# On Approximation by Operator Semigroups of a General Type (*). 

E. Görlich - D. Pontzen (Aachen, West Germany) (**)


#### Abstract

Summary. - For operator semigroups of class $\left(O_{0}\right)$ on a Banach space $X$ it is well known that the saturation class can be characterized as the relative completion with respect to $X$ of the domain of the infinitesimal generator. This remains true for strongly measurable semigroups $\{T(t), t>0\}$ having a closed infinitesimal operator $A_{0}$, but it becomes false if $A_{0}$ is nonclosed. We prove that a characterization is given by $\left\|A_{0} T(t) f\right\|=\mathcal{O}(1), t \rightarrow 0+$ for a fairly general class of semigroups, including certain particular semigroups which belong to Oharu's class $\left(C_{(1)}\right)$, or are of growth order less than one.


## 0. - Introduction.

The purpose of this paper is to investigate saturation classes of semigroups of a general type, including semigroups of Oharu's classes $\left(O_{(k)}\right)$ ( $[10 ;$ p. 250] $)$, which are not necessarily Abel summable. Semigroups of class ( $C_{(k)}$ ) are met e.g. in connection with generalizations of continuous and discrete Trotter type theorems (see [13], [7]).

In the most simple case of a $\left(C_{0}\right)$-semigroup on a Banach space $X$ with norm $\|\cdot\|$, it is well-known that the saturation order is always $\mathcal{O}(t)$ (see [2; Thm. 2.1.2]) and the saturation class $S(\{T(t)\})$, defined by

$$
\mathbb{S}(\{T(t)\})=\{f \in X ;\|T(t) f-f\|=\mathcal{O}(t), t \rightarrow 0+\}
$$

can be characterized by (see [1])

$$
\begin{equation*}
S\left(\left\{T^{T}(t)\right\}\right)=\widetilde{D(A)^{x}} \tag{0.1}
\end{equation*}
$$

Here $A$ denotes the infinitesimal generator of the semigroup, $D(A)$ its domain, equipped with the graph norm $\|\cdot\|_{D(A)}$, and $\widetilde{D(A)}^{x}$ the relative completion of $D(A)$ with respect to $X$, defined by

$$
\begin{equation*}
\overline{D(A)^{x}}=\left\{f \in X ; \exists\left\{f_{n}\right\} \subset D(A) \text { with }\left\|f_{n}\right\|_{D(A)}=\mathcal{O}(1),\left\|f_{n}-f\right\|=o(1), n \rightarrow \infty\right\} \tag{0.2}
\end{equation*}
$$

In more general classes of semigroups, which will be investigated here, the infinitesimal operator $A_{0}$ is no longer closed, i.e. $A_{0}$ does not coincide with the infi-

[^0]nitesimal generator $A$, the closure of $A_{0}$ (cf. [8; pp. 306, 344] for the basic definitions). So $\widehat{D\left(A_{0}\right)^{x}}$ and $\widetilde{D(A)}^{x}$ can be considered as the first two candidates for a characterization of $S(\{T(t)\})$ then. Here we use the above definition of the relative completion of $D\left(A_{0}\right)$, though $D\left(A_{0}\right)$ is not necessarily a Banach subspace of $X$, i.e.
\[

$$
\begin{equation*}
\widetilde{D\left(A_{0}\right)^{x}}=\left\{f \in X ; \exists\left\{f_{n}\right\} \subset D\left(A_{0}\right) \text { with }\left\|f_{n}\right\|_{D\left(A_{0}\right)}=\mathscr{O}(1),\left\|f_{n}-f\right\|=o(1), n \rightarrow \infty\right\}, \tag{0.3}
\end{equation*}
$$

\]

where $\|f\|_{D\left(A_{0}\right)}=\|f\|+\|A f\|=\|f\|_{D(A)}$ for $f \in D\left(A_{0}\right)$. Our first objective is to show that neither of them is suited for this purpose (Theorem 1), a fact which makes a study of such general semigroups interesting. In particular, a precise description of when (0.1) holds or not can be given in terms of the closedness of $A_{0}$. For counterexamples we use two particular semigroups, which belong to Oharu's class $\left(C_{(1)}\right)$, and have been considered in [7]. This will be section 1 .

In section 2 we investigate a third candidate for characterizing $S(\{T(t)\})$, i.e. the condition

$$
\begin{equation*}
\left\|A_{0} T(t) f\right\|=\mathcal{O}(1), \quad t \rightarrow 0+ \tag{0.4}
\end{equation*}
$$

For ( $C_{0}$ )-semigroups, (0.4) is a more or less trivial equivalence to $f \in S(\{T(t)\})$, but for more general semigroups, including semigroups of class $\left(C_{(k)}\right)$, the fact that this equivalence remains valid appears to be new and harder to prove. For reflexive spaces $X$, we first prove Theorem 2, which reduces the proof of the equivalence to the verification of several conditions, the crucial one of which is (b). For nonreflexive spaces we have a less complete result (Theorem 3), which, however, suffices to treat the periodic example mentioned in section 1.

Applications of these results to the particular semigroups of section 1 will be considered in section 3 .

1.     - Saturation, $D\left(A_{0}\right), D(A)$, and their relative completions.

Let $X$ be a (complex) Banach space with norm $\|\cdot\|,[X]$ the space of bounded linear operators on $X$ into $X$, and $\{T(t), t>0\}$ a strongly measurable semigroup in $X$. Moreover, let $X_{0}=\bigcup_{t>0} T(t)(X)$, let $\omega_{0}$ be the type of the semigroup and $\Sigma=\{f \in X ;\|T(t) f-f\|=o(1), t \rightarrow 0+\}$ its continuity set. By $R_{0}(\lambda)$ we denote the Laplace transform of $T(t)$, i.e., for $\lambda \in \boldsymbol{C}$ and $f \in X$

$$
\begin{equation*}
R_{0}(\lambda) f=\int_{0}^{\infty} e^{-\lambda t} T(t) f d t \tag{1.1}
\end{equation*}
$$

whenever the integral exists as a Bochner integral. If $\operatorname{Re}(\lambda)>\omega_{0}$ then $\Sigma \subset D\left(R_{0}(\lambda)\right)$.

The semigroup is supposed to satisfy the following conditions ([10; p. 249])
(C.1) $\quad \bar{X}_{0}=X$,
(C.2) there is an $\omega_{1}>\omega_{0}$ such that there exists an operator $R(\lambda) \in[X]$ for all $\lambda$ with $\operatorname{Re}(\lambda)>\omega_{1}$ and $\left.R(\lambda)\right|_{x_{0}}=\left.R_{0}(\lambda)\right|_{x_{0}}$,
(C.3) if $R(\lambda) f=0$ for $\lambda>\omega_{1}$, then $f=0$.

