~Z}: 

~.(x) = {s.,  x - s  

~(J[) = {z-o y ,  z}  . 

Tow 8.2. follows f rom 7.1. 

9 .  - T h e  c o n s t r u c t i o n  o f  W. 

This section has a total ly  auxi l iary character :  it  is devoted to the construct ion 
of some kind of inverse to y~. Before we give details let us introduce the following 

conventions:  
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Le t  X c R  ~, r s N ,  2 ~ Z ,  q = n - - l o  be given, then  we set 

L~(X) = XTR". u C(R"-- X ) ) .  

The basepoint  is the top ve r t ex  of t h e  unreduced cone. Take two mappings 
]~: L~(X) -+ E~+~, ]~: L,(X) -~ E~+, and suppose r <~ s, then  we obtain a unique rep- 

resenta t ive  1;: L,(X) = Z'-@~(X) - + / ~ + , , / ;  = X'-~a'-~/~, in the stable class {/,.}. By  
an abuse of nota t ion we will write Z~-r]~ for /; .  

We agree to introduce a more general  concept of a homotopy  by  defining 

fr ~ f8 

whenever  i '~_ ~ / ~ .  The same convention will be adopted for mappings 

g~: S ~ + z ~ / ~ A X + ,  g,~: S ~ + ~ - + / ~ A X  + . 

Observe tha t  ]~ ~ ]. implies {],.} - -  (],} but  not  conversely. ~'or r = s we have 
/ ~  ]~ in the new sense if and only il /~ ~ ]~ in the ordinary  sense. Hence there  
is no danger of confusion. However  this general  homotopy  is not  necessarily transit ive.  

We have to deal with the funct ion spaces: 

F(Z,(X) ,  E~_~+,) = F~ = F~(X) 

Y(S ~+~, E~AX +) = E~ = F2(X), 

both  equipped with the  cons tant  maps as basepoints. 
All kinds of funct ion spaces F(A, B ) =  B "~ are equipped with the k-topology. 

This can be achieved by  eventual ly  applying the functor  k: Top --~ 7c-spaces (cf. [6], 
Ch. 2). 

In  this section we are working with so-c~Jlled distc-spaces X = U B~, whele 
B~c R ~ is a convex, closed n-dimensional disk. i=1 

We need these disk spaces for the  approximat ion of a rb i t ra ry  compact  spaces 
A c/~". [12his enables us to impose some restr ict ions on the special character  of 

these disks Bi: Take 1/k nets TT,, 2'~c T~c ... k ~ N in R '~ and consider all closed 
2/k balls a round  these x l~  T~. The set of all these balls is denoted by  Dk. A disk 
space 

iV 

X =  UB~ 

is now supposed to be the union of disks B~ which are finite intersections of disks 
in a fixed D;~. 

The main goal of this section is the construct ion of a continuous based mapping 

(1) ~o = ~x: FI(x)  - * / ~ ( x )  
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which exhibits certain na tura l i ty  properties.  The crucial point  is the construction 
of a universal  functions s = e(r, p) (for fixed p also denoted by  e(r) which depends 
only on r, p and not  upon the given disk space X or the spectrum 8). Our oc(r, p) 
has the fo rm 

(2) s = ~ ( r , p )  = n - p  + r .  

The required na tura l i ty  propert ies of ~, are:  

~01) Le t  i: X c 1 z be an inclusion of disk spaces then there  exists for each 
] e/~I(X) a homotopy  

(3) ~o~-= ~o: i~ox(]) ~- yJrie(]) 

which continuously (with respect  to the topology in F~(X) z) depends u p o n / ,  where 
i#'= F~(i*), i*: I)~(Y) c iLr(X), i~ = F~(i) are the induced mappings. 

Let  fu r the rmore  X 2_~ y__% Z be two inclusions of disk spaces, then there  ex- 
ists a homotopy  between homotopies (el. w 1), continuously depending upon ] 

(4) ~:: coj,~ co~ojp~i. 

~o2) For  any  ] e F~(X) there  exists a homotopy  

(5)  ~j = ~: gulf(]) ~ / 

which depends continuously (with respect  to the topology in FI(X) z) upon f. This 
homotopy  is na tura l  with respect  to the inclusions of disk spaces in the sense tha t  

for the homotopies involved one has 

(6) 

Notice tha t  i~7,,-= ~,~i~. 
Now we can prove:  

9.1. LE3~A. - There  exists for s = l = n - - p  @ r, an y  CW-speetrum 8 a, nd 
for all disk spaces X consisting of one single disk X-- - -B  a continuous 

yJ: FI(X) -~ F , (X)  

which fulfils ~ol) (for inclusions i: X c I z, lZ also a n-disk) and ~2). 

PROOF. - We const ruct  homotopy  equivalences 

h~x = h~: .E~ --~ .EzAX § 
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in the following way:  Since we can assume all disk spaces lying in a large ball 
K c R ~, we have a deformat ion re t rac t ion  of L~(X) onto S ~+~ = bd K c L~(X). We 
denote  by  h~ the inclusion 8~+~c L~(X). 

Let  b ~ B = X be a fixed point,  then  we have a well defined homotopy  equiva- 

lence E~ ~ F, zAS~ + which stems f rom the inclusion S ~  {,, b} c B +. This 

gives the required h2. 
~or  any  inclusion i: X c Y (Y = B'  again a disk) we have 

(7) i* h l y =  h~x 

bu t  (because the two points b E B and b'E B'---- 5( might  be different) a homotopy  

(8) (1Ai*)h2z~h2r 

which is well-defined by  the s t ra ight  line, connecting b and b'. 

For  any  ] e 2~(X) we set 

~(/) = h j h l .  

This assignment  is obviously continuous and respects basepoints:  

w(ol) = o~, o , e F , ( x ) ,  

the  constant  maps. - We deduce f rom (7) and (8) for an inclusion i: X c Y 

i~ Px(]) = (1 A i+) h~z]h~z ~ h2rfh~ 

This provides us with a well-defined homotopy  ~o~, which depends solely on the 
connecting line between b and b' bu t  not  on the individual ]. Therefore  o& depends 
cont inuously on /. 

Let  X-L-> I7_!+ Z be two inclusions of convex n-disks, Z B"~ ---- b", then  the  

required homotopy  between homotopies is induced by  the tr iangle A(b, b', b")c  B" 
is an e lementa ry  way. The propert ies of ~ in F1) fmlow immediately.  

In  order to ver i fy  F2) we recall  the definition of ?~ for compact  polyhedra X:  

:,.(;) = # ( ~ A u ~ ) ( g A Z ~ ( X ) ) ,  

g: 8 ~+~ --> E~AX+, u~: X+AZ~(X) -~ -F~_k, 

#: E._~+~AF.§ --> E(~_~)+,~+~+~. 

