On Approximation by Operator Semigroups of a General Type (%)

E. GOorLicHE - D. PoNTZEN {Aachen, West Germany) (**)

Summary. — For operator semigroups of class (Cy) on a Banach space X it is well known that
the saturation class can be characterized as the relative completion with respect to X of the
domain of the infinitesimal generator. This remains true for strongly measurable semigroups
{T1), t > 0} having a closed infinitesimal operator Ay, but it becomes false if A, is non-
closed. We prove that a characterization is given by |4 L) fl= 0(1), t -0 + for a fairly
general class of semigroups, including certain particular semigroups which belong to Oharu’s
class (Cy,), or are of growth order less than one.

0. - Introduction.

The purpose of this paper is to investigate saturation classes of semigroups of
a general type, including semigroups of Oharw’s classes (Cuw) ([10; p. 250]), which
are not necessarily Abel summable. Semigroups of class (Cy) are met e.g. in con-
nection with generalizations of continuous and discrete Trotter type theorems (see
[13, [7])-

In the most simple case of a (C,)-semigroup on a Banach space X with norm
I+, it is well-known that the saturation order is always 0(t) (see [2; Thm. 2.1.2])
and the saturation class S({I(?)}), defined by

S({TW}) = {fe X; |TWF—1] = 0@), t >0 4},
can be characterized by (see [1])
(0.1) S({T(1)}) = DA .

Here A denotes the infinitesimal generator of the semigroup, D(4) its domain,

equipped with the graph norm |- [, and D(A4)* the relative completion of D(A)
with respeet to X, defined by

(0.2) DA = {feX; 3{fo} cD(4) With [fu]lswy = O(1), [fa—F] = 2(1), n — o0} .

In more general classes of semigroups, which will be investigated here, the
infinitesimal operator A, is no longer closed, i.e. 4, does not coincide with the infi-
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nitesimal generator A, the closure of A4, (cf. [8; pp. 306, 344] for the basic defini-
tions). So D(4)* and D(A)* can be considered as the first two candidates for a
characterization of S({Z(f)}) then. Here we use the above definition of the relative

completion of D(4,), though D(4,) is not necessarily a Banach subspace of X, i.e.
(0.3)  D(4,)* = {fGX; a{fn} cD(4,) with [|fa]suy = O1), [lfa—fl = (1), n “'>OO} ’

where [f|p,y= If] + [Af] = [f|pw) for e D(4,). Our first objective is to show
that neither of them is suited for this purpose (Theorem 1), a fact which makes a
study of such general semigroups interesting. In particular, a precise description
of when (0.1) holds or not can be given in terms of the closedness of 4,. For counter-
examples we use two particular semigroups, which belong to Oharu’s class (Cy),
and have been considered in [7]. This will be section 1.

In section 2 we investigate a third candidate for characterizing S({Z(t)}), i.e.
the condition

(0.4) | [4,T(W)f] = 01), 10+

For (Cy)-semigroups, (0.4) is a more or less trivial equivalence to f e S({T(t)}), but
for more general semigroups, including semigroups of class (O,), the fact that this
equivalence remains valid appears to be new and harder to prove. For reflexive
spaces X, we first prove Theorem 2, which reduces the proof of the equivalence
to the verification of several conditions, the crucial one of which iz (4). For non-
reflexive spaces we have a less complete result (Theorem 3), which, however, suffices
to treat the periodic example mentioned in section 1. ’

Applications of these results to the particular semigroups of section 1 will be
congidered in section 3.

1. — Saturation, D(4,), D(4), and their relative completions.

Let X be a (complex) Banach space with norm |-], [X] the space of bounded
linear operators on X into X, and {I'(?), > 0} a strongly measurable semigroup
in X. Moreover, let X, = |JT()(X), let w, be the type of the semigroup and

t>0
2={feX; [T@)f—1] =2(1),t—>0 -} its continuity set. By Ry(A) we denote
the Laplace transform of 7'(3), i.e., for AeC and feX

(1.1) R(f =[e T at,
]

whenever the integral exists as a Bochner integral. If Re (1) > w, then 2'c D(Ry(1))-
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The semigroup is supposed to satisfy the following conditions ([10; p. 249))

1) X,=2X,
(C.2) there iz an o, > w, such that there exists an operator R(4) € [X] for all 4
with Re (1) > w, and R(d); = By (A)ls,,
(C.3) it R(A)f=10 for A> w;, then f=0.
Denoting by 4, the infinitesimal operator of the semigroup, conditions (C.1)-(C.3)
imply the closability of 4, and hence the existence of the infinitesimal generator A.
If 1eC, Re (1) > w,;, A belongs to the resolvent set ¢(4), and, denoting by R(4, 4)

the resolvent operator of 4 at A, one has R(1) = R(4, 4) ([10; Lemma 6.2]). More-
over, property (i), will be used, i.e. ([8; p. 322])

(i) fui’(t) fldt< M, < oo, Vi€ X.