Denoting by $A_{0}$ the infinitesimal operator of the semigroup, conditions (C.1)-(C.3) imply the closability of $A_{0}$ and hence the existence of the infinitesimal generator $A$. If $\lambda \in \boldsymbol{C}, \operatorname{Re}(\lambda)>\omega_{1}, \lambda$ belongs to the resolvent set $\varrho(A)$, and, denoting by $R(\lambda, A)$ the resolvent operator of $A$ at $\lambda$, one has $R(\lambda)=R(\lambda, A)$ ([10; Lemma 6.2]). Moreover, property (i) will be used, i.e. ([8; p. 322])

$$
\text { (i) } \int_{0} \int_{0}^{1}\|T(t) f\| d t \leqslant M_{f}<\infty, \forall f \in X
$$

The class of semigroups with properties (C.1)-(C.3) and (i) contains, for example, the classes of semigroups of growth order $\alpha$ for $\alpha \in[0,1$ ) (see [11], [15], [14], [6]).

For the proof of Theorem 1 we need two simple lemmas, the proofs of which will be omitted (concerning Lemma $2 \mathrm{cf}$. [14; Thm. 3]).

Lemma 1. - Let $\{T(t), t>0\}$ be a strongly measurable semigroup satisfying (C.1)-(C.3) and (i) $)_{0}$ Then $R_{0}(\lambda)=R(\lambda, A)$ for all $\lambda$ with $\operatorname{Re}(\lambda)>\omega_{1}$.

Defining $C(t)$ by

$$
\begin{equation*}
C(t) f=\frac{1}{t} \int_{0}^{t} T(u) f d u \tag{1.2}
\end{equation*}
$$

for $t>0, f \in X$, one has $C(t) \in[X]$ under the assumptions of Lemma 1. Moreover,
Lemma 2. - Let $\{T(t), t>0\}$ be as in Lemma 1. Then $A_{0}$ is closed if and only if $\|C(t) f-f\|=o(1), t \rightarrow \mathbf{0}+$ for all $f \in X$.

Theorem 1. - Let $\{T(t), t>0\}$ be a strongly measurable semigroup satisfying (C.1)-(C.3) and (i). Then the following assertions hold:
(a) If $A_{0}$ is closed,, i.e. $A_{0}=A$,

$$
s(\{T(t)\})=\widetilde{D(A)^{x}}
$$

In partioular, if $X$ is reflexive,

$$
S(\{T(t)\})=D(A)
$$

(b) If $A_{0}$ is non-closed

$$
\begin{aligned}
& \\
& D\left(A_{0}\right) \subset S(\{T(t)\}) \subsetneq \\
& \stackrel{甘}{\neq} \underset{D(A)}{\mp} \subset
\end{aligned}
$$

In particular, if $X$ is reflexive,

$$
D\left(A_{0}\right) \subset S(\{T(t)\}) \subsetneq D(A)
$$

(c) Moreover, there exist semigroups $\{T(t), t>0\}$ and spaces $X$ for which

$$
D\left(A_{0}\right) \subsetneq S(\{T(t)\}) \nsubseteq D(A)
$$

and, in case $X$ is reflexive, there still exist semigroups for which $D\left(A_{0}\right) \varsubsetneqq S(\{T(t)\})$.
Remark 1. - Part $(a)$ of the theorem is well-known in case $T(t)$ forms a ( $O_{0}$ )semigroup. Then (C.1)-(C.3) and (i) are obviously satisfied, and the result is due to Berens [1].

Proof. - (a) Let $\|T(t) f-f\|=O(t), t \rightarrow 0+$. Then $f \in \Sigma$ and thus $C(t) f \in D(A)$ and $A C(t) f=t^{-1}(T(t) f-f)$ for all $t>0$. Ohoosing $f_{n}=C\left(n^{-1}\right) f$ in (0.2), it follows that $\left\|f_{n}-f\right\|=o(1)$ and $\left\|f_{n}\right\|_{D(A)}=\mathcal{O}(1), n \rightarrow \infty$, thus $f \in \widetilde{D(A)}{ }^{x}$.

Conversely, assume that there is a sequence $\left\{f_{n}\right\} \subset D(A)$ such that $\left\|f_{n}\right\|_{D(A)}=$ $=0(1)$ and $\left\|f_{n}-f\right\|=o(1)$ as $n \rightarrow \infty$. Since

$$
D\left(A_{0}\right)=D(A) \quad \text { and } \quad \lim _{t \rightarrow 0+} t^{-1}(T(t) g-g)=A g
$$

for each $g \in D(A)$ the uniform boundedness principle yields constants $M$ and $t_{0}$ such that $\left\|t^{-1}(T(t) g-g)\right\| \leqslant M\|g\|_{D(A)}$ for each $g \in D(A)$ and $0<t \leqslant t_{0}$. Setting $g=f_{n}$, there is a constant $M^{\prime}$ such that $t^{-1}\left\|T(t) f_{n}-f_{n}\right\| \leqslant M^{\prime}$ uniformly in $n \in N$ and $t \in\left(0, t_{0}\right]$. Letting $n \rightarrow \infty$ it follows that $\|T(t) f-f\|=\mathcal{O}(t), t \rightarrow 0+$.

If $X$ is reflexive, $D(A)$ is reflexive, too, and $\widetilde{D(A)^{x}}=D(A)$.
(b) (i) The inclusions $D\left(A_{0}\right) \subsetneq D(A), D\left(A_{0}\right) \subset S(\{T(t)\})$, and $\widetilde{D\left(A_{0}\right)^{x}} \subset \widetilde{D(A)^{x}}$ are trivial.
(ii) $D(A) \subset \widetilde{D\left(A_{0}\right)^{x}}$. Let $f \in D(A)$. Since $A$ is the closure of $A_{0}$ there is a sequence $\left\{f_{n}\right\} \subset D\left(A_{0}\right)$ such that $f_{n} \rightarrow f$ and $A_{0} f_{n} \rightarrow A f$ as $n \rightarrow \infty$. The existence of the latter limit implies $\left\|A_{0} f_{n}\right\|=\mathcal{O}(1), n \rightarrow \infty$, and thus $f \in \widetilde{D\left(A_{0}\right)^{x}}$ by (0.3).
(iii) $D(A) \notin \mathbb{S}(\{T(t)\})$ : We show that there exists an $f_{0} \in D(A) \backslash S(\{T(t)\})$. Since $A_{0}$ is non-closed, Lemma 2 furnishes an $h_{0} \in X$ such that

$$
\lim _{t \rightarrow 0+} \sup _{t}\left\|C(t) h_{0}-h_{0}\right\|>0 .
$$

But for elements $f$ of the dense set $X_{0}$ we have $\|C(t) f-f\| \rightarrow 0, t \rightarrow 0+$, and thus the Banach-Steinhaus theorem and the uniform boundedness principle yield a $g_{0} \in X$ such that $\lim _{t \rightarrow 0+} \sup _{t \rightarrow( }\left\|C(t) g_{0}\right\|=+\infty$. If $0<t \leqslant 1$ and $\lambda>0$, it follows by (i) that

$$
\begin{aligned}
\left\|t^{-1} \int_{0}^{t} e^{-\lambda_{s}} T(s) g_{0} d s\right\| \geqslant\left\|C(t) g_{0}\right\|-\left\|t^{-1} \int_{0}^{t}\left(1-e^{-\lambda s}\right) T(s) g_{0} d s\right\| & \geqslant \\
& \geqslant\left\|C(t) g_{0}\right\|-\lambda \int_{0}^{1}\left\|T(s) g_{0}\right\| d s \geqslant\left\|C(t) g_{0}\right\|-\lambda M_{g_{0}}
\end{aligned}
$$