Since u ~ stems f rom an Y-orientat ion (g is supposed to be an Y-module spec- 
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trum; later on, we will have to assume that  n -I- k>21p[, cf. proof of proposition 9.3), 
we have homotopy commutativity in the following diagram (with g----F(/)): 

L~+~+~(X) 

If 

hlA1 

g~+'A Ll~(X) 

/A1 

gA1 

h:Al 

? 

E~_~+~A X+ A Lk( X) 

E(n_~)+n+k+r 

/ 

This homotopy depends upon h~. 
So the proof of lemma 9.1. is complete. 
Lemma 9.1. serves as a basis for an inductive process. I~et to this end X - -  

27--1 

= A W B, A = UB~, B = B~v be given and note that  D -= A n B consists of less 

than N disks. ~=~ 
We will construct 

such that  tol), F2) hold, by assaming that  we have already 

~ :  F(i~r(];), s --~ ~(S~+', E,A :(+) 

for Y - ~ A , B  and D and all r e N ,  p e Z  with s = n - - p d - r .  
Incidentally we call a decomposition X - ~  A:U B' of disk spaces (in D~) ad- 

missible whenever A' and B' are built up of disks lying in the same D,,. 
Let /),(A), Lr(B)cLr(A n B) be the obvious inclusions, then we have the fol- 

lowing identities resp. homotopy equivalences: 

L~(X) ~ Lr(A) (~ Lr(B) 

JJr_l(D) : -Lr_I(A) w .L,_I(B) 

L~(X) - ~  CL~_~(A) w C~_I(B) �9 
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While the first two relations are immediat% the thi rd  one follows by a simple 
cofiber argument .  As a consequence we have mappings 

d: Lr_I(A (~ B) -~ L~(X) 

i~: ~,_I(A) -~/~,(X). 

Because i x ~ 0, we have for any  / ~ 2'1(X) a homotopy H~ : ]i x ~_ 0 and because 
~(/i~) ~ 0 a mapping 

d~: D ~+~ ~ / % A A  + 

with s = ~ ( r - - t , p - - 1 ) = n - - p - ~ r  such tha t  

GxIS~+~-'---- G,!bd D,+~-~ ~f(/ix). 

In  the same way we obtain a G~. Let  Q,: D c A ,  ~ :  D c B  be the inclusions, 
then  we have 

$ 

and consequently~ due to our inductive hypothesis, homotopies 

{ ~(?iA = ~(ej(/d)) --~ (1Ae~)~(/g).  
(9) w(]i~) = W(O~(/d)) - -  (~A e~ +) ~( fd) .  

Hence G~ G~ and the connecting homotopies in (9) can be pasted together 
y ie ld ing  a map 

~(/): S ~+~ --> . E ~ A ( A  w/~)§ = ~ A X  + . 

Observe tha t  this construction works for any  spectrum 8. 
We are now going to verify the different properties of ~f: 

!) The assignment y; is continuous and basepoint preserving. 

PgooF. - The mappings Gx (resp. G~) originate from the homotopies ix___ 0 
(resp. i B ~ 0) which are independent of ]. Hence Gx, G~ depend continuously upon f. 
The connecting homotopies (9) stem from v / l ) b y  induction. They are therefore 
continuously depending on fi~ and fi~, hence on f itself. - ~e t  ] ---- 01e F~(X), then  
G~, G B and the connecting homotopies are trivial. Therefore F(]) is the constant  
map. 

2) Let  i: X c Y be an inclusion of disk spaces~ then ~1) holds. 
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PROOF. - ~re are proving this in two steps 

2.1.) Let  X = A U B = A ' u  B'  be two admissible decompositions of X into 
diskspaces (consisting of less than  N disks) then the two resulting construction ~o(]), 
~o'(]) differ by  a homotopy which continuously depends upon ]. 

PI~ooF. - We s tar t  with the case A = A', B'D B. Let  j~: B c B'  be the inclusion~ 
then  G~(1Aj +) and G~, are according to the inductive hypothesis (applied to each 
<< point >> of the p~ths G~(1Aj +) and G~, separately) homotopic. Let  p:  A (~ B c 
c A  r3 B ' =  D' be the inclusion, then by the same assumption, we have various 
homotopies 

' i~ ~+) ~ :  ?(I ) ~  (1Ae ~(N') 

Ca: (1Ae+)IP(f d) = (1Ae~+)(1Ap+)~(/d) ~- (IAe~+)W(/d') 

e'~: D'c A, d': ~L~_~(D') -~ I~(x) 

and  ~ homotopy between homotopies 

resp. for B: 

f 

. (zAe.+)~(N)~ (]Ae~+,)~(ld ') 

V.: ~(/%) --~ (I/\~o+.)~(N) 

V~,: ~o(1%,)- (1A e~+)~(/d ') 

On': D~cBr" 

As a result we can combine all these homotopies obtaining a homotopy between 
~(]) (which stems from G~, U~, ~B and G~) and ~o'(f) (which stems from G~, U~, ~]~, 
and G~,). 

The general assertion 2.1) follows easily by considering successively series oi 
decompositions of the kind 

zY--i ~Y--I 

X ~- U B, U B~v = U B, W (B=_~ W B,v) . . . . .  U B, U B~ 
i = 1  i = 1  i ~ j  

which gives access to any  admissible decomposition X - =  A ' u  B'. 

2.2) Let  i: X c Y be any  inclusion (X and_ Y disk spaces of the form described 
at  the beginning of this section) then there exist admissible decompositions X----= 
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= A U B, Y --= A ~ ~9 B'  such tha t  A c A',  B c B'. This is clear due to the general  

restr ict ions which we imposed on the na ture  of disk spaces. 
:Now we are r eady  to establish a proof of 2) in its general  form:  In  the same way 

as in 21) we find (~ pointwise ~> homotopies between paths  G~, G~, resp. G~ and G~,. 
Since D' = A ' ~  B 'o  A ~ B-=  D, we can proceed as before. 
Le t  X ~-+ Y - ~ Z , X = A U B ,  Y = A ' U B '  and Z = A " U B " , A c A ' c A " , B c  

c B ' c  B" be given inclusions and admissible decompositions, then  the existence of a 
homotopy  between homotopies as required in V1) follows because between the 
constituencies G~, GA, , G,,,, (resp. for B) one has by  induct ion these homotopies 

between homotopies  which can be composed to the required ~. 
The con t inmty  with respect  to / of the homotopy  r as well as the homotopy  

between homotopies  follows as in 1) because all in termedia te  steps in the construc- 

t ion are continuous by  induction.  

