Bounds for the Nonhomogeneous GASPT Equation (*).

Orazio arena (Firenze) (**) - Paolo Manselli (Verona) (***)

Abstract

Summary. - Weighted a priori bounds for the equation $\Delta u+(\mu / y) u_{y}=f(\mu>0)$, in the half. plane $y>0$, are proved. If $p>1,0<\alpha+p^{-1}<1+\mu, u$ has bounded support and $y^{\mu} u_{u_{y} \rightarrow 0}$ (as $y \rightarrow 0_{+}$), then the L^{p} norms of $y^{\alpha} u$ and $y^{\alpha}\left|D^{2} u\right|$ are bounded by the L^{p} norm of $y^{\alpha} f$. A boundary value problem in a rectangle is also studied in the appropriate weighted Sobolev class.

0. - Introduction.

The main goal of this paper is to prove a priori bounds for solutions of the equation

$$
\begin{equation*}
w u=u_{x x}+u_{y y}+(\mu / y) u_{y}=f, \quad \mu \text { a positive constant } \tag{0.1}
\end{equation*}
$$

in the half-plane $y>0$. We will write w_{μ} when we need to emphasize the dependence on μ.

The operator W is a model operator for elliptic operators singular on a line; also, $y W$ is an elliptic operator degenerating on $y=0$. Many different questions are connected with this operator; let us recall some of them.
(a) Assume $\mu=m-2 \in \mathcal{N}$; then u is solution of $w u=0$ if and only if $u_{0}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1},\left(x_{2}^{2}+\ldots+x_{m}^{2}\right)^{\frac{1}{2}}\right)$ is a solution of $\Delta u_{0}=0$. For this fact the equation $W u=0$ has been called GASPT (generalized axially symmetric potential theory) equation. A natural extension of the above remark is in Tatenti [37] (here recalled in a slightly different form): given $\mu>0$, fix an integer $m \geqslant \mu+2$ and define $\alpha(\mu)=$ $=\mu /((m-2)+(m+1) \mu) ; \quad \alpha$ is an increasing function of μ and $\alpha(0)=0$, $\alpha(m-2)=1 / m$; define: $u_{0}\left(x_{1}, \ldots, x_{m}\right)=u\left((1 / \alpha-(m-1))^{\frac{1}{2}} x_{1},\left(x_{2}^{2}+\ldots+x_{m}^{2}\right)^{\frac{1}{2}}\right)$ and

$$
\begin{equation*}
\mathfrak{U} u=\alpha \Delta u+(1-m \alpha) \sum_{i j=2}^{m} x_{i} x_{j}\left(x_{2}^{2}+\ldots+x_{m}^{2}\right)^{-\frac{1}{2}} u_{x_{i} x_{j}} \tag{0.2}
\end{equation*}
$$

then

$$
\mathfrak{U} u_{0}\left(x_{1}, \ldots, x_{m}\right)=(1-(m-1) \alpha)\left(\left(w_{u}\right)\left((1 / \alpha-(m-1))^{\frac{1}{2}} x_{1},\left(x_{2}^{2}+\ldots+x_{m}^{2}\right)^{\frac{1}{1}}\right) .\right.
$$

[^0]The operator 9 l is a uniformly elliptic second order operator in \mathfrak{R}^{m}, with (lower) ellipticity constant α, trace $\equiv 1$ and discontinuous coefficients on the axis $x_{2}=\ldots=$ $=x_{n}=0$; it has been introduced by Urat'TSEVA [38] as counterexample operator to existence theorems in the Sobolev space $W^{2, m}$; in other words the Ural'tseva operator \mathscr{U} on axially symmetric functions is the same as the operator \mathcal{W}.
(b) If u, v are solutions of the generalized Cauchy-Riemann system:

$$
\begin{align*}
y^{\mu} u_{x} & =v_{y} \tag{0.3}\\
y^{\mu} u_{y} & =-v_{x} \tag{0.4}
\end{align*}
$$

then $W_{u}=0$ and $\Delta v-(\mu / y) v_{y}=0$. This system was studied, for positive μ, by Bers and Gelbarg [3] and it is connected with problems of mechanics of continua (Bers and Gelbarg [3], Payne [33]).

The equation $w u=0$ can be written in complex form as:

$$
\begin{equation*}
u_{z \bar{z}}-(\mu / 2)\left(u_{\bar{z}}-u_{z}\right) /(z-\bar{z})=0 \tag{0.5}
\end{equation*}
$$

with $z=x+i y, \bar{z}=x-i y$; the equation (0.5) is a Euler-Poisson-Darboux equation and the Riemann function can be explicitly wriften for it (see Vekua [39], Gilbert [12]) and used to construct solutions of $w u=0$.
(c) The equation $\mathfrak{w}_{u}=f$ can be written in variational form as:

$$
\left(y^{\mu} u_{\ddot{x}}\right)_{x}+\left(y^{\mu} u_{y}\right)_{y}=y^{\mu} f
$$

and variational techniques can be used to study it (see e.g. Nikol'sku-Lizorkin [30], Bolley-Camus [4]).
(d) The operator' \mathfrak{W} is connected with various classes of special functions and integral transforms. Its fundamental solutions can be written by using hypergeometric functions (Olevskil [32], in particular one can use Legendre functions of second kind in 3. below), Bessel functions (Weinstein [40], 1. below); solving the equation $w u=0$ by separation of variables leads to Bessel functions again, Gegenbauer functions (see Gribert [12]). Good tools to study the operator 'W are the Hankel in y or the Fourier-Hankel transform (Fourier in x, Hankel in y transform, see Kiprijanov [18], [19], [20]). Weinstein [40] used results for $w u=0$ to give a proof of the Weber-Schafheitlin theorem. In the book of Gilberr [12] function theoretic methods, related to the complex equation (0.5) and to expansions in special functions, are used to study solutions of $\dot{w} u=0$ looking in particular at the analyticity and to the singular points of them.
(e) The problem of the analyticity near $y=0$, was earlier studied by HenRICI [13] and Krivenkov [24], [25]. The first author found that the problem:
$\mathfrak{w}=0, u(x, 0)=u_{0}(x)$, with u_{0} given analytic function, has the solution:

$$
u(x, y)=\operatorname{const} \int_{0}^{1}[t(1-t)]^{u / 2-1} u_{0}(x+i y(1-2 t)) d t
$$

Krivenkov found that, if $\mu \geqslant 1$, then a solution of $W u=0$, continuous up to $y=0$, can be extended across $y=0$ as a even analytic function; if $0<\mu<1$, to get the same result, one needs the extra condition:

$$
\lim _{y \rightarrow 0} y^{\mu} u_{y}=0
$$

Henrici's representation formula above was used by Radjabov (see L. G. MiкнaILOV [29]) to solve the Dirichlet problem for $\mathfrak{w u = 0}$ (with suitable boundary conditions); the problem was changed into a Abel type integral equation; the unknown is u at $y=0$.

The operator \mathcal{W} is connected with fractional integrals and derivatives (see HeNrict [13], Levitan [26], Erdélyi [7], [8]); as an example, if $w u=0$ then:

$$
u=I(h), \quad \Delta h=0
$$

where:

$$
I(h)(x, y)=2 y^{1-\mu}(\Gamma(\mu / 2))^{-1} \int_{0}^{y}\left(y^{2}-t^{2}\right)^{u / 2-1} h(x, t) d t
$$

a similar formula (with suitable change of variables) was used by Weinstein [40] to write the fundamental solution of the operator \mathcal{W}.
(f) Changes of variables connect the operator w with other special operators. The change of variables:

$$
x^{\prime}=a x, \quad y^{\prime}=y^{b}, \quad u(x, y)=v\left(a x, y^{b}\right), \quad a>0, b>0
$$

gives:

$$
\mathfrak{W} u(x, y)=\left(a^{2} v_{x^{\prime} x^{\prime}}+b^{2}\left(y^{\prime}\right)^{2-2 / b} v_{v^{\prime} y^{\prime}}+b(b-1+\mu)\left(y^{\prime}\right)^{1-2 / b} v_{v^{\prime}}\right)\left(a x, y^{b}\right)
$$

Choose $a=b=2$; then:

$$
W u(x, y)=4\left(v_{\alpha^{\prime} x^{\prime}}+y^{\prime} v_{y^{\prime} y^{\prime}}+((1+\mu) / 2) v_{y^{\prime}}\right)\left(2 x, y^{2}\right)
$$

The operator on the right hand side is a particular case of an operator introduced by M. V. Kei'disch [17]; in $y^{\prime}>0$ it is an elliptic-parabolic operator. Boundary
value problems for this class of operators have been considered by M. V. Kel'disch and G. Fitchera [10] (see the Olejnti-Radkevič book [31]).

Choose $a=b=\frac{2}{3}$; then:

$$
W_{u} u(x, y)=\left(\frac{2}{3}\right)^{2} y^{\prime}\left[y^{\prime} v_{x^{\prime} x^{\prime}}+v_{y^{\prime} y^{\prime}}+\left(3 \mu / 2-\frac{1}{2}\right) v_{v^{\prime}} / y^{\prime 2}\right]\left(2 x / 3, y^{3}\right) .
$$

The operator in square brackets (when $\mu=\frac{1}{3}$) is the Tricomi operator, in $y^{\prime}>0$ (on this operator see e.g. the M. M. Smirnov book [36] and the references therein).

The above remarks just sketch the many connections of the operator w. Surveys on results on \mathfrak{W} and generalizations are in Huber [15], Gllbert [12], Talenti [37], Mikeailov [29]. An extensive work on \mathfrak{w} and many extensions has been made by I. A. Kiprijanov and coworkers; let us quote [18]-[23]. Also, many results for W can be obtained as particular cases of results on general singular or degenerate elliptic equations (see e.g. Avantagglati [2], Talenti [37], aressandrini [1], Olejnik-Radkevic [31], M. M. Suirnov [36], Bollet-Camus [4], Dunninger-Levine [7], Kiprijanov [18]-[23], Ca'c [5], Lo [27], [28], Schechter [35].

The main result of this paper is the following (theorems 3.4 and 2.1 below):
Assume $\mu>0, p>1,0<\alpha+1 / p<1+\mu$. There exists a constant c such that, for every u of class C^{∞} in $y>0$ which satisfies

$$
\lim _{y \rightarrow 0} y^{\mu} \int_{\mathcal{R}}\left|u_{y}(x, y)\right| d x=0
$$

and has bounded support, the inequality:

$$
\iint_{y>0}\left(y^{\alpha}\left|D^{2} u\right|\right)^{p} d x d y \leqslant c \iint_{y>0}\left|y^{\alpha} w u\right|^{p} d x d y
$$

holds.
Moreover, for every open rectangle R in $y>0$, there exists a constant c_{1} such that, for every u as above, with support in R, the bound:

$$
\iint_{y>0}\left|y^{\alpha} u\right|^{p} d x d y \leqslant c_{1} \iint_{\nu>0}\left|y^{\alpha} w u\right|^{p} d x d y
$$

holds.
These results have been proved, for some choices of α and p, by Kiprijanov. One can prove that the bounds above are sharp: if $(1 / p, \alpha)$ is outside of the domain $0<1 / p<1,0<1 / p+\alpha<1+\mu$, then the above inequalities do not hold (remark 4.2 of section 4.).

In section 4. a boundary value problem in a rectangle for the nonhomogeneous equation (0.1) is solved within a suitable weighted Sobolev class.

Boundary value problems in different domains will be discussed in a forthcoming paper.

Let us introduce a few notations. We define: $\mathfrak{R}_{+}^{2}=\left\{(x, y) \in \mathcal{R}^{2}: y>0\right\}$ and write $\boldsymbol{x}=(x, y)$; we will also write:

$$
\begin{array}{ll}
\|u\|_{\alpha, p}=\left(\iint_{\Re_{+}^{s}}\left|y^{\alpha} u(\boldsymbol{x})\right|^{p} d x d y\right)^{1 / p}, & 1<p<\infty \\
|u(\cdot, y)|_{s}=\left(\int_{\Re}|u(\boldsymbol{x})|^{s} d x\right)^{1 / s}, & 1 \leqslant s<\infty
\end{array}
$$

More notations: $p^{\prime}=p /(p-1)$; $D u$ will be u_{x} or $u_{v}, D^{2} u$ will be $u_{x x}, u_{x y}$ or $u_{y y}$.

1. - The equation $W u=0$ in a rectangle.

The separation of variables technique will be used here to study the equation $w_{u}=0$ in a open rectangle R, in $y>0$, with one side on $y=0$, to get L^{p} a priori bounds.