Choosing $\lambda>\max \left\{0, \omega_{1}\right\}, \lambda$ belongs to $\varrho(A)$, so that $f_{0}=R(\lambda, A) g_{0}$ is defined and belongs to $D(A)$. Lemma 1 implies $f_{0}=R_{0}(\lambda) g_{0}$, thus

$$
\limsup _{t \rightarrow 0+} t^{-1}\left\|T(t) f_{0}-f_{0}\right\| \geqslant \limsup _{t \rightarrow 0+}\left\{t^{-\mathrm{I}} e^{\lambda t} \int_{0}^{t} e^{-\lambda_{s}} T(s) g_{0} d s-\frac{e^{\lambda t}-1}{t} f_{0}\right\}=+\infty
$$

which yields the assertion.
(iv) $S(\{T(t)\}) \subsetneq \widetilde{D\left(A_{0}\right)^{x}}$ : The inclusion $S(\{T(t)\}) \subset \widetilde{D\left(A_{0}\right)^{x}}$ follows as in the proof of part (a). Assuming $S(\{T(t)\})=\widetilde{D\left(A_{0}\right)^{x}}$, one obtains by (ii) $D(A) \subset S(\{T(t)\})$, a contradiction to (iii). In order to prove (c) we use two examples of [7] and S. G. Krein [9] (cf. also Sunouchi [12]).

Example I. - We choose $X=C_{2 \pi}$, the space of continuous $2 \pi$-periodic functions with maximum-norm, and $T(t)=T_{\varphi}(t)$, where

$$
\begin{equation*}
T_{\varphi}(t)(f ; x)=\sum_{k \in \mathbb{Z}} e^{-t \varphi(|k|)} f^{\wedge}(k) e^{i k x} \tag{1.3}
\end{equation*}
$$

for $f \in C_{2 \pi}$ and $t>0$. Here $Z$ denotes the set of integers, $f^{\wedge}(k)$ the $k$-th Fourier coefficient of the function $f$, and $\varphi$ a function of class $\Omega_{1}$ defined as follows. Denoting by $C^{r}(0, \infty)$ the space of functions with continuous $r$-th derivative on $(0, \infty)$ we set (ef. [4], [5])

$$
\left\{\begin{array}{l}
\Omega_{0}=\left\{\varphi ; \varphi:[0, \infty) \rightarrow \boldsymbol{R}, \varphi(0)=1, \varphi \in C^{1}(0, \infty), \varphi^{\prime}(x)>0\right.  \tag{1.4}\\
\left.\forall x>0 \text { and } \lim _{x \rightarrow+\infty} \varphi(x)=+\infty\right\} \\
\Omega_{1}=\left\{\varphi \in \Omega_{0} ; \varphi(x)=e^{\gamma(x)}, \gamma \in C^{3}(0, \infty), \exists x_{0}>0\right. \\
\text { with } \left.\gamma^{\prime \prime}(x) \leqslant 0, \gamma^{\prime \prime \prime}(x) \geqslant 0 \quad \forall x \geqslant x_{0} \text { and } \lim _{x \rightarrow+\infty}\left|\gamma^{\prime \prime}(x)\right|\left(\gamma^{\prime}(x)\right)^{-2}=0\right\}
\end{array}\right.
$$

For each $\varphi \in \Omega_{1}$, the semigroup $\left\{T_{q}(t), t>0\right\}$ satisfies (C.1)-(C.3) and (i) $)_{0}$. Moreover we want to show that

$$
\begin{equation*}
D\left(A_{\varphi, 0}\right) \subsetneq S\left(\left\{T_{\varphi}(t)\right\}\right) \nsubseteq D\left(A_{\varphi}\right) \tag{1.5}
\end{equation*}
$$

where $A_{\varphi, 0}$ denotes the infinitesimal operator and $A_{\varphi}$ the infinitesimal generator with domain $D\left(A_{\varphi}\right)=\left\{f \in C_{2 \pi} ; \exists g \in C_{2 \pi}\right.$ with $\left.\varphi(|k|) f^{\wedge}(k)=g^{\wedge}(k), \forall k \in \boldsymbol{Z}\right\}$. To prove (1.5) we take

$$
f_{0}(x)=\sum_{k \in \mathbb{Z}\{0\}} \frac{i}{2 k \varphi(|k|)} e^{i k x}
$$

Since $\varphi(|k|) \hat{f_{0}}(k)=i(2 k)^{-1}, \forall k \in Z \backslash\{0\}, f_{0}$ does not belong to $D\left(A_{\varphi}\right)$, nor to $D\left(A_{\varphi, 0}\right)$. In view of part (b), (1.5) follows if we show that $\left\|T_{\varphi}(t) f_{0}-f_{0}\right\|=\mathcal{O}(t)$ as $t \rightarrow 0+$. For this purpose we define

$$
\begin{equation*}
R_{\varphi, \varrho}(f ; x)=\sum_{|k| \leqslant \varrho}\left(1-\frac{\varphi(|k|)}{\varphi(\varrho+1)}\right) f^{\wedge}(k) e^{i k x} \tag{1.6}
\end{equation*}
$$

for $f \in C_{2 \pi}$ and $\varrho>0$, and obtain by $[16 ;$ p. 61] and [4; Lemma 2]

$$
\begin{align*}
\left\|\varphi(\varrho+1)\left(R_{\varphi, \varrho} f_{0}-f_{0}\right)\right\| & \leqslant\left\|\sum_{0<|k| \leqslant \varrho} \frac{i e^{i k x}}{2 k}\right\|+\sum_{k>\varrho} \frac{\varphi(\varrho+1)}{k \varphi(k)} \leqslant  \tag{1.7}\\
& \leqslant\left\|\sum_{0<k \leqslant \varrho} \frac{\sin k x}{k}\right\|+\frac{\varphi(\varrho+1)}{\varrho} \sum_{k>\varrho} \frac{1}{\varphi(k)}=\mathcal{O}(1), \quad \varrho \rightarrow \infty
\end{align*}
$$