3) There  exists a homotopy  between homotopies 

which depends continuously on / and which behaves na tura l ly  in the sense of %v2). 

lP~oor. - Observe tha t  the assignment  y~: T~(X)-+.E~(X), n o w  for r----k + 
~- p -{- 1 and suitably chosen k is continuous and basepoint  preserving. We have 

the  homotopy  H , : / i ~  ~_ 0 (whose F-image is G~) and  b y  induct ion a homotopy  
y,,~(/i~) ~_/i,~ which cont inuously depends on /. For  the corresponding paths in 

the funct ion spaces we have therefore  

We obtain / by  glueing together  H A and H~, while G~,G~ and the connecting 
homotopies (9) give us V(/). This establishes (10). The cont inui ty  of v follows again 
f rom the continuous dependence of all steps involved. Observe tha t  a change of 
the decomposition results in a change of v by  the same homotopy  which we dis- 

covered in 2.1). 
Le t  i: X c Y be an admissible inclusion, then  we are considering the sequence 

of homotopies:  

~u COl 

which is commuta t ive  because we have this by  induct ion for each (~ point  ~> in HA, 
H~ resp. Ha, , H~, and  because we can assume tha t  for v as well as for r we can 
take  the same decompositions A U B ---- X~ Y = A ' U  B% A c A% B c B' .  
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We summarize:  

9.2. PROPOSITION. - Let  s = =(r, p) be the funct ion (2), then  there  exists a con- 
t inuous funct ion ~: F I ( X ) - ~ E 2 ( X )  satisfying F1), F2). 

We need to know something mere  about  the assignment F: 

9.3. P R o P o s i t i o n .  - l%r any  g eE2(X) there  exists a homotopy  

(11) eg: XI~TFy~g~ g 

which continuously depends upon g. 

l:'l~OOl~. - We will ver i fy  a slightly different assertion which obviously implies 
(11): There  exists a homotopy  

l ( I i ' )  eg: Z~oy.g  ~ g 

which continuously depends upon g. - Here  X , for p < 0 is in terpre ted  as desus- 
pension: Z*] means the existence of a mapping ]' together  with a well-defined 
homotopy  

In  order to prove (11'), we again proceed induct ively:  Le t  X- - - -B  be a disk 
space, constist ing of a single disk, then  we have a homotopy  commuta t ive  diagram 

1Ah~ 

V~n+k~1~+l 

fl 
S~+'AS,+~ 

X.+~g 

gA1 

~.. X.+~EzAX+ ~.- E.+k+IA X+ 

En+k+l 

E~AX+AL~(X) 

where hi, h~ stem f rom the proof of lemma 9.1. Wi thout  loss of general i ty  we can 
assume f rom the beginning tha t  

The assert ion 

~py.g ----- g 
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(which is evidently stronger than (11') for p>~O) follows in the same way as 2) in 
lemma 9.1. ~oreover we can obviously desuspend Fy~g at least Ipl times by as- 
sumption. 

Xow we assume that  (11') has Mready been proved for spaces X consisting of 
less than N disks. We proceed as in the proof of 9.2.: Let g: S~+z-+/iJzAX+ be 
continuous, then there are mappings 

C+S~_~+z+~ ~ C§ G~ > E~A(C+X W C_A) ~_ XE~AA § -~ E~§ § 

C S~_l+z+l_ C_S~+z G~> .E~A(C_XW C+B)'~XE~AB+-->.E~+~AB § 

where the :k-notation is used to distinguish between two different copies of the 
associated cones. As a result we obtMn Zg by glueing together G~ and G B. By 
the inductive hypothesis we have (for each point in the paths G~, G~ and therefore 
by continuity) 

and fina~y 

X~-l~fT~g~_ Xg . 

But since we have F~u2: = WZ~ = Z~y~ (the first identity follows immediately 
from the definition of y~, the second from the continuity of F) we conclude 

(ii t') Z~f~,ug ~ ~Fg. 

For p>~O, the suspension level of X~y=g is evidently higher than that  of Zg, 
so that  (11") follows. However for p < 0 we also conclude with 

that 

and 

hence 

~y~g: 8~+, -~ E, AX § 

s = n - p - ~ r  

r = k + p + z  

s----n-~-kd-1.  

Since l~0  and n d- k>211o[ we have again that  the suspension level of Z~fy~g 
is still higher than that  of Xg, so that  (11") implies (11'). This completes the proof 
of (11') and thereby of (11). 
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~ o w  we are ready to settle the main problem oi this section, namely the detec- 
tion of an inverse to 

(12) r- :  ~ (X)  -~ ~(Lo(X)) ,  p + q = n ,  

X c S ~ compact, ~ a CW-spectrum. 
Let  X-= ~ K~, Klo K~o ... be a decreasing of disk spaees with inclusions 

We have i*: L,.(K~) c L~(X), i~: F~(X) ~ F~(K~), i ~ :  P2(X) -+/~(K~) .  
To any  continuous ] e J~(L~(X), E,_~+~) we set 

I~ = i* f e J~(L~(K~), E~_~+,) and g~ ~- yJ(]~). 

According to ~1) we have homotopies 

(13) ~m: ~ g~§ g~. 

Propositions A3, A7 in the appendix guarantee tha t  we have obtained a 
,~ = ~(]) e ~ ( S  ~+~(~', E~/~X+) (with ~(r) = ~(r,p) for fixed p) by  defining 

~(i~,) = g,~. 

:Furthermore ~1), ~2) ensures tha t  lemma 6.1. can be applied to the effect tha t  

~.{~} = ~ { / }  = {t}. 

This settles the surjeetivity of 7.. 
We come to the injeet ivi ty:  Let  to this end ~ e ~(Sp+% EZ~X +) be a fixed mor- 

phism, then  we deduce from 9.3. the existence of a homotopy 

s~: Zl~l~7~y(i~) _~ j ( i~ ) .  

In  other words we have a map 

for sufficiently large t such tha t  H~IS"X {0} (H.~IS'" x {1}) are suspensions os Vy~(i~) 
(resp. of ~(i~)); the corresponding suspension levels (which can be easily writ ten 
down explicitely) are independent of m. 

By applying ~fT~ to (13) and because os ~fl) we have homotopies 

o~: i~ ~(i~+~) ~ ~(i~) 
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On the  other  hand  the  ho m o to p y  (11) is continuous,  thus we have for each 
r t t ~ I a homotopy  between $~( ) and  a sufficiently high suspension of $~(t). l~einter- 

pret ing this si tuation furnishes a homotopy  between i~+~H~ ~§ and  H~,  hence 

al together  a homotopy  H e 3L(S ~+~r •  +) such tha t  /1[S'" • {0} (/1IS'" • 
• are  suspensions of tv7~ (resp. of ~). 