A change of variables of the form:

$$
x^{\prime}=a x+b, \quad y^{\prime}=a y, \quad(a>0)
$$

will change the operator by a positive, multiplicative constant. Thus, in the statements of the theorems, R will be a rectangle of the form:

$$
R=R_{y_{0}}=\left(x_{1}, x_{2}\right) \times\left(0, y_{0}\right)=A \times\left(0, y_{0}\right), \quad 0<y_{0}<\infty
$$

however in the proofs, for simplicity, R will be of the form $(0, \pi) \times\left(0, y_{0}\right)$; we will write $R_{\nu_{0}}$ when we need to emphasize the dependence on y_{0}; we also define:

$$
\begin{aligned}
& T=\left\{x: 0<y<y_{0}, x=x_{1}, \text { or } x=x_{2}\right\} \\
& E=\left\{\left(x, y_{0}\right): x \in A\right\} \\
& S=\left\{x: x \in A,-y_{0}<y<y_{0}\right\}
\end{aligned}
$$

Let us look for solutions of $w u=0$ in $y>0$, of the form:

$$
\begin{equation*}
u_{n}(x)=v_{n}(y) \sin n x \tag{1.1}
\end{equation*}
$$

the functions v_{n} are solutions of the differential equations:

$$
\begin{equation*}
v_{n}^{\prime \prime}+(\mu / y) v_{n}^{\prime}-n^{2} v_{n}=0 \tag{1.2}
\end{equation*}
$$

two linearly independent solutions of (1.2) are:

$$
(n y)^{(1-\mu) / 2} I_{(\mu-1) / 2}(n y), \quad(n y)^{(1-\mu) / 2} K_{(\mu-1) / 2}(n y)
$$

(I_{r}, K_{r} modified Bessel functions of first and third type). Let us define:

$$
h(t)=(t / 2)^{(1-\mu) / 2} \Gamma((\mu+1) / 2) I_{(\mu-1) / 2}(t)
$$

clearly $h(n y)$ is a solution of (1.2); moreover, since:

$$
I_{r}(z)=\sum_{m=0}^{\infty}(z / 2)^{2 m+r} /(m!\Gamma(m+r+1)) \quad(z \in \mathbb{C})
$$

one sees that $\mathcal{R} \ni t \rightarrow h(t)$ is a real, positive, increasing convex function; in the complex plane h is holomorphic and entire; it satisfies the equation: $h^{\prime \prime}+(\mu / y) h^{\prime}=h$. The asymptotic expansion of $I_{r}: I_{r}(y)=$ const $\cdot e^{y} y^{-\frac{1}{2}}(1+0(1 / y))(y \gg 1)$ (Erdelyi and others II, p. 86) gives:

$$
\begin{equation*}
h(y) / h\left(y_{0}\right) \leqslant \operatorname{const}\left[(1+y) /\left(1+y_{0}\right)\right]^{-\mu / 2} \exp \left[y-y_{0}\right]: \quad 0 \leqslant y \leqslant y_{0} \tag{1.3}
\end{equation*}
$$

The differential equation above and the properties $h^{\prime}>0, h^{\prime \prime}>0$ give the inequalities:

$$
\begin{align*}
& h^{\prime}(y) \leqslant y h(y) / \mu \tag{1.4}\\
& h^{\prime \prime}(y) \leqslant h(y) \tag{1.5}
\end{align*}
$$

Remark 1.1. - The problem:

$$
v^{\prime \prime}+(\mu / y) v^{\prime}-n^{2} v=0 \quad \text { in }\left(0, y_{0}\right), \quad v\left(y_{0}\right)=0
$$

with the extra condition

$$
\lim _{y \rightarrow 0} y^{\mu} v^{\prime}=0
$$

has the unique solution $v \equiv 0$.
For a more general and abstract version of this remark see D. R. DUnNIvger and H. A. Levine [7].

Let $s \geqslant 1, u_{\mathrm{a}} \in L^{s}(A), u$ defined in R, such that:

$$
\lim _{v \rightarrow y_{0}^{-}} \int_{\mathbb{A}}\left|u(\boldsymbol{x})-u_{0}(x)\right|^{s} d x=0
$$

we will write $\left.u\right|_{E}=u_{0}$, for short.

Theorem 1.1. - Let $s \geqslant 1$. The problem:

$$
\begin{gather*}
w u=0 \quad \text { in } R, \tag{1.7}\\
\left.u\right|_{T}=0, \quad \lim _{y \rightarrow 0^{+}} \int_{A} y^{\mu}\left|u_{y}(\boldsymbol{x})\right| d x=0,\left.\quad u\right|_{\mathbb{E}}=u_{0} \in L^{s}(A) \tag{1.8}
\end{gather*}
$$

has a unique solution $u \in C^{0}(R \cup T) \cap C^{2}(R)$. Moreover $u \in C^{2}(\bar{R} \backslash \bar{E})$ and can be extended to an analytic, even function in S, such that:

$$
\begin{equation*}
\left(\int_{\Delta}|u(x)|^{s} d x\right)^{1 / s} \leqslant\left|u_{0}\right|_{x^{*}(\Delta)}, \quad 0<y \leqslant y_{0} \tag{1.9}
\end{equation*}
$$

for every $y^{\prime} \in\left(0, y_{0}\right)$ there exists $c_{y^{\prime}}$, not depending on u, such that:

$$
\begin{equation*}
\|u\|_{a^{2}\left(\overline{\left.\tilde{x}_{v^{\prime}}\right)}\right.} \leqslant c_{y^{\prime}}\left|u_{\mathbf{0}}\right|_{L^{s}(A)} . \tag{1.10}
\end{equation*}
$$

Proof. - Let us prove the uniqueness (${ }^{1}$). Let $\bar{u} \in C^{2}(R) \cap C^{0}(R \cup T)$ be a solution of (1.7), (1.8) with $u_{0}=0$. By classical regularity theorems, \bar{u} is in $C^{\infty}(R \cup T)$.

Let us expand \bar{u} in Fourier sine series in x. We get:

$$
u(\boldsymbol{x})=\sum_{n=1}^{\infty} u_{n}(y) \sin n x
$$

with

$$
u_{n}(y)=(2 / \pi) \int_{0}^{\pi} \bar{u}(x) \sin n x d x
$$

The equation (1.7) and the boundary conditions (1.8) give:

$$
\begin{gathered}
u_{n}^{\prime \prime}+(\mu / y) u_{n}^{\prime}-n^{2} u_{n}=0 \quad \text { in }\left(0, y_{0}\right) \\
\lim _{y \rightarrow y_{0}} u_{n}(y)=0, \quad \lim _{y \rightarrow 0} y^{\mu} u_{n}^{\prime}(y)=0
\end{gathered}
$$

and thus $u_{n} \equiv 0$ (Remark 1); then $\bar{u} \equiv 0$ in R.
To prove the existence we just need to write down a solution $u \in C^{2}(R) \cap C^{0}(R \cup T)$ of (1.7), satisfying the boundary conditions (1.8). By using the boundedness of the sequence $\left\{2 \pi^{-1} \int_{0}^{\pi} u_{0}(x) \sin n x d x\right\}$ and the bounds (1.3)-(1.5), one sees that the series:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{2}{\pi} \frac{h(n y)}{h\left(n y_{0}\right)} \sin n x \int_{0}^{\pi} x_{0}(t) \sin n t d t \tag{1.11}
\end{equation*}
$$

${ }^{(1)}$ The uniqueness part of this theorem could be also deduced from the results of D. R. qunninger and H. A. Levine [7].
is uniformly convergent with first and second derivatives in every $\bar{R} y^{\prime}$, with $0<$ $<y^{\prime}<y_{0}$, to a function $\bar{u}=g\left(u_{0}\right) \in C^{2}\left(\bar{R} y_{0} \backslash \bar{E}\right)$ solution of (1.7) with $\left.\bar{u}\right|_{T}=0$. It remains to show that \bar{u} satisfies the boundary conditions on E, to prove the a priori bounds and the regularity results.

Assume, for a moment, $u_{0}=f_{0} \in C_{0}^{\infty}(E)$; then the corresponding $g\left(f_{0}\right) \in C^{2}\left(\bar{R} y_{0}\right)$, and $\left.g\left(f_{0}\right)\right|_{E}=f_{0}$. By the maximum principle (Weinstein [40], Karol [16]),

$$
\max _{\bar{R}_{y} \backslash \bar{B}}\left|g\left(f_{0}\right)\right| \leqslant \max _{E}\left|f_{0}\right|
$$

Let us define: $\boldsymbol{w}=\left(x_{0}, y_{0}\right) \in E$ and

$$
F(\boldsymbol{x}, \boldsymbol{w})=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{h(n y)}{h\left(n y_{0}\right)} \sin n x \sin n x_{0}
$$

$\left(0 \leqslant y<y_{0} ; x, y_{0} \in[0, \pi]\right)$. By (1.3), (1.4), (1.5) F, as a function of x, is in $C^{2}(\bar{R} \backslash \bar{E})$ and is a solution of $w_{\mu} F(\cdot, \boldsymbol{w})=0$ in $R(\boldsymbol{w} \in E)$; moreover, the function $g\left(f_{0}\right)$ above can be written as:

$$
\begin{equation*}
g\left(f_{0}\right)(\boldsymbol{x})=\int_{0}^{\pi} F(\boldsymbol{x}, \boldsymbol{w}) f_{0}\left(x_{0}\right) d x_{0} \tag{1.12}
\end{equation*}
$$

The following properties for F can be proved:
(i) $F(\boldsymbol{x}, \boldsymbol{w}) \geqslant 0$ (consequence of the maximum principle for \mathcal{W});
(ii) $F\left(x, y, x_{0}, y_{0}\right)=F\left(x_{0}, y, x, y_{0}\right) \quad\left(x, x_{0} \in[0, \pi]\right.$ and $\left.0 \leqslant y<y_{0}\right)$;
(iii) $0 \leqslant \int_{0}^{\pi} F(x, w) d x_{0} \leqslant 1 \quad\left(\boldsymbol{x} \in \bar{R} y_{0} \backslash \bar{E}\right)$.

Let $f_{n} \in C_{0}^{\infty}(E), 0 \leqslant f_{n} \leqslant 1, f_{n} \rightarrow 1$ in $L^{1}(A)$; the maximum principle and (1.12) give:

$$
0 \leqslant \int_{0}^{\pi} F(\boldsymbol{x}, \boldsymbol{w}) f_{n}\left(x_{0}\right) d x_{0} \leqslant 1, \quad \boldsymbol{x} \in \bar{R} y_{0} \backslash \bar{E}
$$

if we let $n \rightarrow \infty$, on these inequalities, we get (iii);
(iv) for every $y^{\prime} \in\left(0, y_{0}\right)$, there exists O_{y}, such that:

$$
\|F(\cdot, \boldsymbol{w})\|_{\boldsymbol{C}^{2}\left(\overline{R_{y^{\prime}}}\right)}<C_{y^{\prime}}, \quad \boldsymbol{w} \in E
$$

Assume, now, $f_{0} \in L^{s}(A)$. The expansion (1.11) can be written as (1.12). Thus, the properties (i)-(iv) of F and standard techniques (see e.g. Zyamund [41], III-IV) give the boundary conditions $\left.u\right|_{E}=f_{0} \in L^{s}(E)$, and the bounds (1.9), (1.10).

The regularity of the solution can be deduced from expansion (1.11), which defines a $C^{2}(S)$ even function. The analyticity follows from Krivenkov [24], [25] results. III

Remark 1.2. - The condition:

$$
\begin{equation*}
\lim _{y \rightarrow 0} y^{\mu} \int_{\Lambda}\left|u_{y}(x, y)\right| d x=0 \tag{1.13}
\end{equation*}
$$

was used to prove uniqueness only of the theorem above; more precisely, if u satisfies (1.13), then the Fourier (in x) coefficients $u_{n}(y)$ of u satisfy condition (1.6) of Remark 1.1. Thus (1.13) may be replaced by any other assumption on u implying for u_{n}, at $y=0$, a condition which in turn would give uniqueness for the problem in Remark 1.1. As an example, if $\mu \geqslant 1$, (1.13) may be replaced by:

$$
\underset{y \rightarrow 0}{\max \lim } \int_{A}|u(x, y)| d x<\infty
$$

this condition matches with Kel'disch [17] problem E, when one changes (as in (f) above) \mathfrak{w} into a Kel'disch operator (see Kel'disch [17]) ; also it matches with Fiomera [10] approach to boundary value problems for elliptic-parabolic operators.