On the other hand, one has

$$
\begin{align*}
& \left\|R_{\varphi, \varrho} f_{0}-T_{\varphi}\left(\frac{1}{\varphi(\varrho+1)}\right) f_{0}\right\| \leqslant  \tag{1.8}\\
& \quad \leqslant\left\|\sum_{0<|k| \leqslant e}\left\{\exp \left(-\frac{\varphi(|k|)}{\varphi(\varrho+1)}\right)-1+\frac{\varphi(|k|)}{\varphi(\varrho+1)}\right\} \frac{i e^{i k x}}{2 k \varphi(|k|)}\right\|+ \\
& +\left\|\sum_{|k|>e} \exp \left(-\frac{\varphi(|k|)}{\varphi(\varrho+1)}\right) \frac{i e^{i k x}}{2 k \varphi(|k|)}\right\|=I_{1}+I_{2}
\end{align*}
$$

say. Since the function $x^{-1} \varphi(x)$ is increasing for $x$ large enough, we have

$$
I_{1} \leqslant \sum_{0<|k| \leqslant \varrho} \frac{\varphi^{2}(|k|)}{2 \varphi^{2}(\varrho+1)} \frac{1}{2|k| \varphi(|k|)}=\frac{1}{2 \varphi^{2}(\varrho+1)} \sum_{0<k \leqslant \varrho} \frac{\varphi(k)}{k}=0\left(\frac{1}{\varphi(\varrho+1)}\right), \quad \varrho \rightarrow \infty
$$

By [4; Lemma 2],

$$
I_{2} \leqslant 2 \sum_{k>\varrho} \frac{1}{2 k \varphi(k)} \leqslant \frac{1}{\varrho} \sum_{k>\varrho} \frac{1}{\varphi(k)}=\mathcal{O}\left(\frac{1}{\varphi(\varrho+1)}\right), \quad \varrho \rightarrow \infty
$$

Hence, one has by (1.7) and (1.8)

$$
\begin{aligned}
& \left\|T_{\varphi}\left(\frac{1}{\varphi(\varrho+1)}\right) f_{0}-f_{0}\right\| \leqslant\left\|T_{\varphi}\left(\frac{1}{\varphi(\varrho+1)}\right) f_{0}-R_{\varphi, \varrho} f_{0}\right\|+\left\|R_{\varphi, \varrho} f_{0}-f_{0}\right\|= \\
& \\
& =\mathcal{O}\left(\frac{1}{\varphi(\varrho+1)}\right), \quad \varrho \rightarrow \infty
\end{aligned}
$$

Setting $t^{-1}=\varphi(\varrho+1)$, the proof of (1.5) is complete.

Example II. - We choose $X=L^{2}=L^{2}(\boldsymbol{R}) \times L^{2}(\boldsymbol{R})$ with elements $j=\left(f_{1}, f_{2}\right)$ and norm $\|f\|=\left(\left\|f_{1}\right\|_{2}^{2}+\left\|f_{2}\right\|_{2}^{2}\right)^{1 / 2}$, where $L^{2}(\boldsymbol{R})$ has the usual norm

$$
\left\|f_{1}\right\|_{2}=\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left|f_{1}(x)\right|^{2} d x\right)^{1 / 2}
$$

As a semigroup $T(t)$ we take $T_{q}(t)$ with $2<q<4$, which is defined by

$$
\left[T_{\mathbf{Q}}(\hat{t}) f\right]^{\wedge}(v)=\left(\begin{array}{cc}
e^{-i v^{2}} & t v^{q} e^{-t v^{2}}  \tag{1.9}\\
0 & e^{-t v^{2}}
\end{array}\right)\binom{f_{1}(v)}{f_{2}(v)}
$$

$f=\left(f_{1}, f_{2}\right) \in \boldsymbol{L}^{2}, v \in \boldsymbol{R}$, where $f^{\wedge}(v)$ denotes the Fourier transform of $f$ (see S. G. Krein [9], [12], and [7] for integer values of $q$ ). The infinitesimal generator exists and is given by

$$
\begin{equation*}
\left[P_{q} f\right]^{\wedge}(v)=\binom{-v^{2} f_{1}^{\hat{}}(v)+v^{q} f_{2}^{\wedge}(v)}{-v^{2} f_{2}^{\wedge}(v)} \tag{1.10}
\end{equation*}
$$

$f \in D\left(P_{q}\right), v \in \boldsymbol{R}, D\left(\boldsymbol{P}_{q}\right)$ consisting of those $f \in \boldsymbol{L}^{2}$ for which the right-hand side belongs to $L^{2}$. Then (C.1)-(C.3) and (i) are satisfied, and we claim that

$$
\begin{equation*}
D\left(P_{q, 0}\right) \subsetneq S\left(\left\{T_{q}(t)\right\}\right) \subsetneq D\left(P_{q}\right) \tag{1.11}
\end{equation*}
$$

where $P_{q, 0}$ is the infinitesimal operator. In view of (b) we only have to prove that the first inclusion is proper. As a counterexample we take $f_{\varepsilon} \in \boldsymbol{L}^{2}$ defined by

$$
\begin{equation*}
\hat{f_{\varepsilon}}(v)=\binom{v^{-(2+\varepsilon)}}{v^{-(a+\varepsilon)}} \quad \text { if } v \geqslant 1, \hat{f_{\varepsilon}}(v)=0 \quad \text { if } v<1, \varepsilon>-3 / 2 \tag{1.12}
\end{equation*}
$$

and show that

$$
\begin{equation*}
f_{1 / 2} \notin D\left(P_{q, 0}\right) \quad \text { and } \quad f_{1 / 2} \in S\left(\left\{T_{q}(t)\right\}\right) \tag{1.13}
\end{equation*}
$$

Indeed, assuming $f_{1 / 2} \in D\left(P_{q, 0}\right)$, i.e. $\left\|t^{-1}\left(T_{q}(t) f_{1 / 2}-f_{1 / 2}\right)-P_{q, 0} f_{1 / 2}\right\|$ tends to zero as $t \rightarrow 0+$, implies

$$
\begin{aligned}
0 & =\lim _{t \rightarrow 0+} \int_{1}^{\infty}\left|\frac{e^{-t v^{2}}-1}{t v^{2}} \frac{1}{\sqrt{v}}+e^{-t v^{2}} \frac{1}{\sqrt{v}}+v^{2} \frac{1}{v^{5 / 2}}-v^{q} \frac{1}{v^{q+1 / 2}}\right|^{2} d v \\
& =\lim _{t \rightarrow 0+} \frac{1}{2} \int_{i}^{\infty}\left(\frac{1-e^{-x}}{x}-e^{-x}\right)^{2} \frac{d x}{x} \geqslant M>0
\end{aligned}
$$

a contradiction. Thus $f_{1 / 2} \notin D\left(P_{q, 0}\right)$. Moreover, there is a constant $M$ such that

$$
\begin{aligned}
\left\|\frac{T_{0}(t) f_{1 / 2}-f_{1 / 2}}{t}\right\|^{2} \leqslant M+\frac{1}{\sqrt{2 \pi}} \int_{t}^{\infty} & \left|\frac{e^{-t v^{2}}-1}{t v^{2}}+e^{-t v^{2}}\right| \frac{2 d v}{v} \\
& \leqslant M+\frac{1}{2 \sqrt{2 \pi}} \int_{t}^{\infty}\left(\frac{1-e^{-x}}{x}+e^{-x}\right)^{2} \frac{d x}{x}=\mathcal{O}(1), \quad t \rightarrow 0+
\end{aligned}
$$

