Bounds for the Nonhomogeneous GASPT Equation (%).

OrAzI0 ARENA (Firenze) (**) - PAono MANSELLI (Verona) (¥**)

Summary. — Weighted a priori bounds for the equation Aw -+ (uf/y)uy, = f(u > 0), in the half-
plane y > 0, are proved. If p>1, 0< o + p~t<1 + p, w has bounded support and y*u,— 0
(as y — 0;), then the L? norms of y*u and y*|D*u| are bounded by the L? norm of y*f. A
boundary value problem in a rectangle is also studied inthe appropriate weighted Sobolev class.

0. - Introduction.
The main goal of this paper is to prove a priori bounds for solutions of the equation
(0.1) W = Uy 4 Uy + (pfy)uy=f, p a positive constant ,

in the half-plane y > 0. We will write W, when we need to emphasize the depen-
dence on pu.

The operator W is a model operafor for elliptic operators singular on a line;
also, yW is an elliptic operator degenerating on ¥ = 0. Many different questions
are connected with this operator; let us recall some of them.

(@) Assume g = m —2 € N; then u is solution of Wu = 0 if and only if
Ug(Byy vry D) = (@, (B2 + ... + #2)P) is a solution of Au,= 0. For this fact the equa-
tion Wu = 0 has been called GASPT (generalized axially symmetric potential theory)
equation. A natural extension of the above remark is in TALENTI [37] (here recalled
in a slightly different form): given g > 0, fix an integer m >y 4 2 and define o(y) =
= u/((m —2) + (m + 1)u); o« is an increasing function of p and «(0)=0,
a(m —2) = 1/m; define: uy(@y, ..., @) = u((ljo— (m—1))tmy, (@2 + ... + a2)}) and

(0.2) WU = o Ju + (1 —ma) ¥ o.0,@) + ... +a2) P,
1§=2

then

Wtto(@1, ooy @) = (1 — (m— 1)) ((Wu)((1/ — (m — 1)) Ea, , (a2 + ... + 22)}).

2

(*) Entrata in Redazione '8 aprile 1982.
{(**) Lavoro eseguito nell’ambito dell’Istituto di Analisi Globale ed Applicazioni del C.N.R.

(***) Lavoro eseguito nell’ambito del Gruppo Nazionale di Analisi Funzionale ed Appli-
cazioni del C.N.R.
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The operator U is a uniformly elliptic second order operator in R, with (lower)
ellipticity constant «, trace = 1 and discontintious coefficients on the axis #,= ... =
== g, = 0; it has been introduced by URAL'TsEVA [38] as counterexample operator
to existence theorems in the Sobolev space W2m; in ofther words the Uraltseva
operator U on axially symmetric functions is the same as the operator W.

(b) If u, v are solutions of the generalized Cauchy-Riemann system:

(0.3) Yo, =1,
(0.4) Yoy, = — v,

then Wwu = 0 and Av — (u/y)v,= 0. This system was studied, for positive u, by
Brrs and GELBARG [3] and it is connected with problems of mechanics of continua
(BErs and GELBARG [3], PAYNE [33]).

The equation Wu = 0 can be written in complex form as:

(0.5) g — (pf2)(u;—w,) (e —2) = 0

with 2 == 2 + 4y, Z = # — ty; the equation (0.5) iz a Euler-Poisson-Darboux equa-
tion and the Riemann function can be explicitly written for it (see VEKUA [39],
GILBERT [12]) and used to construct solutions of Wwu = 0.

(¢) The equation Wu = f can be written in variational form as:
(Y*102)s -+ (Y uy)y = y"f

and ﬁrariational techniques can be used to study it (see e.g. NIKOL’SK(1-LIZORKIN [30],
BoLLeEY-CAMUS [4]).

(d) The operator W is connected with various classes of special functions and
integral transforms. Its fundamental solutions can be written by using hyperge-
ometric functions (OLEVSEI [32], in particular one can use Legendre functions of
second kind in 3. below), Bessel functions (WEINSTEIN [40], 1. below); solving the
equation Ww == 0 by separation of variables leads to Bessel functions again, Ge-
genbauer functions (see GILBERT [12]). Good tools to study the operator W are
the Hankel in y or the Fourier-Hankel transform (Fourier in #, Hankel in y trans-
form, see KIPRIJANOV [18], [19], [20]). WEINSTEIN [40] used results for Wu = 0
to give a proof of the Weber-Schafheitlin theorem. In the book of GILBERT [12]
function theoretic methods, related to the complex equation (0.5) and to expansions
in special functions, are used to study solutions of Wu = 0 looking in particular
at the analyticity and to the singular points of them.

(¢) The problem of the analyticity near y = 0, was earlier studied by HEN-
RICI [13] and KRIVENKOV [24], [25]. The first author found that the problem:
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Wy = 0, u(®, 0) = u,(®), with u, given analytic function, has the solution:

w(e, y) = const[[UL — O~ ug(w + iy(L—20)) di

Krivenkov found that, if g>1, then a solution of Wu = 0, continuous up to y = 0,
can be extended across ¥ = 0 as a even analytic funetion; if 0 < u < 1, to get the
same result, one needs the extra condition:

lim y*u, = 0.
y->0

Henrici’s representation formula above was used by Radjabov (see L. G. MIEHA-
TLOV [29]) to solve the Dirichlet problem for Wwu = 0 (with suitable boundary con-
dition3s); the problem was changed into a Abel type integral equation; the unknown
is  at y = 0.

The operator W is connected with fractional mntegrals and derivatives (see HEN-
Ricr [13], LEVITAN [26], ERDALYI [7], [8]); as an example, if Wu = 0 then:

w=1Ih), Ah=0

where:
Y

1)@, ) = 2y*#(T(u}2)) [ (v — #pish(a, 1) di;

0

a similar formula (with suitable change of variables) was used by WEINSTEIN [40]
to write the fundamental solution of the operator W.