2. - The a priori bound for u.

Let us prove a representation formula for solutions of $w_{\mu} u=f$. We will keep the notations of 1. ; moreover, if v is the solution of the problem: $w_{\mu} v=0$ in $R=A \times\left(0, y_{0}\right)$, with boundary conditions $\left.v\right|_{T}=0,\left.v\right|_{E}=f_{0} \in L^{s}(A)$ and:

$$
\lim _{y \rightarrow 0^{+}} y^{\mu} \int_{A}\left|v_{y}(\boldsymbol{x})\right| d x=0
$$

we will write $v(\cdot, y)=\mathfrak{G}_{y, v_{0}}^{4} f_{0}$.
The following lemma holds.
Lemma 2.1. - Let $u \in C^{\infty}\left(\mathcal{R}_{+}^{2}\right)$, such that $\operatorname{supp} u$ is bounded and

$$
\begin{equation*}
\lim _{y \rightarrow 0^{+}} y^{\mu} \int_{\mathcal{M}}\left|u_{y}(\boldsymbol{x})\right| d x=0 \tag{2.1}
\end{equation*}
$$

Let us define $f=W_{u}$ and assume moreover that $\operatorname{supp} u \subset R=A \times\left(0, y_{0}\right)$ and $y^{\mu} f \in$ $\in L^{1}\left(\mathcal{R}_{+}^{2}\right)$. Then:

$$
\begin{equation*}
u(\cdot, y)=\int_{y_{0}}^{y} d t \int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{u} \mathcal{G}_{y, t}^{A} \mathcal{G}_{t^{\prime}, t}^{A} f\left(\cdot, t^{\prime}\right) d t^{\prime} \quad\left(0 \leqslant y<y_{0}\right) \tag{2.2}
\end{equation*}
$$

Proof. - Let:

$$
\begin{aligned}
& u(x, y)=\sum_{n=1}^{\infty} u_{n}(y) \sin n x \\
& f(x, y)=\sum_{n=1}^{\infty} f_{n}(y) \sin n x
\end{aligned}
$$

$(0<y<\infty)$ the Fourier expansions of u, f in sine series in x. The equation $\mathfrak{W} u=f$ gives:

$$
\begin{aligned}
& u_{n}^{\prime \prime}+(\mu / y) u_{n}^{\prime}-n^{2} u_{n}=f_{n} \\
& \lim _{y \rightarrow 0^{+}} y^{\mu} u_{n}^{\prime}(y)=u_{n}\left(y_{0}\right)=0
\end{aligned}
$$

It is easily seen that $y^{\mu} j_{n} \in L^{1}(0,+\infty)$ and that the unique solution of this problem is:

$$
u_{n}(y)=\int_{y_{0}}^{y} \frac{h(n y)}{h^{2}(n t)} d t \int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{\mu} h\left(n t^{\prime}\right) f_{n}\left(t^{\prime}\right) d t^{\prime}
$$

And thus:

$$
u(x, y)=\sum_{n=1}^{\infty} \sin n x \int_{y_{0}}^{y} \frac{h(n y)}{h^{2}(n t)} d t \int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{\mu} \hbar\left(n t^{\prime}\right) f_{n}\left(t^{\prime}\right) d t^{\prime}
$$

It is not difficult to see that one can exchange series and integrals and get:

$$
u(\mathbf{X})=\int_{y_{0}}^{y} d t \int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{\mu}\left[\sum_{n=1}^{\infty} \frac{h(n y) h\left(n t^{\prime}\right)}{h^{2}(n t)} f_{n}\left(t^{\prime}\right) \sin n x\right] d t^{\prime}
$$

By recalling (1.11) and the definition of \mathcal{G} we have the theorem. |||
Theorem 2.2. - Let $p>1, \alpha \in \mathfrak{R}, \mu>0$ such that $0<\alpha+p^{-1}<1+\mu$. Let $u \in C^{\infty}\left(\mathcal{R}_{+}^{2}\right)$ such that supp u is bounded and (2.1) holds; assume also $y^{\alpha} W u \in L^{p}\left(\mathcal{R}_{+}^{2}\right)$.

Then:

$$
\begin{equation*}
\lim _{y \rightarrow 0^{+}} y^{\mu}|u(\cdot, y)|_{1}=0 \tag{2.3}
\end{equation*}
$$

Moreover, for every $R=A \times\left(0, y_{0}\right)$.there exists $O_{1}(\mu, \alpha, p, R)$ such that for u as above, with support in R, the inequality:

$$
\begin{equation*}
\|u\|_{\alpha, p} \leqslant C_{1}(\mu, \alpha, p, R)\|w u\|_{\alpha, p} \tag{2.4}
\end{equation*}
$$

holds.

Proof. - First of all, let us notice that, by Hölder inequality, $y^{\mu} W u \in L^{1}\left(\mathbb{R}_{+}^{2}\right)$.
Let $R=A \times\left(0, y_{0}\right)$ a rectangle containing supp u. By previous lemma:

$$
\int_{\mathfrak{R}}|u(x, y)| d x=\int_{y}^{y_{0}} d t \int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{\mu} \int_{\mathfrak{R}}\left|\left\{\mathcal{G}_{y, t}^{A} \mathcal{G}_{t^{\prime}, t}^{A} f\left(\cdot, t^{\prime}\right)\right\}(x)\right| d x
$$

Formula (1.9), with $s=1$, gives:

$$
\int_{\Re}|u(\boldsymbol{x})| p x \leqslant \int_{y}^{y_{0}} d t \int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{\mu} \int_{\mathcal{R}}\left|f\left(x, t^{\prime}\right)\right| d x d t^{\prime}=\int_{i}^{y_{0}} t^{-\mu} d t \int_{A \times[0, t]}\left(t^{\prime}\right)^{\mu-\alpha}\left(t^{\prime}\right)^{\alpha}\left|f\left(x, t^{\prime}\right)\right| d x d t^{\prime}
$$

By Hölder inequality:

$$
\begin{align*}
\int_{\Re}|u(\boldsymbol{x})| d x \leqslant & \int_{y}^{y_{0}} t^{-\mu} d t\left(\iint_{\Delta \times[0, t]}\left(t^{\prime}\right)^{(\mu-\alpha) p^{\prime}} d t^{\prime}\right)^{1 / p^{\prime}} \cdot\left(\iint_{\Delta \times[0, t[}\left|t^{\prime \alpha} f\left(x, t^{\prime}\right)\right|^{p} d x d t^{\prime}\right)^{1 / p} \leqslant \tag{2.5}\\
& \leqslant\left(\frac{\operatorname{leng} t h \text { of } A}{1+(\mu-\alpha) p^{\prime}}\right)^{1 / p^{\prime}}\left(\frac{\left(y_{0}\right)^{1-\alpha+1 / p^{\prime}}-y^{1-\alpha+1 / p^{\prime}}}{1-\alpha+1 / p^{\prime}}\right)\left(\iint_{\mathcal{R}_{+}^{2}}\left|y^{\alpha} W u\right|^{p} d x d y\right)^{1 / p}
\end{align*}
$$

(if $1-\alpha+1 / p^{\prime}=0$, the second factor in the right hand side should be read $\log \left(y_{0} / y\right)$). From (2.5) and the inequality $\mu+1-\alpha-1 / p^{\prime}>1$, (2.3) follows.

Let us prove (2.4). We have:

$$
\|u\|_{\alpha, p}=\left(\int_{0}^{y_{0}} y^{\alpha \mathfrak{p}} \mid u(\cdot, y)_{p}^{p} d y\right)^{1 / \mathfrak{y}}
$$

By the previous lemma, Minkowsky integral inequality and (1.9) (with $s=p$) we get:

$$
|u(\cdot, y)|_{p} \leqslant \int_{y}^{y_{0}} d t \int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{\mu}\left|f\left(\cdot, t^{\prime}\right)\right|_{n} d t^{\prime}, \quad 0 \leqslant y<y_{0}
$$

It follows:

$$
\|u\|^{\alpha, p} \leqslant\left\{\int_{0}^{y_{0}} y^{\alpha p}\left[\int_{\nu}^{y_{0}} d t \int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{\mu}\left|f\left(\cdot, t^{\prime}\right)\right|_{p} d_{\iota^{\prime}}\right]^{p} d y\right\}^{1 / p} .
$$

Multiplying the last integral by $1=t^{-\alpha} \cdot t^{x}$, using Holder inequality in $\int_{y}^{y_{0}}$ and the fact $\alpha+p^{-1}>0$, one can show that there exists a finite constant C (depending on.
α, p, y_{0} only), such that:

$$
\|u\|_{\alpha, p} \leqslant C\left\{\int_{0}^{y_{0}} t^{\alpha, p}\left[\int_{0}^{t}\left(\frac{t^{\prime}}{t}\right)^{\mu}\left|f\left(\cdot, t^{\prime}\right)\right|_{p} d t^{\prime}\right]^{p} d t\right\}^{1 / p}
$$

By the condition $\alpha+p^{-1}<1+\mu$ and Hardy inequality, we have:

$$
\|u\|_{\alpha, p} \leqslant c y_{0}\left(1+\mu-\left(\alpha+p^{-1}\right)\right)^{-1}\left(\int_{0}^{y_{0}} t^{\alpha x p}|f(\cdot, t)|_{p}^{p} d t\right)^{1 / p}
$$

the thesis follows. II
Remark 2.1. - In the previous proof we have used a discrete Fourier in x, Hankel in y, transform. These techniques have been used extensively by Kiprijavov [18], [19], [20] (see also the bibliography therein).

Remark 2.2. - In the above theorem we have actually proved a sharper result than (2.3). In fact we have proved (see (2.5)) that there exist C_{1}, C_{2} depending on μ, α, p, diam supp u, such that:

$$
|u(\cdot, y)|_{1} \leqslant\left(C_{1}+O_{2} y^{1-\alpha+1 / p^{\prime}}\right)\|w u\|_{\alpha, p}
$$

$\left(0<y, 1-\alpha+1 / p^{\prime} \neq 0\right.$; if $1-\alpha+1 / p^{\prime}=0$, there will be logs in the bracket).
Remari 2.3. - Let us explicitly notice that estimate (2.4) holds also for functions $u \in \mathbb{C}^{2}(R \cup T \cup E),\left.u\right|_{T \cup E}=0, y^{\mu} \int_{A}\left|u_{y}(x, y)\right| d x \rightarrow 0$ as $y \rightarrow 0^{+}$, such that

$$
\iint_{R} y^{\alpha \nu}\left(\left|u_{x x}\right|^{2}+2\left|u_{x y}\right|^{2}+\left|u_{y y}\right|^{2}\right)^{p / 2} d x d y<+\infty
$$

R being the rectangle $A \times\left(0, y_{0}\right)$.
Indeed, functions in the class above can be approximated by functions $v=v(x, y)$ of class C^{∞} in the strip $0<y<y_{0}$, odd, 2π periodic and vanishing at $y=y_{0}$. For functions in the latter class the proof of (2.4) goes without changes.

3. - The a priori bounds for the derivatives.

Let us prove a representation formula for solutions of $w u=f$ in \mathbb{R}_{+}^{2}. We will write $\boldsymbol{w}=(w, t) \in \mathfrak{R}_{+}^{2}$.

In [40] Weinstein proved that for $\boldsymbol{x} \in \mathcal{R}_{+}^{2}, \boldsymbol{w} \in \mathfrak{R}_{+}^{2}, \boldsymbol{x} \neq \boldsymbol{w}$, the function:

$$
\begin{equation*}
H(\boldsymbol{x}, \boldsymbol{w})=H(\boldsymbol{w}, \boldsymbol{x})=\int_{0}^{\pi}\left((x-w)^{2}+y^{2}+t^{2}+2 y t \cos h\right)^{-\mu / 2} \sin ^{\mu-1} h d h \tag{3.1}
\end{equation*}
$$

is regular and $w H(\cdot, \boldsymbol{w})=0$ in $\mathcal{R}_{+}^{2} \backslash\{\boldsymbol{w}\}$; moreover:

$$
\begin{equation*}
H(\boldsymbol{x}, \boldsymbol{w})=-(y t)^{-\mu / 2} \log |\boldsymbol{x}-\boldsymbol{w}|+H_{1}(\boldsymbol{x}, \boldsymbol{w}) \tag{3.2}
\end{equation*}
$$

where H_{1} is regular at $\boldsymbol{x}=\boldsymbol{w}$; the function H is a fundamental solution for the operator w.

