
On Approximation by Operator Semigroups of  a General Type (*). 

E. GS~T,Ic~ - D. ] ?o~zE~  (Aachen, West Germany) (**) 

S u m m a r y .  - For operator semig~'oups o] class (Co) on a Banach space X it is welt know,~ that 
the saturation class can be characterized as the ~'elative completion with respect to X o] the 
domain o] the in]initesimal generator. This remains true ]or strongly measurable semigroups 
{T(t), t > 0} having a closed in]initesimal operator A o, but i t  becomes lapse i] A o is non- 
closed. We prove that a characterization is give~ by ]lAoT(t)]]I-~ 0(1), t -> 0 + ]or a ]airty 
general class o] semigroups, including certain particular semigroups which belo~g to Oharu's 
class (C(1)), or are o] growth order less than one. 

O. - I n t r o d u c t i o n .  

The purpose of this paper is to investigate saturat ion classes of semigroups of 
a general type, including semigroups of Oh~ru's classes (C(k)) ([10; p. 250]), which 
are not  necessarily Abel summable. Semigronps of class (C(~.)) are met  e.g. in con- 
nection with generalizations of continuous and discrete Trotter  type  theorems (see 
[13], [7]). 

In  the most simple case of a (Co)-semigroup on a Banach space X with norm 
iI" H, i t  is well-known tha t  the saturat ion order is always 6(t) (see [2; Thin. 2.1.2]) 
and the saturat ion class S({T( t ) } ) ,  defined by 

S({T(t)}) = { leX; ']r(t)l--/ll = e(t), t-~0 + } ,  

can be characterized by (see [1]) 

(o.1) s({z(t)}) = D(~'~y. 

Here A denotes the infinitesimal generator of the semigroup, D(A) its domMn, 
equipped with the graph norm H" ]]~(~), and D(A~) x the relative completion of D(A) 
with respect to X, defined by 

(0.2) P(~-~) x =- { ] e X ;  3{],} cD(A)  with li],II~(~)= (9(1), H[--][[ = ~(1), n --~ c<)}. 

In  more general classes of semigroups, which will be investigated here, the 
infinitesimal operator Ao is no longer closed, i.e. Ao does not  coincide with the infi- 
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uitesimal generator A, the closure of Ao (cf. [8; pp. 306, 344] for the basic defini- 
tions). So D(~o~)~ and D(A--'--~ can be considered as the first t~o  candidates for a 
characterization of S({T(t)}) then. t tere  we use the above definition of the relative 
completion of D(Ao), though D(Ao) is not  necessarily a Banach subspace of X, i.e. 

(0,3) 9(A0~"~) x { /6  X ;  3{/n} c D(i~) with l lA I I~ , )=  o(1), i l / n - / i l -  ~(~), ~ ~ oo~, 

where 11/]19(lo)= I]]l[ q- i]A/i] = [I/]ll)(x)for /~D(Ao).  Our first objective is to show 
tha t  neither of them is suited for this purpose (Theorem 1), a~ fact which makes a 
s tudy of such general semigroups interesting. In  particular, a precise description 
of when (0.1) holds or not  can be given in terms of the closedness of Ao. For counter- 
examples we use two particular semigToups, which belong to Oharu's class (C(~)), 
and have been considered in [7J. This will be section 1, 

In  section 2 we investigate ~ third candidate for characterizing S({T(t)}), i.e. 
the condition 

(0.4) I1AoT(t)/li = 0(1), t - ~ 0  q - .  

]?or (Co)-semigroups, (0.4) is a more or less triviM equivalence to ] ~ S({T(t)}), but  
for more general 8emigToup8, including semigronps of class (C(~:)), the fact  tha t  this 
equivalence remains valid appears to be new and harder to prove. For reflexive 
spaces X, we first prove Theorem 2, which reduces the proof of the equivalence 
to the verification of several conditions, the crucial one of which is (b). For non- 
reflexive spaces we have a less complete result (Theorem 3), which, however, suffices 
to t reat  the periodic example mentioned in section 1. 

Applications of these results to the particular semigroups of section 1 will be 
considered in section 3. 

1, - Saturation, D(Ao), D(A), and their relative completions. 