{f) Changes of variables connect the operator W with other special operators.
The change of variables:

v'=ax, Y=y, ulzy =ovezy), a>0b>0
gives:
Wa(z, y) = (a®v,.,. + B (@), + b —1 + u)(y' )", (ax, 4*) .
Choose @ == b = 2; then:
W@, y) = 4(0,,0+ ¥'v,, + (1 + ©)[2)0,) (22, 97) .

The operator on the right hand side is a particular case of an operator introduced
by M. V. KerL'pIscH [17]; in %> 0 it is an elliptic-parabolic operator. Boundary
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value problems for this class of operators have been considered by M. V. KEL'DISCH
and G. F1cHERA [10] (see the OLEINIK-RADKEVIS book [31]).
Choose ¢ = b = §; then:

W, y) = GVY' WY 00 + 0y - B2 — v, [y"*1 (203, 4F) .

The operator in square brackets (when u = 4) is the Tricomi operator, in y'> 0
(on this operator see e.g. the M. M. SMIRNOV book [36] and the references therein).

The above remarks just sketch the many connections of the operator W. Surveys
on results on W and generalizations are in HUBER {15], GILBERT [12], TALENTI [37],
MikuaILov [29]. An extensive work on W and many extensions has been made
by I. A. KipriJANOV and coworkers; let us quote [18]-[23]. Also, many results
for W ean be obtained as particular cases of results on general singular or degenerate
elliptic equations (see e.g. AVANTAGGIATI [2], TALENTI [37], ALESSANDRINI [1],
OLEINTK-RADEKEVIC [31], M. M. SMirNOV [36], BOLLEY-CAMUS [4], DUNNINGER-LE-
vINE [7], Krprisavov [18]-[23], Ca’c [5], Lo [27], [28], SCHECHTER [35].

The main result of this paper is the following (theorems 3.4 and 2.1 below):

Assume u>0,p>1,0<oa -+ 1/p <1 -+ u. There exists a consiant ¢ such that,
for every u of class C® in y > 0 which satisfies

lim y* | ju,(z, 9)| & = 0

y->0

and has bounded support, the inequality:

”(@/"‘IDWD” da dy<c”]y“ Wal? dor dy

¥>0 y>0

holds.
Moreover, for every open rectangle B in y > 0, there exists a constant ¢, such that,
for every w as above, with support in R, the bound:

Hly"‘ulp da d@/<01”|y“ Wl der dy

y>0 y>0

holds.

These results have been proved, for some choices of & and p, by Kiprijanov. One
can prove that the bounds above arve sharp: if (1/p,«) is outside of the domain
0<1/p<1,0<1fp +a<1-+ u, then the above inequalities do not hold (re-
mark 4.2 of section 4.).

In section 4. a boundary value problem in a rectangle for the nonhomogeneous
equation (0.1) is solved within a suitable weighted Sobolev class.
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Boundary value problems in different domains will be discussed in a forthcoming
paper.

Let us introduce a few notations. We define: R = {(x,y) € K*: y > 0} and
write x == (@, y); we will also write:

[, = ([[lrmuta)p de ay)™®,  1<p<oo;
i
(e pl= ([l @), 1<s<oo.
. R

More notations: p'= p/(p —1); Du will be u, or u,, D*u Will be Uy, tsy OF Uyy.

1. — The equation Wu = 0 in a rectangle.

The separation of variables technique will be used here to study the equation
Wu = 0 in a open rectangle R, in y > 0, with one side on y = 0, to get L? a priori
bounds.

A change of variables of the form:

o'=ax+b, y=ay, (a>0)

will change the operator by a positive, multiplicative constant. Thus, in the state-
ments of the theorems, B will be a rectangle of the form:

B = R, = (&1, %) X (0, 40) = AX(0, %), 0<y<oo;

however in the proofs, for simplicity, B will be of the form (0, zz) X (0, y,); we will
write E, when we need to emphasize the dependence on #,; we also define:

T={x:0<y<yo, ®=0x, Or &=}
E = {(=,9,): ve A}
S={x:0ecd, —y<y <o}

Let us look for solutions of Ww = 0 in y > 0, of the form:
(1.1) Un(x) = v,(y) sin na ;
the functions v, are solutions of the differential equations:

(1.2) v, + (ufy)v,— niv, = 0;
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two linearly independent solutions of (1.2) are:

(ny)('l_ﬂl/ZI(ﬂ—l)/z(ny) H (Iny)uv”)/zK(,u—n/g(%y)
(I,, K, modified Bessel functions of first and third type). Let us define:
Ch(t) = (#2)" R ((n + 1)/2) Lne(B) 5
clearly h(ny) is a solution of (1.2); moreover, since:

I.(2) = i‘ (z/2)2m+f/(mlf(m +r 4 1)) ‘(z € C)

m=9

one sees that R 3¢ — h(t) is a real, positive, increasing convex function; in the
complex plane b is holomorphic and entire; it satisfies the equation: A" 4 (ufy)h'= h.
The asymptotic expansion of I,: I,(y) = const-e*y~#(1 + 0(1/y)) (y >1) (Erdelyi and
others 1I, p. 86) gives:

(1.3) R(y)[h(yo) <const [(1 + ¥)/(L + #o)™* exp [y — o] - 0<y<Y,.

The differential equation above and the properties A'> 0, A"> 0 give the ine-
qualities:
(1.4) I (y) <yh(y)/p
(1.5) B (y) <h(y) .

REMARK 1.1. ~ The problem:

v 4 (M/?/)’U’— niv =0 in (0, ), 2(¥) = 0,
with the extra condition

limy#v’'=0,
>0
has the unique solution v = 0.
For a more general and abstract version of this remark see D. R. DUNNINGER

and H., A, LeEVINE [7].
Let s>1, u,e L*(4), v defined in R, such that:

lim ||u(x) — do(m)i’ dre = 0;

vy,

we will write |, = u,, for short.
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THEOREM 1.1. — Let s>1. The problem:
(1.7) Wy =0 4in R,

(1.8) =0, lim |y*lu,x)de =0, w|z= u,cL(4)
y—>0*
A

has a unique solution uwe CC(RVU T)N C¥R). Moreover u € C*R\E) and can be ex-
tended to an analytic, even function in S, such that:

(1.9) (J ()] dm)1/3< [l oy s 0 <Y<Yo;

A

for every y'e (0, y,) there exists c,., not depending on w, such that:
(1.10) ”ui](!ﬁ(;?y’)<c‘y'[u0IL’(A) .