Another fundamental solution (actually the Green function for the Dirichlet problem in the half disk) was constructed by OLevsirir [32] by using hypergeometric functions.

Here we will use a modified form of Weinstein fundamental solution:

$$
G(\boldsymbol{x}, \boldsymbol{w})=\frac{1}{\pi} t^{\mu} H(\boldsymbol{x}, \boldsymbol{w})
$$

$\left(\boldsymbol{x}, \boldsymbol{w} \in \mathcal{R}_{+}^{2}, \boldsymbol{x} \neq \boldsymbol{w}\right) . G$ is a regular function if $\boldsymbol{x} \neq \boldsymbol{w}$; moreover:
(a) if $\boldsymbol{w} \in \mathfrak{R}_{+}^{2}$, then: $\mathfrak{W G}(\cdot, \boldsymbol{w})=0\left(\boldsymbol{x} \in \mathfrak{R}_{+}^{2} \backslash\{\boldsymbol{w}\}\right)$;
(b) if $\boldsymbol{x} \in \mathcal{R}_{+}^{2}$, then: $W^{*} G(x, \cdot)=\left(\Delta-(\mu / t) \partial / \partial t+\mu / t^{2}\right) G(x, \cdot)=0$

$$
\left(\boldsymbol{w} \in \mathbb{R}_{+}^{2} \backslash\{\boldsymbol{x}\}\right)
$$

(c) if $\boldsymbol{x} \in \mathfrak{R}_{+}^{2}, \boldsymbol{w} \in \mathfrak{R}_{+}^{2}, \boldsymbol{x} \neq \boldsymbol{w}$, by (3.2), it follows:

$$
\begin{equation*}
G(\boldsymbol{x}, \boldsymbol{w})=-\frac{1}{\pi}(t / y)^{\mu / 2} \cdot \log |\boldsymbol{x}-\boldsymbol{w}|+\psi_{1}(\boldsymbol{x}, \boldsymbol{w}) \tag{3.3}
\end{equation*}
$$

with ψ_{1} regular at $\boldsymbol{x}=\boldsymbol{w}$;
(d) assume $\boldsymbol{x} \in \boldsymbol{R}_{+}^{2^{\top}}$; there exists k (depending on y only) such that, if $\boldsymbol{w} \in(-\infty,+\infty) \times[0, y / 2]:$

$$
|G(\boldsymbol{x}, \boldsymbol{w})| \leqslant k t^{\mu}, \quad|(\partial / \partial t) G(\boldsymbol{x}, \boldsymbol{w})-\mu G(\boldsymbol{x}, \boldsymbol{w}) / t| \leqslant k t^{\mu} .
$$

By using $(a)-(d)$, the following representation formula can be proved.
Lemma 3.1. - Let $u \in C^{\infty}\left(\mathcal{R}_{+}^{2}\right)$ such that: (i) u has bounded support; (ii) $y^{\mu}|u(\cdot, y)|_{\mathbf{1}}$, $y^{\mu}\left|u_{y}(\cdot, y)\right|_{1}$ tend to zero as $y \rightarrow 0^{+}$; (iii) $y^{\mu} \mathcal{W} u \in L^{1}\left(\mathcal{R}_{+}^{2}\right)$; then:

$$
u(\boldsymbol{x})=-\int_{\mathfrak{R}_{+}^{2}} G(\boldsymbol{x}, \boldsymbol{w}) \cdot w u(\boldsymbol{w}) d \boldsymbol{w}
$$

Proof. - Let $\boldsymbol{x}=(x, y) \in \mathcal{R}_{+}^{2}, h>0$ a small parameter ($h<y / 2$ will do), and $0_{h}=\left\{\boldsymbol{w}=(w, t) \in \mathcal{R}_{+}^{2}: 0<h<t\right\}$; by (3.2) and (b) above, we have the Stokes formula:

$$
\begin{equation*}
u(\boldsymbol{x})+\int_{t=h}[G(\boldsymbol{x}, \boldsymbol{w}) \partial u / \partial t-u(\partial / \partial t-\mu / t) G(\boldsymbol{x}, \boldsymbol{w})] d w=-\iint_{0_{k}} G(\boldsymbol{x}, \boldsymbol{w}) w u d \boldsymbol{w} \tag{3.4}
\end{equation*}
$$

$\left(x \in 0_{h}\right)$. As $h \rightarrow 0^{+}$, by (d) above, we have:

$$
\begin{aligned}
& \iint_{0_{n}} G(\boldsymbol{x}, \boldsymbol{w}) w u(\boldsymbol{w}) d \boldsymbol{w} \rightarrow \iint_{\mathfrak{R}_{+}^{2}} G(\boldsymbol{x}, \boldsymbol{w}) w u(\boldsymbol{w}) d \boldsymbol{w} \\
& \int_{t=h}[G(\boldsymbol{x}, \boldsymbol{w}) \partial u / \partial t(\boldsymbol{w})-u(\boldsymbol{w})(\partial / \partial t-\mu / t) G(\boldsymbol{x}, \boldsymbol{w})] d w \rightarrow 0
\end{aligned}
$$

and the thesis follows. III
Remark 3.1. - If $u \in C_{0}^{\infty}\left(\mathcal{R}^{2}\right)$, and u is even in y, then u satisfies the hypothesis of previous lemma. Also, if u satisfies the hypotesis of theorem 2.2, the lemma above applies.

For later pourposes we need sharp evaluations of the derivatives of $G(\boldsymbol{x}, \boldsymbol{w})$.
Let $b(\boldsymbol{x}, \boldsymbol{w})$ a positive function in $\boldsymbol{x} \in \mathcal{R}_{+}^{2}, \boldsymbol{w} \in \mathcal{R}_{+}^{2}, \boldsymbol{x} \neq \boldsymbol{w}$, defined by:

$$
b(\boldsymbol{x}, \boldsymbol{w})=|\boldsymbol{x}-\boldsymbol{w}|^{2} /(2 y t)
$$

Levma 3.2. - There exists a positive constant H such that, if

$$
\boldsymbol{x} \in \mathfrak{R}_{+}^{2}, \quad \boldsymbol{w} \in \mathfrak{R}_{+}^{2}, \quad \boldsymbol{x} \neq \boldsymbol{w}, \quad b(\boldsymbol{x}, \boldsymbol{w})<1
$$

then:

$$
\begin{equation*}
D_{x}^{2} G(\boldsymbol{x}, w)=-\frac{1}{2 \pi} D_{x}^{2} \log |\boldsymbol{x}-\boldsymbol{w}|+S(\boldsymbol{x}, \boldsymbol{w}) \tag{3.5}
\end{equation*}
$$

where

$$
|S(x, w)| \leqslant H(b(x, w))^{-\frac{1}{2}} y^{-2}
$$

Proof. - As a consequence of the inequality $b(\boldsymbol{x}, \boldsymbol{w})<1$ we have: $(a)\left((x-w)^{2}+\right.$ $\left.+y^{2}+t^{2}\right) /(2 y t)=1+b(\boldsymbol{x}, \boldsymbol{w})<2 ;$ (b) $\frac{1}{4}<y / t<4,|x-w| \mid y<4 ; \quad$ (c) $|1-t| y \mid<$ $<\sqrt{8 b(x, w)}$.

Let us evaluate the derivatives of b :

$$
\begin{aligned}
& b_{x}=(x-w) /(y t), \quad b_{y}=\left(y^{2}-(x-w)^{2}-t^{2}\right) /\left(2 t y^{2}\right) \\
& b_{x x}=1 /(y t), \quad b_{x y}=-(x-w) /\left(y^{2} t\right) \\
& b_{y y}=\left((x-w)^{2}+t^{2}\right) /\left(y^{3} t\right)
\end{aligned}
$$

In $b<1$ by $(a),(b),(c)$, we have:

$$
\begin{align*}
& \left|b_{x}\right| \leqslant c y^{-1} \sqrt{b}, \quad\left|b_{y}\right| \leqslant c y^{-1} \sqrt{b} \tag{3.6}\\
& \left|b_{x x}\right| \leqslant c / y^{2}, \quad\left|b_{x y}\right| \leqslant c / y^{2}, \quad\left|b_{y y}\right| \leqslant c / y^{2} \tag{3.7}
\end{align*}
$$

(in the lemma c will be any constant not depending on $\boldsymbol{x}, \boldsymbol{w}$).

Let us write now $G(\boldsymbol{x}, \boldsymbol{w})$ in a different way. Let $P_{\mu / 2-1}(z)$ the Legendre function of the first kind (which is holomorphic in $|1-z|<2$, and $P_{\mu / 2-1}(1)=1$), and $Q_{\mu / 2-1}(z)$ the Legendre function of second kind (holomorphic in the complex plane cut along the real axis from $-\infty$ to 1).

An integral representation of $Q_{\mu / 2-1}$ is:

$$
Q_{\mu / 2-1}(z)=2-\mu / 2 \int_{0}^{\pi}\left(z-\cos t^{\prime}\right)^{-\mu / 2}\left(\sin t^{\prime}\right)^{\mu-1} d t^{\prime}
$$

(see Erdélyi and others [9], I, p. 15̃5, formula (3.5) and substitution $t^{\prime}=\pi-t$) This formula and (3.1) give:

$$
\begin{equation*}
G(x, w)=\frac{1}{\pi}(t / y)^{\mu / 2} Q_{\mu / 2-1}(1+b(\boldsymbol{x}, \boldsymbol{w})) \quad(\boldsymbol{x} \neq \boldsymbol{w}) \tag{3.8}
\end{equation*}
$$

The function $Q_{\mu / 2-1}$ can be written as:

$$
\begin{align*}
& Q_{\mu / 2-1}(z)=2^{-1} P_{\mu / 2-1}(z)\{-\log [(z-1) /(z+1)]-2 \gamma-2 \psi(\mu / 2)\}+ \tag{3.9}\\
& +\pi^{-1} \sin (\pi \mu / 2) \sum_{l=1}^{\infty}(l!)^{-2} \Gamma(l+\mu / 2) \Gamma(l+1-\mu / 2) \cdot[\psi(l+1)-\psi(1)]((1-z) / 2)^{l}
\end{align*}
$$

where γ is the Euler-Mascheroni constant $\left(\gamma^{\sim} \cdot 577\right), \psi(z)=\Gamma^{\prime}(z) / \Gamma(z)$ and the last power series is holomorphic in $|1-z| / 2<1$ (ErdEicyI and others [9], I, p. 149).

It follows that $G(\boldsymbol{x}, \boldsymbol{w})(\boldsymbol{x} \neq \boldsymbol{w})$ can be written as:

$$
\begin{align*}
G(\boldsymbol{x}, \boldsymbol{w})=(t / y)^{\mu / 2}\left[R_{\mathbf{1}}(b(\boldsymbol{x}, \boldsymbol{w})) \log b(\boldsymbol{x}, \boldsymbol{w})+\right. & \left.R_{\mathbf{2}}(b(\boldsymbol{x}, \boldsymbol{w}))\right]= \tag{3.10}\\
& =S_{1}(\boldsymbol{x}, \boldsymbol{w}) \log b(\boldsymbol{x}, \boldsymbol{w})+S_{2}(\boldsymbol{x}, \boldsymbol{w})
\end{align*}
$$

where the functions $R_{i}(b)$ are regular in $|b|<2$ and $R_{1}(0)=1 /(2 \pi)$.
Let us prove (3.5), by using (a), (b), (c) and (3.6), (3.7), (3.10). We have, in $b(\boldsymbol{x}, \boldsymbol{w})<1$:

$$
\begin{align*}
& \left|D_{x}(t / y)^{\mu / 2}\right| \leqslant c / y, \quad\left|D_{x}^{2}(t / y)^{u / 2}\right| \leqslant c / y^{2} \tag{3.11}\\
& \left|D_{x} S_{i}\right| \leqslant c / y, \quad\left|D_{x}^{2} S_{i}\right| \leqslant c / y^{2} \quad(i=1,2) \tag{3.12}\\
& \left|S_{1}+1 /(2 \pi)\right| \leqslant c \sqrt{b}
\end{align*}
$$

and:

$$
\begin{aligned}
& \left|D_{\boldsymbol{x}} \log b(\boldsymbol{x}, \boldsymbol{w})\right| \leqslant c(y \sqrt{b})^{-1} \\
& \left|D_{x}^{2} \log \right| \boldsymbol{x}-\left.\boldsymbol{w}\right|^{2} \left\lvert\, \leqslant \frac{c}{y^{2} b}\right.
\end{aligned}
$$