Let  X be a (complex) :Banach space with norm ]]" ]I, [X] the space of bounded 
linear operators on X into X, and {T(t), t > 0} a strongly measurable semigroup 
in X. Moreover, let Xo = [JT(t)(X), let ~o be the type of the semigToup and 

t > 0  

Z =  ( ]eX;  IlT(t)]--]]l = ~(1), t - + 0  +}  its continuity set. By ~o(i) we denote 
the Laplace t ransform of T(t)~ i.e., for i e C and ] e X 

(1.1) 
co 

Ro(t) / = f e-~T(t) / dt , 
0 

whenever the integral exists as a Boehner integral. I f  l~e (t) > ~o then Z c  D(Ro(i)). 
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The semigroup is supposed to satisiy the following conditions ([10; p. 249]) 

(c.z) 

(c.2)  

(c.3) 

there is an o~ > (oo such that there exists an opera~tor R(~) e [X] for all i 
with Re (,l) > co~ ~nd ~(~)]x. =/~o(~l)]x., 

if /~(i)] = 0 for J% > ~o~, then / =  0. 

Denoting by Ao the infinitesimal operator of the semigroup, conditions (C.1)-(C.3) 
imply the clos~bility of Ao ~nd hence the existence of the infinitesimal generator A. 
If 1 e C, Re (i) > o~, i belongs to the resolvent set 9(A), nnd, denoting by/~(),, A) 
the resolvent operator of A ~t ~l, one has /~(i) = / ~ ( i ,  A) ([10; Lemm~ 6.2]). ~ore-  
over, property (i)o will be used, i.e. ([8; p. 322]) 

1 

(i)~ fllm(t)/li d t < ~ , <  o% v / e x .  
0 

The class of semigroups with properties (C.1)-(C.3) ~nd (i)o eontMns, for exampl% 
the classes of semigroups of growth order ~ for r [0, 1) (see [11], [15], [14], [6]). 

For the proof of Theorem i we need two simple lemm~s, the proofs of which will 
be omitted (concerning Lemma 2 cf. [1~; Thin. 3]). 

L]~)~A 1. - Let {T(t), t >  O} be a strongly measurable semigroup satis]ying 
(C.1)-(C.3) and (i)o. Then t~o(,~)-~ _~(~t, A) /or a~t ). with t~e (~) > o~. 

Defining C(t) by 
t 

0 

for t > 0, / e  X, one has C(t)e  IX] under the assumptions of Lemma 1. Moreover, 

LE~i~A 2. - Let {T(t), t > 0} be as in Lemma 1. Then Ao is closed i] and only 
i/ [ ] c ( t ) / - / [ ]  = ~(1), t - ~ 0 +  /or all / e X .  

TttEO~E)[ 1. - Let (T(t) ,  t >  0} be a strongly measurable semigroup satis]ying 
(C.1)-(C.3) and (i)o. Then the following assertions hold: 

(a) I /  Ao is closed,, i.e. Ao = A,  

s({m(t)}) = 1)(A)X. 

I n  particular, i/ X is reflexive, 

~({~'(t))) = D(A). 
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(b) I] Ao is non-closed 

D(Ao) 
C 

D(A,)XcD(A) x �9 
e c D(X) c 

In  particular, i/  X is re]lexive, 

D(Ao) c S({T(t)}) cr D(A) . 

(c) Moreover, there exist semigroups {T(t), t > 0} and spaces X /or which 

and, in case X is reflexive, there still exist semigroups for which D(Ao) cr S({T(t)}). 

R~,~A~X 1. - P a r t  (a) of the  t h e o r e m  is wel l -known in case T(t) fo rms  a (Co)- 

semigroup.  Then  (C.1)-(C.3) and  (i)o are  obvious ly  satisfied, a.nd the  resu l t  is due  

to  B ~ E ~ s  [1]. 

P ~ o o s .  - (a) L e t  l i T ( t ) / - / ] [  = 0(t), t -~ 0 + .  T hen  ] e Z and  thus  C(t) /eD(A) 
and  A C ( t ) / =  t-~(T(t)]--]) for  all t >  0. Choosing f~ = C(n-~)/ in (0.2), i t  follows 

t h a t  I i / , - / [ J  = ~(1) and  11/,~]19(~)= e(1),  n ~ ,  t hus  ] e  D ~ ' ~  x. 
Conversely ,  a ssume t h a t  t he r e  is a sequence {]~} c D(A) such t h a t  '~]/,~!]D(.~)= 