The suspension degrees depend only on 1 bu t  not  on m or X. As a resul t  we 

can deduce 

9.4. L~-~A. - For  any  ~ e ~ ( S  ~+~, E S X  +) we have in ~ a h o m o to p y  

(14) ZI~l~y~g ~ g �9 

This completes the proof of the assert ion tha t  y~ in (12) is injectiv% because i t  

ensures tha t  tv is s tably an inverse to y~. 
3Ioreover we have established: 

9.5. L E N A .  - Le t  ~: g---> 8 be a ~--module-homomorphism of spectra,  then  
we have  induced continuous mappings ~i(~) for the related funct ion spaces (for 
fixed X) tu rn ing  ~ ( X ) :  _~s(X; ) into a functor  f rom the category of CW-5- 
module spectra into the category of based topological spaces. The assignment  

~ tvx (for fixed X!)  reveals itself in this si tuation as a na tura l  t ranformat ion  of 

functors .  

PROOF. - The assert ion follows immediate ly  f rom the construct ion of W. 

I 0 .  - A p p e n d i x .  

I n  this appendix  we are 1) proving propositions A1 and A2 2) recollecting the 
necessary material  on 2-homotopies, 2-categories and 2-functors in order to be able 
3) to pe r fo rm the explicit  construct ion of a shape mapping [ ~ 3L(X: Y) (resp. ] 

-~(S, X~Z)) and 4) we provide proofs of proposit ion A9, A10, which ensure tha t  
eve ry  inclusion of compact  metr ic  spaces is a eofibration in 3L and tha t  this p roper ty  
of the inclusion i:  A c B is equivalent  to the fact  tha t  A • i ~) B • 0 is, in 3~, a s trong 
deformat ion  re t rac t  of B •  The last  fact  is not  needed in this paper  bu t  well- 
known within the f ramework  of ord inary  homotopy  theory  ([6]: 4.1.7. a), p. 155). 

10.1. Proo]s of propositions AI: A2. 

The proof of the following proposit ion is due to J.  DUGUNDJI. I t  represents the  
essential pa r t  of the proof of lemma 5.2. ((~ Sitnikov's lemma }~): 

A1 :PROPOSITION. - Let  21/be a n y  metr ic  space, X c M be an y  subspace and :Y 

1 8  - A n n a l i  d i  Mal~mat i ca  
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an AlOE (cf. w 1); let ]: X - ~  17 be continuous, then there  exists a g ~ ]  which ex- 
tends over a neighbonrhood U D X in M. 

P~OOF. - Consider the subspace @ = X • 2 1 5  1 ] c M •  and  ident i fy  
X •  with X. Because X •  c Q is a closed subset, there  exists an extension 
~ :  W --~ 17 of ] over a neighbourhood W of X • 0 c @. ~Ve find an open set V c M • I 
such tha t  W = V n Q and for each x e X a neighbourhod U. of x in M such tha t  
U • [0, t] c V for suitable t > 0. Assume tha t  (U~} is a locally finite family  of 
open sets and define U = u U .  Because M is paracompact  we find a real  valued 
continuous funct ion ~: U -~ ~ with ~(u) > 0 for all u ~ U and ~ ( u ) 4 s u p  ( tJu  e U~}. 
I n  W we have the space X ' =  ((x, ~(x) lx e X)} homeomorphie  to X. The mapping 
r t) = F(m, ~0(m)t) provides us with a homotopy  r ] ~ E I X ' ~ -  g: X --~ IZ. How- 
ever F[((u,  ~(u))lue U} ~-g': U - ~  17 is the  desired extension (up to homotopy)  

of g over  U. 
This completes the proof of A1. 
To accomplish a proof of lemma 5.2. we need a second assertion which easily 

follows f rom AI :  

A2 :Pt'~0P0SITIO~. - -  Let  M be a metr ic  space such tha t  the cone CM ~ CX is 
again metrizable (which is t rue  for example if M is a compact  manifold), let  U be a 
neighbourhood oi X c M and let ~ :  U -~ 17 be continuous,  such tha t  F I X  : f ~ 0. 
Then we find a neighbourhood Y of X in M, V c U such tha t  ~IV ~ 0. 

PROOF. -- We have a map r CX ~ 17 reflecting the fact  tha t  ] __~ 0. This to- 
gether  with F provides ns with a map ~: U •  We have D ~ -  U •  
• 0 tJ CX c CM and c~m therefore  apply A1 to the effect t ha t  we obtain an ex- 

tension A: W - ~ Y  of a ~ ' ~ F  over an  open neighbourhood V of X in M such 
tha t  C V c  W.  Take x e X  and find a ne ighbonrhoed V of x in M such tha t  
C V c  W. This V. exists because the uni t  in terval  is compact .  Now V ~ U V~ has 
the desired proper ty .  This completes the proof of proposit ion A2. 

10.2. Miscellaneous results concerning the construction o] a strong shape category. 

A shape mapping / c 3L(X, 17) is a 2-functor ]: ~'7 -* Fx having special propert ies.  
The explicit  construct ion of such a map is r a the r  involved unless one provides a 
manageable subcategory ff~c 'J'r having the p rope r ty  tha t  every  suitable functor  

f ~:  fir --~ fix admits  s~ na tura l  extension to such a ]. 
In  order  to settle this ( independently of [5] in par t icular  w 4) we take advantage  

to say a li t t le more about  homotopies between homotopies (so-called 2-homotopies) 
about  2-categories and finally to make precise what  we unders tand  by  a 2-functor.  
Although these concepts are t rea ted  by  m an y  different authors  in different ways 
(e.g. C~. Em~Es~A~ ,  J.  ]~EI~A:BOU etc.) it  turns  out  to be more convenient  to give 
the necessary definitions explicitely: 
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10.2.1. 2-Homotopies. - A 2 -homotopy  between two 1-homotopies ~: coo~ co~ 

is an  equivalence class of mappings  A:  X X I ,  X I ~  Y hav ing  the  proper t ies  

A(x,  t~, O) = ~Oo(X, tl) 

A(x,  t~, m) = ~,~(x, t~) 

A(x,  O, t,) =/o(X) 

A(x,  n, t~) = ?~(x) 
t2 G I ~  . 

Here ,  b y  an  abuse  of nota t ion,  we write coo~ w~ for suitable representa t ives  of 

the  corresponding classes co0, eo,~: ]o~_]~. 
The equivalence relat ion be tween these mapp ing  A is genera ted  b y  the  following 

rela t ions : 

1) We  define B ~  A, B: XXZ~_IxI,~---> ~ whenever  A I X x [ n -  1, n ]x I~  is 

2 -s ta t ionary  (i.e. A(x, t~, t2) =/,(x) ,  n -- l <t~<n, t~s L,) and  AIX • •  B. 
This condit ion a~ows us to define 2-homotopies between 1-homotopies of even- 

tua l ly  different lengths.  

l~ow let  S: X•215 ~ resp.  T:  X • 2 1 5  ~ be two mappings  such t h a t  

$ I X x L , _ I X I , ~ U X x [ k +  I , n ] X I ~ ,  0 < k < n  

is 2 -s ta t ionary  (resp. T... is 2-s ta t ionary)  while 

s i x  x [,~ - 1, k + 1] x z~ 

(resp. Tt... ) maps  as indicated in fig. I (resp. fig. 2). 
Then we set  S ~  1: ~ _~ co (T.-~ 1: co _~ co) where  we denote  b y  1 as usual  the  

identical  2 -homotepy  represen ted  b y  

E: X x I , •  Y~ I o =  [0, 0] . 