By using these inequalities, we get

$$
\begin{aligned}
& \left|D_{x}^{2} G(x, w)+(2 \pi)^{-1} D_{x}^{2} \log \right| x-\left.w\right|^{2} \mid \leqslant c\left(\left|\left(D_{x}^{2} S_{1}\right) \lg b\right|+\left|D_{x} S_{1}\right|\left|D_{x} \log b\right|+\right. \\
& \quad+\left|S_{1}+1 /(2 \pi)\right|\left|D_{x}^{2} \log \right| \boldsymbol{x}-\left.w\right|^{2}\left|+\left|S_{1} D_{x}^{2} \lg (y t)\right|+\left|D_{x}^{2} S_{2}\right|\right) \leqslant c y^{-2} / \sqrt{b}
\end{aligned}
$$

and, by this inequality, the theorem follows. III
Lemma 3.3. - Let $\varepsilon>0$; there exists k such that, if $\boldsymbol{x} \in \mathcal{R}_{+}^{2}, \boldsymbol{w} \in \mathcal{R}_{+}^{2}, b(\boldsymbol{x}, \boldsymbol{w})>\varepsilon$, then:

$$
\begin{equation*}
\left|D_{\boldsymbol{x}}^{2} G(\boldsymbol{x}, \boldsymbol{w})\right| \leqslant k t u\left[(x-w)^{2}+t^{2}+y^{2}\right]^{-1-\mu / 2} . \tag{3.13}
\end{equation*}
$$

Proof. - In the region of the complex plane, given by $|z|>1$ cut along the real axis from $-\infty$ to +1 , the Legendre function of second kind $Q_{\mu / 2-1}$ can be written as:

$$
Q_{\mu / 2-1}(z)=2^{-\mu / 2} \pi^{\frac{1}{3}} \Gamma(\mu / 2) z^{-\mu / 2} \Gamma(\mu / 2)^{-1} \cdot F\left(\mu / 4+\frac{1}{2}, \mu / 4, \mu / 2+\frac{1}{2} ; z^{-2}\right)
$$

(ErdélyI and others [9], T, p. 122; $F(a, b, c ; z)$ is Gauss hypergeometric function, which is holomorphic in $|z|<1$).

This formula and (3.8) give, in $b(\boldsymbol{x}, \boldsymbol{w})>0$:
$G(\boldsymbol{x}, \boldsymbol{w})=\operatorname{ctu}\left[(x-w)^{2}+y^{2}+t^{2}\right]-\mu / 2$.

$$
\cdot F\left(\mu / 4+\frac{1}{4}, \mu / 4, \mu / 2+\frac{1}{2},\left\{2 y t /\left[(x-w)^{2}+y^{2}+t^{2}\right]^{2}\right\}\right)
$$

(c will be any constant not depending on $\boldsymbol{x}, \boldsymbol{w}$).
Let us consider the function:

$$
g(x, y, t)=\left(x^{2}+y^{2}+t^{2}\right)^{-\mu / 2} \cdot F\left(\mu / 4+\frac{1}{2}, \mu / 4, \mu / 2+\frac{1}{2} ;\left\{2 y t /\left[x^{2}+y^{2}+t^{2}\right]^{2}\right\}\right)
$$

i_{n} the cone $\left\{(x, y, t) \in \mathcal{R}^{3}: 2 y t /\left[x^{2}+y^{2}+t^{2}\right] \leqslant 1 /(1+\varepsilon / 2)\right\}$; the function g is homogeneous of degree- μ and smooth in the cone; thras the second derivatives of g are homogeneous of degree $-2-\mu$ and bounded on the intersection of the cone and the unit sphere. This is equivalent to say that, in $b(\boldsymbol{x}, \boldsymbol{w})>\varepsilon$:

$$
\left|D_{x}^{2} G(\boldsymbol{x}, \boldsymbol{w})\right| \leqslant e t \mu\left[(x-w)^{2}+y^{2}+t^{2}\right]^{-\mu / 2-1} . \quad \|
$$

THEOREM 3.4. - Let $p>1, \mu>0,0<\alpha+1 / p<1+\mu$. There exists K such that, for every $u \in C^{\infty}\left(\mathcal{R}_{+}^{2}\right)$ satistying:
(i) u has bounded support;
(ii) $\lim _{y \rightarrow 0^{+}} y^{\mu}\left|u_{y}(\cdot, y)\right|_{1}=0$;
(iii) $y^{\alpha} \mathfrak{W} u \in L^{p}\left(\mathcal{R}_{+}^{2}\right)$,
the inequality

$$
\begin{equation*}
\left\|D^{2} u\right\|_{\alpha, p} \leqslant K\|w u\|_{\alpha, p} \tag{3.14}
\end{equation*}
$$

holds.
Proof.
Step 1. - First of all, we need to write the second derivatives of u in terms of $\mathfrak{W} u$.
Notice that, by theorem 2.2, u satisfies (i) and (ii) of lemma 3.1; (iii) of lemma 3.1 is a consequence of (iii) above and Hölder inequality, as in theorem 2.2.

Thus, lemma 3.1 gives:

$$
u(\boldsymbol{x})=-\iint_{\mathfrak{R}_{+}^{2}} G(\boldsymbol{x}, \boldsymbol{w}) w u(\boldsymbol{w}) d \boldsymbol{w}
$$

using formula (3.3) above, we have that:

$$
D^{2} u(\boldsymbol{x})=c w u(\boldsymbol{x})+\int_{\mathfrak{R}_{+}^{2}}^{*}-D_{\boldsymbol{x}}^{2} G(\boldsymbol{x}, \boldsymbol{w}) w_{u}(\boldsymbol{w}) d \boldsymbol{w}
$$

where c depends on the choice of the derivative D^{2} and last integral is in principal value.

Step 2. - Define $E_{x}=\left\{\boldsymbol{w} \in \mathcal{R}_{+}^{2}:|\boldsymbol{x}-\boldsymbol{w}|<(\sqrt{3}-1) y\right\}$:

$$
\boldsymbol{w}=(w, t), \quad g(\boldsymbol{w})=t^{\alpha} w u(\boldsymbol{w})
$$

and:

$$
\begin{aligned}
\Phi_{1}(\boldsymbol{x}) & =\int_{E_{\boldsymbol{x}}}^{*}(y / t)^{\alpha} D_{\boldsymbol{X}}^{2} G(\boldsymbol{x}, \boldsymbol{w}) g(\boldsymbol{w}) d \boldsymbol{w} \\
\Phi_{2}(\boldsymbol{x}) & =\iint_{\mathcal{R}_{+}^{2}}(y / t)^{\alpha} D_{\boldsymbol{x}}^{2} G(\boldsymbol{x}, \boldsymbol{w}) g(\boldsymbol{w}) d \boldsymbol{w}
\end{aligned}
$$

The thesis will be proved if it exists 7 (not depending on g), such that:

$$
\begin{align*}
& \left\|\Phi_{1}\right\|_{0, s} \leqslant k\|g\|_{0, p}, \tag{3.15}\\
& \left\|\Phi_{2}\right\|_{0, p} \leqslant k\|g\|_{0, p}, \tag{3.16}
\end{align*}
$$

Step 3. - Proof of (3.15).
Notice that $E_{\boldsymbol{x}} \subset\left\{\boldsymbol{w} \in \mathcal{R}_{+}^{2}: b(\boldsymbol{x}, \boldsymbol{w})<1\right\}$. By using lemma 3.2, we can write
$\Phi_{1}=\Psi_{1}+\Psi_{2}+\Psi_{3}$, where $:$

$$
\begin{aligned}
& \Psi_{1}(\boldsymbol{x})=-\frac{1}{2 \pi} \int_{E_{x}}^{*} \int_{\boldsymbol{X}}^{2} \log |\boldsymbol{x}-\boldsymbol{w}| g(\boldsymbol{w}) d \boldsymbol{w} \\
& \Psi_{2}(\boldsymbol{x})=\iint_{E_{\boldsymbol{x}}}(y \mid t)^{x} S(\boldsymbol{x}, \boldsymbol{w}) g(\boldsymbol{w}) d \boldsymbol{w} \\
& \Psi_{\mathrm{s}}(\boldsymbol{x})=-\frac{1}{2 \pi} \iint_{E_{\boldsymbol{x}}}\left[(y / t)^{x}-1\right] D_{x}^{2} \log |\boldsymbol{x}-\boldsymbol{w}| g(\boldsymbol{w}) d \boldsymbol{w}
\end{aligned}
$$

Let us extend $g \equiv 0$ in $y \leqslant 0$ and Ψ_{1} accordingly; we can write Ψ_{1} as:

$$
\Psi_{1}(\boldsymbol{x})=\frac{1}{2 \pi}\left(-\int_{R^{2}}^{*}+\int_{R^{2} \backslash E_{x}} \int_{E_{x}} D_{x}^{2} \log |x-w| g(\boldsymbol{w}) d \boldsymbol{w}\right.
$$

The first integral in the right hand side is a standard singular integral; its L^{p} norm can be bounded by $c\|g\|_{0, p}$, for all $p>1$; the second integral can be bounded by using thm. 1, chapter 2 of Calderon-Zygnund [6]:

$$
\begin{aligned}
\iint_{\mathcal{R}^{2}}\left|\iint_{|x-\boldsymbol{w}|>(\sqrt{3}-1) y} D_{\boldsymbol{x}}^{2} \log \right| \boldsymbol{x} & -\boldsymbol{w}|g(\boldsymbol{w}) d \boldsymbol{w}|^{p} d \boldsymbol{x} \leqslant \\
& \leqslant \iint_{\mathcal{R}^{2}} \sup _{\lambda>0}\left|\int_{|\boldsymbol{x}-\boldsymbol{w}|>1 / \lambda} D_{\boldsymbol{x}}^{2} \log \right| \boldsymbol{x}-\boldsymbol{w}|g(\boldsymbol{w}) d \boldsymbol{w}|^{\mid p} d \boldsymbol{x} \leqslant c \iint_{\mathcal{R}^{2}}|g(\boldsymbol{x})|^{p} d \boldsymbol{x}
\end{aligned}
$$

Thus:

$$
\begin{equation*}
\left\|\Psi_{1}\right\|_{0, v} \leqslant c\|g\|_{0, p} \tag{3.17}
\end{equation*}
$$

(c will be any constant not depending on g).
In $b(\boldsymbol{x}, \boldsymbol{w})<1$, we have $\left((b)\right.$ lemma 3.2) $\frac{1}{4}<y / t<4$. Thus, by (3.5) and Hölder inequality:

$$
\begin{aligned}
& \iint_{\mathfrak{R}_{+}^{x}}\left|\Psi_{2}(\boldsymbol{x})\right|^{p} d \boldsymbol{x} \leqslant c \iint_{\mathfrak{R}_{+}^{2}} y^{-2 p}\left|\iint_{E_{\boldsymbol{x}}}(b(\boldsymbol{x}, \boldsymbol{w}))^{-\frac{1}{2}} g(\boldsymbol{w}) d \boldsymbol{w}\right|^{p} d \boldsymbol{x} \leqslant \\
&\left.\leqslant c \int_{\mathcal{R}_{+}^{2}} y^{-2 p}\left[\left(\iint_{E_{\boldsymbol{x}}}(b(\boldsymbol{x}, \boldsymbol{w}))^{-\frac{1}{2}} d \boldsymbol{w}\right)^{1 / p^{\prime}}\left(\left.\iint_{E_{\boldsymbol{x}}}(b(\boldsymbol{x}, \boldsymbol{w}))^{-\frac{1}{2}} \right\rvert\, g(\boldsymbol{w})\right]^{p} d \boldsymbol{w}\right)^{1 / p}\right]^{p} d \boldsymbol{x}
\end{aligned}
$$

It is not difficult to show that:

$$
\iint_{E_{\boldsymbol{x}}}(b(\boldsymbol{x}, \boldsymbol{w}))^{-\frac{1}{t}} d \boldsymbol{w} \leqslant c y^{2}
$$

Thus:

$$
\iint_{\mathfrak{R}_{+}^{2}}\left|\Psi_{2}(\boldsymbol{x})\right|^{p} d \boldsymbol{x} \leqslant c \int_{\mathscr{R}_{+}^{2}} \int_{E_{\boldsymbol{x}^{\prime}}} y^{-2} d \boldsymbol{x} \iint_{\operatorname{la}^{\prime}}(b(\boldsymbol{x}, w))^{-\frac{1}{2}}|g(\boldsymbol{w})|^{p} d \boldsymbol{w}
$$