PRrROOF. — Let us prove the uniqueness (). Let % e C}(R) N (R U T') be a solu-
tion of (1.7), (1.8) with u,= 0. By classical regularity theorems, % is in (*(R U 1.
Let us expand # in Fourier sine series in ». We gef:

with

un(y) = (2[7) | (=) sin nw do .

The equation (1.7) and the boundary conditions (1.8) give:

U, + (/‘/?/)u;_ nfu,= 0 in (0,y,)
Lm u,(y) =0, limy u,(y) =0
y—>0

V>V

and thus u,= 0 (Remark 1); then % =0 in R.

To prove the existence we just need to write down a solution v € C*(R) N (°(RU T)
of (1.7), satisfying the boundary conditions (1.8). By using the boundedness of the
sequence {271—1 f Ug(2) sin nx dx} and the bounds (1.3)-(1.3), one sees that the series:

0
sin nmfuﬂ(t) sin nt df

0

(1.11) S

n=1

2 h(ny)
7 h(ny,)

(*) The uniqueness part of this theorem could be also deduced from the results of D. R.
JuNNINGER and H. A. LeviNE [7].

10 - dnnali di Matematica
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is uniformly convergent with first and second derivatives in every Ry’, with 0 <
<y'<yo, to a function & = g(u,) € Cx(Ry\F) solution of (1.7) with @), = 0. It
remains to show that % satisfies the boundary conditions on E, to prove the a priori
bounds and the regularity results.

Assume, for a moment, u,= fy& 07 (E); then the corresponding ¢(f,) € C2(Ry,),
and ¢(fy)|z = f,. By the maximum principle (WEINSTEIN [40], KAROL [16]),

max [g(fy)| <max [fy| .
AN £

Let us define: w = (@, %) € ¥ and

2 . N
F(x, w) = —~ sin ne sin na,
7

(0<y < yo; @, o€ [0, z]). By (1.3), (1.4), (1.5) F, as a function of x, is in C}(B\F)
and is a solution of W, F(-,w) = 0in R(w € H); moreover, the function g(f,) above
can be written as:

£

(1.12) 9(7o) (%) = [ F(, 10)olao) das

0

The following properties for F can be proved:

(i) F(x, w)>0 (consequence of the maximum prineiple for W);
(1) F(x,y, %o, Yo) = F(@e, ¥y #, %) (@, %€ [0, 7] and 0<y < #o);
(iii) 0< an(x, w) dz,<1l  (xeRy\E).

0

Let f,e O3 (B), 0<f, <1, fo—>1 in L}(4); the maximum prineiple and (1.12) give:

0< [Flm, whien) dm<l, xeRynT;
(1)

if we let n —o0, on these inequalities, we get (iii);

(iv) for every y'e (0,y,), there exists C,., such that:
”F(J w)i{gﬁ(ﬁy:)< Oy' y wekl.

Assume, now, f,e L*(A). The expansion (1.11) can be written as (1.12). Thus,
the properties (i)-(iv) of ¥ and standard techniques (see e.g. ZYGMUND [41], II1-IV)
give the boundary conditions u|s= f,€ L*(#), and the bounds (1.9), (1.10).

The regularity of the solution can be deduced from expansion (1.11), which
defines 2 C2(S) even function. The analyticity follows from KRIVENKOV [24], [25]
results. ||
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REMARK 1.2. — The condition:

>0

(1.13) lim y”f}uﬂ(ac, y)|de =0
4

was used to prove uniqueness only of the theorem above; more precisely, if «
satisfies (1.13), then the Fourier (in ») coefficients u,(y) of u satisfy condition (1.6)
of Remark 1.1. Thus (1.13) may be replaced by any other assumption on « implying
for u,, at y = 0, a condition whieh in turn would give uniqueness for the problem
in Remark 1.1. As an example, if x>1, (1.13) may be replaced by:

max lim | |u(z, y)| de << oo;
Fand
A

this condition matches with KEL’p1scH [17] problem E, when one changes (as in (f)
above) W into a Keldisech operator (see KEL’DISCH [17]); also it matches with
F1oHERA [10] approach to boundary value problems for elliptic-parabolic operators.

2. — The a priori hound for «.

Let us prove a representation formula for solutions of W,u =f. We will keep
the notations of 1.; moreover, if v is the solution of the problem: W,v=01in
B = Ax(0,y,), with boundary conditions v|,= 0, v|y = f,& L*(4) and:

Lim * | jv, ()| do = 0,
y—>o0t
A

we will write (-, y) = G, f,.
The following lemma holds.

Lemma 2.1. - Let w e 0°(RL), such that supp u is bounded and

(2.1) Hm y# |} ju,(x)| dz =0 .

y—>o7

Let us define f= Wu and assume moreover that supp uCR = A X(0,y,) end y*fe
e L}(R}). Then:

v t
'\
(2.2) u(y ¥) :fdtf(i) GG, F(, 1) At (O<y< ).
Yo o
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Proor., — Let:

w(@,y) = 3 unly) sin na,

n=1

flz,y) = i fuly) sin ne

n=1

(0 <y <oo) the Fourier expansions of u, f in sine series in 2. The equation Wu = f
gives:

U+ (fY) sy — 1*t = fo

lim y*up(y) = a(ye) = 0 .

>0

It is easily seen that #*f,e LY(0, - co) and that the unique solution of this pro-

blem is:
_ () (1 ,
w) = s s [ (;) Wt (¢
And thus: B 0
w(w, y) = isin nwf;bz((ny;dtf( )ﬂ (nt") fa(8) dt’ .