= e ( 1 ) a n d  IIh-/] l  = (1)as Since 

D(Ao) = D(A) and  ~om+ t-~(T(t)g-- g) = Ag 

for  each  g e D(A) the  u n i f o r m  boundedness  pr inciple  yields cons tan ts  M and  to 
such t h a t  Ht-l(:T(t)g- g)][ < M[]g]ID(A) for  each g e D ( A )  and  0 < t<to. Set t ing  g = f~, 
t he re  is a cons t an t  l"g' such t h a t  t -I  ]l T(t) ]~-- ]~ I[ < M' u n i f o r m l y  in n e N and  t e (0, to]. 
L e t t i n g  n --> oo i t  follows t h a t  ][T(t)]--][! = 6(t), t -->0 +.  

I f  X is ref lexive,  D(A) is reflexiv% too,  and  D ' ~  z = D(A). 

(b) (i) The  inclusions D(Ao) ~ D(A), D(Ao) c S({T(t)}), and  D(Ao~) x c D---~ ~ are  

tr iviM. 

(ii) D(A)cD(Ao~) x. Let ] eD(A). Since A is the  closure of Ao t he r e  is a 
sequence  {].} c D(Ao) such t h a t  / .  -~ ] and  Ao], -+ A/  as n--> oo. The  ex is tence  of 

the  l a t t e r  l imi t  implies ]lA0/~ll = 0(1), n -*  0% and  thus  ] e D ~ o )  x b y  (0.3). 

(iii) D(A)r  S({T(t)}):  We show t h a t  t he r e  exists  an ]o e D(A)\S({T(t)}) .  
Since A0 is non-closed,  L e m m a  2 furn ishes  an  h0 e X such t h a t  

l im sup ][ C(t) ho-- ho,] > O . 
t-*O+ 
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Bu t  for elements ] of the  dense set Xo we have il C(t) / - -  ] I] ~ 0, t -+ 0 -~, and thus 
the Banach-Steinha~s theorem and the uniform boundedness principle yield a go~ X 
such tha t  lim0s+u p lIC(t)go]] = @ co. I f  O < t < l  and )~>0,  it follows b y  (i)o tha t  

t t 

0 0 1 

>/]lc(t)g0l]-   fllr(s)g0II IIc(t)goll- 
0 

Choosing 2 >  max{0,  col}, 2~ belongs to ~(A), so tha t  ]o = / ~ ( ) ,  A)go is defined 
and belongs to D(A) .  Lemma 1 implies ]o = Ro(2)go, thus 

t 

lira sup t -~ II T(t) ]o - -  fo I[ >~ lim sup t -~ e ;'~ e -~  2(s) go ds = 
t--->0 + t--->0 + ( t 

0 

which yields the  assertion. 

(iv) S({T(t)}) ~ D(Ao"~)z: The inclusion S((T(t)}) c D(Ao'~) x follows as in the 
proof of par t  (a). Assuming S({/~(t)}) z D(Ao~)x, one obtains b y  (if) D(A)  c S({T(t)}), 
a contradiction to (iii). In  order to prove (e) we ~ase two examples of [7] and S. G. 
KICEIN [9] (cf. also 8U~OVCItI [12]). 

EXA~eLE I. - We choose X ~ C2~ , the space of continuous 2z-periodic func- 
tions with maximum-norm,  and T(t)--~ T~(t), where 

(1.3) T~(t)(]; x) : ~ e-tV(17r e ik~ 
k e Z  

for ] 6 02~ and t > 0. Here  Z denotes the set of integers, ]^(k) the k-th Fourier 
coefficient of the func t ion / ,  and 9 a function of class [21 defined as follows. Denoting 
by  C~(0, co) the space of functions with continuous r-th derivative on (0~ co) we 
set (ef. [4], [5]) 

(1.4) 

Do = {9; 9:  [ 0 , ~ ) - > R ,  9 ( 0 ) =  1, 9 e C1(0, c~), 9 ' ( x ) > 0  

V x > O  ~nd l i m p ( x ) : + o o } ,  
~--> -1- r 

~21 = {9 ~ ~9o; 9(x) = e ~(*), ~ ~ C~(O, oo), ~xo > 0  

with y"(x)<O, y'(x)>~O Vx>xo and l imsup  ly"(x)l(y'(x))-: : 0 } .  
X--> -]- oo 

:For each 9 e ~91, the  semigroup {T~(t), t > 0} satisfies (0.1)-(C.3) and (i)0. Moreover 
we want  to show tha t  