Exchanging the integrals in the right hand side, we get:

$$
\iint_{\mathfrak{R}_{+}^{2}}\left|\Psi_{2}(\boldsymbol{x})\right|^{p} d \boldsymbol{x} \leqslant c \iint_{\mathcal{R}_{+}^{2}}|g(\boldsymbol{w})|^{p} d \boldsymbol{w} \iint_{|x-w|<(\sqrt{3}-1) y} y^{-2}(b(\boldsymbol{x}, \boldsymbol{w}))^{-\frac{1}{2}} d \boldsymbol{w}
$$

It is not difficult to see that there exists a constant $e>0$ such that

$$
\int_{|x-w|<(\sqrt{3}-1) y} y^{-2}(b(\boldsymbol{x}, \boldsymbol{w}))^{-\frac{1}{2}} d \boldsymbol{x} \leqslant c
$$

($c=2^{a}$ will do); it follows:

$$
\begin{equation*}
\left\|\Psi_{2}\right\|_{L^{p}\left(\mathcal{R}_{\ddagger}^{a}\right)} \leqslant c\|g\|_{L^{p}\left(\mathcal{R}_{\ddagger}^{p}\right)} \tag{3.18}
\end{equation*}
$$

As in lemma 3.2, one can prove that

$$
\left|\mathbf{1}-(y / t)^{x}\right| \cdot\left|D^{2} \log \right| \boldsymbol{x}-\boldsymbol{w}| | \leqslant c y^{-2}[b(\boldsymbol{x}, \boldsymbol{w})]^{-\frac{1}{2}}
$$

with the same proof above, we have:

$$
\begin{equation*}
\left\|\Psi_{3}\right\|_{L^{p}\left(\mathfrak{R}_{\psi}^{2}\right)} \leqslant e\|g\|_{L^{p}\left(\mathcal{R}_{\ddagger}^{2_{+}}\right)} \tag{3.19}
\end{equation*}
$$

The inequalities (3.17), (3.18), (3.19) give (3.15).
Step 32. - Proof of (3.16).
Let

$$
\begin{gathered}
k_{0}=(\sqrt{3}-1) / \sqrt{2}, \quad k_{1}=1-k_{0}(>0), \quad k_{2}=1+k_{0} \\
T_{x}=\left\{\boldsymbol{w} \in \mathfrak{R}_{+}^{2}:|x-w|<k_{0} y,|y-t|<k_{0} y\right\}
\end{gathered}
$$

let us define:

$$
F_{y, t}(x)=(y / t)^{x} y^{u}\left|x^{2}+y^{2}+t^{2}\right|^{-1-\mu / 2}, \quad x \in \mathcal{R}, y, t>0 .
$$

Notice that, for $x \in \mathbb{R}_{+}^{2}$:

$$
\left\{\boldsymbol{w} \in \mathfrak{R}_{+}^{2}: b(x, w) \leqslant \frac{1}{4}\right\} \subset T_{x} \subset E_{x}
$$

by lemma 3.3, we get:

$$
\left|D_{x}^{2} G(\boldsymbol{x}, \boldsymbol{w})\right| \leqslant 7 t t^{\mu}\left[(x-w)^{2}+t^{2}+y^{2}\right]^{-1-\mu i 2}
$$

$\left(\boldsymbol{x} \in \mathcal{R}_{+}^{2}, \boldsymbol{w} \notin T_{x}\right)$; thus:

$$
\left|\Phi_{2}(\boldsymbol{x})\right| \leqslant \varepsilon \iint_{\mathfrak{R}_{+}^{2} \backslash r_{\boldsymbol{x}}} F_{v, \ell}(x-w) g(\boldsymbol{w}) d \boldsymbol{w}
$$

Let us write $g_{t}=|g(\cdot, t)|, t>0$; then:

$$
\left|\Phi_{2}(\boldsymbol{x})\right| \leqslant c\left\{\int_{0}^{k_{1} y}\left(F_{\nu_{,} t} * g_{t}\right)(x) d t+\int_{k_{8} y}^{+\infty}\left(F_{\nu, t} * g_{t}\right)(x) d t+\int_{k_{1} y}^{k_{2} y} d t \int_{|x-w|>k_{0} y} F_{\nu, t}(x-w) g_{t}(w) d w\right\}
$$

(* is the convolution in \boldsymbol{R}).
Let J_{1}, J_{2}, J_{3} the $L^{p}\left(\Re_{+}^{2}\right)$ norms of the last three terms; (3.16) will be proved, if:

$$
\begin{equation*}
J_{\nu} \leqslant c\|g\|_{L^{p}\left(\Omega_{+}^{2}\right)}, \quad v=1,2,3 \tag{3.20}
\end{equation*}
$$

By Minkowski integral inequality:

$$
J_{1}=\left(\int_{0}^{+\infty}\left[\left|\int_{0}^{k y y}\left(F_{v t} * g_{t}\right) d t\right|_{p}\right]^{p} d y\right)^{1 / p} \leqslant\left(\int_{0}^{+\infty}\left[\int_{0}^{k y}\left[\left|F_{y t} * g_{t}\right|_{p} d t\right]^{p} d y\right)^{1 / p}\right.
$$

By convolution theorem:

$$
J_{1} \leqslant\left(\int_{0}^{+\infty}\left[\int_{0}^{k y}\left|F_{y t \mid 1} \cdot\right| g_{t \mid p} d t\right]^{p} d y\right)^{1 / p}
$$

we have:

$$
\begin{equation*}
\left|F_{y t}\right|_{\mathrm{I}}=\int_{\mathcal{R}}(y / t)^{\alpha} t^{\mu}\left[x^{2}+y^{2}+t^{2}\right]^{1+\mu / 2} d x=(y / t)^{\alpha} t^{\mu}\left(y^{2}+t^{2}\right)^{-\frac{1}{2}-\mu / 2} \int_{\mathfrak{R}}\left(1+t^{2}\right)^{-1-\mu / 2} d t \tag{3.21}
\end{equation*}
$$

and:

$$
\left(y^{2}+t^{2}\right)^{-\frac{1}{-2}-\mu / 2} \leqslant y^{-1-\mu}
$$

thus:

$$
J_{1} \leqslant c\left(\int_{0}^{+\infty}\left[y^{-1+\alpha-\mu} \int_{0}^{k_{1} y} t^{\mu-\alpha}\left|g_{t}\right|_{p} d t\right]^{p} d y\right)^{1 / p}
$$

Making the change of variable $\theta=k_{1} y$, and using Hardy inequality, we get

$$
J_{1} \leqslant c(p /(p \mu-p-\alpha p-1))\left(\int_{0}^{+\infty}\left|g_{t}\right|_{p}^{p} d t\right)^{1 / p} \leqslant c\|g\|_{L^{p}\left(\mathcal{R}_{+}^{2}\right.} ;
$$

notice that $1+p(\alpha-\mu-1)<0$ is equivalent to $\alpha+1 / p<1+\mu$, and the first of (3.20) is proved.

Similarly:

$$
J_{2} \leqslant\left(\int_{0}^{+\infty}\left[\left.\int_{k_{2} y}^{+\infty}\left|J_{y t \mid 1}\right| g_{t}\right|_{p} d t\right]^{p} d y\right)^{1 / p}
$$

from (3.21) and $\left(y^{2}+t^{2}\right)^{-\frac{1}{2}-\mu / 2} \leqslant t^{-\mu-1}$, we get:

$$
J_{2} \leqslant c\left(\int_{0}^{+\infty}\left[y^{\alpha} \int_{k_{2} y}^{+\infty} t^{-\alpha-1}\left|g_{t}\right|_{p} d t\right]^{p} d y\right)^{1 / p}
$$

By scaling y, and using Hardy inequality, we get:

$$
J_{2} \leqslant e\|g\|_{L^{p}\left(\mathcal{R}_{\ddagger}^{2}\right)}
$$

Let us prove the last of the (3.20)'s. Let χ_{y} be the characteristic function of $\mathcal{R} \backslash\left[-k_{0} y, k_{0} y\right] ; J_{3}$ can be written as:

$$
J_{3}=\left(\left.\int_{0}^{+\infty} \int_{k_{1} y}^{k_{2} y}\left(\chi_{y} \cdot F_{y t}\right) * g_{t} d t\right|_{p} ^{p} d y\right)^{1 / p}
$$

Thus:

$$
J_{3} \leqslant c\left(\int_{0}^{+\infty}\left[\int_{k_{1} y}^{k_{2} y}\left|\chi_{y} F_{y t}\right|_{1} \cdot\left|g_{t}\right|_{p} d t\right]^{p} d y\right)^{1 / p}
$$

If $0<k_{1} y \leqslant t \leqslant k_{2} y$:

$$
\left|\chi_{y} F_{y t}\right|_{1} \leqslant c \int_{|x|>k_{0} v} t \mu\left(x^{2}+y^{2}+t^{2}\right)^{-1-\mu / 2} d x \leqslant c / y
$$

It follows:

$$
J_{3} \leqslant c\left(\int_{0}^{+\infty}\left[y^{-1} \int_{0}^{k_{2} y} \mid g_{t \mid p} d t\right]^{p} d x\right)^{1 / p} \leqslant c\|g\|_{L^{\nu}\left(\mathcal{R}_{+}^{2}\right)}
$$

Thus estimate (3.16) is established. The proof of the theorem is so complete. Il
Remark 3.2. - It is worthy noting explicitly that, under the assumptions of theorem 3.4, an estimate similar to (3.14) holds also for $(1 / y) u_{y}$.

4. - A boundary value problem for the nonhomogeneous equation.

In this section we deal with a boundary value problem for the non homogeneous equation (0.1) in a rectangle R, within a proper weighted Sobolev class.

Precisely, in the rectangle

$$
R=\left(x_{1}, x_{2}\right) \times\left(0, y_{0}\right)=A \times\left(0, y_{0}\right), \quad 0<y_{0}<+\infty
$$

we look for solutions of the equation

$$
\begin{equation*}
w_{\mu} u=f \tag{4.1}
\end{equation*}
$$

satisfying the boundary conditions

$$
\begin{equation*}
\left.u\right|_{T \cup E}=0 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{y \rightarrow 0^{+}} y^{\mu} \int_{A}\left|u_{y}(x, y)\right| d x=0 \tag{4.3}
\end{equation*}
$$

The condition (4.2) in the appropriate trace sense; as in zection $1 ., T$ stands for the union of vertical sides of R while E denotes the horizontal side $y=y_{0}$.

The natural function spaces for the problem we are going to study are as follows.
Let $p>1, \alpha \in \mathfrak{R}$. To begin with, let $L_{\alpha}^{p}(R)$ the class of all measurable functions $u=u(x, t)$ defined in R such that

$$
\|u\|_{L_{\alpha}^{p}(R)}^{p}=\iint_{R} y^{x \mathcal{p}}|u|^{p} d x d y<+\infty
$$

Next let $X_{\alpha}^{2, p}(R)$ denote the completion of the space

$$
\left\{u \in C^{2}(R):\|u\|_{X_{a}^{1, p}(R)}<+\infty\right\}
$$

where

$$
\|u\|_{X_{a}^{d}(R)}^{p}=\sum_{0 \leqslant|\beta| \leqslant 2}\left\|D^{\beta} u\right\|_{L_{\alpha}^{p}(R)}^{p}+\left\|\frac{u u_{y}}{y}\right\|_{L_{\alpha}^{p}(R)}^{p} .
$$

The following properties hold.
Lemma 4.1. - For any $u \in X_{\alpha}^{2, x}(R), 0<\alpha+1 / p<1+\mu, \mu>0$, the following estimates hold:

$$
\begin{equation*}
y^{\mu} \int_{\Delta}\left|u_{y}(x, y)\right| d x \leqslant\left(x_{2}-x_{1}\right)^{1 / p^{\prime}}\left(\mu p^{\prime}-\alpha p^{\prime}+1\right)^{-1 / p^{\prime}} \cdot y^{\mu-\alpha+1 / p^{\prime}}\left\|u_{y y}+\frac{\mu}{y} u_{y}\right\| L_{\alpha}^{p}(R) \tag{4.4}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1,0<y<y_{0}$, and

$$
\begin{equation*}
\left\|\frac{u_{y}}{y}\right\|_{L_{\alpha}^{p}(R)} \leqslant \frac{p}{p(1-\alpha+\mu)-1}\left\|u_{y y}+\frac{\mu}{y} u_{y}\right\|_{L_{\alpha}^{p}(R)} \tag{4.5}
\end{equation*}
$$