Given a h o m o t o p y  eo = el ... e~ with e l emen ta ry  or s t a t ionary  e~, then  2-homo- 
topics of the kind T allow us to go over  to an  equivalent  and  s imul taneously  2-homo- 

/ f 
topic  c o ' =  s 1 ... s k (again of length k) wi thout  non-s ta t ionary  pa r t s  of the  kind 

! l - -  1 

~i ~--- 8 t + i  ~ 

I n  a nex t  step we can app ly  homotopies  of the  k ind  S to the  effect t h a t  all pos- 
! 

sible s t a t iona ry  homotopies  e~ somewhere  in the middle or a t  the  end  are t r anspo r t ed  
/f /f 

to the  first  place, l~inally, the  given ~ is t r ans fo rmed  into a h o m o t o p y  c o " :  s 1 ... % 
I !  Z f! y! 

of leng th  k such tha t  ~1 . . . . .  e~ are s ta t i ona ry  an4 t ha t  ~j+1 ,,, ~ forms a reduced 

word  i n  the sense of lemma 1.1. 
Y~ This allows us to compose  two 2-homotopies  ~: ~Oo _~ o)1, ~: co l_  o~ with  o~1= 

l ! I 
= s~ ... e~, co l=  el ... s~ being equivalent :  According to the  jus t  given a rgumen t  



290 FRI]~DI~ICI~ W, BAUER: Dq~a~ity in ~ani]olds 

1 a 2 

1 

Fig. 1. 

2 

0 1 

Fig. 2, 

a-1 



F~mDnzcr~ W. BAu~n: Duality in mani]olds 991 

! 

we find a 2-homotopy ~: ~ o ~  e~ which is ~ product of 2-homotopies of the form S 
and T so that  one is enabled to define ~o~zo~: COo~ co2 (with o-product defined in 
an obvious way). 

The equivalence 1) finally M]ows us to drop the assumption that  e~ and ef~ are 
given by words of equal length k, because this can be enforced by starting with 
sufficiently many stationary homotopies. 

l~inMly we define~ analogously to the case of 1-homotopies 

3) (A: X x I .  X I~-+ Y) .~ 1 whenever A is stationary in the third variable and 

4) for any A: X x I ~ x l m - - >  Y 

AoA- i . .~  l 

with A-~(x, tl, t,) = A(x ,  t~, m -- t~). 
So a 2-homotopy is an equivalence class of mappings A: X x I ~ x I ~ - - - >  Y with 

an equivalence relation which is defined by 1)- 4). 
By an abuse of notation we will, analogous to the case of 1-homotopies not 

distinguish between the class ~ and a representing map which we also denote by ~. 
The proof of the following facts are omitted: 

~) 35(/, fl) (/, f ie 3L(X, Y) fixed) is a category having classes of 2-homotopies 
as morphisms such that  a homotopy 

v: ]1--~/ (#:/'--~/'1) operates as ~ functor 

~*: ~( i , / ' )  -+ ~( i l ,  I') (~,: ~(I, I') -~ ~(I, I',)). 

~1oreover for h :  ] ~ / 1 ,  v~ : /1~ /  one has 

(v~h) = resp. for # ~I V2 

fl) Any a e 3~(X', X) (resp. b e X(Y, Y')) induces a fnnctor 

a*: ~(x,  y ) ~  ~(x ' ,  y) (resp. b,: ~(x,  ]5)-> ~(x,  ];9). 

y) Let co:/o--~/1 be any homotopy, co: X X I~ -+ Y, ~' : X X I .  -+ Y a second 
homotopy such that  co']Xx [0, 1] behaves like o) (after a linear contraction of I .  
onto I) and where co'lXx [1, n] is stationary. Then �9 exists an elementary 
2-homotopy (i.e. one with m - - ] )  ~: o ~ c o ' .  

Since we are doing 3-stage strong shape theory, we are not dealing with these 
individual 2-homotopies itself but with (3-)homotopy classes of 2-homotopies: Two 
mappings Ao, AI: X x In X I.~ -~ Y (representing 2-homotcpies ~0, ~1) are defined to 
belong to the same homotopy class (A0 ~ _ A1) whenever there exists a continuous 
family At,  0 < t < l  of mappings~ M1 representing 2-homotopies ~ between the same 
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1-homotopies ~t: ~oo--~oJ~: So ~e start with 2-homotopies as defined above, being 
equivalence classes of mappings A, B~ S~ T, and allow these mappings to vary 
within its 3:homotopy classes. 

One could of course define a concept of a 3-homotopy (in complete analogy to 
that  of a 2-homotopy by using mappings X • I ,  X I~ • Xk -+ IZ satisfying certain 
conditions on the boundary) and call Ao 3-homotopic to A~ (Ao~A~) whenever 
there exists such a 3-homotopy between Ao~ AI~ However~ since we are only in- 
terested in the related 3-homotopy classes rather than in the 3-homotopies itself, 
we can avoid this concept. 

10.2.2. 2-Categories and 2-/unetors. - The only 2-categories which appear in this 
paper are 1) categories of topological spaces with homotopies as 2-morphisms and 2) 
the categories fir resp. ffr~A...Affr. (cf. w 1). 

They have the following properties which in turn can be used as a definition of 
an abstract 2-category 35: We assume 35 to be a category such that  all J~(X, Y), 
X~ Y e Ob 35 are again categories (whose morphisms are called 2-morphisms). All 
/ e 35(X', X) (g e ~(Y, Y')) induce functors/*: J~(X, Y) -~ 35(X', IZ) (resp. g.: 35(X, It) 

35(X, lz')), in such a way that  1) (/~/~)* * * = =/1 ]~ ((g~gl)* g2*gl.) whenever the 
compositions are defined; 2) the identities ~[x induce identity functors and 3) the 
diagrams 

:~(X, :r) - 4" ~ 35(X, Y') 

35(x', Y) ~ ~ (x ' ,  Y') 
g, 

are all commutative. Moreover we have that  all 2 morphisms (coming from 1- or 
2-homotopies) are always isomorphisms. 

In [5] we did not explicitely require 3) in the definition of a 2-category because 
we were able to get along with the weaker concept. 

Unlike the situation with 2-categories we need abstract 2-/unetors (they are 
defining our shape morphisms). 