(1.5) 9(A ,o) r 
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where A~, o denotes the infinitesimal operator and A~ the infinitesimal generator 
with domain D(A~)= {]e C~,~; 3geC.a~ with q0(lk[)/^(k)= g^(l~), W~eZ). To prove 
(1.5) we take 

Since ~(Ikl)fi(~)= i(2~)-1, w e~{0}, io does not belong to D(A~), nor to D(A~.o). 
In  view of part  (b), (1.5) follows if we show that  l[T~(t)io--]oll = ~(t) as t --~0 ~ .  
For this purpose we define 

Ild<.~ r 7P 1)] 

for ] ~ C~= and ~ > O, and obtain by [16; p. 61] and [4; Lemma 2] 

(1.7) [[~(e+l)(R~,d~176 o<~><~TKZ +>Z 176(k; < 
l sinkxl._FT(~ + 1 )  1 

On the other hand, one has 

(1.8) 

< ~(~T~)/- ~T~)j~ + 

q- I e x p  ~o(@ ) ~ : I l q " I ~ ,  

say. Since the function x-lqo(x) is increasing for x large enough, we have 

) 

:By [4; Jaemma 2], 
1 1 < :~ 1 

Hence, one has by (1.7) and (1.8) 

- - 0  1 

Setting t -~=  ~o(~ @ 1), the proof of (1.5) is complete. 

~ -+oo .  
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EX~GPLS I I .  - We choose X : L 2 =  L~(R) xL~(R) with elements ] = (]1,/~) 
1~ ~/~ where L~(R) has the usual no rm 

o o  

llt, il~ = tt l(x) i  =ex �9 

- - o o  

As ~ semigroup T(t) we take T~(t) with 2 < q < 4, which is defined by  

(1.9) [T ' ( t ) / ] ^ ( v )  = e - '~ ] \ t ; ( v ) ] '  

] = (f~,/2) e L 2, v ~ R, where ]^(v) denotes the Fourier  t r ans form of ] (see S. G. 

Kt~EI~ [9], [12], and [7] for integer values of q). The infinitesimal generator  exists 
and is given by  

(].10) [_p~ 1]  ^ (v )  = \ -  ~ t ;  (v) ' 

f ~D(Pq), v e R, D(Pq) consisting of those / e L  ~ for which the r ight-hand side 
belongs to L ~. Then (C,1)-(C.3) and (i)o are satisfied, and we claim tha t  

(1.11) 

where Pq,o is the infinitesimal operator.  In  view of (b) we only have to prove tha t  
the first inclusion is proper.  As a counterexample we take ]~ e L 2 defined b y  

) - (2 + s)~ 
(1.12) ]:(~) =\v-(~+~)] i~ v> l ,  t~(~)= o if v < : l ,  e > - - 3 / 2  

and show tha t  

(1.13) ]112 ~ D(P,,o) and ]1/2 e S({Tq(t)}). 

Indeed,  assuming ilI~eD(P~,o), i.e. ]lt-l(T~(t)/lz2--ili2)-P,,&,II tends to zero as 
t -+ 0 4 ,  implies 

o o  

f e-t~'--l__l ~ 1 , 1 __v q-1 1 S 
~--> 0 + ~q-k 1/ 

1 

lf l ,  l- -o ) ex 
= t--->lim0+ g J \  x e -'~ - - > 1 ] / > 0 , x  

t 

dv 
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a contradiction. Thus /x/26 D(P~,o). $ioreover,  there  is a constant  M such tha t  

o o  

To(t) t ~ -  ]~2 < i + + - - -  

t 
c o  

w x  
z ~ J ~  x +e-~)y=r t-~0+. 

t 

This completes the  proof of Theorem 1. 
In  connection with Example  I I  we fur ther  note  tha t  f~ ~ D(P~) iff e > 5 / 2 -  q. 

Moreover, {T~(t), t > 0} is of growth order ~ = q/2 -- 1. 

2 . -  A characterization of S({/~(t)}). 