The class of semigroups with properties (C.1)-(C.3) and (i), contains, for example,
the classes of semigroups of growth order o for axe[0,1) (see [11], [15], [14], [61).

For the proof of Theorem 1 we need two simple lemmas, the proofs of which will
be omitted (concerning Lemma 2 cf. [14; Thm. 3]).

LeMMA 1. - Let {T(t),t>0} be a strongly measurable semigroup satisfying
(0.1)-(C.3) and (i)y. Then Ro(A) = R(4, 4) for all } with Re (i) > o,.

Defining C(f) by
3

(1.2) | o=t f Tw)fdu

0

for £> 0, fe X, one hag C(t) € [X] under the assumptions of Lemma 1. Moreover,

Lemma 2. — Let {T(t), ¢ > 0} be as in Lemma 1. Then A, is closed if and only
if 10 f—F]=o(1), t—>0-+ for all fe X.

TueorEM 1. — Let {I(t),t> 0} be a strongly measurable semigroup satisfying
(C.1)-(C.3) and (i),. Then the following assertions hold:

(a) If A, is closed,, i.e. A;—= A,
S({T#)}) = D(A)*.
In particular, if X is reflexive,

S({T(t)}) = D(4) .
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(8) If A, is non-closed

D) . & 7 D{A)*cDA)N.
Z Dl4) ©

In particular, if X is reflexive,
D(4e) c S({T(1)}) G D(4) .
(¢) Moreover, there exist semigroups {T(1), > 0} and spaces X for which
D(d) § S{ZGY £ D(A),
and, n :case X is reflowive, there still ewist semigroups for which D(4,) G S({T()})-

REMARK 1. — Part (a) of the theorem is well-known in case T'(?) forms a (0g}-
semigroup. Then (C.1)-(0.3) and (i), are obviously satizfied, and the result is due
to BERENS [1].

ProOF. — (a) Let |T(¢)f — f| = O(t), ¢ = 0 . Then fe X and thus O(t)f € D(4)
and AC()f=t*(T(@)f~—]) for all t>0. Choosing f,= C(n~Y)f in (0.2), it follows
that [fa—f] = o(1) and [f,]py= O(1), n — oo, thus fe D(A)~.

Conversely, assume that there is a sequence {f,} c D(4) such that [f, |5y =
= 0(1) and |f.—f] =o(1) a8 n — co. Bince

D(4,)=D(4) and lim(T(t)g—g) = Ag

for each ge D(A) the uniform boundedness principle yields constants M and ¢,
such that [=1(Z(t)g — g) | < M||g|p,, for each ge D(A) and 0 <i<?,. Setting g=/n,
there is a constant M’ such that t-1| T'()fn— f.| <M’ uniformly in ne N and t€(0, f,].
Letting » — oo it follows that |ZT(t)f—f| = (1), t —0 .

It X is reflexive, D(4) is reflexive, too, and m: = D(4).

(b) (i) The inclusions D(4,) € D(4), D(4,)c S({T(t)}), and D(4,)* c D(A)* are
trivial.

(ii) D(A) c D(4,)*. Let fe D(A). Since A is the closure of A, there is a
sequence {f,} c D(4,) such that f, -7 and A,f, —~ Af as n— oo. The existence of

o ———

the latter limit implies |A4,f,] = O(1), » — oo, and thus € D(4,)* by (0.3).

(iii) D(A) ¢ S({T(t)}): We show that there exists an f, e DANSHT®)}).
Bince A, is non-closed, Lemma 2 furnishes an k,€ X such that

Tim sup | C(8) ko — ho] >0 .
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But for elements f of the dense set X, we have |O(t)f—f] =0, t -0 -, and thus
the Banach-Steinhaus theorem and the uniform boundedness principle yield a goe X
such that lig_l)osJPp [0@)go] = + oo. If 0<t<1 and 2>0, it follows by (i), that

>
1

> [0(0g0] — 2 1T()g0] ds> | (0]l — 231,

0

@ — e %) T(s)g, ds

oz 1o,
0

Choosing 4> max {0, w,}, 4 belongs to o(4), so that f,= R(1, A)g, is defined
and belongs to D(4). Lemma 1 implies f, = Ry(4)g,, thus

[
At 1
lim sup -2 T(t) fo — fo| > lim sup {t“ e“fe"“ T(s) gy ds — f(,} =+ oo,
>0+ >0+ t

which yields the assertion.