This completes the proof of Theorem 1.
In connection with Example II we further note that $f_{\varepsilon} \in D\left(P_{q}\right)$ iff $\varepsilon>5 / 2-q$. Moreover, $\left\{T_{q}(t), t>0\right\}$ is of growth order $\alpha=q / 2-1$.
2. - A characterization of $S(\{T(t)\})$.

For $\left(C_{0}\right)$-semigroups with $T(t)(X) \subset D\left(A_{0}\right)$ for each $t>0$ the characterization

$$
\begin{equation*}
f \in \mathbb{S}(\{T(t)\}) \Leftrightarrow\left\|A_{0} T(t) f\right\|=\mathcal{O}(1), \quad t \rightarrow 0+ \tag{2.1}
\end{equation*}
$$

holds (see [2; Prop. 2.3.1]). In comparison with the condition $f \in \overparen{D\left(A_{0}\right)^{x}}$ (cf. (0.3)), the condition on the right of (2.1) means that instead of an arbitrary sequence $\left\{f_{n}\right\} \subset D\left(A_{0}\right)$ only the special sequences $\left\{T\left(t_{n}\right) f\right\}$ with $t_{n} \rightarrow 0$ are admitted. Our purpose here is to show that this characterization remains valid in a more general context.

If $X$ is reflexive the following theorem generalizes (2.1) to semigroups with nonclosed infinitesimal operator $A_{0}$.

Theorem 2. - Let $X$ be a reflexive Banach space and $\{T(t), t>0\}$ a strongly measurable semigroup with infinitesimal operator $A_{0}$ and $T(t)(X) \subset D\left(A_{0}\right)$ for each $t>0$. Let $\{T(t), t>0\}$ satisfy $\left(\mathrm{i}_{0}\right.$ as well as the following conditions:
(a) the infinitesimal generator $A$ exists,
(b) $\|C(t) g\|=\mathcal{O}(1), t \rightarrow 0+$ for $g \in X$ implies $\|T(t) g\|=\mathcal{O}(1), t \rightarrow 0+$.

For $f \in \Sigma$ the following are equivalent:

$$
\begin{align*}
& \|T(t) f-f\|=\mathcal{O}(t), \quad t \rightarrow 0+  \tag{2.2}\\
& \left\|A_{0} T(t) f\right\|=\mathcal{O}(1), \quad t \rightarrow 0+ \tag{2.3}
\end{align*}
$$

Proof. - Let $\left\|A_{0} T(t) f\right\|=\hat{O}(1), t \rightarrow 0+$. By the strong continuity of the semigroup one has for each $s>0$

$$
\begin{equation*}
\left\|A_{0} T(s+h) f-A_{0} T(s) f\right\|=\left\|\left\{T\left(\frac{s}{2}+h\right)-T\left(\frac{s}{2}\right)\right\} A_{0} T\left(\frac{s}{2}\right) f\right\| \rightarrow 0, \quad h \rightarrow 0+ \tag{2.4}
\end{equation*}
$$

Thus also $A_{0} T(\cdot) f$ is strongly continuous on ( $0, \infty$ ), and, since $\int_{0}^{i}\left\|A_{0} T(u) f\right\| d u=$ $=\mathcal{O}(t)$ as $t \rightarrow 0+, A_{0} T(\cdot) f$ is also Bochner integrable on $(0, t)$ for $t>0$. Using this, ( $a$ ), and [8; Thm.3.7.12], (2.2) follows by

$$
\begin{aligned}
\left\|t^{-1}(T(t) f-f)\right\|=\left\|A_{0} C(t) f\right\| & =\|A C(t) f\|=\left\|t^{-1} \int_{0}^{t} A T(u) f d u\right\|= \\
& =\left\|t^{-1} \int_{0}^{t} A_{0} T(u) f d u\right\| \leqslant t^{-1} \int_{0}^{t}\left\|A_{0} T(u) f\right\| d u=\mathcal{O}(1), \quad t \rightarrow 0+
\end{aligned}
$$

Conversely, let $\|T(t) f-f\|=\mathcal{O}(t), t \rightarrow 0+$. Since $X$ is reflexive the weak compactness theorem furnishes weak convergence for a positive null sequence $\left\{t_{n}\right\}$, i.e. there is a $g \in X$ such that

$$
\begin{equation*}
f^{*}\left(\frac{T\left(t_{n}\right) f-f}{t_{n}}\right) \rightarrow f^{*}(g), \quad n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

for each $f^{*} \in X^{*}$, or,

$$
\left[f^{*} \circ T(t)\right]\left(\frac{T\left(t_{n}\right) f-f}{t_{n}}\right) \rightarrow\left[f^{*} \circ T(t)\right](g), \quad n \rightarrow \infty
$$

so that we also have weak convergence of the sequence $\left\{T(t) t_{n}^{-1}\left(T\left(t_{n}\right) f-f\right)\right\}$ to $T(t) g$. Since $T(t) f \in D\left(A_{0}\right)$ for $t>0$ we obtain

$$
f^{*}(T(t) g)=\lim _{n \rightarrow \infty} f^{*}\left(\frac{T\left(i_{n}\right)-I}{t_{n}}\right) T(t) f=f^{*}\left(A_{0} T(t) f\right)
$$

for each $f^{*} \in X^{*}$, and it follows that

$$
\begin{equation*}
T(t) g=A_{0} T(t) f, \quad \forall t>0 \tag{2.6}
\end{equation*}
$$

The strong measurability of $A_{0} T(\cdot) f$ follows as in (2.4), and $\left\|A_{0} T(\cdot) f\right\|$ is Lebesgue integrable on $(0, t)$ by (2.6) and (i) $)_{0}$, thus $A_{0} T(\cdot) f$ is Bochner integrable on $(0, t)$. As above one has

$$
t^{-1}(T(t) f-f)=A_{0} C(t) f=t^{-1} \int_{0}^{t} A_{0} T(t) f d u=t^{-1} \int_{0}^{t} T(u) g d u=C(t) g
$$

Thus $\|C(t) g\|=\mathcal{O}(1), t \rightarrow 0+$ and by $(b)$

$$
\left\|A_{0} T(t) f\right\|=\|T(t) g\|=\mathcal{O}(1), \quad t \rightarrow 0+
$$

and the proof is complete.