For  (Co)-semigroups with T ( t ) ( X ) c  D(Ao) for each t > 0 the character izat ion 

(2.1) ] e S({T(t)}) <=> ]IAoT(t)]I[ = (9(1), t -+ 0 + 

holds (see [2; Prop.  2.3.1]). In  comparison with the condition ] ~ D(Ao"-~) x (cf. (0.3)), 
the  condition on the r ight  of (2.1) means tha t  instead of an  a rb i t ra ry  sequence 
{]~} c D(Ao) only the special sequences {/~(t~)]} with t~ -> 0 are admit ted.  Our pur- 
pose here  is to show tha t  this character izat ion remains valid in a more general  

context .  
I f  X is reflexive the following theorem generalizes (2.1) to semigroups with non- 

dosed  infinitesimal operator  Ao. 

Tm~o~E~ 2. - Eel X be a reflexive Banach space and {/'(t), t > 0} a strongly 
measurable semigroup with in]initesimal operator Ao and T(t ) (X)  c D(Ao) ]or each 
t > O. Let {T(t)~ t >  0} satis]y (i)o as well as the /otlowing conditions: 

(a) the in]initesima~ generator A exists: 

(b) HC(t)gH = (9(1)7 t -->0 + ]or g ~ X  implies I]T(t)g[] = (9(1), t - ~ 0 + .  

For ] ~ Z the 1ollowing are equivalent: 

(2.2) 11 z(t)  1 -  /tl = (9(t), t -+ o + ,  

(2.3) []Ao~(t)fll = (9(1), t ~ o + .  

P~oo~'. - Le t  HAoT(t)I[] ----- (9(1), t - + 0  + .  By  the strong cont inui ty  of the semi- 

group one has for each s > 0 
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t 

Thus also A o T ( ' ) f  is strongly continuous on (0, ~ ) ,  and, since fIlAoT(~)flld~= 
0 

= (9(t) as t - ->O+, A o T ( ' ) f  is also Boehner integrable on (O,t) for t > 0 .  Using 
this, (a), and [8; Thin. 3.7.12], (2.2) follows by  

t 

J!t-~(T(t) / - / )  II = []AoC(t)/II = [IaC(t)/li = t - ~ f A z ( ~ ) ] a ~  = 
t " 0 t 

= t-'fAo~(~)ld~ <t-lfllAoT(u)fI1 d u =  o(1), t ~ o  §  
0 0 

Conversely, let I1T(t)/-/11----(9(t), t->O + .  Since X is reflexive the weak com- 
pactness theorem furnishes wea.k convergence for a positive null sequence {t~}, i.e. 
there is a g e X  such tha t  

(2.5) t*{Z(t~t  - t )  t~ ---> ]*(g) , n --> oo 

for each ]* e X*, or, 

](g), n o o ,  

so tha t  we also have weak convergence of the sequence (T(t ) t~- l (T(t . ) ] -  ])} to T(t)g. 
Since T(t)fe_D(Ao) for t > 0  we obtain 

.. . , [~(tn)--I~ 
]*(T(t)g) = n m  I | ~ p T ( t ) ] =  ]*(AoT(t)]) 

n--> oo \ n l 

for each ]* ~ X*, an4 it follows tha t  

(2.6) T(t) g = Ao T( t ) /  , Vt > O . 

The strong measurabil i ty of AoT( ' ) ]  follows as in (2.4), and IIAoT(.)]]I is Le- 
besgue integrable on (0, t) by  (2.6) and (i)0 , thus AoT( ' ) ]  is ]3ochner integrable on 
(0, t). As above one has 

t t 

t - , (T(t)  I - t) = Ao C(t) t = t-~fAo T(t) ! d~ = t-:(r(~,)_ g d~ C(t) g. 
0 0 

Thus I]C(t)glt = 0(1), t - + 0 +  and by (b) 

IlAoT(t)] n = IIT(t)gH =- o(1) , t ~ o  + ,  

an4 the proof is complete. 

8 - A n n a l i  d t  Matemattca 
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Rw~_AR~: 2. - If~ in particular, the semigroup belongs to (Co), conditions (i)o, 
(a), and (b) are satisfied and Theorem 2 reduces to [2; Prop. 2.3.1] in the case of 

a reflexive space X. 
For non-reflexive spaces we can show tha t  characterization (2.1) remains valid~ 

provided tha t  the space X can be continuously embedded in some space Y and the 
semigroup (T(t), t > 0} can be extended in the following way. We say the Banach 

space X satisfies condition 

(E,) if there are a :Banach Space Y and a separable norme4 linear space Z 
such tha t  

(a) X c  :g and  IIgHz= ]Ig]]r for all g e X ,  

(b) there exists an isometric and isomorphic mapping K from Y to Z*, 

the dual of Z. 