S({T(H}) ¢ D(A,)*: The inclusion S({T(t)}) c D(A)* follows as in the
proof of part (a). Assuming S({Z(t)}) = D(ZA,)*, one obtains by (i) D(4)c S({T®)}),
a contradiction to (iii). In order to prove (¢) we use two examples of {7] and S. G.
KrEIN [9] (cf. also SuNoUcHI [12]).

Exameir I. — We choose X = C,_, the space of continuous 2z-periodic func-
tions with maximum-norm, and T(f) = Tp(f), where

(1.3) O(f; ) = zg—ttp(lkl e

ke

for fe C,, and ¢>0. Here Z denotes the set of integers, f*(k) the k-th Fourier
coefficient of the function f, and ¢ a function of class £, defined as follows. Denoting

by C'(0, co) the space of functions with continuous #-th derivative on (0, co) we
set (cf. [4], [5])

Q= {<P3 @:[0,00) —~ R, ¢(0) =1, ¢ € 0}0,00), ¢'() >0
Vo >0 and lim g(z) = + oo},

r—>+ oo

1.4
D 0= ey gy = 09, ye 030, 00), 3,0

with o"(#) <0, y"(x)>0 Ya>u, and lim sup [y"(z)|(y'(2))% = 0} .

&—>+ oo

For each ¢ € £,, the semigroup {Ty(?), { > 0} satisfies (C.1)-(0.3) and (i), Moreover
we want to show that

(1.5) D(4,,0) G S({T,1}) ¢ D(4,),
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where A, , denotes the infinitesimal operator and A4, the infinitesimal generator
with domain D(4,) = {f€ Cp,; g€ C,, with ¢(|k}f"(k) = ¢"(k), Yk€Z;. To prove
(1.5) we take
i
f (-’L‘) — IE—1
’ kezz\{oﬂkfp(lkl)

Since ¢(|k]) fo(k) = i(2k)~!, YkeZ\{0}, f, does not belong to D(4y), nor to D(4, ).
In view of part (b), (1.5) follows if we show that |Tp(t)fo—fo] = O(f) as ¢ =0 .
For this purpose we define

k]) A
1.6 Roolf; @ ( a ) k) etk
(1.6) g.elf; @) Ué oo+ 1) (k)
for fe C,, and >0, and obtain by [16; p. 61] and [4; Lemma 2]
~ et plo +1)
1.7 1) — <
( ) “ Q + 'P:Qfﬂ f‘))h o<fil<e 2% kge k(P
sin ka 1) 1
< pHetl) 3 =W, eoo.
0t<e K o iZeplk)

On the other hand, one has

1
foah =15 (99(9 + 1)) '
olE) Y p(|k]) | et
0<[kl<e{exp( ¢(9+1)) 1+<P(Q-|—1)}27“P(|k]) *
ollR]) e |
|k|z>eeXp( <P(Q+1))2k‘P(|k]) Lot

say. Since the function w'¢(#) is increasing for » large enough, we have

p*([k]) 1 _ 1 M:@(_nl ) o0,
o<|%|:<9299 2o 4 1) 2[k[ep(|k]) 2(Q+1)0<%<e k oe+1) ° o

(1.8)

<

I, <

By [4; Lemma 2],
1 1 1
2 =S = O —00.
fi< g@fzktp( ) = nggtp(k) (q)(g +1))’ ¢

Hence, one has by (1.7) and (1.8)
7, =)< o () o= Bl
((e+l)° Tolgg 1) fo— Fre

Setting ¢t = ¢(¢ + 1), the proof of (1.5) is complete.