Yo

It is not difficult to see that one can exchange series and integrals and get:

. N\ T & hiny) h(nt') , - . ,
fdtf( ) L=1 ) f(t)smnm] dai .

By recalling (1.11) and the definition of § we have the theorem. ||

THEOREM 2.2. — Let p>1,0€ R, u>0 such that 0 <o - p7'<1 + p. Let
ue 0°(RE) such that supp u is bounded and (2.1) holds; assume also y* Wu e L*(RL).

Then:

(2.3) lim y*u(-, y)[= 0.

y—>0*

Moreover, for every B = A X (0,y,) there exists Cy(u, o, p, B) such that for u as above,
with support in R, the inequality:

(2.4) ”u”“p\ 01(,“7 oy Py )” ‘u)u”a,m

holds.
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Proo¥. — First of all, let us notice that, by Hélder inequality, y* Wu € I*(R%).
Let B = AXx(0,v, a rectangle containing supp 4. By previous lemma:

f]u (z, y)| da _fdtf(tl)f\{gy,t #af (e 8 Ha) | do

Formula (1.9), with s = 1, gives:

J‘Iu pm<fdtf( )f[f (x, t dult’»—J‘t”"dtJ. V) f(oy )] daos dE L

4% [0,¢]

By Holder inequality:

(2.5) f|u dw<f -ﬂdt(ff N’ dt’) (ff [t f(z, ¥/ ]ﬁdxdt’) <

A% [0,t] 4x10,40

].ength of A ) P ((yo)l—dﬁ"l/ﬂ —_— yl—“‘rl/? )(f )1/’?
< - - y* Wu|? de d
(1+<u—a)10 T—a+1]p ) = oulr o dy

+

(if 1 —e 4+ 1/p’= 0, the second factor in the right hand side should be read log (3,/)).
From (2.5) and the inequality g +1 —a—1/p'> 1, (2.3) follows.
Let us prove (2.4). We have:

lo.,,= Uy“”!u ¢yl dy)

By the previous lemma, Minkowsky infegral inequality and (1.9) (with s == p) we

get:
ve &
t\#
u('ay)]p<fdtf(t—) if(';tf)[pdt’7 0<y<<y.
i 0

el [ fafraemnag ol

Yo
Multiplying the last integral by 1 = i™*-1%, using Hoélder inequality in f and the

It follows:

¥
fact o + p~'> 0, one can show that there exists a finite constant C (depending on
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o, P, Yo only), such that:

¢ ' t\# v |Ur
el foflf v

K3

By the condition « 4 p~'<< 1 + x4 and Hardy inequality, we have:

”u[x <oy, (1 +p— (e +p* (f,;ow ]ﬁ’ dt)l/p
the thesis follows. |

RzmaARK 2.1. — In the previous proof we have used a discrete Fourier in z, Hankel
in y, transform. These techniques have been used extensively by Krpriganov [18],
[19], [20] (see also the bibliography therein).

ReMARK 2.2. — In the above theorem we have actually proved a sharper result
than (2.3). In fact we have proved (see (2.5)) that there exist C;, €, depending on
Us o, p, diam supp w, such that:

]u( ) y)]1< (Cy -+ Ozyl_“ﬂlﬁ’)” Wl

2754
O0<y,l—a+1/p's~0;if 1 —a +1/p’= 0, there will be logs in the bracket).

REMARK 2.3. — Let us explicitly notice that estimate (2.4) holds also for funec-
tions we O RU T U E), u|,,,= 0, y”f]uy(m, ¥) dw — 0 as y — 0%, such that
A

[ [ es 2l + a9 sy < + oo,

R being the reetangle 4 x (0, ,).

Indeed, functions in the class above can be approximated by funections v = v(x, ¥)
of clags €% in the strip 0 <y < ¥,, 0dd, 27 periodic and vanishing at ¥ = y,. For
functions in the latter class the proof of (2.4) goes without changes.

3. ~ The a priori bounds for the derivatives.
Let us prove a representation formula for solutions of Wu = fin RI. We will

write w = (w, ) e RI.
In [40] WEINSTEIN proved that for xe R%, we R}, x5 w, the function:

(3.1)  H(x,w) = H(w, x) —f @ —w)? 4 y2 + 2 - 2yt cos k)~w? sins—2h dh
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is regular and WH(-, w) = 0 in R\ {w}; moreover:
{3.2) H(x, w) = — (yt)*log |x — w| + Hy(x, w),

where H, is regular at x = w; the function H is a fundamental solution for the
operator W.

Another fundamental solution (actually the Green function for the Dirichlet

problem in the half disk) was constructed by OLEVSKII [32] by using hypergeometric
functions.

Here we will use a modified form of Weinstein fundamental solution:
G(x, w) = %t"H(x, w)

(%, we R%, x# w). G is a regular function if x5 w; moreover:
(@) if we R2, then: WE(-, w) =0 (x€ R\ {w});
(b) if x€ R:, then: W*G(x,) = (4 — (uft) 0/0t + uft?) G(x,-) =0
(we RIN(x)) .
(¢) if xeR:, we RY, x# w, by (3.2), it follows:
1
(3.3) G(x, w) = -—;E(t/y)m‘log lx — w| 4 yi(x, w)
with y, regular at x = w;
(d) assume x€ .ﬂi‘; there exists & (depending on % only) such that, if
w € (—oo, +oo) X0, ¥/2]:

(G(x, w)|<kte,  [(00t)G(x, w) — uG(x, w)[t| <Fte .

By using (a)-(d), the following representation formula can be proved.