A semigroup {T(t), t > 0} on a Banach space satisfying (E,) is said to satisfy con- 

dition 

(Ep) if (a) T( t )e  [X] can be extended to some T(t)~ [Y] for t > 0, 

(b) for each t > 0 there is an S(t) ~ [Z] whose dual operator S*(t) satis- 

fies S*(t)K = K~(t). 

T~=[EORE~ 3 . -  Let X be a Banach space satis/ying (E,) and let {T(t)~ t >  0} 
be a strongly measurable semigroup with in/initesimal operator Ao and T(t)(X)c 
c D(Ao), Vt > 0 which satis/ies (Ep). 

Moreover~ we suppose 

(a) there exists the in/initesimal generator A o/ {T(t), t >  0} on X,  

(b) {T(t), t > 0} is strongly measurable and (i)o is valid /or T(t) on ~, i.e. 
t 

C(t )g=t-~f~(u)gdu is welt de/fried for t>O,  ge  Y, 
0 

(e) I[0(t)gll = 0(:1), t -->0 @ /or ge  ~ implies ll~(t)gll = (~(1), t -+0 @. 

Then (2.2) and (2.3) are equivalent /or each / e  Z. 

1)~ooF. - The Proof of  the implication (2.3~ =~{2.2) i s th  e same as i n  Theorem 2. 
Conversely, let ~ ( t )  be  the operator from g* to g* associated to ~(t) by  

(2.7) ~ ( t ) :  = K ~ ( t )  K -1 , t > o .  

]~y (El) (b), [I~x(t) iI~z,~ = lIT( t)]lrr~ and,  by  (E~), there  is an  S(t) e [Z] such tha t  

(2.S) ~*(0 = ~ ( t ) ,  t > 0 .  
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]~y (2.2)and (E~) one h~s l lK ( t - ' (m( t ) / - i ) ) l l z .  = (P(~), t - ->O+.  The weak * com- 
pactness theorem yields ~ positive mill sequence {t,} gnd a ~* 6 Z* such tha t  

(2.9) W Z. 
~ - ~ L  t t~ 

Defining g:=-K-~G*e  :Y we obtain for t > 0  and h ~ Z  
. : . . :  . 

[K(T(t)g)](h) = [S*(t)G*](h)= G*(S(t)h) ---- lira [K/'T!t")f~1]] (z(t)~) 
. . . .  : . . :  ~-->~.L: k . t :  . l J  

and thus 

: - + : [  \ l i r a  [K[ T(t 'u- I t .  T(t)])] (h)= I-K(Ao T(t) ])] (h) 

(2.1o) ~ ( t )  g = A o m ( t ) / ,  t > 0 .  

In  particular,  ~(t)g ~ X for t > 0. 5'Ioreovqr, T(.  )y is strongly measm'able by  (b) 
and, in ~iew of (i)o ~ Bochner  integrable on (0, t), t<:l,  B y  (2.10) one has 

t t 

0 0 

for t >  0. Condition (2.2) implies ]lO(t)g]l = e(1), t-->0 d- and (c) yields l]T(t)g!l = 
= ~7(1), t--->0 + ,  so that ,  b y  (2.10), 

l[Aom(t)/II = ]l~(t)glE = o ( 1 ) ,  t ~ 0  + .  

RE~ARK 3. -- If, in acldition~ X is reflexive and separab le - the  assumptions of 
Theorem 3 reduce to those of Theorem 2, for one ma y  choose Y =  ~ , : :Z  ~ X* 
and ~ ( t ) =  :T(t), S ( t )=-T*( t )  i n  order to verify (E0 and (E~_). Indeed, X** is 
separable and so is :X*,  and :fb~::X the:-ca.Tlonical m~pping Can:be chosen. 

3 .  - T w o  a p p l i c a t i o n s .  - :  " . . . .  

In  this section:=~e sl /o~ t ~ . t - ~ h e  results-of:  section 2 ca n b e  applied t o  the 
examples 0f sect ion 1. 