+ HR%efu —fs ” =

1
- @(fp(eJrl))’ g
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Exampif I1. - We choose X = L* = L*(R) x L*(R) with elements f = (f,, f,)

and norm [f] = ([£,]3 + [f.[3)"*, where L*(R) has the usual norm
= (L [ e pa)”
Hflllz—(\/%f ()] dw) )

Ag a semigroup T(1) we take T (t) with 2 < g < 4, which is defined by

e~ e\ (] (v)
(1.9) [T, ﬂA('D) = ( 0 e—to* ) (f;(v)) !

f = (f., fs) e L3, v€ R, where {"(v) denotes the Fourier transform of f (see S. G.
KeEIN [9], [12], and [7] for integer values of ¢). The infinitesimal generator exists
and is given by

— o fi(v) + v*fz (v)
(1'10) [Pdf]/\(’v) :(___/sz;(,v) )7

feD(P,), ve R, D(P,) congisting of those fe L? for which the right-hand side
belongs to L2, Then (C.1)-(C.3) and (i), are satisfied, and we claim that

(1.11) D(Pq,) G S({T(1)}) S D(P)

where P,, is the infinitesimal operator. In view of (b) we only have to prove that
the first inclusion is proper. As a counterexample we take f. € L? defined by

R () (2+¢€)
(1.12) f-(v) z(v—@“)) if o1, flo) =0 if v<l, e>—3)2

and show that
(1.13) f1/2¢D(Pq,o) and f1/2€S({Tq(t)}) .

Indeed, assuming fy,€ D(Pyy), i.6. [t7YTo(t)fyo— fuss) — Puofua] tends to zero as
t =0 -, implies

e"“”—l i . 1 pt 1 1 |2

0 = lim - " S
T '\/’U T e ,\/_ w8l v ety

t——>0J—

1____ — 2
= lim = f( ¢ _e—w>@>M>o,
t—>0+2 Z
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a contradiction. Thus fy, ¢ D(P,,). Moreover, there is a constant M such that

©o
e—tv

Ta(t)fllz—fllz iyt 2dw
ml—e‘“ _Ydz .
\MWQJJ( N e, oy

This completes the proof of Theorem 1.
In connection with Example IT we further note that fee D(P,) iff ¢ > 5/2 —g¢.
Moreover, {T,(t),t> 0} is of growth order o« = ¢/2 — 1.

2. — A characterization of S({T(1)}).

For (C,)-semigroups with T(t)(X) c D(4,) for each ¢ >0 the characterization
(2.1) feS({T@)}) < |4, T)f] = 011 t—0

holds (see [2; Prop. 2.3.1]). In comparison with the condition feD of (cf (0.3)),
the condition on the right of (2.1) means that instead of an arbitrary sequence
{fn} c D(A,) only the special sequences {T(t,) )f} with ¢, — 0 are admitted. Our pur-
pose here is to show that this characterization remains valid in a more general

context.
If X is reflexive the following theorem generalizes (2.1) to semigroups with non-

closed infinitesimal operator A,.

THEOREM 2. — Let X be a reflexive Banach space and {T'(t), 1> 0} a strongly
measurable semigroup with infinitesimal operator A, and T(E}X )cD (Ay) for each
t> 0. Let {I(t),1> 0} satisfy (i), as well as the following conditions:

(a) the infinitesimal generator A ewists,
) [C()g] = 0Q1), 10+ for ge X implies |T(t)g] = O(1), t >0+

For f e X the following are equivalent:

(2.2) T f—fl=0@#, t—-0+,
(2.3) 4, TR =0a), ¢—0+.

PROOF. — Leb |4, T(1)f] = O(1), ¢ —0 --. By the strong continuity of the semi-
group one has for each s> 0

(2.4)  [doTls + 1) — ATs;fll—lHT(ngh)-T(g)}AOT@)

, h—>04-.
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i
Thus also A4,7(-)f is strongly continnous on (0, o), and, since f JAeT(u)f] du =
[

= 0(t) as t—0 -+, 4,7(-)f is also Bochner integrable on (0,¢) for ¢> 0. Using
this, (a), and [8; Thm. 3.7.12], (2.2) follows by

IO — 1) = 4. 001] = 1400 ] = [ AT@)f au|| =

-

Conversely, let |T(t)f —f| = O(t), t -0 +. Since X is reflexive the weak com-
pactness theorem furnishes weak convergence for a positive null sequence {i,}, i.e.
there is a g€ X such that

t—leOT(u)fduH<t—1f}|AoT(u)fn du=0(1), t->0+.
1} 0

t

n

2.5) ( )10, 2o
for each f*e X*, or,

[*o1()] (E”it;—f?—f

)"[:f*°T(t)](g)7 " —>00,

80 that we also have weak convergence of the sequence {T(t) LTt f— f)} to T'(t)g.
Since T'(t)f e D(4,) for 1> 0 we obtain

H(T0g) = tim 1 (LE=T) 701 = (40T )

for each f* € X*, and it follows that

(2.6) T(t)g = A, T®)f, Vi>0.