LeMua 3.1, — Let u € O°(R2) such that: (i) u has bounded support; (i)y*|u(-, ¥y,
y*|uy(y ¥) |1 tend to zero as y — 0+ (iii) y* Wu e LY (RL); then:

u(x) = —ffG'(x, w) Wu(w) dw .
R

Proor. — Let & = (z,y) € R, h> 0 a small parameter (b < y/2 will do}), and
0,={w=(w,t)e RL: 0< h<t}; by (3.2) and (b) above, we have the Stokes
formula:

(3.4)  u(x) +f[G(x, w) dufot — w(2)0t — p/t) Gz, w)] dw = —Ha(x, ) Wit deo

=h [}%
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(x€0,). As b — 0+, by (d) above, we have:

”G(x, w) Wa(w) dw —>“G(x, w) Wu(w) daw

f[a x, w) D10t (w) — u(w)(3[6t — p/t)G(x, w)] dw — 0

=h

and the thesis follows. ||

REMARK 3.1. — If w € 07 (R?), and u is even in y, then u satisfies the hypothesis
of previous lemma. Also, if # satisfies the hypotesis of theorem 2.2, the lemma above
applies.

For later pourposes we need sharp evaluations of the derivatives of G(x, w).

Let b(x, w) a positive function in xe R%, we R:, x 7 w, defined by:

b(x, w) = |x — w|?/(2y1) .
LeMMA 3.2. — There exists o positive constant H such thai, if

xeRy, welRi, x+w, bxw<l,

(3.5) DiG(x, w) = —%Di log lx —w| 4 S(=x, w)

|S(x, w)l <H(b(=, w))-—iy—z .

PROOF. — As a consequence of the inequality b(x, w) < 1 we have: (a) ((x —w)* -+
Foyr )2y =1 L b(a,w)<2; B) P<yli<4, lp—wlly<d; (o) L—tfy|<
< V/8b(x, w).

Let us evaluate the derivatives of b:

by, = (@—w)f(y), by, = (y'— (@ —w)*—1%)/(20y?)
bu=1/(y), boy = — (. —w)[(y*1),
by = (( — w)? - 13) [(y31) .
In b <1 by (a), (b), (¢), we have:

(3.6) <oy vVh, [b]<eyvb,
(3.7 o <ofy?,  [bal<ely®,  [bul<cly?

(in the lemma ¢ will be any constant not depending on x, w).
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Let us write now G(x, w) in a different way. Let P, ,  (2) the Legendre func-
tion of the first kind (which is holomorphic in |1 —z| <2, and P,, (1) = 1), and
Qo1 (%) the Legendre funetion of second kind (holomorphic in the complex plane
cut along the real axis from —oo to 1).

An integral representation of @, is:

T
A —ﬂ/“fzwcost )~#/%(sin ¢')4-1 dt’

(see ERDELYI and others [9], I, p. 155, formula (3.5) and substitution ¢ = 7 —t)
This formula and (3.1) give:

5.9) 6 0) =~ ({9 Quias(1 + bl w)) (2% 10).

The function @ can be written as:

ula—1

(3.9) Q) =27"P,, ({—log[(z—1)[(z + 1)] — 2y — 29(u/2)} +

i sin (pf2) 3 AT + pf2) D0+ 1 —pf2) - [p(t -+ 1) — pD)]((L — 2)/2)°

1=1

where y is the Euler-Mascheroni constant (y~-577), y(2) = I"(2)/I'(s) and the last
power series is holomorphic in |1 —2{/2 <1 (ERDELYI and others [9], I, p. 149).

It follows that G(x, w) (x5 w) can be written as:
(3.10)  G(x, ) = (tfy)*[Ra(b(x, w)) log b(x, w) -+ Ru(b(x, w))] =

= 8i(x, w) log b(x, w) + S,(x, w)

where the functions R(b) are regular in [b| < 2 and Ry(0) = 1/(2x).

Let us prove (3.5), by using (a), (b), (¢) and (3.6), (3 7), (3.10). We have, in
b(x, w) < 1:
(3.11) Dty <ely,  |Dify)"| <ofy?
(3.12) |D,S,|<ely, |DiS,i<ecly* (i=1,2);

18, + 1/(27) [<ev/b

and:

D, log b(x, w)| <oy \/17)-1

|Dilog |x — wi?| < ng
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By using these inequalities, we get

D26 (x, w) + (27) D2 log |x — w(*|<e(|(D2S,) 1gb] -+ |D, 8,||D, log b| +
+ |8, -+ 1/(27)|| D2 log |x — w?| 4 |8,D21g (y1)| + |D28,}) <ey? VB

and, by this inequality, the theorem follows. |

LeMya 3.3. - Let ¢ > 0; there ewists k such that, if xe RL, we R, b(x, w) > ¢,
then:

(3.13) |D2G (2, w)| <ktw[ (5 — w)? + 12 + y2]-t-ulz,

ProoF. - In the region of the complex plane, given by |2| > 1 cut along the real

axis from —oofo 4+ 1, the Legendre function of second kind ¢ can be written as:

uf2—1
Qup—(?) = 27023 I(u[2) 2 D (p[2)7 Fluft + &, w4, uf2 + §5572)

(ErpELYI and others [9], I, p. 122; F(a, b, ¢; 2) is Gauss hypergeometric function,
which is holomorphic in |¢| < 1).
This formula and (3.8) give, in b(x, w) > 0:
Gty 10) = ob(@ — w)? + y* + BT
'F(M/4 + & 44 pf2 + 3, {2yt/[(w —w)® + y? -+ £2]%})

(¢ will be any constant not depending on =x, w).
Let us consider the function:

9@, 9, 0) = (@ + g+ 0w Blpft + 3, wd, w2 + 5 2ytflo” + 92 + 7))

13 the cone {(z, y, 1) € R3: 2yt/[w* + y* + ©2]<1/(1 + ¢/2)}; the function g is homo-
geneous of degree-u and smooth in the cone; thus the second derivatives of g are
homogenecous of degree -2-u and bounded on the intersection of the cone and the
unit sphere. This is equivalent to say that, in b(x, w) > &:

\DEG (%, w)| <ote[(w — w)* + y2 + 2wt |
THEOREM 3.4. — Let p>1, >0, 0<a +1/p<1 4 pu. There ewists K such
that, for every we C°(R3) satisfying:
(i) % has bounded support;
(ii) lim y*lu,(-, y)] = 0;
y—>o¥

(iii) y*Wue L*(RY),
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the inequality

(3.14) 1D, , <K[Wul,,

oy =

holds.