EXA~I-PLE I. -- We shall use Theorem 3 to prove tha t  (2.1) remains true for 
X = C2~ and T(t) = ~Tr cf. (1~3), where ~=is an ~rbi tr~ry element of' t91'(cf. (1.4)). 
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In order to verify (E~) we choose Y-----L~ and Z -~  JS~. with norms 

Xg 

tlltl~o = ess sup ]l(x)l and Ilih = (2=)-lfll(x)ldx 

respectively. 
Indeed, (a) holds trivially and the congruence of Z ~  with the dual of Z ~  is 

also clear in view of the I~iesz representation theorem, where 

(K~)~= (~)-~f~(~)~(~0d~ for ~ : ,  ~ ; L .  
- - g  

Hence (E l )  is satisfied. 
I~et ~ e/2~. Since 

h-l(e -~'~(l~l)- 1) e-t~(l~l)]^(k) d ~ 

tends to 

as h -+ 0 4- uniformly in x e [-- z, ~) for ~ > 0, / e C~, one has T~(t)(O~:,) c D(A~.o) , 
V t >  O. 

Let ~ ( t )  denote the trivial extension of T~(t) Irom C~ to )5~. Choosing 

(2.11) Sr x) = ~ o-te(t~l)h^ (k) e ~kx 
k e g  

*t for h e Z ~ , ,  t >  O, one has K~v( t )K -~ ~ Sv( ). Hence (T~(t), t >  0} satisfies (E.) 
and, (a) and (b) being trivial, it remuins to verify condition (e). 

Setting 

lk[<~ 

for g e Z2~ , ~ > 0, and t -1 ~ ~(~ 4- 1), and, denoting by C~(t) and _~,q the trivial 
extensions o~ C~(t) and .R~,~, we have 

(2.12) 

4- II /~ ,~-  2~(t)]TE~ �9 

In  order to prove that ][ U~,q--i~v,~Ilcr, T~ : ~(1), ~-+ co we consider the associated 
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kernels and set },(~) : log ~(~) : 

]~ v(Ikl) ~ +  ~; ~ ( e + l ) e ~  ~ 

v'(~) 

i,ci-~ov(~ + 1) iI~>o v(lkl) iI 
- ~ ' ( e )  

: I k l < q  v'(Q) 

say. By an application of [3; Lemma 2.3(b)] the uniform boundedness of I~ fol- 
lows immediately.  A repeated application of Abel's t ransformation yields the same 
for 12. Similarly, the uniform boundedness of the other terms of (2.12) follows. 
Thus the hypotheses of Theorem 3 are satisfied, so that ,  together with (1.5) and 
Theorem 1, one obtains 

D(A~,o) c S({T~(t)}) = {] ~ Cen; i[Ar = 0(1), t -+0 -}-} 

L ~ ~D(A~)Gn = { I t  C~n; 3 g e  o.n with ~(lkl)t^(k) = g^(k) w~z}. 

Analogous results are valid for (Tr t > 0} in the space X ---- L~n. 

EX,~fPLE I I .  - Here we apply Theorem 2. Since 

e - a v ~ -  1 

[ i G(~,2 G(t) f (v) = 
- -  {e-'~ + t~~176 + ,a~-"e-'~ 

e-'~ le-'~ ] 

for ] e L% t > 0, (cf. (1.9)), one has T~(t)(L9 r D(Pq,o) for each t > 0. Moreover, 
{T~(t), t > 0} is strongly measurable and (i)o is satisfied. For  g e L 2 we have, for 
2 < q < 4 ,  

II To(t)a]l = ~ ( 1 +  ]It~e-',=g;(v) l[~), t ~ o + ,  

[1--  e -~'  ) 
\ tv, e-,v~ r  IlCo(t)gll), 

t 

where Co(t) g : =  t - l fTq(u)g du for t > O. Defining 
0 

[E~(t) h]A(v) = 

t - + O @ ,  

tv  2 e-tv~ 

(tv2)-i ( 1 -  e-'~') - -  e-'~' h^(v) 
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for  h e L~(R), t > O, v e R a nd  obse rv ing  t h a t  ] f~(t) h[~,(n)r<2~ Vt > 0~ we ob ta in  

llT~(t)g[I-= 0 1 + ~  \ )-v~ e -t~: v~s~gj(v) .o = (~(1-~ IlC~(t)g]l) 

a:s t ~ 0 ~ ,  which  is condi t ion  (b) of Theo rem 2. Th~s~ b y  Theo rem 2 und  (1.11), 

we ob ta in  for 2 < q < 4 

~icknowledgement~The au thors  w0:uld like to t h ~ n k  R. d. NEssEr~ for  va luab le  

discussions in connec t ion  wi th  Theo rem 3. 
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