The strong measurability of 4,T(-)f follows as in (2.4), and |4,7(:)f] is Le-
besgue integrable on (0,7) by (2.6) and (i), thus 4,7(-)f is Bochner integrable on
(0,). As above one has

t 1]
T —f) = A, 0(1)f = t“lfA,,T(t)f du = z—lff(mg du= O(f)g .
0 ]

Thus [C(t)g|l = 0(1), t -0+ and by ()
14 TWfl = [Tg] = 00), -0+,

and the proof is complete.

8 ~ dnnali di Matematica
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REMARK 2. — If, in particular, the semigroup belongs to (C,), conditions (i),
(a), and (b) are satisfied and Theorem 2 reduces to [2; Prop. 2.3.1] in the case of
a reflexive space X.

For non-reflexive gpaces we can show that characterization (2.1) remains valid,
provided that the space X can be continunously embedded in some space ¥ and the
semigroup {7'(#), ¢ > 0} can be extended in the following way. We say the Banach
space X satisfies condition

(E,) if there are a Banach space Y and a separable normed linear space Z
such that

(@) Xc Y and |g]c = |gl; for all ge X,
(b) there exists an isometric and isomorphic mapping K from Y to Z*,
the dual of Z.
A semigroup {T'(t), t > 0} on a Banach space satistying (E,) is said to satisfy con-
dition
(B,) if (a) T(@) e [X] can be extended to some T(t) e [¥] for ¢ > 0,
(b) for each ¢ >0 there is an S(f) € [Z] whose dual operator §*(t) satis-
fies §*(t)K = ET (1)

THEOREM 3. — Let X be a Banach space satisfying (B,) and let {T(1),t> 0}
be a strongly measurable semigroup with infinitesimal operator A, and T()(X)C
c D(4,), Vi > 0 which satisfies (E;).

Moreover, we suppose

(a) there ewists the infinitesimal generator A of {I(t), t>0} on X,
{T t>0} i8 strongly measurable and (i), is valid for T(t) on ¥, i..
Oyg =1t fT Vg du @8 well defined for t>0, g€ ¥,
ICtygl = (9 , t—>0- for ge Y implies |T(t)g] = 0(1), t ~0 +.

Then (2.2) and (2.3) are eqm)vdlent for each fel.

PrOOF. ~ The proof of the implication (2. 3) =(2.2) is the same as in Theorem 2.
Conversely, let T'x(t) be the operator from Z* to Z* associated to T(t) by

(2.7) Tot): = ETHE, t>0.
By (E y 1T 2@z = 170y and, by (E,), there is an 8(t) € [Z] such that

(2.8) Sx(t) = Tx(t), 1>0.
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By (2.2) and (B,) one has [K(t-(T(t)f —7))lz = 0(1), t -0 +. The weak * com-
pactness theorem yields a positive null sequence {¢,} and a G* € Z* such that

(2.9) lim [K (T(t—;f_—f)] () = G*(h) VheZ.

a—>o0 n

Defining g:= K-1G*¢ Y we obtain for :>0 and heZ

[K(Tt)g)] (k) = [$() G¥1(h) = G*(S()1) = lim [K (%)] (S(t)R)

N—> 00 --Yn

= i [sr (5= o0 = i [ (210 2=

— tim |xe(* =T ) |y = (a0 )0
and thus
(2.10) Tt)g=4,T(t)f, t>0.

In particular, T ge X for t>0. Moreover, T(-)yg is strongly meagurable by (b)
and, in view of (i),, Bochner integrable on (0, 1), {<1. By (2.10) one has

. ; b Ao o
(W] —1) = A0 f = 1[4 T(w)f du = [ Tw)g du = Ct) g
! - e 0 B . . 0
for ¢>0. Condition (2.2) implies |C(t)g] = 0(1), t —0 + and (¢) yields |T'(5)g] =
= 0(1), t -0 -+, so that, by (2.10),

|47 = [T()g] = 0(1), 1—>0+.

REMARK 3. — If, in addition, X is reflexive and separable -the assumptions of
Theorem 3 reduce to those of Theorem 2, for one may choose ¥ = X Z = X*
and T(t) = T(), S( ) = T*(t). in_order to verify (E,) and (E,;). Indeed, X** is
separable and so is X* ‘and for. K ‘the’ ‘canonical mapping can‘be chosen.

3. — Two #fplications.