Proor.

Step 1. — First of all, we need to write the second derivatives of 4 in terms of Wu.

Notice that, by theorem 2.2, u satisfies (i) and (ii) of lemma 3.1; (iii) of lemma 3.1
is a consequence of (iii) above and Hélder inequality, as in theorem 2.2.

Thus, lemma 3.1 gives:

u(x) = —HG(x, ) W(w) duw ;
RL

using formula (3.3) above, we have that:

Drulx) = o Wi(x) +*”— D2, w) Wu(w) dw ,
i

where ¢ depends on the choice of the derivative D? and last integral is in prineipal
value.

Step 2. — Define B, = {we R%: [x —w|< (V3 —1)y},
w=(w,1), ¢lw)=1"Wu(w),
and:

f [ it Dy e, w)g(aw) duw,

ffy/t“Dsz, w)g(w) dw .
ﬁ’\Ex

The thesis will be proved if it exists % (not depending on g),> such that:

(3.13) 1Dy o5 <Elglo,s s

(3.16) 1Ds]o,p<klgllo,5 -

Step 3;. — Proof of (3.15).
Notice that E, c {we R%: b(x, w)<1}. By using lemma 3.2, we can write
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O, =Y, +W¥,+ ¥, where:

V. (%) =—5 ffDxlog lx —w|g(w) dw
_ff (y )" S(x, w)g(w) dw
Py(x) =——~U[ylt *—11D; log |x — w]|g(w

Let us extend ¢ =0 in y<0 and ¥, accordingly; we can write ¥, as:
L. 2 —
¥, (%) 2n( ff ff D 2 log |x — w|g(w
R ROTy

The first infegral in the right hand side is a standard singular integral; its L? norm
can be bounded by ¢jg|o,, for all p > 1; the second integral can be bounded by
using thm. 1, chapter 2 of CALDERON-ZYGMUND [6]:

ff l ff D; log | — w|g(w dwi dx <

[x—t0]>(V3—1)y Ip
<ffsup ff DZlog |x — w|g(w) dw| dx<cf lg(x)|? dx .
s >0 o

[a-w|>1/2
(3.17) 1#Pilo,s<0llg]o,

Thus:

(¢ will be any constant not depending on g).
In b(x, w) < 1, we have ((b) lemma 3.2) < y/t < 4. Thus, by (3.5) and Hélder

inequality:

rcoras<lf|f
! —w[gf s >1~w s St

It is not difficult to show that:

ff(b(x, w))~t dw <cy? .
Thus:
”m(x)[» dx<cf Y dxff(b(x, w))~Hg(w)]? dw .
A2 R

X!
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Exchanging the integrals in the right hand side, we get:

ff[‘f’z(x)[f“ dx <0“~|g('w)if’ dw ff y2(b(x, w))¥ dw .
R R

Ja-10] <(V3-1)y

1t is not difficult to see that there exists a constant ¢ > 0 such that

f y 3 (b(x, w)) "t dx<e

[~ <(VE-1)¥

(¢ = 2¢ will do); it follows:
(3.18) 1, <€l mtsy -

As in lemma 3.2, one can prove that

|1 — (y/t)*]|D* log |x — ]| < ey2[b(x, w)]};

with the same proof above, we have:
(3.19) 1] o <l 9ll oy -

The inequalities (3.17), (3.18), (3.19) give (3.15).

Step 3,. - Proof of (3.16).
Let

b= (W3—1)V2, Ih=1—ly(>0), k=1-"rk,
T,={weR: v —w|<ky, [y—1<ky};

let us define:
Fy (@) = (yftyyrj? + y* + 2|22, zeR,y,t>0.
Notice that, for x € R:
fwe RL: b(x,w)<}} cT,cE;
by lemma 3.3, we get:

l‘Z);G(x7 W)l <7{?t!‘[(x - @U)z + 12 + yg]—l—ulz
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(xe R, w¢gT,); thus:

Do) <o [Py, (0 — w)g(a0) duo
RiNT=x

Let us write g,= |g(-, ?)], ¢ > 0; then:

k1y kea¥

@@ <] [ ok g)(0) @t +T<Fy,t*gt><w) @i+ [ [ B, e —w)gw) v}

0 Ty By le—wl>key

(% is the convolution in R).
Let J,, J,, J; the L?(R%) norms of the last three terms; (3.16) will be proved, if:

(3.20) Jv<0”g“rﬂ(5{1) y v=1,2,3.

By Minkowski integral inequality:

Ji= (ﬁl [t g0

By convolution theorem:

o Ry

,,]” dy)”k( f [ f B, g, dt]” dy)”p :

o 0

+o Ly

J1<(f [ﬂFwIl' 19t]s dt]p dy)llp ’

0

we have:

(3:21)  |Fuls =f (GO ¢ ? + y* 4 BIH de = (y[t) i (y? 4 12)7eB ) (1 - ) dg
R R
and:
(y? + )i <y

thus:

+o kry

I < 0(.[ [y‘”"‘“”ft"‘“]gt],, dt]p dy) Ve
0

1]

Making the change of variable § = k,y, and using Hardy inequality, we get
+oo
1
Ju<e(p/op —p —ap — 1)([lgdz @t) " <clgl iy
0

notice that 1 + p(x —u —1) < 0 is equivalent to « -+ 1/p <1 4 g, and the first
of (3.20) is proved.
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Similarly:

4o -+

Jo< ( f [fIFz/tlllgtJm dt]p d?/>1/p§

0 Ry

from (3.21) and (y? -+ #2)-dw2gt~», we get:

4o 40

J2<c(f [y“ft‘“"l(g,]p dt]p dy)w .