Proof. - It is enough to take $u \in \mathcal{C}^{2}(R)$ such that $\|u\|_{\alpha_{a}^{2, p}(R)}<+\infty$. For $0<$ $<\varepsilon<y<y_{0}$, one has:

$$
\begin{equation*}
y^{\mu} u_{\nu}(x, y)-\varepsilon^{\mu} u_{y}(x, \varepsilon)=\int_{\varepsilon}^{y} \frac{\partial}{\partial y}\left(y^{\mu} u_{y}(x, y)\right) d y=\int_{\varepsilon}^{y} y^{\mu}\left\{u_{y v}+\frac{\mu}{y} u_{y}\right\} d y \tag{4.6}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
& \iint_{R} y^{\mu}\left|\frac{u_{y}}{y}\right| d x d y \leqslant(\text { const })\left(\iint_{R} y^{\alpha y}\left|\frac{u_{y}}{y}\right|^{p} d x d y\right)^{1 / p}<+\infty \tag{4.7}\\
& \iint_{R} y^{\mu}\left|u_{y y}\right| d x d y \leqslant(\text { const })\left(\iint_{R} y^{\alpha p}\left|u_{y y}\right|^{p} d x d y\right)^{1 / p}<+\infty \tag{4.8}
\end{align*}
$$

where const $=\left(x_{2}-x_{1}\right)^{1 / p^{\prime}}\left(\mu p^{\prime}-\alpha p^{\prime}+1\right)^{-1 p^{\prime}} y_{0}^{\mu-\alpha+1 / p^{\prime}}$.
It follows that, for almost every $x \in A$, the integral in (4.6) is convergent as $\varepsilon \rightarrow 0^{+}$and therefore $\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{\mu} u_{y}(x, \varepsilon)$ is finite. By (4.7) clearly

$$
\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{\mu} u_{\nu}(x, \varepsilon)=0
$$

Thus, for $0<y<y_{0}$, one has:

$$
\begin{equation*}
y^{u} u_{y}(x, y)=\int_{0}^{y} y^{\mu}\left\{u_{y i}+\frac{\mu}{y} u_{y}\right\} d y \tag{4.9}
\end{equation*}
$$

Taking the absolute value, integrating over $A=\left(x_{1}, x_{2}\right)$ and using Hölder inequality we easily get the stated estimate (4.4).

To get then estimate (4.5) we take into account (4.9) and make use of Hardy's inequality.

Lemma 4.2. - Let $u \in X_{\alpha}^{2, p}(R)$ and assume $0<\alpha+1 / p<1$. Then

$$
\left\|\frac{u_{y}}{y}\right\|_{L_{\alpha}^{p}(R)} \leqslant \frac{p}{p(1-\alpha)-1}\left\|u_{y y}\right\|_{L_{x}^{p}(R)} .
$$

Proof. - As in lemma 4.1, take $u \in C^{2}(R)$ such that $\|u\|_{X_{a}^{2, p}(R)}<+\infty$.

It turns out that

$$
u_{y}(x, y)=\int_{\mathbf{0}}^{y} u_{y y}(x, \eta) d \eta
$$

Indeed, because of the fact that $u_{y} / y \in L_{\alpha}^{p}(R)$ and $0<\alpha+1 / p<1$, one has

$$
\lim _{y \rightarrow 0^{+}} u_{\nu}(x, y)=0
$$

Therefore, via Hardy's inequality, the stated estimate easily follows. ||l
Now in what follows $X_{\alpha, \gamma_{0}}^{2, p}(R)$ will stand for the closure, with respect to $X_{\alpha}^{2, p}(R)$, of the space

$$
\left\{u \in C^{2}(R \cup T \cup E):\left.u\right|_{T \cup B}=0,\|u\|_{X_{\alpha}^{2, p}(R)}<+\infty\right\}
$$

We define

$$
\begin{equation*}
\|u\| X_{\alpha, p_{0}}^{\alpha, p}(R)=\left(\iint y^{\alpha p}\left(\left|u_{x x}\right|^{2}+2\left|u_{x y}\right|^{2}+\left|u_{y y}\right|^{2}+\left|\frac{u_{y}}{y}\right|^{2}\right)^{p / 2} d x d y\right)^{1 / p} \tag{4.10}
\end{equation*}
$$

It is not hard to see that the imbedding of $X_{\alpha, \gamma_{0}}^{2, p}(R)$ in $X_{\alpha}^{2, p}(R)$ is continuous; namely there exists a constant B, depending only on R, such that for any $u \in X_{\alpha, \gamma_{0}}^{2, \nu}(R)$

$$
\|u\|_{X_{\alpha}^{1, p}(R)} \leqslant H\|u\|_{X_{\alpha, y_{0}}^{\mathrm{a}, \nu_{0}}(R)}
$$

Thus in the space $X_{\alpha, \gamma_{0}}^{2, p}(R)$ the norms

$$
\|\cdot\|_{X_{a}^{a, p}, \psi_{0}(R)} \quad \text { and } \quad\|\cdot\|_{a}^{2, p}(R)
$$

are equivalent.
Moreover, if $0<\alpha+1 / p<1$ then, by lemma 4.2, in the space $X_{\alpha, \gamma_{u}}^{2, p}(R)$ an equivalent norm is the following one

$$
\begin{equation*}
\|u\| X_{\alpha_{\alpha, \nu_{g}}^{2, p}(R)}=\left(\iint_{R} y^{\alpha p}\left(\left|u_{x x}\right|^{2}+2\left|u_{x y}\right|^{2}+\left|u_{y y}\right|^{2}\right)^{p / 2} d x d y\right)^{1 / p} \tag{4.11}
\end{equation*}
$$

Finally, denote by $\frac{X}{\alpha}_{\alpha, p}^{p, p}(R)$ the closure in the $X_{\alpha}^{2, p}$-topology of the space

$$
\left\{u \in C^{\infty}\left(\mathfrak{R}_{+}^{2}\right): \operatorname{supp} u \subset R,\|u\|_{X_{\alpha}^{2}, p(R)}<+\infty\right\}
$$

Let $\mu>0,0<\alpha+1 / p<1+\mu$. Owing to theorem 3.2 and recalling remark 3.2, for any $u \in{\underset{\alpha}{0}}_{\alpha}^{2, p}(R)$ the following inequality holds:

$$
\left\|\frac{u u_{q}}{y}\right\|_{L_{\alpha}^{p}(R)}+\left\|D^{2} u\right\|_{L_{\alpha}^{p}(R)} \leqslant C\left\|W_{u}\right\|_{L_{\alpha}^{p}(R)}
$$

where O is a constant depending on μ, α, p, R.

Remaris 4.1. - We stress the fact that functions $u \in X_{\alpha, \gamma_{0}}^{2, p_{0}}(R)$ satisfy condition (4.3); for take into account estimate (4.4).

Moreover, we are able to prove a similar estimate for functions $u \in X_{\alpha, \gamma_{0}}^{2, p}(R)$.
Lemana 4.3. - For any $u \in X_{\alpha, \gamma_{0}}^{2, p}(R), p>1,0<\alpha+1 / p<1+\mu, \mu>0$, the following a priori estimate holds:

$$
\begin{equation*}
\|u\|_{L_{d, p, \nu_{0}}^{3,(R)} \leqslant} \leqslant C\|u\|_{L_{d}^{2}(R)}, \tag{4.12}
\end{equation*}
$$

O being a constant depending on μ, α, p, R.
Proof. - We start by making the following remark: for functions $v \in C^{\infty}(\{\boldsymbol{x} \in$ $\left.\in \mathscr{R}_{+}^{2}: x \geqslant k\right\}$) with bounded support, satisfying conditions

$$
\left.v\right|_{x=k}=0 \quad \text { and } \quad \lim _{y \rightarrow 0^{+}} y^{\mu} \int\left|v_{y}\right| d x=0
$$

an inequality of the type

$$
\left\|\frac{v_{v}}{y}\right\|_{\alpha, p}+\left\|D^{2} v\right\|_{\alpha, p} \leqslant(\text { const })\|w v\|_{\alpha, p}
$$

holds, the norms being taken in the region $\left\{\boldsymbol{x} \in \mathfrak{R}_{+}^{2}: x>k\right\}$.
For, it is enough to take the reflection \tilde{v} of v through $x=k$ and apply to it the results of previous section. Indeed $\tilde{v} \in C_{0}^{1,1}\left(\mathcal{R}_{+}^{2}\right)$ and so $\tilde{v} \in \tilde{X}_{\alpha}^{0, p}\left(\mathcal{R}_{+}^{2}\right) ;$ moreover $w \tilde{v}=$ $=\widetilde{w v}$. An analogous inequality holds for functions v as above but with support in $\left\{\boldsymbol{x} \in \mathfrak{R}_{+}^{2}: x \leqslant k\right\}$.

Now to prove the lemma we suitably make a partition of unity in $\bar{R}: 1=\varphi_{1}+$ $+\varphi_{2}+\varphi_{3}, \varphi_{i} \in C_{0}^{\infty}(\bar{R}), \varphi_{i} \geqslant 0(i=1,2,3)$. More precisely, let $\psi(t)$ a $C^{\infty}([0,+\infty))$ function such that $0 \leqslant \psi \leqslant 1$

$$
\begin{array}{lll}
\psi(t)=0 & \text { if } & 0 \leqslant t \leqslant \eta / 2 \\
\psi(t)=1 & \text { if } & \eta \leqslant t
\end{array}
$$

with $0<\eta<\min \left\{x_{2}-x_{1}, y_{0}\right\}$.
Define in \bar{R} :

$$
\begin{aligned}
& \varphi_{1}(x, y)=\psi(y) \\
& \varphi_{2}(x, y)=\psi\left(x-x_{1}\right)[1-\psi(y)] \\
& \varphi_{3}(x, y)=\left[1-\psi\left(x-x_{1}\right)\right][1-\psi(y)] .
\end{aligned}
$$

Assume u smooth in $R \cup T \cup E, u_{\mid T \cup B}=0$ and such that $\|u\|_{X_{d}^{2, p}(R)}<+\infty$. Define $u_{i}=u \varphi_{i}, i=1,2,3$.

Orazio Arena - Paolo Manselli: Bounds for the nonhomogeneous etc.

Notice that on the support of the function u_{1} the operator W is smooth and on the other hand the functions u_{2} and u_{3} fall in the remark we started with. Therefore in R we have

$$
\left\|\frac{u_{y}}{y}\right\|_{L_{\alpha}^{p}(R)}+\left\|D^{2} u\right\|_{L_{\alpha}^{p}(R)} \leqslant(\text { const }) \sum_{1}^{3}\left\|w u_{i}\right\|_{L_{\alpha}^{z}(R)}
$$

By explicit evaluation

$$
w u_{i}=\varphi_{i} w u+u w_{\varphi_{i}}+2(\nabla u) \cdot\left(\nabla \varphi_{i}\right) .
$$

Thus, because of the above proper choice of φ_{i} and by means of interpolation inequalities, we get

$$
\left\|\frac{u_{y}}{y}\right\|_{L_{\alpha}^{p}(R)}+\left\|D^{2} u\right\|_{L_{\alpha}^{p}(R)} \leqslant(\text { const })\left[\|w u\|_{L_{\alpha}^{p}(R)}+\|u\|_{L_{\alpha}^{p}(R)}\right]
$$

Recall now that estimate (2.4) holds (see remark 2.3). We infer that

$$
\left\|\frac{u_{y}}{y}\right\|_{L_{\alpha}^{p}(R)}+\left\|D^{\mathrm{p}} u\right\|_{L_{\alpha}^{p}(R)} \leqslant(\mathrm{const})\|w u\|_{L_{\alpha}^{p}(R)}
$$

An approximation argument finally allows us to deduce the claimed estimate (4.12) for any $u \in X_{\alpha, \gamma_{0}}^{2, p}(R)$. \|l

The a priori estimate (4.12) yields at once uniqueness of solution to the equation (4.1) in the class $X_{\alpha, \gamma_{0}}^{2, y}(R)$. Uniqueness for the problem (4.1)-\{4.3) has been also guaranteed in theorem 1.1.