So we include the explicit definition: 
Let JS, s be two 2-categories, then a 2-/unctor T: 35 -+ s is 

1) an assignment T: Ob 35 --> Ob ~ (X -.'. T(X)) ; 

2) for fixed X, Ize 35 an assignment 35(X, Y) --~ g(P(X), T(Y)); 

3) for fixed fl, ]~e J~(X, I z) an assignment 

~(x, Y)(L,/~) = ~(A,/~) -~ 2(T(x), T(Y))(T/,, T/~) = 2(~/,, T/,) 
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such tha t  the fo]]owing conditions hold: 

a) We assume 

T(lx) -~ lr(z) for all X ~ J~. 

b) Moreover for / ~  J~(X, Y ) , / ~  J~(Y, Z) there is given ~ 2-morphism 

satisfying the following compatibility conditions: 
Let  /~e 55 be morphisms, i -  1~ 2, 3, such tha t  /~(/2/~) (hence also (/~/2)/3) are 

defined~ then we have ~ commutat ive diagram 

re(L) m(IJ~) -----+ m(/~) m(/~) m(/~) ~(/~) 

with the corresponding 2-morphisms ~o. 

c) For fixed X, :Y the assignment 2) is an ordinary fnnetor,  such tha t  for 
f ~ Y~(X ~, X), g ~ Y~(Y, Y') the 2-morphisms co in a) induce natm'al  t ransformations 
co', % fitting into the diagrams 

~(x ,  :r > ~(T(x), ~(y)) ~ ( x ,  :~) ~ ~_(T(x), r(:~)) 

~(x ' ,  :r > ~_(~(x'), ~(Y)) ~ (x ,  y') , ~(f(x),  T(~')) 

In  other words: For  a a ~ Y~(X, Y)(A,/~) we have 

resp. 

(r/)* r(~)o/= Jr(/*(~)) 

(Tg), ~(~)% = %T(g.(~)). 

REHARXS. -- 1) in the applications the 2-morphisms of the category if7 (of. w 1) 
are of the form (~, ~) where $ is a 2-homotopy up to homotopy in the sense mentioned 
at the end of 10.2.1. (i.e. two 2-homotopies ~0~ ~1 are homotopic whenever there 
exists a continuous family ~ of 2-homotopies, all between the same, fixed 1-homo- 
topies). 

2) We have repeated the definition of a 2-functor in full detail, because in [5], 
p. 28 1 ~ we required T: 3%--> s to be an ordinary funetor ra ther  than  a functor up 
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to 2-swrphisms (which is the kind of definition needed for the purpose of strong 
shape theory).  For a category which is ordered (like for example r in [5], p. 20) 
we can always achieve strict functorial i ty (because we can confine ourselves to the 
definition of s for indecomposable morphisms).  

In  the general case however the usage of the stronger notion of a 2-functor 
(requiring tha t  all 2-morphisms in a) are identities) is not  adequate for strong shape 
theory  and  leads into trouble. 

3) The present definition of a strong shape category could be refined by work- 
ing with 3-, 4- 7 ..., n-categories and functors instead of 2-categories and 2-funetors. 
In  general this leads to a different kind of strong shape theory.  However there is 
some evidence tha t  for compact metric spaces the n-shape categories~ n>3~ are all 
equivalent.  

4) In  the applications all 2-morphisms are always isomorphisms~ so we do 
not  have to take care about the direction of the co's in a). 

10.2.3. Ex21icit construction o/ shape morl~hisms. - Let Y be any  metric space // 
then  we establish a subcategory ffrc fir in the following way.  I t  is well-known 
tha t  every metric space :[ can be embedded in an A:NI~ M as a closed subspace 
(see IS], 5.2., p. 21). 

The objects of ~r are inclusions i: I / c  C(c M)~ where C denotes an open neigh- 
bourhood (hence an ANI~). The l -merphisms are of the form (r, 1): i~---> i~ where 
ik: Y c  C~, r: C~c C~ are inclusions. The 2-morphisms are identities. 

We have the following assertion: 

A3 ~OPOSITIO~. - Let  T: ~r -~  ~ (X e 3% arbi trary)  be an ordinary functor,  
having the following properties: 

g 
T1) gef f r ,  g: Y--~ P => T(g): X--~ P; 

/~ 2) (r~ 1) : g~ -~ g~ ~ T(r, 1) = (r~ w) for suitable (o. Then there exists a ] e 
e ~ (X ,  Y) such tha t  ][ff~ = T. 

The main tool for proving this is embodied in the following 

ff 
A4 LE~wA. - Le t  w: b~a~ ~ -- b2a~ a~e fir be given then there exists a diagram 

Y 

al ~ i ~ a2 

p " 



FIUEDI~IC~ W. BALmtr DuaNty in mani/olds 295 

a ~ ~z~ (rk~ 1) ~ ~r(a, a~r with commuta t ive  triangles and a homotopy  

such that 

PnooF.  - Assume tha t  ~o is an e lementary  homotopy  (see w 1), then  we find an 
extension Y of ~o: Y •  over a C• C o Y  open in M. 

This follows because Y •  is a closed subset of the A~TR M •  By eventual ly  
shrinking this C, we can assume tha t  C r C~ (~ C2. As a result  we obtain ~o': C • 
•  -*_P such tha t  ~o = co ' (a •  (here the homotopy  is considered as n continuous 

mapping !). 

e9' io  = -  b l  r~ ~ o9' - ~  b~r2  . 

This completes the proof A~ for e lementary  homotopies.  

similarly. 
As an immedia te  consequence we conclude: 

The general case follows 

~) Le t  g: ! (  -~ P e ~ be continuous and g = bla~ -~ b~a2 any  two factorizations 
with a~e ~ ,  then  there  exists a diagram (1) and a homotopy  co' (which is not  neces- 

sarily the  identi ty) .  

fl) Let  J :  blr~--b2r2 be a second e lementary  homotopy  fitting into (1), then  
there  exists a fu l the r  factorizat ion a ~ pa', a 'e  ff~ and a homotopy  class os 2-homo- 
topies [~]: o)'p _~ of'p such tha t  ~a' is the identi ty.  

This follows by  the same argument  as ~), af ter  having replaced Y •  by  Y •  • 
•  C • 2 1 5  C • 2 1 5 2 1 5 2 1 5  The second and the th i rd  summand enter,  
to make  sure tha t  ~ is real ly a 2-homotopy (i.e. s ta t ionary  in the third variable s 

for t = 0, 1, el. w 1). 
There is of course an analogous assert ion available for higher homotopies.  

PROOF OF A3. - Le t  7 :  r ~x be a n y  functor  such tha t  T1) ,  T 2 )  holds. 
Then we define ]: e r - +  ff~ on the  objects:  

Le t  g e ~r be any  object .  We choose a fixed decomposit ion g = ba, a e $~ (which 
exists wi thout  being uniquely  determined) and  define 

/(g) = g y ( a ) .  