1] kyy

By scaling y, and using Hardy inequality, we get:

Jy <c“g”ﬂ’(5{i) .

Let us prove the last of the (3.20)’s. Let y, be the characteristic function of
NI koy, kyl; Js can be written as:

+o0 gy

il

0 &y

xy.Fyt) * gt dt‘: dy)llp ]

Thus:

+o ey

oo [[ [ Bl lgls at] ay)™.

0

If o< hy<i<hy:

e Fuh <o|t(@® + y* + 21w du<cfy .

la|>&oy

It follows:
+oo kay

Js <c(“y—1ﬂg¢}p dt]jp déE)llp<0”9”wﬂi;) .
]

0

Thus estimate (3.16) is established. The proof of the theorem is so complete. |}

REMARK 3.2. — It is worthy noting explicitly that, under the assumptions of
theorem 8.4, an estimate similar to (3.14) holds also for (1/y)u,.

4. — A boundary value problem for the nonhomogeneous equation.

In this section we deal with a boundary value problem for the non homogeneous
equation (0.1) in a rectangle R, within a proper weighted Sobolev class.
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Precisely, in the rectangle
R = (@, %) X (0, %) = A X(0, %), O0<y<-4o0
we look for solutions of the equation

(4.1) W w=f

I

satisfying the boundary conditions

(4.2) Ulpoz=0

and

(4.3) Lim y#| ju,(e, y)| doe = 0.
y—=>ot

4
The condition (4.2) in the appropriate trace sense; as in section 1., 7' stands for
the union of vertical sides of R while E denotes the horizontal side y = ¥,.
The natural function spaces for the problem we are going to study are as follows.

Let p>1, x€ R. To begin with, let L?(R) the class of all measurable functions
u = u(x, f) defined in E such that

ulzzee = [yoluf do dy < +oo.
R
Next let X**(R) denote the completion of the space
{ue O*(R): Jul gyemy < + o0}

where

?

o] xymm) = | DP ufzzm + l‘%

o<ifl<2 7500
The following properties hold.

Lemma 4.1. — For any ue X>*(R), 0<a +1/p<1 +pu, u>0, the following
estimates hold:

U
Uyy 1 :‘y"“’v

(4.4) y”fiuy(w, )| dov < (3, — 2097 (up’ — oep’ 4 1)U - yumtils!

4

Li(R)
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where 1/p +1/p'=1, 0 <y <y, and

Uy

Y

P

4.5 <
4.5) zr  pl—o-pu)—1

22
% —u .
yy + y Y Lg(R)

ProOF. — It is enough to take w e C*(R) such that [u]xyery< +oo. For 0<
< &<y <Y, one has:

(4.6) Yy (@, y) — e uy (2, €) = f a—ay (y*u (2, y)) dy =f y* {uw + g u} dy .

On the other hand

t 4, 7 Uz
(4.7) ffy" = duw dy<(const)(ffy"‘” - dx dy) < +oo
g Y 2 Y
1/
(4.8) f f Yy, | dw dy<(00nst)( f f Y7 |ty |7 do dy) <4 o0,
R B

where const = (z,— ;)" (up’ — ap’ -+ 1)1 ¥ ypad,
It follows that, for almost every x € A, the integral in (4.6) is convergent as
& = 0T and therefore li_g)l,r e*u,(w, e) is finite. By (4.7) clearly

lim e*u (z, &) =0 .
e~>0t )

Thus, for 0 < y < y,, one has:

(4.9) Y (@, ) = f " {u +4 u} ay.

Taking the absolute value, integrating over 4 = (2, ,) and using Hoélder inequality
we easily get the stated estimate (4.4).

To get then estimate (4.5) we take into account (4.9) and make use of Hardy’s
inequality. ||

LeEMMA 4.2, — Let u € X%*(R) and assume 0 <a + 1/p <1. Then

Uy
Y

I d— 2,
£ U, L*(R) .
ZP(R) p(l - “) h— 1 ]1 ”yu “( )

PROOF. ~ As in lemma 4.1, take v € O*(R) such that [u]xnsg < 4 oo.

11 ~ Annali @i Malematica
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It turns out that

v

(@, 9) = [w(, n) dy .

0

Indeed, because of the fact that u,fy € LY(R) and 0 <« + 1/p <1, one has

lim w,(z, 4) = 0,

y—>0t
Therefore, via Hardy’s inequality, the stated estimate easily follows. ||

Now in what follows X7” (E) will stand for the closure, with respect to X27(RY
of the space

{ue C(RUTUE): uly,;=0, |u|xmm< + oo} .

We define
4.10) iWHXi’,’;“(R)I(ffy“?([umwiz—l— 2 |Uyy |2+ oty |2+ I%_,Iz)p/z dx dy)llf’-

It is not hard to see that the imbedding of X:’j’,o(R) in X%»*(R) is continuous;
namely there exists a constant H, depending only on R, such that for any ue X}“;D(R)

lul e <Hu| x25 2 -
Thus in the space Xf\,"’;o(R) the norms

|lxvz @ and  |-[xee

are equivalent.

Moreover, if 0 <o 4 1/p <1 then, by lemma 4.2, in the space Xi’,?».,(R) an
equivalent norm is the following one

(.11) b oo = ([ [ (sl + 2l ]2+ o1 d )™

Finally, denote by XOZ”(R) the closure in the X®”-topology of the space
{ue 0™(R}): supp u C B, |u|xuom< + oo} .

Let u>0,0<a +1/p <1+ u. Owing to theorem 3.2 and recalling remark 3.2,
for any uez%i’”(R) the following inequality holds:
u’L’
Y

D2y . )
Lg(R)+ | ’MllL“(R) <0 ‘U)unLK(R),

where ¢ is a constant depending on u, «, p, R.
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ReMARK 4.1. — We stress the fact that functions ueXZ’,’;a(R) satisfy condition
{4.3); for take into account estimate (4.4).
Moreover, we are able to prove a similar estimate for functions u € Xi’j',“(R).