It is not difficult then to get the following existence (uniqueness) result.
Theorem 4.1. - Assume that $f \in L_{\alpha}^{p}(R), p>1,0<\alpha+1 / p<1+\mu, \mu>0$.
Then there exists a (unique) solution $u \in X_{\alpha, \gamma_{0}}^{2, p}(R)$ of equation (4.1).
Proof. - Suppose first $f \in C_{0}^{\infty}(R)$. Then the function $u=u(x, y)$ given by (2.2) turns out to be a C^{∞} solution of equation (4.1) in R. Moreover such a function u vanishes on the sides $x=x_{1}, x=x_{2}, y=y_{0}$ of R; the condition on $y=0$ is also satisfied. Owing to the estimate (4.12) the function u belongs to the space $X_{\alpha, \gamma_{0}}^{2, y}(R)$ and

$$
\|u\|_{X_{\alpha, \gamma_{0}}^{2, p}(R)} \leqslant C\|f\|_{L_{\alpha}^{p}(R)}
$$

with constant O depending on μ, α, p, R. Take now $f \in L_{\alpha}^{p}(R)$. There exists a sequence of functions $f_{n} \in C_{0}^{\infty}(R)$ converging to f in $L_{\alpha}^{p}(R)$. Thus, as we have shown, for each integer n there exists a function u_{n} such that

$$
\left\{\begin{array}{l}
u_{n} \in X_{\alpha, \gamma_{0}}^{2, \nu}(R) \\
w_{\mu} u_{n}=f_{n}
\end{array}\right.
$$

Since $\mathfrak{w}_{\mu}\left(u_{m}-u_{n}\right)=f_{m}-f_{n}$ we have

$$
\left\|u_{m}-u_{n}\right\|_{X_{\alpha, y_{0}}^{2, p}(R)} \leqslant C\left\|f_{m}-f_{n}\right\|_{L_{\alpha}^{p}(R)} \rightarrow 0, \quad(m, n \rightarrow \infty)
$$

Therefore, by the completeness of $X_{\alpha, \gamma_{0}}^{2, p}(R)$, there exists a function $u \in X_{\alpha, \gamma_{0}}^{2, p_{p}}(R)$ such that $\left\|u_{n}-u\right\|_{X_{\alpha, v_{0}}^{2, p}(R)} \rightarrow 0(n \rightarrow \infty)$.

It is an easy matter to see that $W_{\mu} u=f$ a.e. in R.
The proof of the theorem is so complete. |||
Remark 4.2. - We notice that in our study the condition $0<\alpha+1 / p<1+\mu$ is sharp.
A). If $p>1, \alpha+1 / p=1+\mu, \mu>0$, the a priori bound (4.12) does not hold.

For, let $\psi \in C^{\infty}(\mathcal{R}), 0 \leqslant \psi \leqslant 1, \psi(t) \equiv 0$ if $t \leqslant 0, \psi(t) \equiv 1$ if $t \geqslant 1$.
In the rectangle $R=(0,2) \times(0,2)$ we define

$$
v_{n}(x, y)=\psi(x) \psi(2-x) \psi(n y) \psi(2-y), \quad n \in \mathcal{N}
$$

We have $v_{n} \in C_{0}^{\infty}(R)$. Moreover:

$$
\left\{\begin{array}{l}
\iint_{R}\left|y^{1-\mu+\alpha} \frac{\partial^{2} v_{n}}{\partial x^{2}}\right|^{p} d x d y \leqslant C_{1} \tag{4.13}\\
\iint_{R}\left|y^{1-\mu+\alpha} \frac{\partial^{2} v_{n}}{\partial y^{2}}\right|^{p} d x d y \leqslant C_{2} \\
\iint_{R}\left|y^{\alpha-\mu} \frac{\partial v_{n}}{\partial y}\right|^{p} d x d y \leqslant C_{3}
\end{array}\right.
$$

and

$$
\begin{equation*}
\iint_{R}\left|y^{x-\mu-1} v_{n}\right|^{p} d x d y \geqslant C_{4} \log n \tag{4.14}
\end{equation*}
$$

where $C_{1}, C_{2}, C_{3}, C_{4}$ are constants independent of n.
Let us define $u_{n}=y^{1-\mu} v_{n}, n \in \mathcal{N}$. By (4.13) and (4.14) we get

$$
\iint_{R}\left|y^{\alpha} w u_{n}\right|^{n} d x d y \leqslant C_{5}
$$

and

$$
\iint_{R}\left|y^{\alpha} \frac{\partial^{2} u_{n}}{\partial y^{2}}\right|^{p} d x d y \geqslant C_{B}(\log n-1)
$$

where C_{5} and C_{6} are constants independent of n.

The above two inequalities show that the a priori estimate (4.12) fails.
B) If $\mu>0, p>1, \alpha+1 / p \leqslant 0$ the existence theorem 4.1 does not hold.

Indeed, let $R=(0, \pi) \times(0,2)$ and ψ the function considered above. We define

$$
\bar{u}(x, y)=\sin x h(y) \psi(2-y)
$$

where h is the function of section 2.
Notice that $\bar{u} \in C^{\infty}\left(\Re^{2}\right), \bar{u}=0$ on $T \cup E, \bar{u}_{u}(x, 0)=0$ and moreover $w \bar{u} \in C^{\infty}\left(\mathcal{R}^{2}\right) \cap$ $\cap L^{p}(R)$.

Let us show that there is no function $u \in X_{\alpha, \gamma_{0}}^{2, y}(R), \alpha+1 / p \leqslant 0$, such that $w_{u}=$ $=w \bar{u}$. In fact, if there were such a function u we would have that

$$
v=u-\bar{u} \in W_{\mathrm{loc}}^{2, v}(R \cup T \cup E), \quad y^{\mu} \int_{0}^{\pi}\left|v_{y}\right| d x \rightarrow 0 \quad \text { as } y \rightarrow 0
$$

and $W v=0$. Thus $v \in C^{2}(R) \cap C^{0}(R \cup T \cup E)$ and further, by the uniqueness theorem 1.1, we would have $u=\bar{u}$. On the other hand, we have

$$
\iint_{R}\left|y^{\alpha} \bar{u}_{x x}\right|^{p} d x d y=+\infty
$$

so that \bar{u} does not belong to $X_{\alpha, y_{0}}^{2, p}(R)$. Contradiction. |||

REFERENCES

[1] G. Alessandrini, On elliptic equations with an axial symmetry, Ann. Mat. Pura e Appl., 127 (1981), pp. 365-381.
[2] A. Avantaggiati, Spazi di Sobolev con peso ed alcune applicazioni, Atti X Congresso Un. Mat. Ital. (1977), pp. 46-97.
[3] L. Bers - A. Gelbarg, On a class of differential operators in mechanics of continua, Quarterly Appl. Math., 1 (1943), pp. 168-188.
[4] P. Bolley - J. Camus, Sur certains problèmes aux limites etliptiques et dégénérés, C.R. Acad. Sci. Paris, 271 (1970), pp. 980-983.
[5] N. P. Ca'c, The Dirichlet problem for a singular elliptic equation, Ann. Inst. Fourier, 26, 1 (1976), pp. 205-244.
[6] A. P. Calderon - A. Zygmund, On the existence of certain singular integrals, Acta Math., 88 (1952), pp. 85-193.
[7] D. R. Dunninger - H. A. Levine, Uniqueness criteria for solutions of singular boundary value probtems, Trans. Amer. Math. Soc., 221 (1976), pp. 289-301.
[8] A. Erdélyi, Axially symmetric potential and fractional integrals, J. SIAM Math. Anal., 13 (1965), pp. 216-228.
[8] A. ERdélyi, An application of fractional integrals, J. Analyse Math., 14 (1965), pp. 113-126.
[9] A. Erdélyi - W. Magnus - F. Obermettinger - F. G. Tricomi, Higher, trascendental functions, I-II, Mc Graw-Hill, New York, 1953.
[10] G. Fichera, Sulle equazioni differenziali ellittico-paraboliche del secondo ordine, Atti Acc. Naz. Lincei Mem. Classe S.M.F.N., (8) 5 (1965), pp. 1-30.
[11] G. Geymonat - P. Grisvard, Sui problemi ai limiti lineari ellittici negli spazi di Sobolev con peso, Le Matematiche, 22, 2 (1967), pp. 1-38.
[12] R.P. Gilbert, Function theoretic methods in partial differential equations, Academic Press, New York, 1969.
[13] P. Henrici, Zur Functionentheorie der Wellengleiohungen, Com. Math. Helv., 27 (1953), pp. 235-293.
[14] P. Henraci, Complete systems of solutions ..., in "Boundary problems in differential equations », Madison, 1960.
[15] A. Huber, Some results on G.A.S.P.T., Proc. Conf. Partial Diff. Equations, Univ. of Maryland, 1955.
[16] I. N. Karol, On boundary value problems for equations of mixed type... (russian), Math. Sbornik, 38 (80), n. 3 (1956), pp. 261-282.
[17] M. V. Ket'disch, On certain cases of degeneration of equations of elliptic type ..., (russian) Dokl. Akad. Nauk S.S.S.R., 77 (1951), pp. 181-183.
[18] I. A. KipriJanov, Boundary value problems for partial differential equations with Bessel differential operators, Dokl. Akad. Nauk S.S.S.R., 158 (1964), pp. 275-278.
[19] I. A. Kiprisanov, Dirichlet problem for singular partial differential operators, (russian), Kaz. Gos. Univ. Zap., 127 (1967), pp. 127-138.
[20] I. A. Kiprifanov, Estimates in L_{2}, γ of solutions ..., Trudy Steklov, (91) (1967), pp. 27-96.
[21] I. A. Kiprijanov - M. I. Ključantsev, The boundedness of certain singular integral operators, Dokl. Akad. Nank S.S.S.R., 186 (1969), pp. 1253-1255.
[22] I. A. Kiprijanov - M. I. Ključantsev, Singulor integrals that are generated by a general shift operator II, Sib. Mat. Z̆, 11 (1970), pp. 1060-1083.
[23] I. A. Kiprijanov, A certain class of singular elliptic operators I, Diff'nye Urav., 7 (1971), pp. 2066-2077.
[24] I. P. Krivenkov, On some representations of the solution ..., (russian), Dokl. Akad. Nauk S.S.S.R., 116 (1957), pp. 351-354.
[25] I. P. Krivenkov, Representation of the solution ..., (russian), Dokl. Akad. Nauk S.S.S.R., 116 (1957), pp. 545-548.
[26] B. M. Levitan, Representation in Fourier series..., Uspehi Mat. Nauk, 6, 2 (1951), pp. 102-143.
[27] C. Y. Lo, Dirichlet problems for singular elliptic equations, Proc. Amer. Math. Soc., 39 (1973), pp. 337-342.
[28] C. Y. Lo, Dirichlet problem for singular elliptic equations II, Proc. Amer. Math. Soc., 58 (1976), pp. 201-204.
[29] L. G. Mikhailov, On the analitic functions' method in the theory..., Lecture Notes in Math., 551 (1976), pp. 510-519.
[30] S. M. Nikol'skil - P. I. Lizorikin, On some inequalities for functions..., Dokl. Akad. Nauk S.S.S.R., 159, 3 (1964), pp. 512-515.
[31] O. A. OleJnik - E. V. Radkevič, Second order equations with non-negative characteristic form, Amer. Math. Soc, Plenum Press, New York, 1973.
[32] M. N. Olevskir, Solution of the Dirichlet problem ..., (russian), Dokl. Akad. Nauk S.S.S.R., 64, 6 (1949), pp. 767-770.
[33] L. E. Payne, On axially symmetric flow ..., Quarterly Appl. Math., 10 (1952), pp. 197-202.
[34] M. Protter, On partial differential equations of mixed type, Proc. Conf. Diff. Equations, University of Maryland, (1956), pp. 91-106,
[35] M. Schechter, On the Dirichtet problem for second order equations ..., Comm. Pure Appl. Math., 13 (1960), pp. 321-328.
[36] M. M. Smirnov, Equations of mixed type, Amer. Math. Soc. Translations, 51 (1978).
[37] G. Talenti, Soluzioni a simmetria assiale di equazioni ellittiche, Ann. Mat. Pura e Appl., 73, IV (1966), pp. 127-158.
[38] N. Ural'tseva, On impossibility ..., (russian), Zap. Nanen Sem. L.o.m.I., 5 (1967).
[39] I. N. Vekua, New methods for solving elliptic equations, Wiley, New York, 1967.
[40] A. Weinstein, Discontinuous integrals and generalised potential theory, Proc. Amer. Math. Soc., (1948), pp. 342-354.
[41] A. Zygmund, Trigonometrio series, University Press, Cambridge, 1959.

[^0]: (*) Entrata in Redazione l's aprile 1982.
 (**) Lavoro eseguito nell'ambito dell'Istituto di Analisi Globale ed Applicazioni del C.N.R.
 (***) Lavoro eseguito nell'ambito del Gruppo Nazionale di Analisi Funzionale ed Applicazioni del C.N.R.