Let (r, o9): g l ->  g~ be any  morphisms in ~r (assuming for the moment  tha t  ~o 
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is e lementary) ,  g l =  b,a,,  g~-= b2a2, then  we apply lemma A4 to the diagram 

C1 

Y 

bl 

_P 

b2 

which enables ns to make a choice of a homotopy  /~: rb, c , ~  b, c2 in 

(2) 

bl 

P 

u 

b2 

a e ff~, (c~, 1 ) e  ff~,(a, a~), such tha t  #a  = co. Now we can apply the fnnctor  T to 
the upper  triangles to the effect t ha t  we obtain a (in general non-elementary[)  
homotopy  

co': r](gl) = rbl T(al) ~ rblvi T(a) ~ b2e2T(a) ~ b2 T(a~) - -  ](g~) . 

This co' has the following explicit form:  

re '=  (b~y~)o#r(a)o(b~y~) 

where we set 

:r(c;, 1) = (% ~,j). 

For  non-elementary  homotopies we proceed analogously. 
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As a result we define 

](r, ~) = (r, ~ ' ) .  

Observe tha t  according to fl), with a different choice of ,u in (2) we would end 
up with a new (r, o/) which is connected to the given one by  a 2-morphism (3, ~) 
in g r. Our definition of vJ can be arraI~ged such tha t  the ielations 11), 12) in w 1 
for homotopies are respected. 

In  part icular  we define ]( lr ,  1): ](g)=-](g) by (lx, 1). All this can be used to 
establish ] on the 1-morphisms as a 2-fnnctor. 

We still have to construct ](v, ~ ) =  (v, ~') for a 2-morphism (v, ~): (r~, w~) 
(r2, o~2) in ~r. 
In  a first step this will be accomplished for elementgry 2-homotopies ~: 
~u t ransform the ident i ty  2-morphism into the identi ty.  
Let  (~, ~) ~ (1, 1) be given. To (~i: rob~a~ b~a2 we have the chosen homotopies 

#~: b ~ c , ~  b2c~ fitt ing into the diagram 

Y 

(3) C, r 

P 

b~ 

- - Q  
r 

i = 1, 2 #~a(~)= co~. There exists a common refinement of the a "), i.e. a diaga'am 

Y 

a(1) 

C(i}~d(i) (2) 

(d " ) , l ) e f i r ( a , a I ~ ) ) , 3 e f i r .  Now we apply A4 to Y • 2 1 5  C x 0 •  
x / c  M •  •  (for the same reason as in fl)) obtaining an elementary 2-homotopy 

~7 : #~d(2) e~ en dfl) e) ~-- tq d a) e 
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/ !  II ! 

where 5. ~ ca', a!~ fr~ (e, 1) ~ f r ( a ,  5.) are suitably chosen~ such tha t  ~ a ' =  ~:. Here 
is a 2-homotopy 

$: co~ov(bl al) =/~2a('~)ov(blal) = (/& d(~) eoT:(bl cll d m  e) ) a ' :'~ c o l = / A a  m = # l  dm ea ' �9 

This enables us to define the required ~' by 

~!= ~/~(a'). 

I t  can be easily checked tha t  ~' is a 2-homotopy 

oa~ov/(b:al) ~ o~, 

where we set ](ri, (oi) ---- (ri, ~o~). This can be done for each (r, ~) separately in such a 
way tha t  ] (~  ~) -~-~  ](~-1, ~-~). For non-elementary homotopies we establish ~' by  
composing the e lementary factors. Moreover fl) ensures tha t  the homotopy class 
of ~' is independent of the choices involved. This can be easily verified. 

In  the present case ] is automatical ly becoming funetorial,  because every morphism 
can be represented as a composition of indecomposable ones (which was not  t rue 
in the case of 1-morphisms!). 

This completes the construction of ] which is easily recognized as a 2-functor, 
fulfilling the requirements on a strong shape morphism. The missing detMls ai'e 
immediate and~ as well as the fact  tha t  ] I f ~ =  T left to the reader. 

r 

Let  Y be a compact metric space, then we have a still simpler category f r o  qr 
available ([5], w 4): 

Take any  embedding of Y into a Hilbert  cube Q. Then we have a sequence of 
f 

compact ANRs C~ C~D C2~ ...~ such tha t  5~ C~----- Y. The objects of qr are again 
the inclusions i~: Y c  C. and the 2-morphisms are of the form (r~: C~c C~ 1), m > n .  

Every  morphism appears  in a unique way as the product  oi indeeomposable ones. 
! 

Therefore it is sometimes easier to describe a specific funetor T: f ir-* fz .  
As a corollary to A3 we have:  

A5 P~oPost~m~. - Assertion A3 holds for compacta with f'r replacing f~. 

R E ~ S .  - 1) Proposition A5 has already been discussed in [5], w 4 although 
the present proof is independent  of [5]. 

2) Assume in A3 tha t  X = ~Y and tha t  T is the ident i ty  onto f 'xc fz ,  then 
the constructed ] is easily seen to be also the identi ty.  

If 

3) For a I 7 e f (which is not necessarily metric) we can use instead of f ,  the 
category consisting of the single object 1: Z -* Z with the identity- morphism solely. 

The proof of proposition 1.r requires: 
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A6 L E N A .  - Assume X~ If being compact  metr ic  spaces and consider the fol- 

lowing diagram 

Y 
f 

Q1AQ1 

X A Y  

Q~AQ'~ 

8~ 82 

F 
Q~, Q'~,/)~e if, together  with a homotopy  w: rs~(e~Ae D ~ s~(e~Ae~). 

Then there  exist  m~ppings eAe': XA :g -*QAQ% Q, Q' e if, t~At~: QAQ' -* Q~AQ~ 
r ! / 

such tha t  (t~At~)(eAe)-~ e~Ae~ (i = 1, 2) as well as a homotopy  8: rs~(t~At~) 
s~(t~At~) which satisfies 

a(eAe') = o). 