LemvA 4.3. — For any w € X7 (R), p >1,0<a + 1/p <1 + u, u >0, the follow-
ing a priori estimate holds:

(4.12) [l s

T4

B <O Wz ,
C being a constant depending on u, «, p, R.

Proor. — We start by making the following remark: for functions ve C*({x e
€ R%: x>k}) with bounded support, satisfying conditions

e=k

9|, =0 and }%yﬂﬂvvldﬂ”=0,

an inequality of the type

Vy

y + (1 D20],,, < (const)| W,

&P

holds, the norms being taken in the region {xe Ri: x> k}.
For, it is enough to take the reflection & of v through # = k and apply to it the

results of previous seetion. Indeed ¢ e (p*(R2) and so ¥ € Xoi;”(,‘l{i); moreover WF =
=Wv. An analogous inequality holds for functions v as above but with support
in {xeRi: o<k}
Now to prove the lemma we suitably make a partition of unity in B: 1 = o+
+ ¢+ @5, € OF(R), >0 (i = 1,2,3). More precisely, let p(t) a 0°([0, + o0))
function such that 0<y<1
p) =0 if O<t<y2
p(it)=1 if g<t
with 0 <# < min {z,— 2, ¥}
Define in R:
(@, y) = p(y)
Po(, ¥) = p(@ — 21)[1 — ()]
#5(2, ) = [1 — yp(@ — )11 — p(y)].

Assume u smooth in RU I'U E, u|,, .= 0 and such that |u]ztem < +oo. Define
Wi == u(pi, 4 = 1, 27 3.
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Notice that on the support of the funetion u, the operator W is smooth and on
the other hand the functions u, and w4, fall in the remark we started with. There-
fore in KB we have

Uy

. .
" + [P0 pmy <(const) | Wity 1z .

LE(R) 1

By explicit evalnation
Wy, = @; Wy + v We, + 2(Vu): (Vo,) .

Thus, because of the above proper choice of ¢; and by means of interpolation ine-
qualities, we get

Uy

m + nDW”Lg(R) < (const)[| Wt | o) + “u”Lg(R)] .

LR)

Recall now that estimate (2.4) holds (see remark 2.3). We infer that
Yy

” + [D*u] yomy < (const)| Wz, -

L(R)

An approximation argument finally allows us to dedunce the claimed estimate
(4.12) for any we X3 (R). ||

The a priori estimate (4.12) yields at once wuniqueness of solution to the equa-
tion (4.1) in the class Xj;f;,n(R). Uniqueness for the problem (4.1)-{4.3) has been also
gnaranteed in theorem 1.1.

Tt is not difficult then to get the following existence (uniqueness) result.

THEOREM 4.1. — Assume that fe I2(R), p>1, 0 <a +1/p<1 + g, u>0.
Then there ewists a (unique) solution we X" (R) of equation (4.1).

ProoF. — Suppose first fe CF (R). Then the function u = u(x, y) given by (2.2)
turns out to be a O® solution of equation (4.1) in R. Moreover such a function u
vanishes on the sides z = #,, ¢ = #,, ¥y = y, of R; the condition on y = 0 is also
satisfied. Owing to the estimate (4.12) the funection » belongs to the space Xi’f_;o(R)
and

Tl x22 @ < Olf| z2m)

%Y

with constant ¢ depending on u, «, p, R. Take now fe L?(R). There exists a se-
quence of functions f,€ 07 (R) converging to f in L?(R). Thus, as we have shown,
for each integer n there exists a function u, such that

L2y 4]

{ u, e X> (R),
W, %n= fu.
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Since ‘u)ﬂ(um — Uy} = fmn—fn W& have

N, — w,lxy2 < COlf, — Flzzey—~ 0,  (myn —>o0).
Therefore, by the completeness of X77 (R), there exists a function weX}? (R)
such that [u,— u|x32 & — 0 (n —co).
It is an easy matter to see that W,u = f a.e. in R.
The proof of the theorem is so complete. |

REMARK 4.2. — We notice that in our study the condition 0 <« +1/p<l1 + g
is sharp.

Ay IEp>1,a+1/p =1+ u, u> 0, the a priori bound (4.12) does not hold.
For, let 1pe(7°°( ), 0<p <1, p(t) = 0 if <0, p(t) =1 if ¢>1.
In the rectangle B = (0, 2) X (0, 2) we define

(@, y) = (@) p(2 —2)p(ny) P2 —y), neN.

We have v, 05 (R). Moreover:

"i dw dy < 04

02,7
[z
B

920
(4.13) H U e “ardy <0,
OMES
-l
and
(4.14) [[ly=e=s0,}2 o dy> €, 10g
R

where Cy, 0,, C;, C, are constants independent of n.
Let us define u, = y#v,, ne N. By (4.13) and (4.14) we get

ifly"‘ Wy [ dov dy < C
and

s(log n — 1)

[l

where (5 and C; are constants independent of n.
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The above two inequalities show that the a priori estimate (4.12) fails.

B) If u>0,p>1,u + 1/p<0 the existence theorem 4.1 does not hold.
Indeed, let B = (0, 7) x(0,2) and ¢ the function considered above. We define
W(w, y) = sinwh(y)p(2 —y)

where % is the function of section 2.

Notice that % e 0°(R2),% = 0 on TU E, @,(x,0) = 0 and moreover Wz e C°(R?) N
N I*(R).

Let us show that there is no function « € X? (R), « + 1/p<0, such that Wy =
= Wu. In fact, if there were such a function % we would have that

loc

v=u—ueWi(RUTUE), y“f]v,,{ dr -0 asy—0
0

and Wy = 0. Thus ve CYR)N R U T'VU E) and further, by the uniqueness the-
orem 1.1, we would have = %. On the other hand, we have

fﬂy%‘am]” dw dy = + oo,
B

so that # does not belong to Xi’,’;o(R). Contradiction. ||
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