Remark 2. - If, in particular, the semigroup belongs to ( $C_{0}$ ), conditions ( $\left.i\right)_{0}$, (a), and (b) are satisfied and. Theorem 2 reduces to [2; Prop.2.3.1] in the case of a reflexive space $X$.

For non-reflexive spaces we can show that characterization (2.1) remains valid, provided that the space $X$ can be continuously embedded in some space $Y$ and the semigroup $\{T(t), t>0\}$ can be extended in the following way. We say the Banach space $X$ satisfies condition
$\left(E_{1}\right)$ if there are a Banach space $Y$ and a separable normed linear space $Z$ such that
(a) $X \subset Y$ and $\|g\|_{X}=\|g\|_{Y}$ for all $g \in X$,
(b) there exists an isometric and isomorphic mapping $K$ from $Y$ to $Z^{*}$, the dual of $Z$.

A semigroup $\{T(t), t>0\}$ on a Banach space satisfying $\left(\mathrm{E}_{1}\right)$ is said to satisfy condition
$\left(\mathrm{E}_{2}\right)$ if $(a) T(t) \in[X]$ can be extended to some $\widetilde{T}(t) \in[Y]$ for $t>0$,
(b) for each $t>0$ there is an $S(t) \in[Z]$ whose dual operator $S^{*}(t)$ satisfies $S^{*}(t) K=K \widetilde{T}(t)$.

Theorem 3. - Let $X$ be a Banach space satisfying $\left(\mathrm{E}_{1}\right)$ and let $\{T(t), t>0\}$ be a strongly measurable semigroup with infinitesimal operator $A_{0}$ and $T(t)(X) \subset$ c $D\left(A_{0}\right), \forall t>0$ which satisfies $\left(\mathrm{E}_{\mathrm{a}}\right)$.

Moreover, we suppose
(a) there exists the infinitesimal generator $A$ of $\{T(t), t>0\}$ on $X$,
(b) $\{\widetilde{T}(t), t>0\}$ is strongly measurable and (i) is valid for $\widetilde{T}(t)$ on $Y$, i.e. $\tilde{C}(t) g=t^{-1} \int_{0}^{t} \tilde{T}(u) g d u$ is well defined for $t>0, g \in Y$,
(c) $\|\tilde{C}(t) g\|=\mathcal{O}(1), t \rightarrow 0+$ for $g \in Y$ implies $\|\widetilde{T}(t) g\|=\mathcal{O}(1), t \rightarrow 0+$.

Then (2.2) and (2.3) are equivalent for each $f \in \Sigma$.
Proof. - The proof of the implication $(2.3) \Rightarrow(2.2)$ is the same as in Theorem 2. Conversely, let $\tilde{T}_{R}(t)$ be the operator from $Z^{*}$ to $Z^{*}$ associated to $\tilde{T}(t)$ by

$$
\begin{equation*}
\widetilde{T}_{K}(t):=K \widetilde{T}(t) K^{-1}, \quad t>0 \tag{2.7}
\end{equation*}
$$

$\operatorname{By}\left(\mathbf{E}_{1}\right)(b),\left\|\tilde{T}_{K^{\prime}}(t)\right\|_{\left[Z^{*}\right]}=\|\tilde{T}(t)\|_{\{Y]}$ and, by $\left(\mathrm{E}_{2}\right)$, there is an $S(t) \in[Z]$ such that

$$
\begin{equation*}
S^{* *}(t)=\tilde{T}_{K}(t), \quad t>0 \tag{2.8}
\end{equation*}
$$

By (2.2) and $\left(\mathbf{E}_{1}\right)$ one has $\left\|K\left(t^{-1}(T(t) f-f)\right)\right\|_{Z^{*}}=\mathcal{O}(1), t \rightarrow 0+$. The weak * compactness theorem yields a positive null sequence $\left\{t_{n}\right\}$ and a $G^{*} \in Z^{*}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[K\left(\frac{T\left(t_{n}\right) f-f}{t_{n}}\right)\right](h)=G^{*}(h) \quad \forall h \in \mathbb{Z} \tag{2.9}
\end{equation*}
$$

Defining $g:=K^{-1} G^{*} \in Y$ we obtain for $t>0$ and $h \in Z$

$$
\begin{aligned}
{[K(\widetilde{T}(t) g)](h)=\left[S^{*}(t)\right.} & \left.G^{*}\right](h)=G^{*}(S(t) h)=\lim _{n \rightarrow \infty}\left[K\left(\frac{T\left(t_{n}\right) f-f}{t_{n}}\right)\right](S(t) h) \\
& =\lim _{n \rightarrow \infty}\left[S^{*}(t) K\left(\frac{T\left(t_{n}\right) f-f}{t_{n}}\right)\right](h)=\lim _{n \rightarrow \infty}\left[K\left(\widetilde{T}(t) \frac{T\left(t_{n}\right) f-f}{t_{n}}\right)\right](h) \\
& =\lim _{n \rightarrow \infty}\left[K\left(\frac{T\left(t_{n}\right) f-f}{t_{n}} T(t) f\right)\right](h)=\left[K\left(A_{0} T(t) f\right)\right](h)
\end{aligned}
$$

and thus

$$
\begin{equation*}
\widetilde{T}(t) g=A_{0} T(t) f, \quad t>0 \tag{2.10}
\end{equation*}
$$

In particular, $\tilde{T}(t) g \in X$ for $t>0$. Moreover, $\tilde{T}(\cdot) g$ is strongly measurable by ( $b$ ) and, in view of (i) , Bochner integrable on ( $0, t$ ), $t \leqslant 1$. By (2.10) one has

$$
t^{-1}(T(t) f-f)=\dot{A}_{0} C(t) f=t^{-1} \int_{0}^{t} A_{0} T(u) f d u=t^{-1} \int_{0}^{t} \tilde{T}(u) g d u=\tilde{C}(t) g
$$

for $t>0$. Condition (2.2) implies $\|\tilde{C}(t) g\|=\mathcal{O}(1), t \rightarrow 0+$ and (c) yields $\|\tilde{T}(t) g\|=$ $=\mathcal{O}(1), t \rightarrow 0+$, so that, by (2.10),

$$
\left\|A_{0} T(t) f\right\|=\|\widetilde{T}(t) g\|=\mathcal{O}(1), \quad t \rightarrow 0+
$$

Remark 3. - If, in addition, $X$ is reflexive and separable the assumptions of Theorem 3 reduce to those of Theorem 2 , for one may choose $Y=X, Z \equiv X^{*}$ and $\widetilde{T}(t)=T(t), S(t)=T^{*}(t)$ in order to verify $\left(\mathbf{E}_{1}\right)$ and $\left(\mathrm{E}_{2}\right)$. Indeed, $X^{* *}$ is separable and so is $X^{*}$, and for $K$ the canonical mapping can be chosen.