In this section -we show that -the resulfs -of section: 2 can be applied to the
examples of section 1. '

ExAMPLE I. - We shall use Theorem 3 to prove that (2.1) remains true for
X = Oy, and T(t) = To(#), ef. (1:3), where ¢ is-an arbitrary element of Q, (cf. (1.4)).



130 B. GORLICH - D. PoNTZEN: On approvimation by operator semigroups, elc.

In order to verify (E,) we choose ¥ = L;? and Z = Lj, with norms

1] =esssup f()] apd |7l = (22)[lf(@)] do

regpectively,
Indeed, (a) holds trivially and the congruence of L;> with the dual of Lj_is
also clear in view of the Riesz representation theorem, where

(Eg)h = (27)= f guwh(u)du  for ge LS, he Ik .

-

Hence (Z,) is satisfied.
Let pc £,. Since

zh O (1)) 1 1)e —tw(lkl)fA(k)gikw
keZ

tends to

3, (— o)) o0 @) o5

keZ

a8 h — 0 4 uniformly in & € [— =, 7) for 1> 0, f € Oy, one has T (t)(C,,) c D(4,,0),
Yt > 0.
Let T,(t) denote the trivial extension of T,(?) from G,, to L, . Choosing

(2.11) So(t)(h; @) = 3 6~ #IHIpA (k) ¢

keZ

for he L}, t>0, one has KT (1)K~* = §(t). Hence {To(t), >0} satisfies (Ey)
and, (e¢) and (b) being trivial, it remaing to verify condition ().
Setting

/\ ikx ¢(9+1) /\k iha
Up,olg; ® é gr(k) e +Ik|§>:e =) gr(k)e

for ge Ly, 0> 0, and ¢ = ¢(p 4 1), and, denoting by Co(t) and Em the trivial
extensions of O (f) and R, ,, we have

@12) 10,0 =T 0z <10, — Uy olug+ [ Upoe— Rooluza+
+ ”Rtpe )ﬂ[Lffs] .

In order to prove that |U,,—R,,luz1 = 0(1), ¢ - co We consider the associated
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kernels and set y(g) = log ¢(0):

Pk e ele+1) .,
el 4-1) e @(lkl) 1
»'(e)

<1f{ _PUR]) e ¢w+nm%d

2 erte+ 17| T iy ek O

Lf el Y| . )

- 1— ‘ gike ikalb o :Il IZ,
+7§£{ Iklzsg( (Q +1)) ’Ll>a o Vﬂ!) +lklz<ae ? i

say. By an application of [3; Lemma 2.3(b)] the uniform boundedness of I, fol-
lows immediately. A repeated application of Abel’s transformation yields the same
for I,. Similarly, the uniform boundedness of the other terms of (2.12) follows.

Thus the hypotheses of Theorem 3 are satisfied, so that, together with (1.5) and
Theorem 1, one obtaing

D(4g0) G B({To(0)}) = {f € Oza; [Apo Tol0) f] = 0(1), T —0 4}
;D(A.,, )0 = {f € Csn; g€ LT, with o(|k]) f*(k) = g*(k) Yke Z} .
Analogous results are valid for {T'4(t), t > 0} in the space X = ;.

ExampLe IT. ~ Here we apply Theorem 2. Since

e—-hv’

h {e-ﬁv’ 1(0) - e f, (v)} - vt ot fr ()

et —1

i)

for feL?, t>0, (cf. (1.9)), one has T,(#)(L?) c D(P,,) for each t> 0. Moreover,

{T,(t), t > 0} is strongly measurable and (i), is satisfied. For ge L® we have, for
2<g<d,

1T 9] = 01+ [t gz (v) ), >0+,

1— e
1)4—2 ( — e—tvz) g‘ (’U)
wr S

t

where C,(f)g:= t—lfT,,(u) gdu for £>0. Defining
0

=01+ [Ct)gl), t—>0+,

tv2e—tv*
(tv2)= (1 — g=t") — e~

[E () h]*(v) = 7 (o)
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for he I¥R), t>0, ve R and observing that [E,(t)| xr<2, V>0, we obtain

1— et . R
(—ty,—r‘ - 6“‘”") vy (v)

12001 = of1+2 )= et 10.001)

as t — 0 -1, which is condition (b) of Theorem 2. Thus, by Theorem 2 and (1.11),
we obtain for 2 <g¢<4 :

D(Pu) § SUTON) = L% [Pon Tu) /1 = (1), 10 4§ Do)
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