P R O O F .  - The proof follows the pa t t e rn  of the proof of A4: We find immediate ly  
mappings ~: X A Y  -->0~ er$, [~: O~ -->QiAQ~ such tha t  ~ - ~  e~Ae~ and a homotopy  ~' 
fi t t ing into the  eorrespon4ing diagram. However  the compactness of X and IT 
guarantees  tha t  we can require  g to be of the form ~ = e A e ' ,  where e: XcQ, e':XcQ' 
are compact  ANI~ neighbourhoods of X resp. :Y in some Hi lber t  cube (cf. 1.5.). 
B y  eventual ly  taking finer approximat ions  Q, Q' of x resp. Y, we obtain mappings 

r [i ~ t~At~. The final homotopy  (5 is now immedia te ly  established. 
Le t  X be metr ic  and Z be ei ther  an AibTE or a metr ic  space, then  we are t ry ing  

to develop a subcategory ff 'c ffzAffz such tha t  again an assertion like A3 ensures 
the existence of a map  / ~ JS(S, X A Z )  whenever  a special kind of funetor  T:  if' --> ffz 

(for a given space S) is given. This has to be sett led f o r  the proof of theorem 7.1. 
In  what  follows, we mean by  '$~(ff~) ei ther  the category which we have just  

cons t ructed  or r whenever  X (or Z) is compact  metric.  
The objects of if' are decompositions of continuous mappings of the fo rm iAa~ 

i ~  r a ~ f f ~  while the morphisms are of the  fo rm defined in w 1 (1) with s~, 
s~ = iden t i ty  r = r~Ar2 and all the homotopies being trivia]. By  an abuse of nota- 
t ion we will s imply write (r~Ar~, 1): (i~Aa~) -+ (i2Aa2) for such a morphism. 
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3_7 P~OPOSI~ION. - Le t  N e Js be any  space. A functor  T:  if ' -> ff~ with the 

propert ies  

T 1 )  (iAa) e if', i: X c C, a: Z c U => T(iAa): S ~ CA U; 

T 2) (rlAr~, 1) e ff'((i~Aa~), (i2Aa2)) => T(rlAr2, 1) ----- (rlAr~ co) for suitable (o de- 

termines  a ] e-~(S, X ~ Z )  such tha t  l i f t ' =  T. 

PROOF. - One immediate ly  recognize tha t  we have merely  to apply lemma A~ 

to each factor  in the A-product  separately,  in order to get an assert ion which allows 

us to argue as in the proof  of A3. 
In  order to find a specific functor  T with propei t ies  T 1), T 2), the following 

assert ion will be helpful:  

A8 PgoPOSITm~. - Le t  T:  ~ ' ~  ffz be an ass ignment  with the following prop- 

ert ies : 

a) For  fixed i e ~x, T'(  ) = T(iA ) behaves functorial ly.  

b) For  fixed a E '$~, T"( ) = T ( A a )  behaves functorial ly.  

c) 2' fulfills T 1) and 2' 2) in proposit ion A7. 

Then T is a functor .  

P~00F. - E a c h  morphism (r, A h ,  1): i , A a , ~  i2Aa~ in if' allows a decomposition 

(r~Ar~, 1) = (1Ar.~, 1)(r~A1, 1) 

with suitable identities 1. F rom  this observat ion A8 follows easily. 

10.3. Co]ibrations in the strong shape category. 

In  order to keep this paper  independent  of other  articles on shape theory  and 
because we want  to present  an application of A3 we will include proofs of the fol- 

lowing assertions A9~ A10: 

A 9  ~ R O P O S I T I O N .  - Let  i: A c B be an inclusion of metr ic  spaces and A compact .  

Then h(i) is a cofibration in ~ .  

PROOF. - Le t  d: A •  ~ A c B be the  inclusion, then  A •  k) a B with the iden- 

tification topology is homeomorphie  to A •  U B )<0 (equipped with the topology 
of a subspaee of B • I) .  By  a well-known a rgument  the assertion is equivalent  to 
the existence of a mapping ~ ( B  • A •  B •  having the p rope r ty  tha t  
~k = 17 where ~: A •  k) B •  c B •  denotes the inclusion. 
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We e m b e d  B in an  AI~I~ M, hence we have  

A x I  u B x O c B x l  c M x I .  

Let  j :  A •  B •  c C be an object  of f f ]xz~•  then  we find a (rel. M) open 
W o B and  an  open U o A, such t h a t  W x 0  U U •  c C and  tha t  bo th  are  max ima l  

with this  p r o p e r t y  (i.e. W = (M • 0) ~ C). Moreover  since A is compact  we find a 
decreasing sequence U~o U~o. . . ,  having  the  p r o p e r t y  t ha t  eve ry  U is contained 

in some U~ and  therefore  in a U~(ol with m a x i m a l  index i = i(C). All spaces are 

metr ic ,  hence normal ,  therefore  we find to each C a cont inuous ~o: B -+ I such t h a t  

9c]A = 17 ~ c ] B - - B  ~ U,r 0 (% should only depend on the  index i(C)). Now 

we set 

~(j)(b, t) = (b, ~a(b)t) ,  

which is a cont inuous funct ion 

~(j) : B X I -~ W X 0 W U~(o~ X 1 c C .  

Le t  (r: C~c C:, 1) be a m o r p h i s m  in ff~x~,Bxo, then  we define ~(r, 1) = (r, (o) 
in the  following way :  

v9 = 1 . . .  i (  Cx) = i (  C2) 

co(b, t, s) = (b, (1 -- s)tq~q(b) + sq%~(b)t) e C2 

for i(C2) = i(C1) -~ I and  as the  composi t ion of such homotopies  for i(C~) =- i(C~) -~ n. 
_ f /  

This yields a func tor  ~lff~x~.~xo= T fulfilling T 1 ) ,  T 2 )  in A3. So we obtain  a 

~ 3%(B x I ,  A • I w B x 0). Since we have  ~(g)IA x I 0 B x 0 -~ g for a n y  g e ff~ x x~ B x o 
resp.  for the  1- and  2-morphisms  according to r e m a r k  2) (following A5), we conclude 

that 

@ ( k )  : @ = 1 .  

Although the  following asser t ion is not explici tely needed in the  present  pgper~ 

we include it, because it has its well-known coun te rpa r t  in ord inary  h o m o t o p y  theory :  

~_10 PROPOSITI0~-. - Le t  i: A c B be an  inclusion of compact  metr ic  spaces~ then  

A • I U B X 0 is a s t rong deformat ion  r e t r ac t  of B X I in 5%. More precisely:  There  

exists  a F ~ ~ ( B x l x I ,  B x I )  such t h a t  P I B x I •  k~, _ F I B x l x t = I ,  
_~!(A X I  w B x0)  x I  -~ p (=- project ion).  

PROOF. - The proof  is analogous to t ha t  of A9: Set X ~ - B  x I x 0 U B x 0 x I u 

~9 A x I x I U B x I x 1 c B • I x I ,  then  b y  glueing together  the  prescr ibed shape 
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mappings on the specific subspaces (which is easily seen to be possible) we get a 

G e J ~ ( X , B •  ~ o w  set B ' =  B • 2 1 5  A ' -~  A • 2 1 5  B • 2 1 5  B • 2 1 5  and 

apply A9 to the inchs ion  i ' :  A ' c  B' ,  then we obtain a re t ract ion R E J~(B •  •  X)  
because X ~- A ' •  B'•  Hence we can form 

which h~s the required properties. 

This completes the proof of A10. 
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