## 3. - Two applications.

In this section we show that the results of section 2 can be applied to the examples of section 1 .

Example I. - We shall use Theorem 3 to prove that (2.1) remains true for $X=C_{2 \pi}$ and $T(t)=T_{\varphi}(t)$, cf. (1.3), where $\varphi$ is an arbitrary element of $\Omega_{1}(c f$. (1.4)).

In order to verify $\left(\mathrm{E}_{1}\right)$ we choose $Y=L_{2 \pi}^{\infty}$ and $Z=L_{2 \pi}^{1}$ with norms

$$
\|f\|_{\infty}=\operatorname{ess} \sup |f(x)| \quad \text { and } \quad\|f\|_{1}=(2 \pi)^{-1} \int_{-\pi}^{\pi}|f(x)| d x
$$

respectively.
Indeed, $(a)$ holds trivially and the congruence of $L_{2 \pi}^{\infty}$ with the dual of $L_{2 \pi}^{1}$ is also clear in view of the Riesz representation theorem, where

$$
(K g) h=(2 \pi)^{-1} \int_{-\pi}^{\pi} g(u) h(u) d u \quad \text { for } g \in L_{2 \pi}^{\infty}, h \in L_{2 \pi}^{1}
$$

Hence $\left(E_{1}\right)$ is satisfied.
Let $\varphi \in \Omega_{1}$. Since

$$
\sum_{k \in \mathbb{Z}} h^{-1}\left(e^{-h \varphi(|k|)}-1\right) e^{-t \varphi(|k|)} f^{\wedge}(k) e^{i k x}
$$

tends to

$$
\sum_{k \in \mathbb{Z}}(-\varphi(|k|)) e^{-t \varphi(|k|\rangle} f^{\wedge}(k) e^{-i k x}
$$

as $h \rightarrow 0+$ uniformly in $x \in[-\pi, \pi)$ for $t>0, f \in C_{2 \pi}$, one has $T_{\varphi}(t)\left(C_{2 \pi}\right) \subset D\left(A_{9,0}\right)$, $\forall t>0$.

Let $\tilde{T}_{\varphi}(t)$ denote the trivial extension of $T_{\varphi}(t)$ from $C_{2 \pi}$ to $L_{2 \pi}^{\infty}$. Ohoosing

$$
\begin{equation*}
S_{\varphi}(t)(h ; x)=\sum_{k \in \mathbb{Z}} e^{-t \varphi(|k|))} h^{\wedge}(k) e^{i k x} \tag{2.11}
\end{equation*}
$$

for $h \in L_{2 \pi}^{1}, t>0$, one has $K \widetilde{T}_{\varphi}(t) K^{-1}=S_{\varphi}^{*}(t)$. Hence $\left\{T_{\varphi}(t), t>0\right\}$ satisfies $\left(\mathrm{E}_{2}\right)$ and, (a) and (b) being trivial, it remains to verify condition (c).

Setting

$$
U_{\varphi, \ell}(g ; x)=\sum_{|k| \leqslant \varrho} g^{\wedge}(k) e^{i k x}+\sum_{|k|>e} \frac{\varphi(\varrho+1)}{\varphi(|k|)} g^{\wedge}(k) e^{i k x}
$$

for $g \in L_{2 \pi}^{\infty}, \varrho>0$, and $t^{-1}=\varphi(\varrho+1)$, and, denoting by $\tilde{C}_{\varphi}(t)$ and $\widetilde{R}_{\varphi, \varrho}$ the trivial extensions of $O_{\varphi}(t)$ and $R_{\varphi, \varrho}$, we have

$$
\begin{align*}
& \left\|\tilde{C}_{\varphi}(t)-\tilde{T}_{\varphi}(t)\right\|\left[L_{\left.L_{\pi}^{\infty}\right]} \leqslant\left\|\tilde{C}_{\varphi}(t)-U_{q, \varrho}\right\|\left[L_{\left.L_{n}^{\infty}\right]}+\left\|U_{q, \varrho}-\tilde{R}_{q, e}\right\| L_{\left.L_{i \pi}^{\infty}\right]}+\right.\right.  \tag{2.12}\\
& +\left\|\tilde{R}_{\varphi, \varrho}-\tilde{T}_{\varphi}(t)\right\|_{\left[L_{x_{\pi}}^{\infty}\right]} .
\end{align*}
$$

In order to prove that $\left\|U_{\varphi, \varrho}-\tilde{R}_{p, \varrho}\right\|_{\left.L_{i \pi}^{\infty}\right]}=\mathcal{O}(1), \varrho \rightarrow \infty$ we consider the associated
kernels and set $\gamma(\varrho)=\log \varphi(\varrho)$ :

$$
\begin{aligned}
& \left\|\sum_{|k| \leqslant e} \frac{\varphi(|k|)}{\varphi(\varrho+1)} e^{i k x}+\sum_{|k|>e} \frac{\varphi(\varrho+1)}{\varphi(|k|)} e^{i k x}\right\|_{1} \\
& \quad<\frac{1}{2 \pi} \int_{-\gamma^{\prime}(e)}^{\gamma^{\prime}(\varrho)}\left\{\left|\sum_{|k| \leqslant e} \frac{\varphi(|k|)}{\varphi(\varrho+1)} e^{i k x \mid}+\sum_{|k|>e} \frac{\varphi(\varrho+1)}{\varphi(|k|)} e^{i k x}\right|\right\} d x \\
& \quad+\frac{1}{\pi} \int_{\gamma^{\prime}(\varrho)}^{\pi}\left\{\left\lvert\, \sum_{|k| \leqslant \varrho}\left(1-\frac{\varphi(|k|)}{\varphi(\varrho+1)}\right) e^{i k x_{\mid}}+\sum_{|k|>e} \frac{\varphi(\varrho+1)}{\varphi(|k|)} e^{i k x}+\sum_{|k| \leqslant \varrho} e^{i k x}\right.\right\} d x=I_{1}+I_{2}
\end{aligned}
$$

say. By an application of [3; Lemma 2.3(b)] the uniform boundedness of $I_{1}$ follows immediately. A repeated application of Abel's transformation yields the same for $I_{2}$. Similarly, the uniform boundedness of the other terms of (2.12) follows. Thus the hypotheses of Theorem 3 are satisfied, so that, together with (1.5) and Theorem 1, one obtains

$$
\begin{aligned}
D\left(A_{\varphi, 0}\right) \subsetneq & \subseteq\left(\left\{T_{\varphi}(t)\right\}\right) \\
& =\left\{f \in C_{2 \pi} ;\left\|A_{\varphi, 0} T_{\varphi}(t) f\right\|=\mathcal{O}(1), t \rightarrow 0+\right\} \\
& \nsubseteq \widetilde{D\left(A_{\varphi}\right)^{\sigma_{2 \pi}}}=\left\{f \in C_{2 \pi} ; \exists g \in L_{2 \pi}^{\infty} \text { with } \varphi(|k|) f^{\wedge}(k)=g^{\wedge}(k) \forall k \in Z\right\}
\end{aligned}
$$

Analogous results are valid for $\left\{T_{\varphi}(t), t>0\right\}$ in the space $X=L_{2_{\pi}}^{1}$.
Example II. - Here we apply Theorem 2. Since

$$
\left[\frac{T_{q}(h)-I}{h} T_{s}(t) f\right]^{\wedge}(v)=\binom{\frac{e^{-h v^{2}}-1}{h}\left\{e^{-t v^{2}} \hat{f_{1}}(v)+t v^{\alpha} e^{-t v^{2}} \hat{f_{2}}(v)\right\}+v^{z} e^{-h v^{2}} e^{-t v^{2}} \hat{f_{2}}(v)}{\frac{e^{-h v^{2}}-1}{h} e^{-t v^{2}} \hat{f_{2}}(v)}
$$

for $f \in \boldsymbol{L}^{2}, t>0$, (cf. (1.9)), one has $T_{q}(t)\left(\boldsymbol{L}^{2}\right) \subset D\left(P_{q, 0}\right)$ for each $t>0$. Moreover, $\left\{T_{g}(t), t>0\right\}$ is strongly measurable and (i) is satisfied. For $g \in \boldsymbol{L}^{2}$ we have, for $2<q<4$,

$$
\begin{aligned}
& \left\|T_{\imath}(t) g\right\|=\mathcal{O}\left(1+\left\|t v^{q} e^{-t v^{2}} g_{2}^{2}(v)\right\|_{2}\right), \quad t \rightarrow 0+, \\
& \left\|v^{q-2}\left(\frac{1-e^{-t v^{2}}}{t v^{2}}-e^{-t v^{2}}\right) \hat{g_{2}}(v)\right\|_{2}=\mathcal{O}\left(1+\left\|C_{Q}(t) g\right\|\right), \quad t \rightarrow 0+,
\end{aligned}
$$

where $C_{a}(t) g:=t^{-1} \int_{0}^{t} T_{a}(u) g d u$ for $t>0$. Defining

$$
\left[E_{a}(t) h\right]^{\wedge}(v)=\frac{t v^{2} e^{-t v^{2}}}{\left(t v^{2}\right)^{-1}\left(1-e^{-t v^{2}}\right)-e^{-t v^{2}}} \hbar^{\wedge}(v)
$$

for $h \in L^{2}(\boldsymbol{R}), t>0, v \in \boldsymbol{R}$ and observing that $\left\|E_{q}(t)\right\|_{\left[L^{2}(R)[ \right.} \leqslant 2, \forall t>0$, we obtain

$$
\left\|T_{q}(t) g\right\|=\mathcal{O}\left(1+2\left\|\left(\frac{1-e^{-t v^{2}}}{t v^{2}}-e^{-t v^{v}}\right) v^{q-2} g_{2}^{\hat{2}}(v)\right\|_{2}\right)=\mathcal{O}\left(1+\left\|C_{q}(t) g\right\|\right)
$$

as $t \rightarrow 0+$, which is condition (b) of Theorem 2. Thus, by Theorem 2 and (1.11), we obtain for $2<q<4$

$$
D\left(P_{q, 0}\right) \subsetneq S\left(\left\{T_{q}(t)\right\}\right)=\left\{f \in L^{2} ;\left\|P_{q, 0} T_{q}(t) f\right\|=\mathscr{O}(1), t \rightarrow 0+\right\} \subsetneq D\left(P_{q}\right)
$$

Acknowledgement. The authors would like to thank R. J. Nessel for valuable discussions in connection with Theorem 3.

## REFERENCES

[1] H. Berens, Interpolationsmethoden zur Behandlung von Approximationsprozessen auf Banachräumen (Lecture Notes in Mathematics 64), Springer, Berlin - Heidelberg - New York, 1968.
[2] P. L. Butzer - H. Berens, Semi-Groups of Operators and Approximation, Springer, Berlin - Heidelberg - New. York, 1967.
[3] W. DahMen, Trigonometric approximation with exponentiat error orders, I: Construction of asymptotically optimal processes; generalized de la Vallée Poussin sums, Math. Ann., 230 (1977), pp. 57-74.
[4] W. Dahmen - E. Görlich, Best approximation with exponential error orders and intermediate spaces, Math. Z., 148 (1976), pp. 7-21.
[5] W. Dahmen - E. Görlici, The charaoterization problem for best approximation with exponential error orders and evaluation of entropy, Math. Nachr., 76 (1977), pp. 163-179.
[6] G. Da Prato, Semigruppi di crescenza n, Anni.. Scuola Norm. Sup. Pisa, 20 (1966), pp. 753-782.
[7] E. Görlich - D. Pontzen, Approximation of operator somigroups of Oharus class $\left(O_{(k)}\right)$, Tôhoku Math. J., 34 (1982), pp. $539-552$.
[8] E. Hille - R. S. Philifes, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, 1957.
[9] S. G. Krewx, Linear Differential Equations in Banaoh Space, Transl. Math. Monographs, Amer. Math. Soc., Vol. 29, 1971.
[10] S. Oharu, Semigroups of linear operators in a Banaoh space, Publ. RIMS, Kyoto Univ,, 7 (1971-72), pp. 205-260.
[11] P. E. Sobolevskit, On semigroups of growth order $\alpha$, Soviet Math. Dokl., 12 (1971), pp. 202-205.
[12] H. Sunouciri, Convergence of semi-discrete difference schemes of Cauchy problems, Tôhoku Math. J., 22 (1970), pp. 394-408.
[13] T. Takahashi - S. Oharu, Approximation of operator semigroups in a Banaoh space, Tôhoku Math. J., 24 (1972), pp. 505-528.
[14] P. P. Zabreiko - A. V. Zapievskir, On a certain class of semigroups, Soviet Math. Dokl., 10 (1969), pp. 1523-1526.
[15] A. V. Zafrevskit, On semigroups with singularities summable with a power weight at zero, Soviet Math. Dokl., 11 (1970), pp, 1408-1411.
[16] A. Zygmund, Trigonometric Series I, Cambridge University Press, 1959.


[^0]:    (*) Entrata in Redazione il 18 febbraio 1982.
    (**) The second named author was supported by a DFG grant (Go 261/4-1) which is gratefully acknowledged.

